1
Corrosion: The Most General Problem of Materials Science
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
DONALD TUOMI Solid State Physics, Roy C. Ingersoll Research Center, Borg-Warner Corp., Des Plaines, IL 60016 The following chapters systematically address varied aspects of the field known as corrosion. In this introductory overview, an effort w i l l be made to touch only lightly the breadth and depth of corrosion - the most general problem of materials science. For the f i r s t step to developing an overview, a meaning to the word corrosion needs expression. To my wife, corrosion means that there is a dirty brown splotch on the side of the car which means it is worn out and time to trade in is here. They don't make them as well as before ! This brings our attention to the classic meaning of corrosion as being a loss in value for some solid object which has been suffering from chemical attack at the surface. I suspect that for many this feeling of decreased value through corrosion leads to a negative feeling towards the topic. Corrosion, in general, is used to describe degradation in value of useful objects. An alternative perspective is present in corrosion engineer anecdotes. "Nope, we don't have any corrosion problems in this plant. The pumps wear out every six weeks and we replace them." Or alternatively, "We just dump the scrap here and as soon as we can fill a railroad car we haul it to a hole a hundred miles away and bury it. Some day when the corrosion finishes the junk off, we'll build condominiums on the land." Or yet another one - "Hey, would you believe that with six months' data they want me to warrant that tank for 50 years of radioactive waste storage?" Yes, these do represent some famous last words. Enough for the anecdotal description; we are not gathered here to be entertained. Corrosion is a serious, costly materials science problem. In the years ahead as our resources are increasingly utilized to the limits of practicality, 1
0-8412-0471-3/79/47-089-001$08.50/0 © 1979 American Chemical Society
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
2
CORROSION
CHEMISTRY
and c o n s e r v a t i o n and r e c y c l i n g a r e watchwords, n o t c a t c h w o r d s ; t h e c o r r o s i o n e n g i n e e r w i l l be a t t h e forefront. May I emphasize a g a i n t h e t i t l e , " C o r r o s i o n : The Most G e n e r a l P r o b l e m o f M a t e r i a l s S c i e n c e . " So many I e n c o u n t e r speak i n a d i s p a r a g i n g v o i c e about c o r r o s i o n problems - t h a t i t * s j u s t a b l a c k a r t - w i t h o u t s u p p o r t ive science. J u s t go i n t h e r e and do y o u r t h i n g d o n ' t b o t h e r me w i t h t h e f a c t s . As a m a t t e r o f f a c t , however, t h e r e i s so much s c i e n c e i n t h i s show t h a t a c o n s t i p a t i o n o f words r e a d i l y s e t s i n b e f o r e t h e c o n s t i p a t i o n o f i d e a s i s even approached. For t h e n e x t 90 m i n u t e s o r so l e t us e x p l o r e t h i s f i e l d - CORROSION. We s h a l l t r a v e l i n two d i s t i n c t ways. One i s t o b r i n g y o u r a t t e n t i o n t o a r r a y s o f k e y words and c o n c e p t s . The o t h e r i s t o f o r m u l a t e a p a t t e r n o f s o l i d s t a t e s u r f a c e s t r u c t u r a l c h e m i s t r y w h i c h may be u s e f u l a s a framework f o r remembering complex o p t i o n s and f o r e x p l o r i n g new o p t i o n s . The l a t t e r w i l l be w i t h i n two a r e a s : (1) exchange c u r r e n t d e s c r i p t i o n s o f c o r r o s i o n p o t e n t i a l s and (2) t h e n a t u r e o f c o r r o d i n g surfaces. The e m p i r i c i s m t h a t a p p e a r s t o f o l l o w t h e c o r r o s i o n e n g i n e e r a r i s e s from t h e m u l t i - f a c t o r , m u l t i component s i t u a t i o n s w h i c h a r e p r e s e n t w i t h i n a l l common a r t i c l e s o f commerce, be t h e y made from i r o n , aluminum, o r more e x o t i c m a t e r i a l c o m b i n a t i o n s . The variables are continually interacting i n increasingly complex ways so we can become e n g r o s s e d f o r even a l i f e t i m e w i t h j u s t one p r o b l e m i n p e r f o r m a n c e such as a i r f o i l stress corrosion c r a c k i n g , b o i l e r feed water s t a b i l i z a t i o n s , o r c o r r o s i o n i n h i b i t i n g p a i n t s , and many more. B u t does t h i s mean t h e work l a c k s f o r glamour and e x c i t e m e n t ? W e l l , t h e m a t e r i a l s engineer i s f r e q u e n t l y caught with orders t o s e l e c t materials combinations i n a pract i c a l s i t u a t i o n g i v i n g desired property balances with adequate p e r f o r m a n c e d e s i g n e d t o f i r s t o r t o l i f e c o s t s . A l t e r n a t i v e l y , he s e l e c t s model Mark I I m a t e r i a l s t o c o v e r model Mark I m i s t a k e s . More i m p o r t a n t t o d a y , m a t e r i a l s e l e c t i o n s must a v o i d w a r r a n t y p a y o u t s c a p a b l e o f c o r p o r a t e b a n k r u p t c y as w e l l a s extended p e r s o n a l liability. How i n d e e d a r e R & D d a t a p r e d i c t i n g f i e l d r e l i a b i l i t y ? What i s a v a l i d t e s t ? The c o r r o s i o n e n g i n e e r i s f r e q u e n t l y t h e pragmat i s t - so what i s t h e p r o b l e m - g e t r i d o f t h e o f f e n d ing material. A n o t h e r approach i s "Hey, what c a n we add t o , i n t r o d u c e t o , o r o t h e r w i s e c o a t t h e s y s t e m w i t h so t h e p r o b l e m w i l l d i s a p p e a r l o n g enough t o keep t h e c u s t o m e r s a d e q u a t e l y happy? Or a t l e a s t n o t
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
1.
τυοΜι
Corrosion:
Problem
of
Materials
Science
3
s e r i o u s l y d i s a p p o i n t e d i n t h e v a l u e r e c e i v e d ? We c a n ' t s e l l many g o l d - p l a t e d C a d i l l a c s . " Or t h e customer asks how can I c h e a p l y save money i n t h e l o n g r u n w i t h o u t paying the f a c t o r y ? Ziebart i t ! W e l l , enough c o m m e r c i a l s - who i s t h i s c o r r o s i o n e n g i n e e r and what i s he l i k e ? How many y e a r s has he spent i n t h e i v o r y t o w e r s ? Or has he e v e r v i s i t e d them? W e l l , i f I had my d r u t h e r s , I would see t o i t t h a t t h e c o r r o s i o n e n g i n e e r had a b i t o f f l a v o r i n g from m a t e r i a l s s c i e n c e as shown i n F i g u r e 1. I n t h e s e days of s p e c i a l i z a t i o n , i t would be n i c e t o t r a i n some generalists. As an e x p e r t r e s p o n s i b l e f o r t h e f u t u r e b e h a v i o r s o f most o f o u r s o l i d m a t e r i a l s , s u r e l y a mastery o f t h e f u l l range c o v e r e d by c h e m i s t r y , p h y s i c s m e t a l l u r g y , and j u s t a few o t h e r i n c i d e n t a l f i e l d s would be c o n s i s t e n t w i t h a s s i g n e d r e s p o n s i b i l i t i e s . I f he f e e l s a b i t s h o r t , c l e a r l y r e c o u r s e w i l l be t a k e n t o t h e c o n s u l t a n t s and t h e c o l l e a g u e s f o r m i n g h i s s u p p o r t ive t e c h n i c a l s o c i e t y . What, you t h i n k t h e s u r v e y i s f a c e t i o u s and o u t o f p l a c e ? L e t ' s t a k e a l o o k a t a c o r r o s i o n smorgasbord o f t e r m i n o l o g y i n F i g u r e 2. The e x p e r i e n c e s o f a c o r r o s i o n e n g i n e e r a r e r e p r e s e n t e d by t h e t e r m a r r a y . Sampl ing them a t random, i t seems t o be a j u m b l e . However, i t i s an o v e r v i e w . Who, t h e n , i s t h e c o r r o s i o n e n g i n e e r ? F o r many h e r e , he has an e x c i t i n g , r e s p o n s i b l e way o f d o i n g complex m a t e r i a l s s c i e n c e i n s e r v i c e t o our s o c i e t y . T h i s i n d i v i d u a l may n e v e r have d e l i b e r a t e l y p l a n n e d t h e career which developed. R a t h e r as a c i v i l e n g i n e e r , a m e c h a n i c a l e n g i n e e r , a c h e m i s t , a p h y s i c i s t , an a n a l y s t , one day s u d d e n l y he has a r e s p o n s i b i l i t y t h r u s t on him r e l a t i n g to materials r e l i a b i l i t y , to materials perfor mance o r j u s t t o s o l v e t h a t p r o b l e m b e f o r e we a r e b r o k e . Thus, many r o u t e s l e a d t o a c o r r o s i o n e n g i n e e r ' s r e s p o n s i b i l i t y as i s r e f l e c t e d i n F i g u r e 3 . He c o n t r i b u t e s t o A P r i o r i P r o b l e m S o l v i n g b u t economics o f f i r s t c o s t s f r e q u e n t l y l e a d t o P o s t - F a c t u m Problem S o l v i n g . For, too o f t e n , c o r r o s i o n i s t i e d d i r e c t l y t o systems' weakest l i n k v a r i a b l e s . Much o f t h e needed knowledge i s absorbed a l m o s t by an osmosis p r o c e s s because t h e r e j u s t a r e n ' t s i m p l e v a l i d d e s c r i p t i o n s o f g e n e r a l use. A l l q u i c k l y become s p e c i f i c . L a d i e s and gentlemen - i f you were t o examine t h e agenda f o r t h e n e x t few weeks, q u i c k l y a r e c o g n i t i o n w o u l d d e v e l o p t h a t t h e key-words have t o u c h e d on t h e program e x p o s u r e s each w i l l e x p e r i e n c e - can you see t h e beauty o f t h e t o u g h e s t m a t e r i a l s s c i e n c e problems emerging t h r o u g h t h e program?
