Copper-Catalyzed Three-Components Intermolecular

Oct 18, 2018 - (b) Cao, M.-. Y.; Ren, X.; Lu, Z. Tetrahedron Lett. 2015, 56, 3732. ... Wang, N.-X.; Xing, Y. Eur. J. Org. Chem. 2017, 2017, 5821. (e) ...
0 downloads 0 Views 1MB Size
Letter Cite This: Org. Lett. XXXX, XXX, XXX−XXX

pubs.acs.org/OrgLett

Copper-Catalyzed Three-Components Intermolecular Alkylesterification of Styrenes with Toluenes and Peroxyesters or Acids Ying-Xia Dong,† Yang Li,† Chang-Cheng Gu,† Shuai-Shuai Jiang,† Ren-Jie Song,*,† and Jin-Heng Li*,†,‡ †

Org. Lett. Downloaded from pubs.acs.org by UNIV STRASBOURG on 11/13/18. For personal use only.

Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China ‡ State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China S Supporting Information *

ABSTRACT: A simple protocol for the three-component intermolecular alkylesterification of styrenes with toluenes and peroxyesters using a copper catalyst is described. A variety of ester-containing complex compounds were synthesized with excellent functional group tolerance and step efficiency. Employing the combination of carboxylic acids and di-tert-butyl peroxide (DTBP) oxidant instead of peroxyesters also gave similar results. In this transformation, aromatic acids, aliphatic acids, and amino acids were suitable substrates.

A

and peroxyesters for the preparation of diverse ester-containing compounds. In this transformation, using the combination of carboxylic acids and di-tert-butyl peroxide (DTBP) oxidant instead of peroxyesters also gave similar results. Interestingly, various toluenes and peroxyesters or carboxylic acids are welltolerated. We initially examined the feasibility of a three-component difunctionalization reaction of 1-methoxy-4-vinylbenzene (1a) with tert-butyl benzoperoxoate (2a) and mesitylene (3a) (Table 1). The desired product 3-(3,5-dimethylphenyl)-1-(4methoxyphenyl)propyl benzoate (4aaa) was isolated in 80% yield when catalyzed by CuI (5 mol %) under no additional solvent conditions at 120 °C (entry 1). Not surprisingly, the reaction did not take place in the absence of the CuI catalyst (entry 2). Both a lower and higher amount of CuI had a negative effect on this transformation (entries 3 and 4). Various copper catalysts such as CuCl, CuOAc, Cu2O, and Cu(OAc)2 were screened, and the results show that CuI was the best choice (entry 1 vs entries 5−8). A similar yield of product 4aaa was obtained when the combination of PhCOOH and DTBP acted as the esterification reagents instead of tert-butyl benzoperoxoate (2a). Among the reaction temperature and the atmosphere effect examined, the reaction at 120 °C under an argon atmosphere gave the best result

lkenes are large industrial petrochemicals and represent a class of common chemical feedstock for constructing diverse complex molecules in academia and industry.1 For these reasons, the development of new, efficient methods for the transformations of alkenes still attracts much attention from chemists.2,3 Among them, alkene difunctionalizations are particularly attractive, as they offer a new strategic approach for the synthesis of complex, valuable molecules by the simultaneous formation of two new chemical bonds.4−6 1,2-Alkylesterification that allows for the simultaneous introduction of an alkyl group and an ester group across the C−C double bonds is an efficient tool to prepare complex functional ester-containing molecules (Scheme 1).7 Buchwald and co-workers7c have achieved a copper-catalyzed intramolecular oxyalkylation of alkenes to afford enriched lactones. Afterward, other groups also constructed various lactone derivatives by intramolecular oxyalkylation of alkenes.6,7 The groups of Du/Wang7j and Kuninobu7k reported a rhenium- or iron-catalyzed intermolecular oxyalkylation of alkenes with hypervalent iodine(III) reagents, respectively. Both methods empoly hypervalent iodine reagents as the functionalization reagents, which not only provided ester and alkyl groups but also acted as an oxidant. Among these transformations, the scope of the substrates is limited. To the best of our knowledge, examples of transition-metal-catalyzed threecomponent intermolecular alkylesterification are quite rare and challenging. Herein, we report a new, copper-catalyzed intermolecular 1,2-alkylesterification of alkenes with toluenes © XXXX American Chemical Society

