23 Computer Simulation of Heterogeneous Nitration of Toluene to Dinitrotoluene A. K. S. MURTHY Downloaded by UNIV OF NEW ENGLAND on February 8, 2017 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch023
Allied Chemical Corporation, Morristown, NJ 07960
Nitration of aromatic compounds, particularly that of benzene and toluene, has been extensively studied partly because of its industrial importance in the manufacture of explosives, solvents, pharmaceuticals and organic intermediates and partly because of its theoretical significance in studying electrophilic substitution (1,2). Most of the reported studies of toluene nitration are under conditions where only mononitration reactions take place. Studies on dinitration reactions have been carried out (3,4,5), but starting with mononitrotoluenes. In commercially important nitration of toluene for the manufacture of tolylene diisocyanate (TDI) and trinitrotoluene (TNT), dinitrotoluene (DNT) is the desired product and mononitration is simply an intermediate reaction. Optimum use of a DNT production facility can be achieved by integrating the mononitration and the dinitration steps. A computer simulation model, to be useful in such optimization studies, must be capable of representing the various physical and chemical phenomena over a wide range of operating variables where mono- and dinitration reactions take place. This paper describes a successful effort to synthesize such a model using information on the various phenomena available in the open literature, reported by different authors. A systems engineering approach was used to decompose the total phenomenon into subphenomena which have been separately studied. The original intention of developing the model was to form a basis for planning and designing a process development study in a pilot plant for optimizing an existing DNT production facility. However, when a computer simulation program for the plant based on the model was developed, it was found to be already adequate for
0-8412-0549-3/80/47-124-403$05.25/0 © 1980 American Chemical Society Squires and Reklaitis; Computer Applications to Chemical Engineering ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
COMPUTER
Downloaded by UNIV OF NEW ENGLAND on February 8, 2017 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch023
404
APPLICATIONS
TO
CHEMICAL
ENGINEERING
t r o u b l e s h o o t i n g and p r e l i m i n a r y o p t i m i z a t i o n o f plant operation. The n i t r a t i n g agent used in most i n d u s t r i a l n i t r a t i o n p r o c e s s e s is a m i x t u r e o f aqueous n i t r i c and s u l f u r i c a c i d s , commonly known as the mixed a c i d . The o r g a n i c s p e c i e s a r e o n l y s p a r i n g l y s o l u b l e in the a c i d and hence i n d u s t r i a l n i t r a t i o n is heterogenous i n v o l v i n g two liquid phases. The term " m a c r o k i n e t i c s " has been used (6) t o d e s c r i b e o v e r a l l k i n e t i c s o f n i t r a t i o n underHheterogenous c o n d i t i o n s . In micros c o p i c s c a l e , two phenomena, v i z . , c h e m i c a l r e a c t i o n o r " m i c r o k i n e t i c s and i n t e r p h a s e mass t r a n s f e r , simultaneously occur. E a r l y workers (7,IB,£) assumed t h a t mass t r a n s f e r e f f e c t s can be e l i m i n a t e d by s t r o n g a g i t a t i o n . Hanson and A l b r i g h t ( (37)
Χ
r
4
= k gX X
9
(38)
k
5
- k gX X
9
(39)
r
6 r
2
3
=
7
f
2
3
r
3 5 - k gX X 4
4
( 4 0
> (41)
9
H
where/ g = 10" R fi - 2 exp (-[B x
f
2
- 2 exp ( - [ E
f
3
- exp ( - [ E
2 6
and
(42)
0
- Ε ]/RT)
(43)
m
- E ]/RT)
(44)
- E ]/RT)
(45)
p
2 4
Squires and Reklaitis; Computer Applications to Chemical Engineering ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
23.