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979. Chemistry
Chemistry
Physics
Consultants
Metallurgy
Ceramics
ENGINEER
CORROSION
Polymer
Figure 1.
Corrosion engineer
Thermo Analysis
Design
Colleagues
Experimental
Instrumentation
Instrumental
Irreversible
Quantum Mechanics
Mechanics
Chemistry
Statistical
Electronics
S t a t i s t i c a l A n a l y s i s o f Experiments
Semiconductor P h y s i c s
D i f f u s i o n Transport
Hydrodynamics = L-G-S
Civil Mechanical ) ' Engineering Electrical '
Chemistry
Thermodynamics
Analytical
SURFACE AND SOLID STATE MATERIALS SCIENCE
S o l i d State
Electrochemistry
Physical
INORGANIC AND ORGANIC CHEMISTRY
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
I
n
d
u
s
t
r
Water
Soil
i a l
Hot
Corrosion
Attack
- Cracking
Cruds
Flaking - Foliation
Layer
Crystalline
Granular
Corrosion
Inter Trans
Stress Corrosion
Stress
Fatigue
Cracking
Inter Trans
Oxidation
Dissolution
Salt
Atmospheric
Spray
Molten
L i q u i d Metal
Fuels
Salt
Action
Precipitation
Local C e l l
Chemical A c t i o n
Condensates
Action
Corrosion term smorgasbord
CORROSION SMORGASBORD
Electrochemical
Figure 2.
Gases
Steam
Brines
F r e s h Water
Aerated
inorganic Organic
Pipelines
Attack Attack Pitting Crevicing Intergranular Intercrystalline Grooving
General Local
Inhibition
Corrosion Potentials Equilibrium Potentials Mixed P o t e n t i a l s Confused P o t e n t i a l s A c t i v e Surface Passive Surface Activation Passivation
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
CORROSION
C H E M I S T R Y
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
THE CORROSION ENGINEER'S RESPONSIBILITY
Aesthetics
Environments
Economics
Performance
P r a c t i c a l Engineering P r o p e r t y Balance
THE PROBLEM A P r i o r i Materials Selection
C o r r o s i o n and Weakest L i n k Figure 3.
Variables
Corrosion engineers responsibility
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
1.
TUOMi
Corrosion:
Problem
of
Materials
Science
7
L e t us l o o k a t a n o t h e r p a i r o f smorgasbord f i g u r e s on c o r r o s i o n . The f i r s t , F i g u r e 4, f o c u s s e s l a r g e l y on , s u r f a c e phenomena from a p h y s i c a l c h e m i s t - e l e c t r o c h e m i s t o r s u r f a c e c h e m i s t c o n t e x t . Do t h e words have a f a m i l i a r meaning? S h o u l d I d e f i n e a few o r perhaps we should look at another, Figure 5 , which o u t l i n e s a n o t h e r s e t o f , p r o b a b l y l e s s f a m i l i a r t o most, key words. These are r e l a t e d t o t h e d e s c r i p t i o n o f s o l i d s t a t e s t r u c t u r e s w h i c h a r e e n c o u n t e r e d on t h e s o l i d side of the e l e c t r i c a l double l a y e r . I t i s the d i s t u r b i n g phenomena p r o c e e d i n g w i t h i n t h e s o l i d s u r f a c e s i d e t h a t g i v e s r i s e t o the d i v e r s e experiences of the c o r r o s i o n engineer. F o r an o v e r v i e w we c l e a r l y c o u l d spend much t i m e on each word, l e a r n i n g what meaning was e x p e r i e n c e d by each o f us. Each would be s u r p r i s e d what a range c o u l d be r e v e a l e d by t h e d i a l o g u e . T h i s i s why so much o f t h e management end o f t h e t a l e n t s p e c t r u m i s i n c l i n e d t o say, please p r a c t i c e your a r t w i t h o u t f u l l y r e c o g n i z i n g o r e x p e r i e n c i n g t h e complex b e a u t y present. F o r i t i s o n l y a r t t o t h e b e h o l d e r - l e t us continue s k e t c h i n g the canvas. D i d you e v e r s t o p t o c o n t r a s t t h e c o n c e p t u a l i z a t i o n o f c h e m i s t s common models, o r f o r t h a t m a t t e r , most d e s c r i p t i o n s o f s o l i d m a t e r i a l b e h a v i o r s ? In F i g u r e 6 we are e x a m i n i n g the p h e n o m e n o l o g i c a l s i t u a t i o n o v e r w h i c h we spend so much t i m e p u z z l i n g . The m e n t a l images u s u a l l y do n o t a s s i g n d e t a i l e d s t r u c t u r e t o t h e s o l i d phase. We can c l e a r l y see i t b e f o r e us - i t i s so o b v i o u s . The model we a r e u s u a l l y s p e a k i n g about i s shown i n t h e lower l e f t c o r n e r - a s t r u c t u r e l e s s s o l i d b e h a v i n g i n an e n v i r o n m e n t o f l i q u i d , o r gas, more r a r e l y an i m p e r f e c t , impure vacuum. The l a t t e r e n v i ronment has t h e s p a t i a l e x t e n t . More t r u l y as i n t h e l o w e r r i g h t c o r n e r t h e s o l i d i s d e f i n e d by x-y-z c o o r d i n a t e s w h i c h d e f i n e what i s a c t u a l l y happening where as a f u n c t i o n o f time i n an experiment. S t i l l more p r e c i s e l y , t h e s o l i d i n t h e e x p e r i m e n t i s b e i n g space averaged t o produce the d a t a i n t h e f i g u r e s above. The s o l i d i s b e s t d e s c r i b e d g e n e r a l l y f o r t h e c o r r o s i o n e n g i n e e r ' s p u r p o s e s as a " p o l y p h a s e inhomogeneous s o l i d c o n t a i n i n g h e t e r o g e n e i t y homogeneously d i s p e r s e d . " The d e s c r i p t i o n i s r a t h e r p r e c i s e a c c o r d i n g t o Webster s U n a b r i d g e d D i c t i o n a r y . T h i s r e f e r e n c e can be c i t e d i f the statement r e q u i r e s s u b s t a n t i a t i o n . Goodness, w i t h t h i s c o m p l e x i t y where do we go from 1
f
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Ionic
Polarization Fields
Fields
Kinetic
Double Layer
Planes
Potential
Ideal
CORROSION
Content
Energy
Potentials
Loss
Open-Circuit Potentials Short-Circuit Potentials Cell Potentials Over P o t e n t i a l s Anodic-Cathodic P o t e n t i a l s Mixed P o t e n t i a l s
2
I R
Polarization Potentials Activation Polarization Concentration P o l a r i z a t i o n
Electrode
Entropy
Heat
Free
Oxidation-Reduction
Thermodynamic
Corrosion smorgasbord (continued)
Exchange C u r r e n t s
Potential
Electrochemical
Figure 4.
Polarizable
Non-Faradaic
Faradaic Processes
Constant
Constant C u r r e n t
Potential Transients
Compact Double Layer
Diffuse
The Helmholtz
E l e c t r i c Dipole F i e l d s
Atomic
Phase)
Model Components
(Liquid
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
§
ο
Ο
oo
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979. Defects
Phase
Solutions
Bands
Figure 5.
Impurity
Potential
Bands
Bands
Dislocations
Fermi L e v e l s
Work F u n c t i o n s
Surface P o t e n t i a l s
Conduction
Corrosion smorgasbord (continued)
States
Defects
E l e c t r o n s and Holes
Surface
Surface
Charge T r a n s f e r Catalysis
-Metal
Insulator-Semiconductor
Imperfections
Charge T r a n s p o r t
F l a t Band
Band S t r u c t u r e
CORROSION
Space Charge P o t e n t i a l
Valence
States
States
States
Trapping
Impurity
Dopant
Ionic-Covalent
Electronegativity
Solid Solutions
Metastable
Inhomogeneous-HeterogeneousHeterogeneity
Solid
Imperfections
- Interstitials
Zeolite to Perfect C r y s t a l -
Associated
Vacancies
Mass T r a n s p o r t
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
10
CORROSION
Figure 6.
CHEMISTRY
Phenomenological view of a one-dimensional solid contrasts with the three-dimensional reality of most solid systems.
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
1.
