13 Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
Crystal Growth by the Electrolysis of Molten Salts R . S.
FEIGELSON
Center for Materials Research, Stanford University, Stanford, CA 94305
One
of the unique
an electrically Applied
features
driven
to the growth
potentially crystal
significant
growth
of electrodeposition
process
it would
advantage
more
to the
growth
films of various the principles and
over
which
utilize
crystallization.
some recent work concerning sition
materials.
Included
experimental
crystal
synthesis
logically
useful
growth
semiconductors
driving is
electrodepoand
epitaxial
is a brief discussion growth,
studies,
and preparation
of
crystals
crystal
a
conventional
in this paper
the application
of large single
control. provide
a thermal
Discussed
of electrochemical
chemical
is that it is
of precise
of single crystals
techniques,
force to achieve
capable
of
theoretical
and the
electro-
of thin films of
such as Si, GaP,
techno-
InP,
and
GaAs.
i n l e c t r o d e p o s i t i o n is a n o l d t e c h n o l o g y t h a t dates b a c k to the e a r l y p a r t -
L /
of the 19th c e n t u r y .
Two
b r a n c h e s soon e m e r g e d ,
namely,
low-
t e m p e r a t u r e aqueous e l e c t r o c h e m i s t r y a n d m o l t e n salt e l e c t r o c h e m i s t r y (MSE).
B y f a r the largest c o n c e n t r a t i o n of effort w a s d e v o t e d
to t h e
l o w - t e m p e r a t u r e process f o r the o b v i o u s reasons t h a t these are s i m p l e systems to construct a n d operate a n d that aqueous s o l u t i o n c h e m i s t r y is m u c h better u n d e r s t o o d t h a n that for c o m p l e x m o l t e n salts. I n spite of the fact that m o l t e n salt t e c h n o l o g y
lagged far behind,
b o t h w i t h r e g a r d to t h e o r e t i c a l u n d e r s t a n d i n g a n d t e c h n o l o g i c a l s o p h i s t i c a t i o n , t w o processes of significant c o m m e r c i a l i m p o r t a n c e w e r e oped: (2)
(1)
devel
the H a l l process for r e f i n i n g a l u m i n u m f r o m b a u x i t e ore a n d
the a l k a l i m e t a l s e p a r a t i o n process.
A b r i e f h i s t o r y of M S E is g i v e n
i n T a b l e I. 0-8412-0472-l/80/33-186-243$08.25/l © 1980 American Chemical Society
244
SOLID S T A T E
Table I.
A CONTEMPORARY
OVERVIEW
Historical Highlights of the Field of M S E
Year
Investigator
Event
Davy
1807
potassium from K O H
1833
d e c o m p o s i t i o n of K I , P b C l , P b l , A g C l , S n l , P b O , S b 0 , S b S and borax
Faraday
1852
a l k a l i n e e a r t h m e t a l s f r o m fused salts
Bunsen
1855
d e c o m p o s i t i o n of M g C l
Bunsen and Matthisen
1861
synthesis of s o d i u m - t u n g s t e n bronze (Na,W0 )
Scheibler
1898
b e r y l l i u m f r o m fused salts
Lebeau
1929
synthesis of borides
Andrieaux
1936
a l u m i n u m f r o m fused salts
Hall
1936 to present
v a r i o u s a n t i m o n i d e s , arsenides, borides, i n t e r m e t a l l i c s , oxides, phosphides, r e f r a c t o r y m e t a l s , s i l i c i d e s , a n d sulfides
2
2
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
CHEMISTRY:
2
3
2
2
3
2
3
I n a d d i t i o n to the d e v e l o p m e n t
of the H a l l process i n t h e
1930s,
w o r k e r s , p r i n c i p a l l y i n F r a n c e , started to explore the use of M S E for the synthesis of n o v e l c o m p o u n d s w h o s e p r e p a r a t i o n b y other t e c h n i q u e s w a s c o m p l i c a t e d b y h i g h m e l t i n g t e m p e r a t u r e s a n d h i g h d i s s o c i a t i o n pressures. T h e s e i n c l u d e d m a n y of the t r a n s i t i o n , r e f r a c t o r y , a n d r a r e e a r t h m e t a l
Table II.