MURTHY
Heterogeneous
Nitration
419
Downloaded by UNIV OF NEW ENGLAND on February 8, 2017 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch023
S o l u t i o n o f Equations I t is n o t p o s s i b l e t o a n a l y t i c a l l y s o l v e t h e s e t o f e q u a t i o n s f o r m u l a t e d in t h e above s e c t i o n s . However, it is p o s s i b l e t o o b t a i n a n u m e r i c a l s o l u t i o n corresponding t o a s p e c i f i c set of r e a c t o r conditions. The model d e s c r i b e d here c a n be used t o s i m u l a t e any one s t a g e o f t h e n i t r a t i o n r e a c t o r s . A l l i e d Chemical's p r o c e s s f o r DNT p r o d u c t i o n c o n s i s t s o f s e v e r a l i n t e r c o n n e c t e d n i t r a t o r s and phase s e p a r a t o r s . The o v e r a l l p r o c e s s s i m u l t i o n was accomplished u s i n g the s o - c a l l e d " b u i l d i n g b l o c k " approach. T h i s approach c o n s i s t s o f d e v e l o p i n g subroutines f o r c a l c u l a t i n g the output o f process v e s s e l s , g i v e n t h e o p e r a t i n g c o n d i t i o n s and t h e i n p u t streams, and then d e v e l o p i n g a main program which c a l l s t h e s e subprograms in a c e r t a i n sequence d e t e r mined by t h e p r o c e s s t o p o l o g y (flow scheme) and converge on t h e r e c y c l e streams. A f t e r convergence/ an energy b a l a n c e is performed around each s t a g e t o permit quick e v a l u a t i o n o f t e m p e r a t u r e - c o n t r o l a b i l i t y . V e r i f i c a t i o n o f t h e Model A development p r o j e c t was undertaken t o v e r i f y the model d e v e l o p e d here and t o s t u d y t h e mass t r a n s f e r parameter k a as a f u n c t i o n o f phase r a t i o ( o r g a n i c / a c i d v o l u m e t r i c r a t i o ) in t h e r e a c t o r , agitation, i n t e r n a l configuration of the reactor, etc. R e s u l t s o f l a b o r a t o r y runs c o u l d be e x p l a i n e d by t h e model u s i n g k a as t h e o n l y a d j u s t a b l e p a r a meter. T a b l e 1 shows an example o f t h e e x c e l l e n t agreement between model p r e d i c t i o n s and l a b o r a t o r y data. I n each r u n , at a d i f f e r e n t a g i t a t o r speed, k a was determined by matching t o l u e n e c o n t e n t o f t h e reactor effluent. The c l o s e agreement between t h e m o n o n i t r o t o l u e n e and d i n i t r o t o l u e n e isomer c o n t e n t o f t h e a c t u a l r e a c t o r e f f l u e n t w i t h t h o s e p r e d i c t e d by the model v e r i f i e s t h e a c c u r a c y and t h e adequacy o f the model. A d m i t t e d l y , in t h e s t r i c t l y t h e o r e t i c a l sense, such a v e r i f i c a t i o n is a n e c e s s a r y b u t n o t s u f f i c i e n t requirement f o r t h e model t o be t h e t r u e model. I t s h o u l d be o b v i o u s t o r e a d e r s f a m i l i a r w i t h c u r r e n t r e s e a r c h work on t h e n i t r a t i o n o f a r o m a t i c compounds t h a t t h e assumptions and mechanisms on w h i c h this model is based a r e under debate, a l b e i t g e n e r a l l y accepted. E x h a u s t i v e t e s t i n g and v e r i f i c a t i o n o f a model is u s u a l l y n o t j u s t i f i a b l e in a b u s i n e s s
Squires and Reklaitis; Computer Applications to Chemical Engineering ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Squires and Reklaitis; Computer Applications to Chemical Engineering ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Toluene p-MNT o-MNT m-MNT 2,4-DNT 2,6-DNT O t h e r DNT
Compound 0.345 30.48 39.81 4.77 18.44 5.53 0.63
0.35 30.71 40.38 3.37 19.35 5.42 0.42
0.49 30.52 39.92 4.77 18.21 5.46 0.62
0.49 30.61 39.89 2.86 20.11 5.59 0.45
Calculated
Measured
Measured
1500 RPM
Calculated
=
Agitation
0.28 32.16 42.24 3.07 17.04 4.86 0.36
Measured
NITRATION
0.28 32.22 43.35 4.97 24.36 4.35 0.47
Calculated
= 2300 RPM
Basis)
Agitation
(Acid-Free
1900 RPM
Reactor E f f l u e n t
DATA FOR L A B C F S T R
=
P e r c e n t in
VS EXPERIMENTAL
I
Agitation
Weight
COMPARISON OF MODEL PREDICTIONS
Table
Downloaded by UNIV OF NEW ENGLAND on February 8, 2017 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch023
23.