Received: October 18, 2018

A

DOI: 10.1021/acs.orglett.8b03330 Org. Lett. XXXX, XXX, XXX−XXX

Letter

Organic Letters Scheme 2. Variation of the Toluenes (2)a

Scheme 1. 1,2-Alkylesterification of Alkenes

Table 1. Screening of Optimal Conditionsa a

Reaction conditions: 1a (0.2 mmol), 2a (2 equiv), 3 (1 mL), CuI (5 mol %), argon, 120 °C, and 12 h.

entry

variation from the standard conditions

yield (%)b

1 2 3 4 5 6 7 8 9 10 11 12 13b

none without CuI CuI (2 mol %) CuI (10 mol %) CuCl instead of CuI CuOAc instead of CuI Cu2O instead of CuI Cu(OAc)2 instead of CuI PhCOOH instead of 2a, DTBP (2 equiv) at 100 °C at 140 °C under air none

80 0 61 75 63 60 70 72 78 72 78 9 73

The alkylesterification protocol was applicable to 2methylnaphthalene 3o and disubstituted toluene 3p, giving 4aao and 4aap in 52% and 50% yields, respectively. Likewise, the reaction was applied in the presence of heterocyclic core 3q. The reaction was also extended to ethylbenzene 3r and afforded the desired product 1-(4-methoxyphenyl)-3-phenylbutyl benzoate (4aar) in 58% yield. However, phenylpropene (3s), 1-methylpiperidine (3t), 4-phenylmorpholine (3u), and tetrahydro-4H-thiopyran-4-one (3v) were not suitable substrates under the conditions. We then investigated the substrate scope of styrene derivatives and peroxyesters under the optimized conditions, and the results are shown in Scheme 3. Thus, para-substituted peroxyesters, 2b−e, with the substituents of Me, OMe, Cl, and NO2, respectively, gave the corresponding products 4aba−aea in 42−86% yields. The reaction of meta-Me and ortho-Me substituted peroxyesters 2f and 2g with styrene 1a and mesitylene 3a in 82% and 79% yields, respectively. Interestingly, aliphatic peroxyester 2h could convert to the corresponding products 4aha in 61% yields. In addition, a variety of styrene derivatives (1b−g) underwent difunctionalization efficiently with 2b and 3a to give the products in 53− 77% yields. For example, di-OMe-substituted styrene 1f afforded the alkylesterification product 4fba in 75% yield. Notably, 1,1- and 1,2-disubstituted alkenes underwent this transformation smoothly and gave the products 4hba and 4iba in 70% and 80% yields, respectively. In this alkylesterification protocol, using the combination of carboxylic acids and DTBP oxidant instead of peroxyesters also gave a similar result and the scope of acids were evaluated (Scheme 4). Various aromatic acids, aliphatic acids, and amino acids were shown to react with styrenes and toluenes in the presence of DTBP in moderate to good yields. A range of functional groups on the aromatic ring of aromatic acids,

a Reaction conditions: 1a (0.2 mmol), 2a (2 equiv), 3a (1 mL), CuI (5 mol %), argon, 120 °C, and 12 h. b1a (1 mmol) and 24 h.

(entry 1 vs entries 10−12). Gratifyingly, the reaction scale up to 1 mmol of alkene 1a was successful to construct 4aaa in 73% yield for 24 h (entry 13). With the optimal conditions in hand, we next studied the generality of our catalytic alkylesterification of alkenes (Scheme 2). As expected, the reaction with industrial raw material toluene 3b proceeded well, giving the difunctionalizaton product 4aab in 80% yield. A variety of electronwithdrawing and electron-donating functional groups, such as t Bu, Me, OMe, Cl, Br, CO2Me, CF3, and CN, on the aryl rings of toluene were well tolerated (Products 4aac−aah). For example, substrates bearing electron-donating group 3c or electron-withdrawing group 3g were compatible with the reaction conditions and provided products 4aac and 4aag in 75% and 81% yields, respectively. B

DOI: 10.1021/acs.orglett.8b03330 Org. Lett. XXXX, XXX, XXX−XXX

Letter

Organic Letters Scheme 3. Variation of the Styrenes and Peroxyesters (1)a

in Scheme 5]. Notably, the product 4aha further converted to alcohol 5 and azide 6 [eq (c) in Scheme 5].8 Scheme 5. Control Experiments, the Application of Product 4aha and Possible Mechanisms

a

Reaction conditions: 1 (0.2 mmol), 2 (2 equiv), 3a (1 mL), CuI (5 mol %), argon, 120 °C, and 12 h.