Examples of Materials Produced by Molten
BaB CaB« CeB LaB NdB GdB YB BrB YbB SrB ThB CrB Cr B CrB Cr B Cr B 6
6
0
8
6
6
e
6
6
6
2
2
3
2
3
4
SILICIDES
PHOSPHIDES
BORIDES
MnB
M11B4
MnB NbB TaB TiB VB VB Zr B ZrB Mo B MoB WB SmB PrB
1 2
2
2
2
2
4
3
4
2
2
6
6
Fe P FeP FeP Fe P Ni P Ni P Ni P Ni P Co P CoP CoP Mo P MoP WoP WP Mn P 2
M113B4
2
3
3
5
2
2
6
5
2
2
3
2
MnP CrP V P VP Cu P Cu P NbP TaP Zn P Cd P GaP InP
2
2
2
2
2
2
3
2
3
3
TiSi ZrSi CrSi Mn SI Mn Si Cr Si Fe Si TiSi Li Si CaSi CeSi LaSi 3
2
2
2
2
6
2
2
2
2
13.
FEIGELSON
Crystal
245
Growth
b o r i d e s , c a r b i d e s , a n d s i l i c i d e s , as s h o w n i n T a b l e I I . E x c e l l e n t r e v i e w articles o n the subject of M S E w e r e w r i t t e n b y K u n n m a n n ( I ) , and Bellavance (2), and E l w e l l
Wold
(3).
S i n c e a v a r i e t y of p o t e n t i a l l y u s e f u l materials c a n be s y n t h e s i z e d t y M S E , the d e v e l o p m e n t of t e c h n i q u e s to p r o d u c e l a r g e h i g h - q u a l i t y single crystals w o u l d b e v e r y d e s i r a b l e . T h e a p p l i c a t i o n of this t e c h n o l o g y
to
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
c r y s t a l g r o w t h , h o w e v e r , has so f a r b e e n n e g l i g i b l e . T h i s is i n d e e d sur p r i s i n g since i t is r e l a t i v e l y easy to p r o d u c e electrodeposits w i t h s m a l l , w e l l - f o r m e d single crystals. F e w studies, h o w e v e r , h a v e b e e n
directed
t o w a r d c o n t r o l l i n g the e l e c t r o c h e m i c a l parameters necessary to i m p r o v e c r y s t a l size a n d q u a l i t y . A c c o r d i n g to K u n n m a n n ( I ) , " M a t e r i a l s electroc h e m i c a l l y p r e c i p i t a t e d f r o m f u s e d melts c a n almost a l w a y s b e o b t a i n e d i n the f o r m of r e a s o n a b l y l a r g e crystals w h e n sufficiently l o w c u r r e n t densities are e m p l o y e d . " W h i l e this is c l e a r l y a n o v e r s i m p l i f i c a t i o n , i t does suggest, as i m p l i e d b y l o w c u r r e n t densities, that crystals c a n
be
g r o w n i f c o n d i t i o n s of g r o w t h are c a r e f u l l y c o n t r o l l e d . It has o n l y b e e n i n the last f e w years, h o w e v e r , t h a t c r y s t a l g r o w t h technologists
have
r e c o g n i z e d that e l e c t r o d e p o s i t i o n offers several u n i q u e advantages
over
c o n v e n t i o n a l c r y s t a l p r o c e s s i n g t e c h n i q u e s a n d h a v e b e g u n to s t u d y the c o n d i t i o n s necessary to g r o w l a r g e single crystals a n d e p i t a x i a l layers w i t h useful properties. T h e p o t e n t i a l advantages c r y s t a l g r o w t h are as f o l l o w s :
of
m o l t e n salt e l e c t r o c r y s t a l l i z a t i o n f o r
(1)
it is a r e l a t i v e l y l o w - t e m p e r a t u r e
t e c h n i q u e that avoids t h e r m a l d e c o m p o s i t i o n sure;
(2)
i t is a n i s o t h e r m a l p r o c e s s — t e m p e r a t u r e
Electrocrystallization in Salt Systems Carbides Fe C MoC Mo C WC W C 3
2
2
a n d excessive v a p o r p r e s gradients are
not
Elevated-Temperature
Arsenides MoAs WAs FeAs FeAs GaAs
2
Sulfides M0S2 WS 2
Other
Groups
antimonides oxides refractory metals intermetallic compounds
246
SOLID S T A T E
CHEMISTRY: A
CONTEMPORARY OVERVIEW
n e e d e d for g r o w t h ; ( 3 ) i t is r e l a t i v e l y t e m p e r a t u r e - i n s e n s i t i v e a n d s m a l l changes i n t e m p e r a t u r e do not affect g r o w t h r a t e ; ( 4 ) m e l t i n g system is not r e q u i r e d ; ( 5 )
a congruently
deposition can be controlled very
a c c u r a t e l y b y c o n t r o l l i n g e l e c t r o c h e m i c a l p a r a m e t e r s alone; ( 6 )
solutions
c a n be purified b y u n i q u e electrochemical techniques; and (7)
growth
features c a n be s t u d i e d q u a n t i t a t i v e l y b y c a r e f u l l y v a r y i n g e l e c t r o c h e m i c a l Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
p a r a m e t e r s [for e x a m p l e , see B o s t a n o v
(4)].
