Computer Applications in the Polymer Laboratory - American

with a High-Speed and -Capacity Computer ... provide a hookup to an IBM 308X main frame computer ... was written to interpolate the data to 1 degree i...
2 downloads 0 Views 781KB Size
8 Advantages of Interfacing a Viscoelastic Device with a High-Speed and -Capacity Computer Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 27, 2018 | https://pubs.acs.org Publication Date: June 27, 1986 | doi: 10.1021/bk-1986-0313.ch008

and an Advanced Statistical-Graphics Software Package Stephen Havriliak, Jr. Bristol Research Laboratories, Rohm and Haas Company, Bristol, PA 19007

There are many advantages to the polymer scientist for constructing such interfaces. First of a l l , a high storage computer allows one to store large amounts of data in a form that makes data storage and retrieval, as well as comparisons, quite simple and efficient. Secondly, complicated calculations, involving experimental design, error estimation or conventional polymer science theories of one form or another can readily be carried out. For example, a replication study could be carried out and variance or standard deviations be represented in terms of measured quantities. Viscoelastic data could then be presented in a form of experimental quantities along with confidence limits. When polymer systems are compared, one can estimate the differences in behavior relative to the estimated error (signal/noise ratio) and select the optimum conditions for comparison.

We have f o u n d s i t u a t i o n s where c o m p a r i s o n s c a n be made i n r e g i o n s where t h e e x p e r i m e n t a l e r r o r may be

0097-6156/86/0313-0076$06.00/0 © 1986 American Chemical Society

Provder; Computer Applications in the Polymer Laboratory ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 27, 2018 | https://pubs.acs.org Publication Date: June 27, 1986 | doi: 10.1021/bk-1986-0313.ch008

8. HAVRILIAK

Interfacing a Viscoelastic Device

h i g h b u t t h e d i f f e r e n c e s i n o b s e r v e d b e h a v i o r more t h a n compensate f o r t h e e r r o r . Smoothing functions that r e d u c e t h e n o i s e i n t h e s y s t e m c a n a l s o be used s o t h a t the u s e f u l range o f t h e i n s t r u m e n t c a n be e x t e n d e d several fold. B l e n d c a l c u l a t i o n s u s i n g any o f t h e w e l l known e x p r e s s i o n s c a n be used t o e s t i m a t e t h e p r o p e r t i e s o f b l e n d s f r o m t h e p r o p e r t i e s o f t h e p u r e compon e n t s and t h e i r volume f r a c t i o n . The r e s u l t s o f s u c h calculations c a n t h e n be compared to experimental v a l u e s and t h e m a g n i t u d e o f t h e e x p e r i m e n t a l e r r o r t o d e t e r m i n e whether the d i f f e r e n c e s are meaningful or not. T h i s paper r e v i e w s t h e advantages t o t h e polymer s c i e n t i s t when such an i n t e r f a c e i s u s e d .