Scheme 4. Variation of the Acids (2)a

Based on the above-mentioned experiments and previous reports, we propose a possible pathway for this coppercatalyzed 1,2-alkylesterification (Scheme 5). Initially, the tBuO· radical is formed from tert-butyl benzoperoxoate (2a) or DTBP under heating, which provided an alkyl radical A in the presence of Cu(I) by a SET process. The addition of the alkyl radical A to the C−C double bond of alkenes formed the radical intermediate B, which was then converted to cationic intermediate C with the aid of a Cu(II) species. Finally, the cationic intermediate C directly reacts with acid to form the desired product 4aab. In conclusion, we have developed a new copper-catalyzed C(sp3)−H bond alkylesterification of styrenes utilizing a copper catalyst. A series of stryenes, toluenes, and peroxyesters under the current catalytic system could be well tolerated, providing a straightforward pathway to ester-containing complex compounds with high step efficiency. Aryl, alkyl, and amino acids were also suitable substrates in the presence of DTBP as the oxidant. The products could be further converted to alcohols and azides. Work on the application of the difunctionalization strategy is currently underway in our laboratory.

a

Reaction conditions: 1 (0.2 mmol), 2 (2 equiv), 3a (1 mL), CuI (5 mol %), DTBP (2 equiv), argon, 120 °C, and 12 h.

including Me, OMe, Br, F, and NO2, were well tolerated. Aliphatic acids were also suitable for this conversion, giving the products 4ata and 4aua in 57% and 62% yields. It was noted that amino acids were also compatible with the present conditions to afford the corresponding products 4ava and 4awa in 45% and 46% yields. Furthermore, 5-member heteroaromatic alkene 1j was a suitable substrate. To gain insight into the mechanism, stoichiometric amounts of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), hydroquinone, 2,6-di-tert-butyl-4-methylphenol (BHT), and ethene-1,1diyldibenzene were added in this catalytic system, and the results show that the formation of the product was completely inhibited, implicating a radical process [eq (a) in Scheme 5]. Unfortunately, product 4aaa could not further convert [eq (b)



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.8b03330. Descriptions of experimental procedures for compounds and analytical characterization (PDF) C