F r o m the s t a n d p o i n t of c r y s t a l g r o w t h the most i m p o r t a n t p o t e n t i a l a d v a n t a g e is t h a t the c o n t r o l of the g r o w t h process c a n be a c h i e v e d b y c o n t r o l l i n g c e l l p o t e n t i a l or c u r r e n t density.
The precision w i t h w h i c h
this c a n be a c c o m p l i s h e d is orders of m a g n i t u d e s better t h a n t h a t possible w i t h t e m p e r a t u r e c o n t r o l , w h e r e 0.1 ° C is c o n s i d e r e d excellent t e m p e r a t u r e s t a b i l i t y . A l s o , e l e c t r o c h e m i c a l p u r i f i c a t i o n , w h i c h w i l l b e discussed later, c a n b e u s e d to enhance the p u r i t y of the electrodeposits
a n d i n some
cases w o u l d p e r m i t the use of m o r e e c o n o m i c a l s t a r t i n g m a t e r i a l s . A m o n g the several disadvantages to the M S E m e t h o d are t h a t
(1)
the d e p o s i t i n g m a t e r i a l has to be e l e c t r i c a l l y c o n d u c t i n g ,
(2)
growth
rates t e n d to b e l o w since g r o w t h is f r o m s o l u t i o n , a n d ( 3 )
selection of
s u i t a b l e s o l v e n t - s o l u t e systems is difficult. I n this p a p e r some recent w o r k at the C e n t e r f o r M a t e r i a l s R e s e a r c h , S t a n f o r d U n i v e r s i t y , c o n c e r n i n g the extension of e l e c t r o d e p o s i t i o n to the g r o w t h of l a r g e single crystals of v a r i o u s types is d i s c u s s e d . A l s o d i s c u s s e d is the p r e p a r a t i o n of t e c h n o l o g i c a l l y u s e f u l s e m i c o n d u c t o r s u n d e r c o n d i tions u n i q u e l y different f r o m c o n v e n t i o n a l t e c h n i q u e s .
The
following
topics w i l l b e c o v e r e d : 1.
P r i n c i p l e s of e l e c t r o c h e m i c a l c r y s t a l g r o w t h
2.
C r y s t a l g r o w t h studies a. C o m p a r i s o n of e l e c t r o c r y s t a l l i z a t i o n w i t h t h e r m a l c r y s t a l l i z a t i o n processes b. Seeded g r o w t h (static growth) c. E l e c t r o c h e m i c a l C z o c h r a l s k i t e c h n i q u e ( d y n a m i c g r o w t h )
3.
Material preparation a. S i b. G a P a n d I n P c. G a A s
It s h o u l d b e r e c o g n i z e d at the outset that a l t h o u g h M S E is a v e r y o l d t e c h n o l o g y t h e state of the art f o r g r o w i n g u s e f u l crystals f o r d e v i c e a p p l i c a t i o n s is s t i l l v e r y p r i m i t i v e , a n d its competitiveness w i t h
other,
m o r e c l a s s i c a l approaches is s t i l l u n c e r t a i n . Principles
of Electrochemical
Crystal
Growth
I n M S E the passage of c u r r e n t t h r o u g h a m o l t e n salt electrolyte p r o v i d e s the d r i v i n g force for the d e p o s i t i o n of a d e s i r e d m a t e r i a l o n a n
13.
Crystal
FEIGELSON
247
Growth
electrode o f a n e l e c t r o l y t i c c e l l . T h e passage o f c u r r e n t i s the r e s u l t o f a n o x i d a t i o n - r e d u c t i o n r e a c t i o n i n w h i c h e l e c t r o c h e m i c a l l y a c t i v e species are r e d u c e d at the c a t h o d e a n d o x i d i z e d at the anode. A n o d e r e a c t i o n : A " - » A + V*
(1)
C a t h o d e r e a c t i o n : C * + ze~->C
(2)
y
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
+
w h e r e the o v e r a l l r e a c t i o n c a n b e w r i t t e n as zk-y + yC
+e
->zk
(3)
+ yC
T h e s e reactions o c c u r w h e n the c e l l p o t e n t i a l exceeds t h e d e c o m p o s i t i o n p o t e n t i a l ( E ) f o r t h e c r y s t a l l i z i n g species.