EXPERIMENTAL A l l t h e v i s c o e l a s t i c measurements were c a r r i e d o u t i n t h e R h e o m e t r i e s Dynamic S p e c t r o m e t e r RDS-770 a t a f r e q u e n c y o f 1Hz, a s t r a i n o f 0.1%, and a t e m p e r a t u r e range o f -140 t o 140 C i n c r e m e n t e d e v e r y 2 d e g r e e s . The T e x a s I n s t r u m e n t T e r m i n a l S i l e n t 700 was t a p p e d t o p r o v i d e a hookup t o an IBM 308X main frame computer l o c a t e d some m i l e s away. The o u t p u t o f t h e R h e o m e t r i e s u n i t was c o n v e r t e d t o a d a t a f i l e t o be used i n c o n j u c t i o n w i t h SAS ( 1 ) . A l l s t a t i s t i c a l m a n i p u l a t i o n s , s o f t w a r e d e v e l o p m e n t s , and t h e n e c e s s a r y g r a p h i c s t h a t are r e p o r t e d h e r e were c a r r i e d o u t w i t h t h e a i d o f SAS• S e t t i n g t h e i n c r e m e n t a l t e m p e r a t u r e change t o 2°C r e s u l t e d i n an a v e r a g e 2°C change b u t t h e r e were many p l a c e s where t h e change was 1 o r 3 d e g r e e s . S i n c e t h e s e c h a n g e s o c c u r r e d randomly and v a r i a n c e c a l c u l a t i o n s o r o t h e r c o m p a r i s o n s must be p e r f o r m e d a t the same t e m p e r a t u r e f o r each m a t e r i a l , a s m a l l p r o g r a m was w r i t t e n t o i n t e r p o l a t e t h e d a t a t o 1 d e g r e e i n c r e ments. The SAS d a t a f i l e s c o n s i s t e d o f r e a l (6SP) and i m a g i n a r y (GDP) p a r t s o f t h e m o d u l u s , t h e l o s s t a n g e n t ( t a n d e l ) , t e m p e r a t u r e (T) and t h e sample i d e n t i f i c a t i o n (sampno)• The t h r e e p o l y m e r s t h a t were c h o s e n f o r s t u d y , e.g. PNNA ( 2 ) , EPDM ( 3 ) , and H y t r e l ( 4 ) , were s e l e c t e d because t h e y r e p r e s e n t a wide range o f v i s c o e l a s t i c materials. These materials were processed into plaques. The p l a q u e s were a n n e a l e d a t 125 C between h i g h l y p o l i s h e d chrome p l a t e d f l a t p l a t e s and c o o l e d slowly to minimize the e f f e c t s of r e s i d u a l s t r e s s e s . V i s c o e l a s t i c measurements were made under conditions c i t e d above on two t e s t s p e c i m e n s t h a t were c u t f r o m

Provder; Computer Applications in the Polymer Laboratory ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

11

78

COMPUTER APPLICATIONS IN THE POLYMER LABORATORY

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 27, 2018 | https://pubs.acs.org Publication Date: June 27, 1986 | doi: 10.1021/bk-1986-0313.ch008

adjacent l o c a t i o n s i n the plaque t o minimize p o s s i b l e preparation variations. The t e s t s p e c i m e n s i z e i n a l l c a s e s was 2 x 0.5 x 0.125 i n . B l e n d s o f PMMA/Hytrel = 3/1 were a l s o p r e p a r e d by e x t r u s i o n b l e n d i n g i n a 1 i n . K i l l i o n e x t r u d e r . The p e l l e t s were i n j e c t i o n m o l d ed i n t o p l a q u e s . These p l a q u e s were a n n e a l e d a t 125 C for 3 minutes, and t h e n c o o l e d t o room temperature slowly to minimize r e s i d u a l s t r e s s e s . RESULTS A*