τυοΜι
Corrosion:
Problem
of
Materials
11
Science
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
1
h e r e ? W e l l , l e t s j u s t acknowledge t h a t t h i s has a l w a y s been t h e s t a g e on w h i c h most o f us a r e a c t i n g out our p r o f e s s i o n a l l i v e s . Thus, i n F i g u r e 7, S o l i d s a r e d e s c r i b e d as b e i n g i d e a l l y p e r f e c t v e r s u s i d e a l l y i m p e r f e c t w i t h most being i n the l a t t e r category. A sharp consequence was t a u g h t t o me many y e a r s ago by L e r o y Dunham o f t h e E d i s o n P r i m a r y B a t t e r y . When I s m a r t l y d e s c r i b e d a s t a t i s t i c a l quantum-mechanics model o f c h a r g e t r a n s f e r c a t a l y s i s o f oxygen r e d u c t i o n on an e l e c t r o d e s u r f a c e , he s m i l e d as i f he was e n j o y i n g h i m s e l f . He had been f o r c e d t o l e a v e s c h o o l a t t h e e i g h t h grade l e v e l . , L a t e r i n t h e day as he and I s t r o l l e d t h r o u g h the p r o d u c t i o n p l a n t making h i s e l e c t r o d e s , he q u i e t l y s a i d , "Don, I e n j o y e d y o u r comments so v e r y much. Back i n t h e '30*s when I was d o i n g the development work many c o n f u s i n g r e s u l t s came from e x p e r i m e n t s . In the e v e n i n g s I have e n j o y e d r e a d i n g t h e E n c y c l o p e d i a B r i t a n n i c a . One day i t dawned on me t h a t the d i s t r i b u t i o n of people i n the United S t a t e s versus other a r e a s r e s e m b l e d t h e charge t r a n s f e r b e h a v i o r . To change t h i n g s t h e p e o p l e must move a r o u n d , get i n t o and o u t o f c a r s , t r a i n s , p l a n e s . What a memorable moment - t h e t h e o r y d i d not have t o be a b s o l u t e l y r i g h t t o be u s e f u l i n g u i d i n g e x p e r iments. Why have I t a k e n such a c i r c u m s p e c t p a t h t o r e a c h t h i s point? W e l l , I wish to present a c o n c e p t u a l i z a t i o n o f t h e p r o b l e m s w h i c h has been u s e f u l t o me. It has h e l p e d t o b r i d g e t h e chasm s e p a r a t i n g d i f f e r e n t experimental s i t u a t i o n s . The f o l l o w i n g F i g u r e 8 i n d i c a t e s t h a t the l e c t u r e s c o u l d be p l a c e d i n a v a r i e t y o f c a t e g o r i e s . F i r s t , the f a m i l i a r m e t a l - e l e c t r o l y t e system w i t h gas e v o l u t i o n p o t e n t i a l l y present. Second, t h e systems i n v o l v i n g m e t a l s s e p a r a t e d from the l i q u i d by a c o v e r i n g f i l m s t r u c t u r e , and t h i r d t h e m e t a l s e p a r a t e d from a gas by an i n t e r m e d i a t e phase l a y e r . There i s some a m b i g u i t y e v i d e n t i n t h i s d e s c r i p t i o n ; however, i n t h e n e x t few m i n u t e s p e r h a p s some new p e r s p e c t i v e s f o r t h o u g h t o r g a n i z a t i o n can emerge. I n a more g e n e r a l sense s u r f a c e c o r r o s i o n p r o c e s s e s can be d e s c r i b e d i n terms o f the phases p r e s e n t as shown i n F i g u r e 9. Here t h e s o l i d i s n o t i d e n t i f i e d s i m p l y as a m e t a l but a more g e n e r a l term S i s b e i n g used w i t h L r e p r e s e n t i n g l i q u i d phase and G gas phase. The systems l o c a l l y p r e s e n t can be r e p r e s e n t e d by t h e n o t a t i o n s S - L , S - L - G , S-G or, i f a c o v e r i n g c h e m i c a l l y a l t e r e d l a y e r e x i s t s on t h e s u r f a c e , then S i - S i s present w i t h S i the s t a r t i n g m a t e r i a l . 2
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
12
CORROSION
CHEMISTRY
Solids Ideally Perfect
R e a l i t y + I d e a l l y Imperfect THEORY :
i f i t leads t o experiments does n o t need t o be RIGHT t o be v e r y v a l u a b l e . Figure 7.
Modeling
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
TUOMi
Corrosion:
Problem
of Materials
Science
Metal-Electrolyte-Gas
Metal-Solid-Liquid
Corrosion E l e c t r o chemistry Iron D i s s o l u t i o n Mechanisms Corrosion I n h i b i t i o n and I n h i b i t o r s Stress Corrosion Cracking
Solid Electrolyte-Ionic E l e c t r o n i c Transport Iron Passivation Valve Metals D i e l e c t r i c Layers I n d u s t r i a l Problem: C o o l i n g Waters and Treatments
LECTURE SERIES CORROSION
Metal-Solid-Gas High-Temperature Corrosion Low-Temperature Atmospheric Corrosion C o r r o s i o n Phenomena N o v e l Energy Conversion Processes Iron P a s s i v a t i o n Figure 8.
Corrosion lecture classifications
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
14
CORROSION
CHEMISTRY
The p e r s p e c t i v e o f s i m p l e phases and phase e q u i l i b r i a i s adequate f o r many c o r r o s i o n p r o b l e m s . T h i s i s p a r t i c u l a r l y t r u e f o r the c a s e s where thermodynamic f r e e energy d a t a r e a l l y d e s c r i b e what phases are p r e s e n t . L e t us examine t h i s f o r a few m i n u t e s from the viewpoint of everyday experience. We w i l l u t i l i z e the key d e v i c e w h i c h was r e s p o n s i b l e f o r our a r r i v a l a t the l e c t u r e - t h e b l a c k box c a l l e d
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
THE
LEAD-ACID STORAGE BATTERY.
T h i s system p e r m i t s b r i e f d e s c r i p t i o n s o f some key c o n c e p t s e n c o u n t e r e d i n c o r r o s i o n phenomena: electrode p o t e n t i a l s , exchange c u r r e n t s , mixed p o t e n t i a l s , c o r r o s i o n p o t e n t i a l s , p a s s i v e f i l m s , as w e l l as l e a d i n g t o thermodynamic d e s c r i p t i o n s o f s y s t e m s . — The r e d o x systems o f t h e b a t t e r y a r e s i m p l y p r e sented as: Negative : Anodic
=
Pb,
ν + SO*
-
{ S )
PbS0iw ν
+ 2e
e
+ 0.335
( S }
Cathodic
Positive: Pb0 , x + 4H 2
Pb
( s )
c
+Pb0
+
_ + SO * + 2e
2 ( s )
+ 2Η 50ι> 2
Cathodic ±? PbSO* + 2 H 0 Anodic 2
-
PbSO^
( g )
+ 2H 0 2
+
1.685
^ 2 ν
At the n e g a t i v e lead i s o x i d i z e d t o lead s u l f a t e d u r i n g d i s c h a r g e w h i l e at the p o s i t i v e l e a d d i o x i d e i s r e d u c e d t o l e a d s u l f a t e . The f u n c t i o n i n g o f the b a t t e r y f o r many c y c l e s depends upon m a i n t a i n i n g the reactions i s o l a t e d to t h e i r respective electrodes, to h a v i n g the e l e c t r o n s f l o w i n g t h r o u g h an e x t e r n a l c i r c u i t , and o n l y i o n i c c u r r e n t s f l o w i n g i n t h e i n t e r n a l electrolyte circuit. I f the p o t e n t i a l - c u r r e n t (E-i) c h a r a c t e r i s t i c s of t h e i n d i v i d u a l r e a c t i o n s were measured, the r e a c t i o n s c o u l d be r e a d i l y modeled as e l e c t r o c h e m i c a l r e a c t i o n s w i t h t h e b a t t e r y a t open c i r c u i t as i n d i c a t e d by the p r o c e s s e s i n F i g u r e 10. I f dynamic e l e c t r o d e p o t e n t i a l c u r r e n t r e l a t i o n s h i p s were d e t e r m i n e d , t h e e l e c t r o d e i s e x p e c t e d t o show t h e c l a s s i c T a f e l s l o p e b e h a v i o r s as the exchange c u r r e n t o f the a n o d i c - c a t h o d i c e q u i l i b r i u m i s s h i f t e d i n t o e i t h e r d i r e c t i o n . From t h e T a f e l c u r v e s a v a l u e f o r t h e E and i o f the e l e c t r o d e c o u l d be d e f i n e d . Q
0
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
1.
τυοΜι
Corrosion:
Problem
of Materials
15
Science
LOCAL REGION SOLID SURFACE TRANSFORMATIONS
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
Solid-Liquid S-L
Solid 1-Solid 2-L
Solid-Liquid-Gas S-L-G
S o l i d Gas SG
S o l i d 1-Solid 2-L-G S o l i d 1-Solid 2-G
S i ~ S 2 """ L
S i — S2~ L — G
Figure 9.
Sι
—
S 2 "" G
Corrosion system
Pb0
+ 2H + H SO„ + 2e
2 ( s )
2
Positive Pb0
+
2 ( s )
+2H +H SO 2
PbSOu
Potential E
{s)
PbSOu
Anodic
v
l(
+2e -
+ 2 H 0 2
(s)
+ 2e - P b
( s )
+ SO,
^
Negative Pb
( s )
+
S 0 ; - PbSO,
(s)
log i Figure 10.
