November 1950
INDUSTRIAL AND ENGINEERING CHEMISTRY
2371
(22) Latimer, W.
M., and Hildebrand, J. H., “Reference Book of Inorganic Chemistry,” PP. 169-70, 330; Appendix 11, pp. 47481; Appendix XI, p. 507, New York, The Macmillan Co.,
(7) Dodgen, H., and Taube, H., J. Am. C‘hem. SOC.,71, 2501-4 (1949). ( 8 ) Dolch, P., “Ueber die Bedeutung der chlorigsaurenSalse bei der Umwandlung von Hypochloriten in Chlorate,” p. 23, dissertation,Techn. Hochachule, Dresden, 1912. (9) Erbe, F. (to I. G. Farbenindustrie, A.-G.), Ger. Patent 744,369 (Ffb. 26, 1944). (10) Gardmer, W. C., and Karr, E. H., Dept. of Commerce, OTS Rep!., PB 33218 (1946). (11) Glasstone, S., J . Chem. Soe., 119, 1689-97,1914-27 (1921). (12) Ibid., 121, 1456 (1922). (13) Gmelin’s “Hsndbuoh der anorganischen Chemie,” 8 Aufl., Chlor, System-Nummer 6, pp. 298-307, Berlin, Verlag Chemic, 1927. (14) Grube, G., “Grundniigeder Elektrochemie,” 2 Aufl., Tab. 25, p. 105, Dresden und Leipzig, Theodor Steinkopf, 1930; Z. Elektrochsm., 28, 273 (1922). (15) Hodgman, C. D., ed., “Handbook of Chemistry and Physics,” 30th ed., pp. 1416-20, 1423, 1426, Cleveland, Ohio, Chemical Rubber Publishing Co., 1947. (16)Zbid., pp. 1512-13. (17) Holst, G., 8vensk Kern, Tid.,56,369-91 (1944). (18) Holst, G., S v m k Papperstidn., 47, 537-46 (1944). (19) Ibid., 48,23-30 (1945). (20) Zbid., 50, 472-7 (1947); Paper Trade J., 128, No. 1, 26 (1949); U. S. Patent 2,373,830 (April 17, 1945). (21) I. G. Farbenindustrie, A.-G., British Intelligence Objeotives Sub-Committee, London, Final Repl. 825.
1940. (23) Levi, G. R., Atliaccad. Lincei, 31, I, 371 (1922); &ZZ. chim. dtal., 52,II, 56 (1922). (24) Msier, C. G., J . Am. Chem. Soe., 51,204 (1929). (25) N. V. Koninklijke Nederlandsche Zoutindustrie, Dutch Patent 60,345, (Dec. 15, 1947). (26) Zbid.. 60,346 (Dec. 15, 1947). (27) Reychler, A., Bull. soc. chim. France, 25,663 (1901). (28) Rudisale, A., “Nachweis, Bestimmung, und Trennung der chemischen Elemente,” Band 111,pp. 455-56, Bern, Akad. Buchhandlung von Max Drechsel, 1914. (29) Sevh, J., and Sundman, F. V. (to Kymin-Oeakeyhtio-Kymmene Aktiebolag), Swedish Patent 113,609 (March 8 , 1 9 4 5 ) . (30) Solvay et Cie., Belgian Patent 449,413 (March 1943). (31) Taylor, M. C., White. J. F., Vincent, G. P., and Cunningham, G. L., IND. ENG).Cmm., 32,899-903 (1940). (32) Vincent, G. P. (to Mathieson Alkali Works), U. S. Patent 2,092,944 (Sept. 14, 1937). (33) Ibid.,2,092,945 (Sept. 14, 1937). (34) White,J. F., Chloritea and Chlorine Dioxide, in “Encyclopedia of Chemical Tecylnology,” edited by R. E. Kirk and D. F. Othmer, Vol. 3, pp. 696-707, New York, Interscience Encyclopedia, 1949. REOEIVZD October 28,1949.
Compressibility of EthanePropylene Vapor Mixtures H. WILLIAM PRENGLE, JR.’, AND HENRY MARCHMAN Carnegie Institute
of
Technology, Pittsburgh 13, Pa.