ESTIMATES OF EXPERIMENTAL ERROR

Variance (5,6), related to the scatter i n r e p l i cated experiments, was c a l c u l a t e d u s i n g SAS'S PROC MEANS f o r s t o r a g e m o d u l u s , l o s s modulus and l o s s t a n g e n t f o r each t e m p e r a t u r e and m a t e r i a l , e . g . , PMMA, EPDM AND HYTREL. V a r i o u s r e l a t i o n s h i p s were examined to s e l e c t t h e p r o p e r meter f o r r e l a t i n g v a r i a n c e t o t h e m a g n i t u d e o f measurement, e.g. l i n e a r , s e m i - l o g and log-log. The most s a t i s f a c t o r y meter t h a t was f o u n d was t h e l o g - l o g r e l a t i o n s h i p . SAS's PROC STEPWISE was used t o c o n s t r u c t a model f o r r e p r e s e n t i n g t h e v a r i a n c e i n terms o f t h e e x p e r i m e n t a l v a r i a b l e s , such a s t h e m a g n i t u d e o f t h e measurements, t h e i r c r o s s - t e r m s and temperature. T e m p e r a t u r e was f o u n d t o c o n t r i b u t e o n l y s l i g h t l y i n these r e l a t i o n s h i p s . SAS's PROC GLM was used t o e s t i m a t e t h e c o n t r i b u t i o n o f p o l y m e r type. T h i s was found t o be o n l y a weak c o r r e l a t i o n and need n o t be i n c l u d e d . T a b l e I s u m m a r i z e s t h e r e s u l t s and a n a l y s i s and t h e a s s u m p t i o n s t h a t were used t o c o n s t r u c t the f i n a l a l g e b r a i c equation to represent the variance. 95% c o n f i d e n c e l i m i t s were t h e n c a l c u l a t e d f r o m t h e e x p r e s s i o n s i n Table I I , w h i c h were d e r i v e d f r o m SAS's PROC GLM, t h e s i m p l i f i e d model and an e s t i mate o f t h e r e s i d u a l s . I t s h o u l d be p o i n t e d o u t t h a t the n u m e r i c a l v a l u e s c a l c u l a t e d from these e x p r e s s i o n s s h o u l d be used c a r e f u l l y ( s e e D i s c u s s i o n ) s i n c e t h e y include important assumptions i n t h e i r d e r i v a t i o n . I t i s e x p e c t e d t h a t o t h e r l a b o r a t o r i e s may d e r i v e s i m i l a r r e l a t i o n s h i p s b u t w i t h somewhat d i f f e r e n t numerical values• An example o f t h e u t i l i t y o f t h e s e e x p r e s s i o n s i s g i v e n i n F i g u r e 1 where t h e l o g ( r e a l modulus) i s p l o t t e d a g a i n s t temperature f o r two t e s t s p e c i m e n s o f EPDM. The f i r s t t e s t s p e c i m e n i s r e p r e s e n t e d by o ' s , w h i l e t h e s e c o n d s p e c i m e n i s r e p r e s e n t e d by t h e d a s h e d l i n e s , w h i c h a r e 95% c o n f i d e n c e l i m i t s c a l c u l a t e d f r o m t h e e x p r e s s i o n s i n T a b l e I I and i t v i s c o e l a s t i c p r o p e r ties. The measurements were made t h r e e weeks a p a r t .

Provder; Computer Applications in the Polymer Laboratory ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

8.

HAVRILIAK

Interfacing a Viscoelastic Device

79

Table I . Summary of R-Square Values for the Various Variance Models

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 27, 2018 | https://pubs.acs.org Publication Date: June 27, 1986 | doi: 10.1021/bk-1986-0313.ch008

MODEL TYPE

TANDEL*

GSP*

GDP*

1. SAS'S PROC STEPWISE, no polymer type

.45

.90

.75

2. SAS's PROC GLM, p o l y m e r t y p e is a class variable

.41

.93

.82

3. S i m p l i f i e d m o d e l , s e e T a b l e I I

.41

.88

.74

•TANDEL i s t h e l o s s t a n g e n t , GSP and GDP i s t h e l o s s m o d u l u s .

i s t h e s t o r a g e modulus

Table I I . Numerical Expressions Used to Represent the 957. Confidence Limits of the V i s c o e l a s t i c Quantities 1.

Log(VDT)=-3.13902+2.1813 L o g ( T D ) 0.144921 Log(GSP)+0.01117 PROD S

SDTD (VTD/0.41)and

VTD»10*EXP(Log(VTD))

2. Log(VGSP)*-2.0235+0.02906 Log(TD)+ 2.4905 Log(GSP)+0.6803 PROD SDGSP«(VGSP/0.88)

1/2

and

VGSP*10EXP(Log(VGSP))

3. Log(VGDP)=2.40928+2.6814 L o g ( G D P ) 0.6744 Log(GSP)-O.38506 PRODI SDGDP-(VGDP/0.74)

1/2

and

VGDP-10EXP(Log(VGDP))

Note t h a t GSP and GDP have been r e d u c e d by 10exp9 w i t h PROD=Log(TANDEL) Log(GSP) and PRODl*Log(GSP) Log(GDP) Note t h a t V T D = v a r i a n c e o f L o s s T a n g e n t , and t h a t SDTD i s the s t a n d a r d d e v i a t i o n o f Loss Tangent w i t h s i m i l a r d e f i n i t i o n s f o r GSP (G* o r r e a l modulus) and GDP (G" o r l o s s modulus)•