Model battery anodic-cathodic
reactions
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
+ 2e
16
CORROSION
CHEMISTRY
I f the two e l e c t r o d e s a r e s h o r t - c i r c u i t e d t o g e t h e r , t h e c a t h o d i c p r o c e s s o f t h e p o s i t i v e combines w i t h t h e a n o d i c p r o c e s s o f the n e g a t i v e as shown i n F i g u r e 11. The b a t t e r y now has a s i n g u l a r p o t e n t i a l - t h e s h o r t circuited potential. T h i s c l e a r l y i s a mixed p o t e n t i a l o r c o u l d be v i e w e d as a c o r r o s i o n p o t e n t i a l o f the system. L o o k i n g a t F i g u r e 12, a s k e t c h o f a s i n g l e c e l l shows t h a t t h e p o s i t i v e i s a p a s t e o f P b 0 i n a l e a d grid. T h i s e l e c t r o d e i n t h e e l e c t r o l y t e c l e a r l y must have a mixed p o t e n t i a l s i n c e m e t a l l i c l e a d i n t h e p r e s e n c e o f l e a d d i o x i d e and s u l f u r i c a c i d i s thermodynamically unstable. At the n e g a t i v e the l e a d g r i d contains pasted l e a d ! This i s a l s o unstable w i t h respect to charging the b a t t e r y . Both e l e c t r o d e s represent a c o r r o s i o n c o n t r o l problem! R e a l l y , t h i s i s a l i t t l e t o o s i m p l e , because i f t h e e l e c t r o d e s a r e f u l l y c h a r g e d , t h e v o l t a g e may be i n c r e a s e d so oxygen and hydrogen a r e e v o l v e d a t t h e p o s i t i v e and n e g a t i v e , r e s p e c t i v e l y . T h i s i s i n d i c a t e d by t h e p o t e n t i a l - l o g c u r r e n t l i n e s i n F i g u r e 13. These r e a c t i o n s c o n v e r t t h e b a t t e r y i n t o a p o t e n t i a l e x p l o s i v e by t h e H2-O2 r e c o m b i n a t i o n t o form w a t e r i f a match i s used t o a i d i n s e e i n g how much w a t e r needs t o be added. I f t h e 0 r e d u c t i o n c o u l d be made t o p r o c e e d on t h e n e g a t i v e s u r f a c e as a l o c a l c o r r o s i o n c u r r e n t , and i f t h e H c o u l d be made t o undergo o x i d a t i o n on t h e p o s i t i v e s u r f a c e , a h e r m e t i c a l l y s e a l e d c e l l c o u l d be made. These e l e c t r o c h e m i c a l r e a c t i o n s , however, r e p r e s e n t forms o f l o c a l c e l l r e a c t i o n s f a m i l i a r to c o r r o d i n g systems. As any o f t h e s e r e a c t i o n s p r o c e e d a t t h e e l e c t r o d e surface, the surface chemistry i s continuously changing. The c o m p o s i t i o n o f t h e l o c a l e l e c t r o l y t e i n c o n t a c t w i t h t h e s o l i d s i s c h a n g i n g . Thus, t h e s i m p l e chem i s t r y i m p l i e d by t h e r e a c t i o n
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
2
2
2
Pb + P b 0
2
+ 2 H S0i> + PbSOi* + 2 Ηι»0 2
r e a l l y does n o t e x i s t . There a r e numerous changes o f a complex form p r o c e e d i n g on t h e m e t a l s u r f a c e s , on t h e m e t a l l i c h e a v i l y - d o p e d o x i d e P b 0 , on t h e PbSOi+ c r y s t a l l i t e s , on t h e Pb p a r t i c u l a t e s i n t h e n e g a t i v e g r i d , as w e l l as i n systems o f g r a i n b o u n d a r i e s w h i c h are present. S u d d e n l y , as we p e e r beyond t h e c a s u a l s o l u t i o n c h e m i s t r y e q u a t i o n , r a t h e r complex s o l i d s t a t e c h e m i s t r y i s i n t e r a c t i n g w i t h s o l u t i o n and gas phases processes. 2
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Corrosion:
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
τυοΜι
Figure 11.
Problem
of Materials
Science
Short circuit of battery terminals creates characteristic short circuit potential (E ) and short circuit current (i ). 8C
8C
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
18
CORROSION
CHEMISTRY
LOAD
Pasted Pb
Pasted Pb0
|charge y-
2
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
dischargèj MME Q = i t
+ H0
Pb Grids
2
Figure 12.
Simple cell in a lead-acid battery
H
2
V r
H 0
2 ( g )
h
°Mg)
V)
+ 2 H
+2H + 2e+H l
+
0
2e
U
Positive - Ρ
.
*
H
Mg) ^
H
(t)
+
e
Negative - Ν Η H2
α Γ * (g) log i Figure 13.
Hydrogen and oxygen evolution reactions at the battery electrode
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
)
1.
τυοΜι
Corrosion:
Problem
of Materials
Science
19
C l e a r l y t h e system has e l e c t r o c h e m i c a l - c h e m i c a l exchange c u r r e n t s a t t h e p o s i t i v e s and n e g a t i v e s w h i c h d e f i n e t h e p o t e n t i a l s o b s e r v e d . The m e t a l g r i d must show c o m b i n a t i o n s o f PbSOt* f i l m , P b 0 f i l m , as w e l l as h y d r i d e f i l m phenomena. I s n ' t c o r r o s i o n c h e m i s t r y e x c i t i n g i n t h a t b l a c k box under t h e hood? The b a t t e r y e l e c t r o d e mixed p o t e n t i a l b r i n g s a t t e n t i o n t o the c o r r o s i o n engineer's problem o f c o n t r o l l i n g e i t h e r the cathodic or anodic process t o minimize the c o r r o s i o n c u r r e n t . The problems o f s u r f a c e p a s s i v a t i o n , the question of i d e n t i f y i n g the d i s t i n c t i v e s p a t i a l l o c a t i o n s of the r e a c t i o n processes are f r e q u e n t l y p r e s e n t i n p r a c t i c a l s i t u a t i o n s - what i s c a t h o d i c t o an a n o d i c r e g i o n o r v i c e v e r s a , what a r e u s e f u l ways t o m o d i f y t h e s u r f a c e p r o c e s s e s ? Thus, when a t t e n t i o n i s g i v e n t o d e t a i l , what appeared as a s i m p l e p r o b l e m i n i t i a l l y has w i t h a l i t t l e t h o u g h t become complex. F o r a few moments l e t ' s d r o p t h e key words and turn t o c r e a t i n g a skeleton f o r the c o r r o s i o n engi neer's interphase t r a n s p o r t processes. We need a l l t h e tools possible t o bring the materials science r e s o u r c e s t o o u r a i d . How can we e x p r e s s q u e s t i o n s so a i d can come from o t h e r e x p e r t s ?
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
2
Part I I T h i s phase o f t h e d i s c u s s i o n i s c o n c e r n e d w i t h concepts o f s o l i d s t a t e chemistry r a t h e r than a d e t a i l e d a n a l y s i s o f a p a r t i c u l a r case. The o b j e c t i v e i s t o b r i n g a t t e n t i o n t o a v a r i e t y o f s u r f a c e chemis t r y p e r s p e c t i v e s . T h i s v a r i e t y c a n be h e l p f u l because t h e number o f ways we can scavenge i n f o r m a t i o n from r e l a t e d m a t e r i a l s s c i e n c e a r e a s becomes expanded. F u r t h e r , a v a r i e t y o f s e e m i n g l y u n c o n n e c t e d phenomena can be b r o u g h t i n t o r e l a t e d b a l l g a m e s . The m u l t i d i s c i p l i n a r y character of r e a l material science i si t s real richness. E a r l i e r a t t e n t i o n was b r o u g h t t o t h e c o r r o s i o n p r o c e s s e s o f l i q u i d - s o l i d systems. L e t ' s s t a r t w i t h a m e t a l c o n t a c t i n g an e l e c t r o l y t e as do a l l e l e c t r o chemistry t e x t s . The s i m p l e s t model o f t h e e l e c t r i c a l d o u b l e l a y e r between a m e t a l and an e l e c t r o l y t e i s t h e s i m p l e c a p a c i t o r v i s u a l i z e d by Helmholtz- as shown i n F i g u r e 14. The d i f f u s e i o n d i s t r i b u t i o n i n t h e l i q u i d phase was r e c o g n i z e d by Gouy and Chapman^-' - t o form a space charge r e g i o n a d j a c e n t t o t h e e l e c t r o d e s u r f a c e . S t e r n ^ i n 1924 combined t h e s t r u c t u r e s t o form a compact d o u b l e l a y e r a t t h e e l e c t r o d e s u r f a c e w i t h a 1
5
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
20
CORROSION
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
HELMHOLTZ 1879
I
Θ Θ Θ Θ fe©e Θ ΙΘ ΘΘ © © © Θ Θ
I
f i'
Θ
\Helmholtz Plane
y
Ο. STERN (1924)
i l '
Ι© ϋ „
STERN-GRAHAME
imD
©
Θ © © Θ Θ +4 Θ© Θ ©Θ Θ ^ ΙΊ Θ
Helmholtz Plane
Figure 14.
GOUY CHAPMAN 1910-1913
:*Outer Helmholtz Plane Inner Helmholtz Plane
Modeh for the electrical double hyer at a metal surface
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMISTRY
1.