MURTHY
Heterogeneous
Nitration
421
environment where t h e model is used p r i m a r i l y t o p r o v i d e d i r e c t i o n in o p t i m i z i n g a m u l t i v a r i a b l e process.
Downloaded by UNIV OF NEW ENGLAND on February 8, 2017 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch023
Remarks The s i m u l a t i o n program has been e x t e n s i v e l y used f o r p r o c e s s o p t i m i z a t i o n s t u d i e s as it p e r m i t s a c c u r a t e p r e d i c t i o n o f isomer d i s t r i b u t i o n and h e a t r e l e a s e . I t o f f e r s t h e o r e t i c a l e x p l a n a t i o n s f o r isomer c o n t r o l p r a c t i c e s a r r i v e d at t h r o u g h s e v e r a l y e a r s o f p l a n t o p e r a t i n g e x p e r i e n c e . The model was used in de s i g n i n g l a b o r a t o r y experiments t o study mass t r a n s f e r under v a r i o u s p r o c e s s c o n d i t i o n s and r e a c t o r con f i g u r a t i o n . S i n c e mass t r a n s f e r and c h e m i c a l k i n e t i c s a r e s i m u l t a n e o u s l y i m p o r t a n t in this p r o c e s s , a model is n e c e s s a r y t o " f i l t e r o u t " t h e k i n e t i c s e f f e c t s f o r mass t r a n s f e r c o r r e l a t i o n s . The r e s u l t s o f o u r l a b o r a t o r y s t u d i e s will be p r e s e n t e d in f u t u r e p a p e r s . NOMENCLATURE a = a c t i v i t y o r i n t e r f a c i a l a r e a as e x p l a i n e d in t e x t A = frequency f a c t o r c = concentration e = extent o f r e a c t i o n Ε = A c t i v a t i o n energy G = O r g a n i c molar f l o w r a t e H R = A c i d i t y f u n c t i o n , d e f i n e d by eqn (10) J i = I n t e r p h a s e mass t r a n s f e r r a t e f o r t h e i - t h species k = c h e m i c a l v e l o c i t y o r t r a n s p o r t parameter Κ = E q u i l i b r i u m constant P^ = r a t e o f p r o d u c t i o n o f i - t h s p e c i e s / u n i t volume o f a c i d phase Q = molar f l o w r a t e f o r i n o r g a n i c s p e c i e s r ^ = r a t e o f i - t h r e a c t i o n , l b mol/hr f t R = gas law c o n s t a n t Τ = absolute temperature A volume o f a c i d phase W = weight p e r c e n t s u l f u r i c on n i t r i c f r e e b a s i s X = m o l e f r a c t i o n in t h e a c i d phase y = m o l e f r a c t i o n in t h e o r g a n i c phase ( a c i d f r e e ) V
=
GREEK LETTERS r-
activity
coefficient
Squires and Reklaitis; Computer Applications to Chemical Engineering ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
C O M P U T E R APPLICATIONS T O C H E M I C A L ENGINEERING
422
SUBSCRIPT FOR SPECIES 1 3 5
toluene o-Nitrotoluene 2,4 - Dinitrotoluene
2 4 6
7 9
Qrtho Dinitrotoluenes n i t r i c acid
8 10
Downloaded by UNIV OF NEW ENGLAND on February 8, 2017 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch023
Literature
p-Nitrotoluene m-Nitrotoluene 2,6 - Dinitrotoluene water sulfuric acid
Cited
1.