Provder; Computer Applications in the Polymer Laboratory ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 27, 2018 | https://pubs.acs.org Publication Date: June 27, 1986 | doi: 10.1021/bk-1986-0313.ch008

COMPUTER APPLICATIONS IN THE POLYMER LABORATORY

-150

-100

-50

0

50

100

Temperature (°C) F i g u r e 1* A p l o t o f t h e l o g ( s t o r a g e modulus) f o r EPDM w i t h t e m p e r a t u r e . The o's r e p r e s e n t t h e f i r s t run while the confidence l i m i t s o f the s e c o n d r u n a r e r e p r e s e n t e d by t h e dashed l i n e s .

Provder; Computer Applications in the Polymer Laboratory ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

150

8.

HAVRILIAK

Interfacing a Viscoelastic Device

81

N o t e how t h e c o n f i d e n c e band c h a n g e s w i t h c h a n g i n g temperature* A s an a s i d e , i t g h o u l d be p o i n t e d o u t t h a t a t a t e m p e r a t u r e o f a b o u t 0 C, t h e machine t o r q u e i s below t h e recommended range b u t t h e t r a n s d u c e r i s s t i l l responding to the s i g n a l .

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 27, 2018 | https://pubs.acs.org Publication Date: June 27, 1986 | doi: 10.1021/bk-1986-0313.ch008

B.

SIGNAL/NOISE RATIO

Suppose one wanted t o compare t h e b e h a v i o r o f two p o l y m e r s and t h e i r b l e n d s . L e t us d e f i n e t h e s i g n a l as t h e d i f f e r e n c e between t h e l o g a r i t h i m s o f t h e v i s c o e l a s t i c q u a n t i t i e s and t h e n o i s e as t h e e r r o r calculated f o r a s p e c i f i c s e t of v i s c o e l a s t i c properties associated with a s p e c i f i c composition. The s i g n a l t o n o i s e r a t i o w o u l d have t h e a p p e a r a n c e o f t h e t h r e e c u r v e s shown i n F i g u r e 2 f o r a P M M A / H y t r e l b l e n d »3/l. S e l e c t i o n o f t h e optimum c o n d i t i o n s f o r c o m p a r i son i s a p p a r e n t i n t h a t f i g u r e . E m p h a s i s s h o u l d be placed a t those temperatures with high s i g n a l / n o i s e ratios. C.

SMOOTHING FUNCTIONS

The p r o p e r t i e s o f v a r i a n c e n o t e d e a r l i e r a l l o w us t o t r e a t t h e s c a t t e r i n t h e r e s u l t s a s n o i s e . A number o f s m o o t h i n g f u n c t i o n s e x i s t f o r t h i s p u r p o s e . One s u c h method t h a t i s p a r t i c u l a r l y s u i t e d s i n c e t h e i n c r e m e n t a l t e m p e r a t u r e change h a s been k e p t c o n s t a n t i s t h a t due t o S a v i t s k y and G o l a y ( 7 ) . T h i s method i s a r i g o r o u s a p p l i c a t i o n o f t h e method o f l e a s t s q u a r e s t o t h o s e r e l a t i o n s h i p s t h a t c a n be r e p r e s e n t e d by p o l y n o m i a l s and f o r e x p e r i m e n t s t h a t a r e u n i f o r m l y s p a c e d i n the independent v a r i a b l e . I n the p r e s e n t case the t e m p e r a t u r e range was u n i f o r m l y s p a c e d a t 1 d e g r e e i n t e r v a l s and t h e v i s c o e l a s t i c f u n c t i o n s c a n be r e p r e s e n t e d by p o l y n o m i a l s no g r e a t e r t h a n d e g r e e 3. The r e s u l t s o f smoothing t h e H y t r e l modulus t e m p e r a t u r e c u r v e i s shown i n F i g u r e 3. A n o t h e r a d v a n t a g e o f t h e S a v i t s k y - G o l a y method i s t h a t d e r i v a t i v e s o f t h e s e f u n c t i o n s c a n a l s o be d e t e r m i n e d f r o m t h e method o f l e a s t s q u a r e s . This method c a n be used t o d e t e r m i n e a l p h a - p e a k t e m p e r a t u r e s a u t o m a t i c a l l y s i n c e t h e f i r s t d e r i v a t i v e changes s i g n a t t h e peak t e m p e r a t u r e . The a d v a n t a g e o f s m o o t h i n g i s t h a t t h e number o f e x t r a n e o u s p e a k s due t o n o i s e h a s been m i n i m i z e d .