Corrosion:
τυοΜι
Problem
of
Materials
21
Science
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
2
d i f f u s e space c h a r g e . I n 1947 D a v i d Grahame added t o t h i s t h e s p e c i f i c a d s o r p t i o n o f i o n s f o r m i n g an i n n e r and o u t e r H e l m h o l t z p l a n e w i t h h y d r a t e d c a t i o n s not a p p r o a c h i n g as c l o s e l y as t h e a n i o n s a t t h e i d e a l metal substrate surface. In t h i s i d e a l p o l a r i z a b l e e l e c t r o d e model p e r s p e c t i v e , no charge t r a n s f e r o c c u r s between m e t a l and l i q u i d phase - i . e . , no F a r a d a i c processes are present. I t i s important t o v i s u a l i z e t h i s s u r f a c e r e g i o n as formed o f atoms, m o l e c u l e s , and ions having s i g n i f i c a n t thermal v i b r a t i o n a l , r o t a t i o n a l and t r a n s l a t i o n a l e n e r g y . The s k e t c h e d s t r u c t u r e s a r e f o r o n l y a moment i n t i m e b u t a r e a v e r a g i n g o v e r space a d j a c e n t t o t h e e l e c t r o d e s u r f a c e when measurements are b e i n g made. A subsequent d e s c r i p t i o n by B o c k r i s and a s s o c i ates- - drew a t t e n t i o n t o f u r t h e r c o m p l e x i t i e s as shown i n F i g u r e 15. The m e t a l s u r f a c e now i s c o v e r e d by combinations of o r i e n t e d s t r u c t u r e d water d i p o l e s , s p e c i f i c a l l y adsorbed a n i o n s , f o l l o w e d by s e c o n d a r y water d i p o l e s along w i t h the hydrated c a t i o n s t r u c t u r e s . T h i s model s e r v e s t o b r i n g a t t e n t i o n t o t h e dynamic s i t u a t i o n i n w h i c h changes i n p o t e n t i a l i n v o l v e s e q u e n t i a l as w e l l as s i m u l t a n e o u s r e s p o n s e s o f molec u l a r and a t o m i c systems a t and near an e l e c t r o d e s u r f a c e . Changes i n p o t e n t i a l d i s t r i b u t i o n i n v o l v e i n t e r a c t i o n s e x t e n d i n g from atom p o l a r i z a b i l i t y , t h r o u g h d i p o l e o r i e n t a t i o n , t o i o n movements. The e l e c t r i c a l f i e l d e f f e c t s a r e complex i n t h i s i d e a l p o l a r i z e d e l e c t r o d e model. The models c l e a r l y have n o t a s s i g n e d any a t o m i c s t r u c t u r e t o the metal s i d e . With a m e t a l l i c s u b s t r a t e R i c e , i n 1 9 2 8 , s h o w e d the e l e c t r i c f i e l d p e n e t r a t i o n was i n d e e d s l i g h t . C o n s e q u e n t l y , t h i s model was ade quate f o r t h e i d e a l p o l a r i z a b l e e l e c t r o d e w i t h o u t F a r a d a i c charge t r a n s f e r . A f u r t h e r c o m p l i c a t i o n i s i n t r o d u c e d i n F i g u r e 16 where t h e p r e s e n c e o f s u r f a c e adatoms i s i n d i c a t e d as w e l l as m e t a l l a t t i c e v a c a n c i e s i n t h e s u b s t r a t e s u r f a c e . W i t h i n t h e system a t t e n t i o n now can be drawn to F a r a d a i c processes i n v o l v i n g the s u b s t r a t e s t r u c t u r e . The t r a n s f e r o f an atom t o t h e s u r f a c e can be e x p r e s s e d by the e q u a t i o n 2
M/D
+ D
m
s
î
M
/ n
s
+
n
M
where M/Qs/ the s u r f a c e adatom, i s f u r t h e r p o t e n t i a l l y i n v o l v e d i n t h e exchange p r o c e s s M
/Q
+ s
n
H
2°
+
M +
(H 0) 2
n
+ e +
Q
s
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
22
CHEMISTRY
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
CORROSION
Figure 16.
Electrical double layer with structure introduced on the metal side
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
1.
TUOMi
Corrosion:
Problem
of Materials
Science
23
T h i s s u g g e s t s t h a t a t t e n t i o n needs t o be g i v e n t o i n t e r p h a s e exchange c u r r e n t s w h i c h i n v o l v e n o t o n l y e l e c t r o n t r a n s f e r from t h e m e t a l s u r f a c e , b u t may i n v o l v e atom exchanges from t h e b u l k t o t h e s u r f a c e r e g i o n . The p l a n e m e t a l s u r f a c e a s s o c i a t e d w i t h s t u d y i n g t h e model i d e a l p o l a r i z e d e l e c t r o d e b e h a v i o r now becomes p a r t o f an i n t e r p h a s e system s e p a r a t i n g m e t a l from an e l e c t r o l y t e o r a gas phase system. The e v o l u t i o n o f s e m i c o n d u c t o r e l e c t r o n i c s depen ded upon d e v e l o p i n g a d e t a i l e d m a t e r i a l s s c i e n c e , f i r s t f o r germanium and t h e n f o r s i l i c o n . This con fronted the electrochemist w i t h a f u r t h e r refinement o f t h e e l e c t r i c a l d o u b l e l a y e r systems model. A t t h e surface of a s i l i c o n semiconductor c r y s t a l the e l e c t r o n i c p r o c e s s now i s no l o n g e r s i m p l y an e l e c t r o n t r a n s f e r from a m e t a l b u t i n v o l v e s two d i s t i n c t r e a c t a n t s , e l e c t r o n s o r h o l e s . Thus, t h e f o l l o w i n g two r e a c t i o n s are not equivalent at the surface of a semiconductor, S : 1Si
S + OH"
•>
S0H + e
S + OH" + ρ •> S0H A f u r t h e r c o m p l i c a t i o n a r i s e s when a t t e n t i o n i s f o c u s s e d on t h e e l e c t r o n d e n s i t y d i s t r i b u t i o n w i t h i n the semiconductor s o l i d . T h i s , i n c o n t r a s t t o the m e t a l c a s e , now i s a b l e t o v a r y from a l o w t o a h i g h c o n c e n t r a t i o n l e v e l as e l e c t r o n s i n a c o n d u c t i o n band o r as h o l e s i n a v a l e n c e band. The e l e c t r i c f i e l d on t h e s o l i d s i d e o f t h e e l e c t r i c a l d o u b l e l a y e r now has s p a t i a l extent - a d i f f u s e double l a y e r character exists w i t h i n the s o l i d . The c o n v e n t i o n a l e l e c t r i c f i e l d e f f e c t s p r e v i o u s l y a s s o c i a t e d w i t h i o n motion and i o n d i s t r i b u t i o n s i n t h e e l e c t r o l y t e have a c o u n t e r p a r t w i t h i n t h e s o l i d phase. A f u r t h e r c o m p l i c a t i o n i s brought t o the f o r e f r o n t by s i l i c o n - e l e c t r o l y t e e l e c t r o c h e m i c a l s t u d i e s . T h i s i s t h e phenomena o f s u r f a c e s t a t e s a t t h e s o l i d e l e c t r o l y t e i n t e r f a c e . These become c r i t i c a l l y i n v o l v e d i n c h a r g e t r a n s f e r r e a c t i o n s i n v o l v i n g com p l e x r e a c t a n t s a t t h e s u r f a c e . Thus s i m p l e e l e c t r i c f i e l d d i s t r i b u t i o n s are not present except i n p a r t i c u l a r model c a s e s . On t h e o t h e r hand, r a t h e r t h a n h a v i n g a semicon d u c t o r r e p l a c i n g t h e m e t a l , t h e a c t u a l s i t u a t i o n may i n v o l v e growth o f s e m i c o n d u c t o r l a y e r s on a m e t a l s u r f a c e , o r a d i e l e c t r i c f i l m , o r more g e n e r a l l y a compound MX s e p a r a t i n g t h e base m e t a l from t h e c o r r o s i o n media. A new phase s e p a r a t e s t h e c o r r o d i n g base from the r e a c t a n t s .