DOI: 10.1021/acs.orglett.8b03330 Org. Lett. XXXX, XXX, XXX−XXX

Letter

Organic Letters



Chem. 2017, 82, 11682. (i) Jensen, K. H.; Sigman, M. S. Org. Biomol. Chem. 2008, 6, 4083. (j) Qin, Q.; Han, Y. Y.; Jiao, Y. Y.; He, Y.; Yu, S. Org. Lett. 2017, 19, 2909. (k) Valverde, E.; Kawamura, S.; Sekine, D.; Sodeoka, M. Chem. Sci. 2018, 9, 7115. (l) Siu, J. C.; Sauer, G. S.; Saha, A.; Macey, R. L.; Fu, N.; Chauvire, T.; Lancaster, K. M.; Lin, S. J. Am. Chem. Soc. 2018, 140, 12511. (m) Yi, H.; Zhang, X.; Qin, C.; Liao, Z.; Liu, J.; Lei, A. Adv. Synth. Catal. 2014, 356, 2873. (5) For selected reviews on alkenes difunctionalization, see: (a) Parry, J. B.; Fu, N.; Lin, S. Synlett 2018, 29, 257. (b) Cao, M.Y.; Ren, X.; Lu, Z. Tetrahedron Lett. 2015, 56, 3732. (c) Egami, H.; Sodeoka, M. Angew. Chem., Int. Ed. 2014, 53, 8294. (d) Lan, X.-W.; Wang, N.-X.; Xing, Y. Eur. J. Org. Chem. 2017, 2017, 5821. (e) Li, J.H.; Song, R.-J.; Liu, Y.; Xie, Y.-X. Synthesis 2015, 47, 1195. (f) Muniz, K.; Martinez, C. J. Org. Chem. 2013, 78, 2168. (g) Sauer, G. S.; Lin, S. ACS Catal. 2018, 8, 5175. (h) Wu, K.; Liang, Y.; Jiao, N. Molecules 2016, 21, 352. (i) Wu, X.; Wu, S.; Zhu, C. Tetrahedron Lett. 2018, 59, 1328. (j) Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413. (k) Wu, C.; Wang, J.; Zhang, X.-Y.; Jia, G.-K.; Cao, Z.; Tang, Z.; Yu, X.; Xu, X.; He, W.-M. Org. Biomol. Chem. 2018, 16, 5050. (6) (a) Parsons, A. T.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 9120. (b) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410. (c) Wang, F.; Qi, X.; Liang, Z.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2014, 53, 1881. (d) He, Y.-T.; Li, L.-H.; Yang, Y.-F.; Zhou, Z.-Z.; Hua, H.-L.; Liu, X.Y.; Liang, Y.-M. Org. Lett. 2014, 16, 270. (e) Wang, F.; Wang, D.; Mu, X.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2014, 136, 10202. (f) Cheng, Y.-F.; Dong, X.-Y.; Gu, Q.-S.; Yu, Z.-L.; Liu, X.-Y. Angew. Chem., Int. Ed. 2017, 56, 8883. (g) Bao, X.; Yokoe, T.; Ha, T. M.; Wang, Q.; Zhu, J. Nat. Commun. 2018, 9, 3725. (h) Du, B.; Wang, Y.; Mei, H.; Han, J.; Pan, Y. Adv. Synth. Catal. 2017, 359, 1684. (i) Xu, T.; Cheung, C. W.; Hu, X. Angew. Chem., Int. Ed. 2014, 53, 4910. (j) Gao, Y.; Li, X.; Chen, W.; Tang, G.; Zhao, Y. J. Org. Chem. 2015, 80, 11398. (k) Hussain, M. I.; Feng, Y.; Hu, L.; Deng, Q.; Zhang, X.; Xiong, Y. J. Org. Chem. 2018, 83, 7852. (l) Kong, W.; Yu, C.; An, H.; Song, Q. Org. Lett. 2018, 20, 4975. (m) Li, D.; Mao, T.; Huang, J.; Zhu, Q. J. Org. Chem. 2018, 83, 10445. (n) Xu, L.; Mou, X.-Q.; Chen, Z.-M.; Wang, S.-H. Chem. Commun. 2014, 50, 10676. (o) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357. (7) (a) Bunescu, A.; Wang, Q.; Zhu, J. Org. Lett. 2015, 17, 1890. (b) Da, Y.; Han, S.; Du, X.; Liu, S.; Liu, L.; Li, J. Org. Lett. 2018, 20, 5149. (c) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 12462. (d) Zhu, R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 12655. (e) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 8069. (f) Li, Y.; Han, Y.; Xiong, H.; Zhu, N.; Qian, B.; Ye, C.; Kantchev, E. A.; Bao, H. Org. Lett. 2016, 18, 392. (g) Lv, Y.; Pu, W.; Mao, S.; Ren, X.; Wu, Y.; Cui, H. RSC Adv. 2017, 7, 41723. (h) Sha, W.; Ni, S.; Han, J.; Pan, Y. Org. Lett. 2017, 19, 5900. (i) Bunescu, A.; Wang, J.; Zhu, J. Chem. - Eur. J. 2014, 20, 14633. (j) Wang, Y.; Zhang, L.; Yang, Y.; Zhang, P.; Du, Z.; Wang, C. J. Am. Chem. Soc. 2013, 135, 18048. (k) Wang, Z.; Kanai, M.; Kuninobu, Y. Org. Lett. 2017, 19, 2398. (l) Sun, L.; Ye, J. H.; Zhou, W. J.; Zeng, X.; Yu, D. G. Org. Lett. 2018, 20, 3049. (m) Ge, L.; Li, Y.; Jian, W.; Bao, L. Chem. - Eur. J. 2017, 23, 11767. (n) Tlahuext-Aca, A.; Garza-Sanchez, R. A.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 3708. (o) Jian, W.; Ge, L.; Jiao, Y.; Qian, B.; Bao, L. Angew. Chem., Int. Ed. 2017, 56, 3650. (8) (a) Konrad, T. M.; Schmitz, P.; Leitner, W.; Franciò, G. Chem. Eur. J. 2013, 19, 13299. (b) Fukuzawa, S.; Shimizu, E.; Kikuchi, S. Synlett 2007, 2007, 2436.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected]. *E-mail: [email protected]. ORCID

Ren-Jie Song: 0000-0001-8708-7433 Jin-Heng Li: 0000-0001-7215-7152 Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS We thank the Natural Science Foundation of China (Nos. 21402046, 21625203, and 21472039) and the Jiangxi Province Science and Technology Project (Nos. 20171BCB23055, 20171ACB21032, 20171ACB20015, and 20165BCB18007) for financial support.