Provder; Computer Applications in the Polymer Laboratory ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

82

COMPUTER APPLICATIONS IN THE POLYMER LABORATORY

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 27, 2018 | https://pubs.acs.org Publication Date: June 27, 1986 | doi: 10.1021/bk-1986-0313.ch008

20

-150

-100

-50

0

50

100

150

Temperature (°C) F i g u r e 2. P l o t o f t h e s i g n a l / n o i s e r a t i o a s defined i n the t e x t with temperature f o r a p o l y b l e n d o f PMMA and HYTREL•

Provder; Computer Applications in the Polymer Laboratory ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 27, 2018 | https://pubs.acs.org Publication Date: June 27, 1986 | doi: 10.1021/bk-1986-0313.ch008

8. HAVRILIAK

Interfacing a Viscoelastic Device

r

-20

-10

T

"T 10

T

•"•I"

20

30

40

83

""I " " I " SO

60

TTTT

TT

T 70

TTrrpr

80

90

Temperature ( C) F i g u r e 3. P l o t o f t h e l o s s t a n g e n t w i t h t e m p e r a t u r e f o r H y t r e l i n t h e t e m p e r a t u r e range o f 0 t o 140 Deg. The x ' s r e p r e s e n t t h e e x p e r i m e n t a l values, while the s o l i d l i n e represents the r e s u l t s o f smoothing using the S a v i t z k y - G o l a y technique•

Provder; Computer Applications in the Polymer Laboratory ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

100

84

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 27, 2018 | https://pubs.acs.org Publication Date: June 27, 1986 | doi: 10.1021/bk-1986-0313.ch008

D.