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
24
CORROSION
CHEMISTRY
The e x a m i n a t i o n o f t h e m a t e r i a l MX as a model twod i m e n s i o n a l l a t t i c e s o l i d phase, AB, i n F i g u r e 17 i s r e v e a l i n g . The m a t e r i a l can have a v a r i e t y o f l a t t i c e imperfection s t r u c t u r e s i n c l u d i n g 1 1
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
i n t e r s t i t i a l A and Β atoms Α/Δ, Β/Δ i m p r o p e r s i t e A and Β atoms A/G3, B/CB l a t t i c e v a c a n c i e s f o r A and Β s i t e s Γ+1 > FT a s s o c i a t e d A and Β v a c a n c i e s 1+1~1 as r e a d i l y d e s c r i b e d by a s i m p l i f i e d symbolism. In r e a l systems a t t e n t i o n must be g i v e n t o d e f i n i n g a t l e a s t c o n c e p t u a l l y t h e n a t u r e o f t h e phases p r e s e n t . F r e q u e n t l y , under o r d i n a r y c o n d i t i o n s the s o l i d does not f i t any s i m p l e s t o i c h i o m e t r y o r e l e c t r i c a l n e u t r a l i t y compound model but i s a s t r u c t u r e u n i q u e t o the a c t u a l system under s t u d y . Thus, u s e f u l r e s u l t s may come from u n o r t h o d o x approaches t o r e a l systems. I f a t t e n t i o n i s given to the combination of a m e t a l M becoming c o v e r e d w i t h MX the model as shown i n F i g u r e 18, s e v e r a l o b s e r v a t i o n s can be made as t o i n t e r p h a s e systems and t h e growth o f t h e f i l m l a y e r . At the e x t e r i o r s u r f a c e a p a r t i c u l a r combination of i n t e r p h a s e exchange c u r r e n t s f o r s o l i d phase growth can be f o r m u l a t e d depending on t h e d e t a i l e d c h a r a c t e r of the s o l i d phase, the s u r f a c e s t a t e s , the allowed e l e c t r o n i c processes. S i m i l a r l y , a set of interphase exchange c u r r e n t s can be f o r m u l a t e d a t t h e boundary o f the m e t a l and t h e MX l a y e r a g a i n s u b j e c t t o c o n s t r a i n t s d e f i n e d by t h e mass t r a n s p o r t p r o c e s s e s p e r m i s s i b l e i n t h e c o v e r i n g l a y e r and i n t h e m e t a l . The s i t u a t i o n i s i l l u s t r a t e d i n g r e a t e r d e t a i l i n t h e f o l l o w i n g model s i t u a t i o n s where a t t e n t i o n i s g i v e n t o t h e i n t e r p h a s e boundary exchange c u r r e n t s i n j e c t i n g the l a t t i c e i m p e r f e c t i o n s which are r e s p o n s i b l e f o r atom t r a n s p o r t t h r o u g h t h e compound MX A** Thus i n F i g u r e 19 l a t t i c e v a c a n c y w i t h a t r a p p e d h o l e i s i n j e c t e d a t t h e compound e l e c t r o l y t e i n t e r f a c e , t h e i m p e r f e c t i o n a t t h e metal-compound i n t e r f a c e r e a c t s t o r e l e a s e a v a c a n c y i n t o the m e t a l . Alternatively, i n F i g u r e 20 t h e exchange p r o c e s s i n j e c t s a l a t t i c e v a c a n c y on t h e c a t i o n l a t t i c e w h i c h a p p e a r s a t t h e m e t a l compound i n t e r p h a s e t o r e l e a s e an e l e c t r o n and t r a n s f e r a metal i o n i n t o the s u r f a c e r e g i o n . T r a n s p o r t models such as t h e s e have been c r e a t e d t o b r i n g a t t e n t i o n t o t h e p o s s i b i l i t y o f t h e boundary exchange c u r r e n t s i n j e c t i n g i m p e r f e c t i o n i n t o a c r y s t a l l i n e phase d u r i n g an a n o d i c p r o c e s s . In f a c t , t h e y may d e t e r m i n e t h e s o l i d phase s t r u c t u r e s formed. F u r t h e r m o r e , t h e m e t a l w i t h a s o l i d phase c o v e r i n g f i l m
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
1.
τυοΜι
Corrosion:
Problem
of Materials
25
Science
B/n~ Journal of the Electrochemical Society Figure 17.
A model two-dimensional AB compound lattice illustrating simple imperfection structures expected as a systems variable (12)
ANION VACANCY METAL ATOM VACANCY
CATION VACANCY
• CATION SURFACE SITE
•Ï AO-ATOMSr*y* AD-IONS M
METAL
)
ANION SURFACE SITE
SURFACE
Journal of the Electrochemical Society Figure 18. Model situation where metal, M, is separated from corroding medium by covering-layer compound (MX) containing imperfection structures (12)
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
26
CORROSION
CHEMISTRY
COMPOUND MX-ELECTROLYTE INTERFACE
®®|©
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
®® ®®© ®® Journal of the Electrochemical Society Figure 19. Model boundary interphase exchange currents involving the injec tion of a lattice vacancy with trapped hole at compound-electrolyte interface and vacancy release into the metal with a hole and metal ion in the compound (12)
METAL M
®® ®j L
. ® ® | @ _ ® ® ®fe> ρ
® /οΐΙ® ®p/ j!g D
® ®| COMPOUND MX
®®| METAL COMPOUND M MX
(g) ® I © φ
©g®'®®
® ® j ® ®__®?® I ® ® ®
® ! P/Oή^"® D ; @ ® N
® ® | ® @
M
® ®
® ®
COMPOUND MX- ELECTROLYTE INTERFACE
® ®
® ® ® ®r
®®^g)
® ® _ ® ® @ _ ® ® ® j ® ® 0~® D Î ® * ~ ® D î | ® ®®i Journal of the Electrochemical Society Figure 20. Model boundary interphase exchange currents involving httice vacancy injection at the compounds-electrolyte interface and vacancy exchange into the metal releasing an electron and transferring a metal ion into the compound hyer (12)
METAL M
®®i COMPOUND MX
® ® |
METAL COMPOUND MX M
® ® ®® ®® ® ® ®
®
(M)
®
®
®
® ®_jgfc®!® ® •ΐ ® ^ ® •„ ® ® ® ® ® ® ® ®
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
1.
τυοΜι
Corrosion:
Problem
of
Materials
Science
27
can be i n r e v e r s i b l e e q u i l i b r i u m w i t h an e l e c t r o l y t e w i t h o u t h a v i n g exposed m e t a l n e c e s s a r i l y i n c o n t a c t w i t h an e l e c t r o l y t e . I n such a model, an i n c r e a s e i n t h e d r i v i n g c u r r e n t s may i n c r e a s e the mass t r a n s p o r t r a t e s ( a l t e r s o l i d phase s t r u c t u r e s ) w i t h i n l i m i t s so t h e r a p i d phase t r a n s f o r m a t i o n s (M t o MX) can o c c u r w i t h o u t n e c e s s a r i l y i n v o l v i n g i o n - s o l u t i o n and p r e c i p i t a t i o n r e a c t i o n s i n t h e o r d i n a r y sense. T h i s d i s c u s s i o n has b r o u g h t a t t e n t i o n t o t h e p o t e n t i a l p r e s e n c e o f two c l a s s e s o f i n t e r p h a s e t r a n s p o r t c o n d i t i o n s i n s o l i d s t a t e systems. L e t us examine t h e s e f o r a moment f r o m t h e p e r s p e c t i v e o f f o r m i n g s o l i d phases under model c o n d i t i o n s . F o r t h e s i n g l e i n t e r p h a s e exchange p r o c e s s o f s o l i d phase P2 i n t e r a c t i o n s w i t h P i shown i n F i g u r e 21, a s e r i e s o f model c o n d i t i o n s a r e i l l u s t r a t e d . F o r each a s e t o f i n t e r p h a s e atom exchange r e a c t i o n s can be f o r m u l a t e d w h i c h have b o t h thermodynamic and k i n e t i c i n t e r p r e t a t i o n s . The f i r s t i s the l o c a l d e p o s i t i o n o f m e t a l l i c t i t a n i u m by t h e t h e r m a l d e c o m p o s i t i o n o f T i C l i * gas on a hot w i r e . T h i s v a p o r p l a t i n g t e c h n i q u e can be p e r f o r m e d t o grow a v a r i e d c r y s t a l l i t e s t r u c t u r e o f a r e l a t i v e l y pure t i t a n i u m on t h e h o t f i l a m e n t . More g e n e r a l l y , v a p o r p l a t i n g t e c h n i q u e s o f many complex forms a r e used t o grow e p i t a x i a l s i l i c o n l a y e r s o f c o n t r o l l e d impurity content onto s i l i c o n s u b s t r a t e s . The c a r e f u l c o n t r o l o f c o n d i t i o n s r e s u l t s i n an amaz i n g l y homogeneous f i l m growth o f h i g h s e m i c o n d u c t o r q u a l i t y . The i m p e r f e c t i o n s t r u c t u r e i n a c o m p o s i t i o n and s t r u c t u r a l sense depends on t e c h n i q u e d e t a i l s . The second example i s e l e c t r o l y t i c p l a t i n g o f copper f i l m s . C o n t r a r y t o some e x p e c t a t i o n s growth c l o s e t o e q u i l i b r i u m p o t e n t i a l c o n d i t i o n s does n o t r e s u l t i n the h i g h e s t q u a l i t y d e p o s i t . I n g e n e r a l , the c o m p o s i t i o n and s t r u c t u r e o f the d e p o s i t depends on t h e d e t a i l e d c o m b i n a t i o n o f t r a n s p o r t p r o c e s s e s towards and away from t h e e l e c t r o d e s u r f a c e . A d d i n g t h e l o c a l hydrodynamic v a r i a b l e s p r o v i d e s t h e system w i t h an e x t r e m e l y b r o a d s t r u c t u r a l c h e m i c a l range. The t h i r d example i n v o l v e s growth o f a c r y s t a l l i n e s a l t phase from t h e s a t u r a t e d s o l u t i o n . The thermo dynamic d e s c r i p t i o n a g a i n i s i n a d e q u a t e f o r d e s c r i b i n g the d e t a i l e d s t a t e s of the s o l i d . The r e l a t i v e l y anhydrous c h l o r i d e i o n r e a d i l y d e p o s i t s i n t o the s u r f a c e l a t t i c e but t h e sodium i o n must be d e h y d r a t e d t o form N a C l . T h i s means t h a t w a t e r must be d i f f u s e d away from t h e s u r f a c e d u r i n g s o l i d i f i c a t i o n . The w h i t e c a s t o f s a l t , termed v e i l i n g , i n v o l v e s s o l u t i o n i n c o r p o r a t i o n d u r i n g growth w i t h a subsequent d i f f u s i o n o f t h e s o l v e n t o u t o f the c r y s t a l .