Norman, R.O.C., Taylor, R., "Electrophilic Substitution in Benzenoid Compounds", Elsevier Publishing Company, Amsterdam, 1965.
2.
De La Mare, P.B.D., Ridd, J.H., "Aromatic Substitution, Nitration and Halogenation", Academic Press, New York, 1959.
3.
Vinrik, M.I., Grabovskaya, Zh.E., Arzamaskova, L.N., Zh. Fiz. Khim., 1967, 41, 1102.
4.
Tillet,
5.
Kobe, K.A., Fortman, 1961, 53, 269.
6.
Hanson, C., Marsland, Ind., 1966, p 675.
7.
McKinley, C., White, 40, 143.
8.
Barduhn, A.J., Kobe, K.A., Ind. Eng. Chem., 1956, 48, 1305.
9.
Miller, R.C., Noyce, D.S., Vermeulen, Eng. Chem., 1964, 56, 43.
J.G., J. Chem. Soc., 1962, p 5142. J.T., Ind. Eng. Chem.,
J.G., Wilson,
R.R., Trans.
G., Chem.
AIChE, 1944,
T., Ind.
10.
Albright,
L.F., Ind. Eng. Chem., 1965, 57, 53.
11.
Giles, J., Hanson, C., Ismail, H.A.M., ACS Symposium Series, 1976, 22, 190.
12.
Cox, P.R., Strachan, 1972, 27, 457.
A.N., Chem. Eng. Sci.,
13.
Cox, P.R., Strachan, 4, 253.
A.N., Chem. Eng. J., 1972,
Squires and Reklaitis; Computer Applications to Chemical Engineering ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
23. MURTHY
Nitration
423
14.
Aris, R., "Introduction to the Analysis of Chemical Reactors", Prentice-Hall, 1965.
15.
Ismail, H.A.M., Ph.D. Thesis, Bradford, U.K., 1973.
16.
Redlich, O., Kister, 1948, 40, 345.
17. Downloaded by UNIV OF NEW ENGLAND on February 8, 2017 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch023
Heterogeneous
Ellis,
University
of
A.T., Ind. Eng. Chem.,
S.R.M., J. Appl.
Chem., 1957, 7, 152.
18.
Renon, H., Prausnitz, 135.
19.
Cerfontain, 545.
20.
Grabovskaya, Ζ.Ε., Vinnik, 1966, 40, 1221.
21.
Bennett, G.M., Brand, J.S.D., James, D.M., Saunders, T.G., Williams, D., J. Chem. Soc., 1947, p 474.
22.
Deno, N.C., Jaruzelski, J.J., Schriesheim, J. Am. Chem. Soc., 1955, 77, 3044.
23.
Gold, V., Hawes, B.W.V., J. Chem. Soc., 1951, p 2102.
24.
Hammett, L.P., "Physical McGraw Hill, 1940.
25.
Arnett, E.M., Bushick, 1964, 86, 1564.
26.
Olah, G.A., Kuhn, S.J., Flood, S.H., Evans, J.C., J. Am. Chem. Soc., 1962, 84, 3687.
27.
Coombes, R.G., Moodie, R.B., Schofield, J. Chem. Soc. (Β), 1968 p 800.
RECEIVED
November
J.M., AIChE J, 1968, 14,
H., Telder,
5,
Α., Recueil,
1965, 84,
M.I., Zh. Fiz. Khim.,
Organic
Α.,
Chemistry",
R.D., J. Am. Chem. Soc.,
Κ.,
1979.
Squires and Reklaitis; Computer Applications to Chemical Engineering ACS Symposium Series; American Chemical Society: Washington, DC, 1980.