COMPUTER APPLICATIONS IN THE POLYMER LABORATORY

VISCOELASTIC PROPERTIES OF BLENDS

The SAS d a t a files t h a t were c r e a t e d a s a r e s u l t s o f t h e o p e r a t i o n s n o t e d e a r l i e r have t h e i m p o r tant property that a l l three v i s c o e l a t i c p r o p e r t i e s have e i t h e r been measured o r i n t e r p o l a t e d t o t h e same temperature. T h e r e f o r e one c a n merge d a t a s e t s f o r d i f f e r e n t p o l y m e r s by t e m p e r a t u r e (a SAS d a t a s e t m a n i p u l a t i o n ) and t h e n p e r f o r m b l e n d c a l c u l a t i o n s on t h e d a t a q u i t e s i m p l y i n SAS• F o r e x a m p l e , one c a n c a l c u l a t e the expected viscoelastic properties of a b l e n d f r o m t h e p u r e components and t h e i r volume f r a c t i o n u s i n g t h e e q u a t i o n s o f Uemura and T a k a y n a g i ( 8 ) • These r e s u l t s c a n t h e n be compared t o e x p e r i m e n t a l v a l u e s ( a t t h e same t e m p e r a t u r e ) i n a number o f i n f o r m a t i v e ways. F i r s t we c a n p l o t t h e c a l c u l a t e d values as a f u n c t i o n o f temperature and r e p r e s e n t r e s u l t s as a l i n e , see F i g u r e 4. The e x p e r i m e n t a l r e s u l t s c a n be r e p r e s e n t e d a s an e r r o r band v s t e m p e r a ture p l o t . Real d i f f e r e n c e s are r e a d i l y apparent s i n c e they must l i e o u t s i d e t h e 95% c o n f i d e n c e limits. A n o t h e r way t o r e p r e s e n t t h e d i f f e r e n c e i s t o p l o t t h e d i f f e r e n c e between c a l c u l a t e d and e x p e r i m e n t a l v a l u e s as a f u n c t i o n o f t e m p e r a t u r e . I n t h e same g r a p h an e s t i m a t e and p l o t o f t h e e x p e r i m e n t a l e r r o r s c a n a l s o be made, s e e F i g u r e 5 . DISCUSSION The e x a m p l e s d e s c r i b e d h e r e , a s w e l l a s o t h e r s , have been combined i n t o a s o f t w a r e p a c k a g e w h i c h we c a l l POLYREOM. The u s e r o f t h i s r o u t i n e h a s a t h i s d i s p o s a l a Menu s o t h a t he c a n s e l e c t any o f t h e comp a r i s o n s d e s c r i b e d a b o v e . I n t h i s way, q u i t e c o m p l i c a ted c a l c u l a t i o n s c a n be c a r r i e d o u t s i m p l y by anyone w i t h m i n i m a l computer e x p e r i e n c e . In fact the entire p r o c e d u r e c a n be r u n on a r o u t i n e b a s i s f r o m t h e t i m e t h a t a measurement i s made. Some i m p o r t a n t c o n d i t i o n s c o n c e r n i n g t h e e s t i m a t i o n o f e r r o r s h o u l d be p o i n t e d o u t . F i r s t , modulus measurements o f r e c t a n g u l a r b a r s a r e made i n t o r s i o n and the calculations c o n t a i n assumptions t h a t may depend on g e o m e t r y . How t h i s i n f l u e n c e s e r r o r , p a r t i c u l a r l y a t l o w t o r q u e l e v e l s i s n o t known. S e c o n d , t h e s t r a i n s were k e p t c o n s t a n t a t 0.1%; o t h e r s t r a i n s m i g h t n o t y i e l d t h e same r e s u l t s . On t h e o t h e r hand one w o u l d e x p e c t an i n v e r s e p r o p o r t i o n a l i t y t o e x i s t b e tween t h e m a g n i t u d e s o f e r r o r and s t r a i n . Thirdly, t h e s e e r r o r s were e s t i m a t e d f o r a f r e q u e n c y o f 1Hz.

Provder; Computer Applications in the Polymer Laboratory ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Interfacing a Viscoelastic Device

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 27, 2018 | https://pubs.acs.org Publication Date: June 27, 1986 | doi: 10.1021/bk-1986-0313.ch008

HAVRILIAK

F i g u r e 4. P l o t o f t h e l o s s t a n g e n t w i t h t e m p e r a t u r e f o r PMMA/HYTREL blend»3/l. The s o l i d l i n e represents the c a l c u l a t e d values while the dashed l i n e s r e p r e s e n t t h e 95% c o n f i d e n c e l i m i t s for the experimental v a l u e s .

Provder; Computer Applications in the Polymer Laboratory ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 27, 2018 | https://pubs.acs.org Publication Date: June 27, 1986 | doi: 10.1021/bk-1986-0313.ch008