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
28
CORROSION
CHEMISTRY
IP
1
î
f
Substrate
Pi
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
Ρ2 Filament
=
S2
Pi
Ti
Vapor Plating
gas
+ +
Fe
Cu
Seed Crystal
Na CI
Seed Crystal
Ge
\
Cu Plating Solution
Saturated NaCl
Electrolytic Plating
Solution Precipitation
Molten Ge
Solidification of Melt \
Figure 21.
Single interphase exchange current model for solid-phase formation (P ) through interphase reactions with second phase (Pi) 2
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
1.
τυοΜι
Corrosion:
Problem
of
Materials
Science
29
The f o u r t h example i s t h e c o n t r o l l e d s o l i d i f i c a t i o n o f germanium (or s i l i c o n ) t o produce s e m i c o n d u c t o r grade m a t e r i a l s . The s o l i d phase s t r u c t u r e and compo s i t i o n depend s t r o n g l y upon the i n t e r p h a s e exchange p r o c e s s e s w h i c h can enhance i n c o r p o r a t i o n i n t o the s o l i d o r i n t o t h e l i q u i d d e p e n d i n g upon ??? This example i m p l i c i t l y i n c l u d e s t h e p r o d u c t i o n o f most o f the m e t a l l i c s t r u c t u r a l m a t e r i a l s . The m e t a l a l l o y systems g e n e r a l l y have b o t h c o n t r o l l e d and u n c o n t r o l l e d i m p u r i t i e s b e i n g d e p o s i t e d and r e d i s t r i b u t e d w i t h i n the s o l i d as a r e s u l t o f complex l i q u i d hydrodynamic i n t e r p h a s e r e g i o n p r o c e s s e s as w e l l as s e c o n d a r y s o l i d s t a t e d i f f u s i o n and t r a n s f o r m a t i o n processes. This materials science i s f a m i l i a r to a l l c o r r o s i o n e n g i n e e r s who become i n v o l v e d w i t h c o m m e r c i a l systems. The second i n t e r p h a s e t r a n s p o r t model i n c o r p o r a t e s t h e dynamic i n t e r a c t i o n o f t h r e e phases w i t h two i n t e r phase exchange c u r r e n t s a t t h e s e p a r a t e d b o u n d a r i e s as i n d i c a t e d i n F i g u r e 22 where a s o l i d phase P i s formed by i n t e r a c t i o n s i n v o l v i n g the s e p a r a t e d phases P and Pi. The c l a s s i c o x i d a t i o n o f aluminum t o form a p a s s i v e s u r f a c e i s the f i r s t i l l u s t r a t i o n . While the second model i s t h e a n o d i c o x i d a t i o n o f aluminum, the i n t e r p h a s e t r a n s p o r t phenomena h e r e can be d i s t r i b u t e d w i t h i n more complex c o n t e x t s as a r e s u l t o f the boundary l a y e r c o m p o s i t i o n changes i n the e l e c t r o l y t e . T h i s model i s a p a r t i c u l a r l y f a s c i n a t i n g one because s e v e r a l decades ago i t was c l e a r t h a t t h e l a r g e n e g a t i v e l y c h a r g e d oxygen a n i o n c o u l d n o t m i g r a t e i n such o x i d a t i o n p r o c e s s e s - the m e t a l i o n +3 aluminum was s m a l l and o f c o u r s e had t o t r a n s p o r t a l l t h e current through the f i l m . Famous l a s t words t h a t c r e a t e d a c r i s i s when good t r a n s p o r t number e x p e r i m e n t s were p e r f o r m e d w h i c h showed b o t h atoms move i n the film-forming process The s i l v e r t a r n i s h i n g r e a c t i o n i n v o l v i n g hydrogen s u l f i d e i s a c l a s s i c of s o l i d s t a t e m a t e r i a l s science l i t e r a t u r e , and the z i n c o x i d a t i o n i s y e t a n o t h e r example o f a more complex p r o t e c t i v e l a y e r c o r r o s i o n p r o b l e m f o r w h i c h wide r a n g e s o f d a t a e x i s t r e l a t i n g to p u r i t y , to k i n e t i c c o n d i t i o n s , etc. T h i s i n t e r p h a s e exchange c u r r e n t m o d e l i n g o f the s o l i d phase f o r m a t i o n p r o c e s s s e r v e s t o emphasize the v a r i e d p e r s p e c t i v e s from w h i c h u s e f u l i n f o r m a t i o n can be drawn t o a i d i n d e s c r i b i n g and u n d e r s t a n d i n g c o r r o s i o n p r o c e s s e s i n v a r i e d systems. R a r e l y are the r e a l systems s i m p l e and many p i e c e s o f d a t a a r e examined b e f o r e t h e models do i n c o r p o r a t e t h e f u l l ranges of 2
3
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CORROSION
IP
CHEMISTRY
IP
2-3
1-2
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
4
P
2
- S:
Al
AI2O3
Al
lAnodic Oxide
Ag
Ag S
Passivation I
gas
j
2
Anodizing Electrolyte }
H2S
Tarnishing
\
\
i
1 Zn
1
ZnO
Alkaline Electrolyte
- — -
Figure 22.
Passivation II (capacitors)
Battery Reaction
i
Double interphase exchange current model for solid-phase formation 2 s and P2-Pi boundaries
(P ) through interphase reactions (IP) at P -P 2
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
1.
τυοΜι
Corrosion:
Problem
of
Materials
31
Science
variables present. The c o r r o s i o n e n g i n e e r ' s e x p e r i e n c e s e x i s t i n a complex s y n e r g i s t i c r e l a t i o n s h i p t o t h e v a r i e d i n t e r phase exchange c u r r e n t r e l a t i o n s h i p s p r e s e n t w i t h i n systems o f p r a c t i c a l c o n c e r n . I t i s i n d e e d r a r e t h a t h i s problems a r e e x p r e s s e d w i t h i n any model m a t e r i a l s science contexts. He must n e c e s s a r i l y work w i t h the e c o n o m i c a l l y f e a s i b l e m a t e r i a l s f o r the p r a c t i c a l a p p l i c a t i o n s . As t h e p r o d u c t i o n e n g i n e e r s work w i t h s t e a d i l y i n c r e a s i n g l a b o r c o s t s i n a s s e m b l y , the m a t e r i a l s e n g i n e e r - c o r r o s i o n e n g i n e e r - wear e n g i n e e r become i n c r e a s i n g l y on t h e s p o t t o e x t r a c t t h e r e q u i r e d v a l u e s from cheaper m a t e r i a l s . I t i s no j o k e t h a t the c o n t r a c t went t o t h e l o w e s t b i d d e r . What does t h i s mean t o a l l o f us assembled h e r e ? F i r s t , a r e c o g n i t i o n needs t o e x i s t t h a t i n a l l p r a c t i c a l s i t u a t i o n s m a t e r i a l s s c i e n c e i s a tough b a l l game - i t cannot r e m a i n a p h e n o m e n o l o g i c a l a r t i f we are e x p e c t e d t o w a r r a n t y t h e p e r f o r m a n c e . Second, a r e c o g n i t i o n needs t o e x i s t t h a t , though the problems a r e complex, many new t o o l s and s k i l l s a r e i n c r e a s i n g l y a v a i l a b l e t o c l a r i f y d i r e c t l y the c h a r a c t e r o f t h e problems p r e s e n t . The a r t i c l e s w h i c h follow bring attention to t h i s . T h i r d , a r e c o g n i t i o n needs t o e x i s t t h a t o r g a n i z e d knowledge on s o l i d s t a t e c h e m i s t r y i s becoming i n c r e a s i n g l y a v a i l a b l e t o us. T h i s i s i l l u s t r a t e d by Ν. Β. Hannay's m u l t i - v o l u m e T r e a t i s e on S o l i d S t a t e C h e m i s t r y . - ^ As n o t e d by Hannay i n h i s f o r e w o r d , "... Yet even though the r o l e o f c h e m i s t r y i n t h e s o l i d s t a t e s c i e n c e s has been a v i t a l one and t h e s o l i d s t a t e s c i e n c e s have, i n t u r n , made enormous c o n t r i b u t i o n s t o chemi c a l t h o u g h t , s o l i d s t a t e c h e m i s t r y has not been r e c o g n i z e d by t h e g e n e r a l body o f c h e m i s t s as a major s u b f i e l d o f c h e m i s t r y ... S o l i d s t a t e c h e m i s t r y has many f a c e t s , and one o f t h e p u r p o s e s o f t h i s t r e a t i s e i s t o help d e f i n e the f i e l d . " I f c h e m i s t s are t o be t h e a t o m i c - m o l e c u l a r domain custodians of s o l i d s t a t e m a t e r i a l s science, a serious c o n c e r n w i l l need t o e x i s t f o r a c q u i r i n g u s e f u l b a c k grounds i n t h i s a r e a . A s i g n i f i c a n t related publica t i o n i s t h e r e c e n t appearance o f F. A. K r o g e r s second e d i t i o n of the Chemistry of Imperfect C r y s t a l s - i n t h r e e volumes. The d e f e c t c h e m i s t r y c o n c e p t s from t h i s a r e a need t o be i n c o r p o r a t e d more g e n e r a l l y i n t o the new s u r f a c e s c i e n c e w h i c h r e l a t e s t o t h e e n v i r o n m e n t a l 1