REFERENCES

(1) (a) Corey, E. J.; Durst, T. J. Am. Chem. Soc. 1968, 90, 5548. (b) Williams, J. M. J. Preparation of Alkenes; Oxford University Press: Oxford, 1996. (c) Zabicky, J. The Chemistry of the Alkenes; WileyInterscience: New York, 1970. (d) Bauld, N. L.; Stufflebeme, G. W.; Lorenz, K. T. J. Phys. Org. Chem. 1989, 2, 585. (e) Negishi, E. Acc. Chem. Res. 1987, 20, 65. (f) Hall, D. G.; Chapdelaine, D.; Préville, P.; Deslongchamps, P. Synlett 1994, 1994, 660. (g) Suginome, M.; Yamamoto, A.; Murakami, M. J. Am. Chem. Soc. 2003, 125, 6358. (h) Suginome, M.; Yamamoto, A.; Murakami, M. Angew. Chem., Int. Ed. 2005, 44, 2380. (i) Jennings, M. P.; Cork, E. A.; Ramachandran, P. V. J. Org. Chem. 2000, 65, 8763. (j) Tsukamoto, H.; Ueno, T.; Kondo, Y. J. Am. Chem. Soc. 2006, 128, 1406. (k) Yoshida, K.; Imamoto, T. J. Am. Chem. Soc. 2005, 127, 10470. (l) Flynn, A. B.; Ogilvie, W. W. Chem. Rev. 2007, 107, 4698. (2) For selected papers, see: (a) Jia, L.-Q.; Jiang, H.-F.; Li, J.-H. Chem. Commun. 1999, 985. (b) Li, Y.; Song, D.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 2962. (c) Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 519. (d) Wilger, D. J.; Grandjean, J.-M. M.; Lammert, T. R.; Nicewicz, D. A. Nat. Chem. 2014, 6, 720. (e) Wang, H.; Guptill, D. M.; Varela-Alvarez, A.; Musaev, D. G.; Davies, H. M. L. Chem. Sci. 2013, 4, 2844. (f) Brandl, M.; Kozhushkov, S. I.; Loscha, K.; Kokoreva, O. V.; Yufit, D. S.; Howard, J. A. K. Synlett 2000, 1741. (g) Wei, W.-T.; Zhou, M.-B.; Fan, J.-H.; Liu, W.; Song, R.-J.; Liu, Y.; Hu, M.; Xie, P.; Li, J.-H. Angew. Chem., Int. Ed. 2013, 52, 3638. (h) Song, R.-J.; Tu, Y.-Q.; Zhu, D.-Y.; Zhang, F.-M.; Wang, S.-H. Chem. Commun. 2015, 51, 749. (i) Liu, K.-J.; Jiang, S.; Lu, L.-H.; Tang, L.-L.; Tang, S.-S.; Tang, H.-S.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3038. (3) For selected reviews, see: (a) Greenhalgh, M. D.; Thomas, S. P. Synlett 2013, 24, 531. (b) Breder, A. Synlett 2014, 25, 899. (c) Margrey, K. A.; Nicewicz, D. A. Acc. Chem. Res. 2016, 49, 1997. (d) Rose, E.; Andrioletti, B.; Zrig, S.; Quelquejeu-Etheve, M. Chem. Soc. Rev. 2005, 34, 573. (e) Crossley, S. W. M.; Obradors, C.; Martinez, R. M.; Shenvi, R. A. Chem. Rev. 2016, 116, 8912. (f) Thakur, K.; Sharma, R.; Sharma, U. Synlett 2015, 26, 137. (g) Coombs, J. R.; Morken, J. P. Angew. Chem., Int. Ed. 2016, 55, 2636. (h) Wu, W.; Jiang, H. Acc. Chem. Res. 2012, 45, 1736. (i) Chen, Z.-M.; Zhang, X.-M.; Tu, Y.-Q. Chem. Soc. Rev. 2015, 44, 5220. (4) For selected papers on alkenes difunctionalization, see: (a) Piou, T.; Rovis, T. Nature 2015, 527, 86. (b) Nan, G.; Yue, H. Synlett 2018, 29, 1340. (c) Pan, C.; Zhang, H.; Zhu, C. Tetrahedron Lett. 2016, 57, 595. (d) Cui, H.; Liu, X.; Wei, W.; Yang, D.; He, C.; Zhang, T.; Wang, H. J. Org. Chem. 2016, 81, 2252. (e) Barthelemy, A. L.; Tuccio, B. Angew. Chem., Int. Ed. 2018, 57, 13790. (f) Cheng, J.; Cheng, Y.; Xie, J.; Zhu, C. Org. Lett. 2017, 19, 6452. (g) Li, L.; Gu, Q. S.; Wang, N.; Song, P.; Li, Z. L.; Li, X. H.; Wang, F. L.; Liu, X. Y. Chem. Commun. 2017, 53, 4038. (h) Li, M.; Yu, F.; Chen, P.; Liu, G. J. Org. D

DOI: 10.1021/acs.orglett.8b03330 Org. Lett. XXXX, XXX, XXX−XXX