86

COMPUTER APPLICATIONS IN THE POLYMER LABORATORY

F i n a l l y , thecontribution to error, that i s s p e c i f i c to t h i s l a b o r a t o r y , e s p e c i a l l y when compared t o o t h e r l a b o r a t o r i e s , i s n o t known. On t h e o t h e r hand, t h e r e a r e some v e r y i n t e r e s t i n g and n o t e w o r t h y o b s e r v a t i o n s t o be made f r o m t h e e r r o r s t u d y . F i r s t , repeated a t t e m p t s t o i n c l u d e p o l y m e r t y p e and t e m p e r a t u r e i n t o t h e e r r o r model f a i l e d . This observation implies that temperature c o n t r o l o f the d e v i c e i s independent o f temperature and t h a t any f l u c t u a t i o n i s t h e same t h r o u g h o u t t h e i n t e r v a l t h a t was used i n t h i s s t u d y . S e c o n d l y , r e p e a t e d a t t e m p t s t o i n c l u d e sample t y p e i n t o the a n a l y s i s a l s o f a i l e d , i m p l y i n g t h a t t h e e s t i m a t e d v a r i a n c e s were i n d e p e n d e n t n o t o n l y o f t e m p e r a t u r e b u t of m a t e r i a l . This r e s u l t suggests very s t r o n g l y that t h e v a r i a n c e s a r e due t o t h e magnitude o f t h e m e a s u r e ment, t h e d e v i c e t h a t was u s e d , and o u r own s e t o f laboratory circumstances. There a r e many p o l y m e r s c i e n c e t h e o r i e s ( 9 , 10 and 11) t h a t a t t e m p t t o r e l a t e v i s c o e l a s t i c p r o p e r t i e s to polymer s t r u c t u r e o r , i n t h e case o f b l e n d s , t o t h e p r o p e r t i e s o f t h e p u r e components and t h e i r volume fraction. Implicit i n these t h e o r i e s i s that the v i s c o e l a s t i c p r o p e r t i e s were o b t a i n e d under c o n t r o l l e d c o n d i t i o n s and i n t h e l i n e a r r e g i o n . Linearity i n p o l y m e r s i s an i d e a l i z a t i o n t h a t may n e v e r be r e a l i z e d , and may o n l y be a p p r o x i m a t e d by making v i s c o e l a s t i c measurements a t l o w and c o n s t a n t s t r a i n . T h i s cons t r a i n t p l a c e s s e r i o u s r e s t r i c t i o n s on e x p e r i m e n t a l e q u i p m e n t as t h e f o l l o w i n g example w i l l demonstrate. Consider t h e t e m p e r a t u r e dependence o f t h e s t o r a g e modulus a s a f u n c t i o n o f t e m p e r a t u r e f o r two m a t e r i a l s , where a t room t e m p e r a t u r e one i s g l a s s y (PMMA), and t h e o t h e r i s l e a t h e r y (EPDM), s e e F i g u r e 6. A t l o w tempera t u r e s , the moduli are not o n l y s i m i l a r but q u i t e high. As a r e s u l t o f e x p e r i m e n t a l c o n d i t i o n s , t h e t o r q u e , a machine q u a n t i t y , i s near i t s upper limit. However a s t h e t e m p e r a t u r e i s r a i s e d , t h e c u r v e s b e have quite d i f f e r e n t l y . A t 0 C the torque f o r the EPDM s y s t e m i s near i t s l o w e r l i m i t , w h i l e f o r PMMA i t i s s t i l l near t h e i n s t r u m e n t s upper l i m i t . Eventually t h e t o r q u e goes o u t o f t h e recommended range f o r EPDM. A s i m i l a r b e h a v i o r i s o b s e r v e d f o r PMMA b u t a t higher temperatures. I f one s h o u l d w i s h t o e s t i m a t e t h e p r o p e r t i e s o f a b l e n d o f t h e s e two m a t e r i a l s and stay w i t h i n the manufacturer's torque recommendations, t h e n t h e t e m p e r a t u r e range i s s e v e r e l y l i m i t e d b e c a u s e any i n t e r a c t i o n s w i t h t h e a l p h a and b e t a p r o c e s s e s o f PMMA c a n n o t be s t u d i e d . Changing t h e dimensions o f t h e specimens, the t r a n s d u c e r , or t h e l e v e l o f s t r a i n a r e not a c c e p t a b l e a l t e r n a t i v e s t o m i n i m i z e t h e e f f e c t s o f a l i m i t e d torque range. One way t o m i n i m i z e t h e s e e f f e c t s i s d e r i v e d f r o m t h e r e s u l t s o f t h i s work. F o r example, t h e

Provder; Computer Applications in the Polymer Laboratory ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 27, 2018 | https://pubs.acs.org Publication Date: June 27, 1986 | doi: 10.1021/bk-1986-0313.ch008

8. HAVRILIAK

Interfacing a Viscoelastic Device

87

Temperature (°C)