1 5
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
32
CORROSION
CHEMISTRY
s t a b i l i t y of materials. F o u r t h and l a s t , b u t n o t l e a s t , a g r o w i n g r e c o g n i t i o n needs t o e x i s t t h a t the a p p l i c a t i o n o f the new complex i n s t r u m e n t a l t e c h n i q u e s can c l a r i f y the s u r face chemistry s p e c u l a t i o n s p r e v i o u s l y necessary. So f r e q u e n t l y our c o n c e p t u a l i z a t i o n s o f the r e a l p r o b l e m a r e wrong. I p e r s o n a l l y a c c e p t t h e h y p o t h e s i s t h a t t h e f i r s t s i x models when t e s t e d i n d e t a i l w i l l p r o v e wrong. However, as t h e r e a l model emerges i n i t s complex beauty, t h e number o f p a t h s t o o p t i m i z a t i o n s have m u l t i p l i e d and s c i e n c e i s no l o n g e r dead ended. The complex i n s t r u m e n t a t i o n s i n c l u d e LEED, low energy e l e c t r o n d i f f r a c t i o n , w h i c h i s r e v e a l i n g a complex model f o r s u r f a c e s t r u c t u r e when a p p a r e n t m u l t i l a y e r a d s o r p t i o n o f oxygen p r o c e e d s on c l e a n m e t a l surfaces. I t a l s o i n c l u d e s ESCA, e l e c t r o n s p e c t r o s c o p y f o r chemical a n a l y s i s , or x-ray photoelectron spectroscopy t h a t can p r o v e t h a t t h e p o s t u l a t e d c o v e r i n g f i l m , by g o l l y , i s n o t c o v e r i n g , and what's the s u r f a c e compos i t i o n ? E v e r t r y t o d e a l w i t h n i n e s u r f a c e components a t once? W e l l , you can s e r i o u s l y e x p l o r e t h a t d i s t r i b u t i o n f o r e l e c t r o l e s s n i c k e l f i l m s b e i n g d e p o s i t e d on a catalyzed substrate. I t a l s o i n c l u d e s Auger e l e c t r o n s p e c t r o s c o p y microprobe i d e n t i f i c a t i o n of the surface crud i n the p i t , or d e f i n i t i o n of the surface composition g r a d i e n t p r e v i o u s l y o m i t t e d from t h e s p e c u l a t i o n on atom transport processes. The s c a n n i n g e l e c t r o n m i c r o s c o p e p r o v i d e s us neophytes w i t h a r e a l i s t i c l o o k a t s u r f a c e s t r u c t u r e as e n c o u n t e r e d i n t h e system. When teamed w i t h Auger o r ESCA a c o n f r o n t a t i o n can be c r e a t e d w i t h s e l f , t r y i n g t o r a t i o n a l i z e the o l d c o m f o r t a b l e models t h a t d i d n o t have t o acknowledge t h a t s u r f a c e c h e m i c a l s t r u c t u r e r e a l l y e x i s t e d on t h e " p o l y p h a s e inhomogeneous s o l i d c o n t a i n i n g h e t e r o g e n e i t y homogeneously dispersed." C o r r o s i o n i s h e r e t o s t a y . The wedding t o m a t e r i a l s s c i e n c e i s i m p l i c i t l y r e v i e w e d i n the f i r s t five figures. I t i s a c l e a r l y i m p o r t a n t complex m a t e r i a l s s c i e n c e d r a w i n g on a l l t h e o t h e r d i s c i p l i n e s . As t h e s u r f a c e s c i e n c e o f i n t e r p h a s e mass and charge t r a n s p o r t phenomena on s o l i d s c o n t i n u e s t o e v o l v e t h e n more c l e a r l y , d e f i n e d new r o u t e s f o r p r o d u c t o p t i m i z a t i o n s w i l l be e v i d e n t . Would you agree t h a t c o r r o s i o n i s t h e most g e n e r a l problem o f m a t e r i a l s s c i e n c e ? May a l l have f u n e x p l o r i n g t h e new v i s t a s o f our p h y s i c a l world through the f o l l o w i n g c h a p t e r s . For
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
01. τυοΜι
Corrosion: Problem of Materials Science
33
indeed we are a l l stewards of the u t i l i z a t i o n of mater i a l s on t h i s scene i n s e r v i c e to a l l . May the mastery of c o r r o s i o n extend the resources a v a i l a b l e to a l l those who w i l l c e l e b r a t e the t r i c e n t e n n i a l , for few of us w i l l have t h i s p r i v i l e g e .
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
Acknowledgements I would l i k e to s p e c i f i c a l l y acknowledge the c h a l lenge provided by Dr. Rudolph Hausler when he i n d i c a t e d that preparing the overview would be an easy t a s k . It wasn't, but i t d i d provide an opportunity to survey c o r r o s i o n l i t e r a t u r e and to recognize more f u l l y the t i t l e of t h i s a r t i c l e : Corrosion (is) the Most General Problem of M a t e r i a l s Science. General
References
1.
Tedmon, C r a i g S . , e d i t o r , "Corrosion Problems i n Energy Conversion and Generation," Corrosion D i v ision, E l e c t r o c h e m i c a l Society (1974). 2. Evans, U. R . , "Corrosion and Oxidation of M e t a l s : Scientific P r i n c i p l e s and P r a c t i c a l A p p l i c a t i o n s , " A r n o l d , London (1960). 3. Fontana, M. G., Greene, N . D . , "Corrosion Engin e e r i n g , " M c G r a w - H i l l , New York (1967). 4. Hauffe, Κ., "Oxidation of M e t a l s , " Plenum Press, New York (1965). 5. Hamner, Ν. E., compiler, "Corrosion Data Survey: Metals and Non-Metals," Fifth E d i t i o n , N a t i o n a l A s s o c i a t i o n of Corrosion Engineers, Houston, Texas (1974). 6. Nathan, C. C . , e d i t o r , "Corrosion I n h i b i t o r s , " N a t i o n a l A s s o c i a t i o n of Corrosion Engineers, Houston, Texas (1973). 7. Pourbaix, Μ., "Lectures on Electrochemical C o r r o s i o n , " Plenum Press, New York (1973). 8. U h l i g , Η. Η . , "Corrosion and Corrosion C o n t r o l : An I n t r o d u c t i o n to Corrosion Science and Engin e e r i n g , " John Wiley, New York (1963). 9. U h l i g , H. H., et. al., "Corrosion Handbook," W i l e y , New York, (1948). 10. " C o r r o s i o n , the Journal of Science and Engineering," published monthly by the N a t i o n a l A s s o c i a t i o n of Corrosion Engineers, Houston, Texas.
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CORROSION CHEMISTRY
34 Literature Cited 1. 2. 3.
Downloaded by UNIV OF DAYTON on August 12, 2014 | http://pubs.acs.org Publication Date: January 31, 1979 | doi: 10.1021/bk-1979-0089.ch001
4. 5. 6. 7. 8. 9. 10.
11. 12. 13. 14. 15.
General References 1-10. Stern, M . , et. al., J . Electrochem. Soc. (1957) 104 pp. 56-63, 559-63, 645-50. Helmholtz, H . , Wiss Abhandlphysik. Tech. Reichenstalt I (1879) p. 925. Gouy, G . , J. Phys. (1910) 9 p. 457. Chapman, D. L., P h i l . Mag. (1913) 25 (6) p. 475. Stern, Ο., z. Electrochem. (1924) 30 p. 508. Grahame, D. C . , Chem. Rev. (1947) 41 p. 441. Bockris, J . O'M., et. al., Proc. Roy. Soc. (1963) A274 pp. 55-79. Rice, Ο. K . , Phys. Rev. (1928) 31 p. 1051, MacDonald, J . R., J. Appl. Phys. (1964) 35 (10) p. 3053. See, for example H. Gerischer, 177-204, H. Gatos, 381-4 08, "The Surface Chemistry of Metals and Semiconductors," H. C. Gatos, editor, John Wiley, New York (1960). Rees, A. L. G . , "Chemistry of the Defect Solid State," John Wiley, New York (1954). Croft, G. T., and Tuomi, D., J. Electrochem. Soc. (1961) 108 p. 915. Davies, J. Α . , et. al., J. Electrochem. Soc. (1965) 112 p. 675. Hannay, Ν. Β . , editor, "Treatise on Solid State Chemistry," Volumes 1-7, Plenum Press, New York (1974). Kroger, F. Α . , "Chemistry of Imperfect Crystals Volume 1, Preparation, Purification, Crystal Growth, and Phase Theory; Volume 2, Imperfection Chemistry of Crystalline Solids; Volume 3, Applications of Imperfection Chemistry: Solid State Reactions and Electrochemistry," North Holland-American Elsevier, New York (1974).
RECEIVED
September 1, 1978.
In Corrosion Chemistry; Brubaker, G., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.