The compressibilities of f o u r ethane-propylene vapor mixtures (0.1861, 0.4033, 0.6016, a n d 0.7998 mole fractions of ethane) over a range of pressures f r o m 10 to 220 atmospheres and temperatures from 100” to 250” C. are presented. Measurements were correlated by mt5ans of the Benedict-Webb-Rubin eqiiation of state to a density of 9.0 moles per liter, with an over-all average deviation of 0.615%
A
BASIC approach to the analysis and correlation of compressibility data for gases has been by the use of an equation of state; for pure components this involves fitting the equation of state to the experimental data by evaluating a number of constante. These constants are peculiar to the given substance and can be used to interpret a proposed molecular picture. A logical approach to the pressure-volume-temperature (P-V-T) relations of mixtures is the method by which the pure component constante (in the equation of state) combine to describe the properties of the mixture. Much success in this direction has been obtained by Beattie and co-workers (8, 9) and Benedict and coworkers (6,6)for hydrocarbon mixtures. Hope for the solution of the general problem of the P-V-T relations of mixtures lies in the use of these methods, as compared to the extremely longrange methods of obtaining the experimental data for all possible hydrocarbon gas mixtures. The purpose of this work was t o increase the P-V-T data of hydrocarbon mixtures by experimental measurements, and to correlate the data by one of the methods of combining constante of the pure components of the mixture. The P-V-T data of four ethane-propylene mixtures (0.1861,0.4033, 0.6016, and 0.7998 1 Present
addreen, Shell Oil Company Research Laboratory, P.O. Box
2697, Houston 1 , Tex. 1
mole fractions of ethane) were, determined at pressures from 10 to 220 atmospheres and temperatures from 100” t o 250’ C. (isotherms a t every 25’ C.). The system, ethane-propylene, has been investigated by Lu, Newitt, and Ruhemann (8). These investigators determined the phase equilibria at temperatures from -30” to 70” C. and pressures from 1 to 52 atmospheres which included the critical envelope. Their measurements involved the compressibility of the two pure components and nine mixtures. Although the work of Lu et al. contributes to the important subject of phase equilibria, none of the data can be used for comparieon with the data of this investigation because of the temperature and pressure ranges. APPARATUS AND EXPERIMENTAL TECHNIQUE
The apparatus and experimental technique used in this work have been described in detail (7). The gas samples were Phillips Petroleum Company research grade hydrocarbons certified by the National Bureau of Standards as 99.9 mole % ethane and 99.70 mole % propylene. The data are believed to be accurate within d 2 5 % (7). EXPERIMENTAL P-V-T DATA
Prior to the determination of the P-V-T data of the ethanepropylene mixtures it was necessary t o select suitable data for the two pure components, in order that subsequent correlation of the mixture data could be accomplished. The compressibility of $thane vapor in the superheated region has been studied by Beattie, Hadlock, and Poffenberger (I), Beattie, Su, and Simard (4and , Reamer, Olds, Sage, and Lacey (IO). Beattie’s data cover temperatures from 26” to 275’ C. and pressures from 10 to 350 atmospheres, whereas Reamer and co-workers determined
2372
I N D U S T R I A L A N D E N G I N E E R I N G CHEMISTRY
Vol. 42, No. 11
TABLE 11. COMPRESSIBILITIES OF E MIXTURE No. 1 (a; = 0.1861; zj = 0.8139)
Prwsure, Atm. 0
040;
'
'
40
"
'
'
BO I20 PRESSURE, ATM.
" 16C
'
I
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220
'
ZOO
Figure 1. Compressibility of Mixture No. 3 Mole fraction*:
1
OF ETHANE DATA TABLE I. COMPARISON
,',
elBzztF), paa
46.03 62.65 115.30 161.59 216.11
0.8135 0.7430 0.5742 0.5820 0.8630
$:,: P
phisDev.*, work, 1000 c.
1000 c. 0.8150 -0.18 0.7441 -0.15 0.5721 0.37 0.5801 0.33 0.6611 0.29 2M)a
% dev. =
0
% dev.
=
('y)
Reamer
el at. ( I O ) , WR
% Dev.C, Reamer
el ol. (IO)
0.8195 0.7479 0.5800 0.5872 0.6712
-0.74 -0.86 -1.05 -0.82 -1.23
0.9077 0.8686 0.8421 0.8345 0.8470
-0.74 -0.77
1.0000 0.9480 0.8932 0.8317 0.7646 0.6945 0.6196 0.5425 0.4771 0.4439 0.4348 0.4400 0.4528 0.4691 0.4886 0.5070 0.5278 0.5488 0.5702 0.5918 0.6132 0.6350 0.6568
-
225
250-
1.0000 0.9765 0.9529 0.9298 0.9063 0.8829 0.8609 0.8400 0 8207 0.8030 0.7875 0,7741 0.7635 0.7548 0.7488 0.7461 0.7460 0.7479 0.7520 0.7578 0.7650 0.7731 0.7821
1.0000 0.9805 0.9610 0.9420 0,9232 0.9045 0,8870 0,8701 0.8549 0.8412 0,8286 0.8179 0.8089 0.8024 0.7975 0.7941 0.7932 0.7940 0.7962 0,8000 0.8053 0,8117 0.8195
TABLE 111. COMPRESSIBILITIES OF MIXTUREKO. 2 (z