F i g u r e 5. P l o t o f t h e l o s s t a n g e n t d i f f e r e n c e w i t h t e m p e r a t u r e f o r d a t a i n F i g u r e 4* The c i r c l e s represent the experimental values, while t h e l i n e r e p r e s e n t s t h e 95% c o n f i d e n c e l i m i t s f o r the e x p e r i m e n t a l v a l u e s * TORQUE-1321

6~ ^1

-150

i '

-100

|......... |

-59

0

'i

58

1

i

180

" " I

150

Temperature (°C)

F i g u r e 6* Dependence o f s t o r a g e modulus f o r PMMA and EPDM on t e m p e r a t u r e a t a f r e q u e n c y o f 1Hz and a s t r a i n o f 0*1%.

Provder; Computer Applications in the Polymer Laboratory ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 27, 2018 | https://pubs.acs.org Publication Date: June 27, 1986 | doi: 10.1021/bk-1986-0313.ch008

88

C O M P U T E R APPLICATIONS IN THE POLYMER LABORATORY

i n c r e a s e i n e x p e r i m e n t a l e r r o r i s n o t as i m p o r t a n t as is the signal/noise r a t i o . A knowledge o f t h i s r a t i o i s important because o p t i m a l c o n d i t i o n s ( i n t h i s case t e m p e r a t u r e ) c a n be s e l e c t e d f o r c o m p a r i s o n * In addit i o n , use o f t h e S a v i t z k y - G o l a y t e c h n i q u e t o reduce e r r o r i s j u s t i f i e d b e c a u s e t h e e r r o r was f o u n d t o be e s s e n t i a l l y n o i s e , and n o t a l o w v a l u e machine c u t off. The p r o b l e m becomes one o f s e a r c h i n g f o r t h e s i g n a l i n t h e p r e s e n c e o f n o i s e . U s i n g 26 e x p e r i m e n t a l q u a n t i t i e s , w h i c h r e p r e s e n t s 26 d e g r e e s o f measurement, i s not unreasonable. One w o u l d e x p e c t an e r r o r r e d u c t i o n o f 5, t h u s l e a d i n g t o , o r an e x t e n s i o n o f , t h e i n s t r u m e n t s r a n g e by 5 f o l d . Acknowledgments

T h i s w r i t e r wishes t o express h i s a p p r e c i a t i o n t o Dr. E. P. D o u g h e r t y and Mr. P. M i l l e r f o r many h e l p f u l d i s c u s s i o n s i n p r e p a r i n g t h e s u b r o u t i n e s used i n t h i s work.

Literature Cited 1. SAS Institute, SAS Circle, Box 8000, Carry, North Carolina 27511. 2.

The PMMA used in this work is Plexiglas product of the Rohm and Haas Co.

V(811), a

3.

The EPDM used in this work is Nordel 2722, manufactured by the Du Pont Co.

4.

The Hytrel used in this work is Hytrel-4056, product of the DuPont Co.

5.

Box G.E.P., Hunter W.G., and Hunter J . S . , Statistics for Experimenters, John Wiley and Sons (1978).

6.

Draper N. and Smith H., Applied Regression Analysis, Second Edition, John Wiley and Sons (1981).

7.

Savitzky A. and Golay M.J.E., Analytical Chemistry, Vol. 36, No. 8, pp. 1622-1639 (1964).

8.

Bucknall C.B., Toughened Plastics, Applied Science Publishers (1977).

9.

McCrum N. G., Read B. E . , and Williams G., Anelastic and Dielectric Effects in Polymer Solids, John Wiley and Sons (1967).

Chapter

a

5,

10. Ferry J . D., Viscoelastic Properties of Polymers, Second Edition, John Wiley and Sons (1982). 11. Mansfield M. L . , J of Poly. Div., Vol 21, 787-806 (1983).

Sci.,

Polymer Phys

Received December 24, 1985 Provder; Computer Applications in the Polymer Laboratory ACS Symposium Series; American Chemical Society: Washington, DC, 1986.