T h e equilibrium potential
d
E c a n b e d e s c r i b e d b y the N e r n s t e q u a t i o n :
»--(!£)'»([») w h e r e E ° is t h e s t a n d a r d c e l l p o t e n t i a l , R is t h e gas constant, T is t h e t e m p e r a t u r e ( K ) , F is F a r a d a y ' s constant, a n d [ ] i n d i c a t e s c o n c e n t r a t i o n o r a c t i v i t y of t h e r e a c t i n g species. equilibrium potential is E
d
T h e p o t e n t i a l just i n excess o f t h i s
a n d i s u s e d t o d r i v e the k i n e t i c a n d d i f f u s i o n
processes i n the m e l t a n d at the electrodes. W h e n v o l t a g e is a p p l i e d t o i n e r t ( n o n d i s s o l v i n g )
electrodes of a n
e l e c t r o l y t i c c e l l , t h e c u r r e n t b e h a v i o r i s as s h o w n i n F i g u r e 1. I n t h i s i d e a l i z e d case E
d
represents the d e c o m p o s i t i o n p o t e n t i a l for the d e p o s i t i o n
of t h e d e s i r e d species.
I n r e a l systems there is m o r e t h a n o n e set of
cr
dy d
V
CELL
Figure
I . Idealized
V
X
POTENTIAL—>
current vs. voltage
curves for deposition
Chemical Society Library 1155 16th St. N. W. Washington, 0. C. 2003$ hmmm
of two
248
SOLID S T A T E
CHEMISTRY: A
CONTEMPORARY OVERVIEW
r e a c t i n g species t h a t c a n p l a t e out at the electrodes. E v e n i n a v e r y p u r e s i m p l e m o l t e n salt system, other species are present t h a t c a n d e p o s i t u n d e r nonideal conditions.
F o r e x a m p l e , the solvents themselves are c a p a b l e
of b e i n g d i s s o c i a t e d . I f i m p u r i t i e s are present, t h e y also m a y deposit i n a n u m b e r of f o r m s , d e p e n d i n g u p o n the o p e r a t i n g c o n d i t i o n s . Species w h o s e d e c o m p o s i t i o n Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
p o t e n t i a l s are l o w e r t h a n those of t h e d e s i r e d species e l e c t r o d e p o s i t ait c e l l p o t e n t i a l s less t h a n E
d
(E < E )
will
d
a n d w i l l codeposit w h e n the
c e l l p o t e n t i a l is e q u a l to o r greater t h a n E . I f t h e d e c o m p o s i t i o n p o t e n t i a l d
for a species is s i g n i f i c a n t l y greater t h a n t h a t of the d e s i r e d species, i t s h o u l d stay i n s o l u t i o n a n d n o t electrodeposit. I t is p a r t i c u l a r l y i m p o r t a n t , therefore, to c h o o s e a solvent system t h a t has a h i g h
decomposition
p o t e n t i a l , s u c h as a l k a l i m e t a l fluorides. T h o s e i m p u r i t i e s i n t h e system t h a t deposit at p o t e n t i a l s less t h a n E
d
can be removed f r o m the melt b y a preelectrolysis technique.
d e p o s i t i o n f o r some p e r i o d of t i m e at E
E . d
W h e n the i m p u r i t y
species has a d e c o m p o s i t i o n p o t e n t i a l e q u a l to t h a t of the species d e s i r e d , then codeposition w i l l occur. T h e segregation p h e n o m e n o n o b s e r v e d i n e l e c t r o d e p o s i t i o n is s i m i l a r to t h e n o r m a l segregation of i m p u r i t i e s d u r i n g c o n v e n t i o n a l r e c r y s t a l l i z a t i o n f r o m s o l u t i o n . I n these t e c h n i q u e s t h e d i s t r i b u t i o n coefficient (k =
C / C , where C S
L
s
(k)
is t h e c o n c e n t r a t i o n of solute i n the s o l i d a n d C
L
is t h e c o n c e n t r a t i o n of solute i n the l i q u i d ) describes the
segregation
b e h a v i o r of the solute o r a n i m p u r i t y i n s o l u t i o n . W h e n k =
1, t h e r e is
n o i m p u r i t y segregation, a n d this corresponds to t h e case i n e l e c t r o d e position where E to h a v i n g k
E
d ( c m p d )
, t h e n i t is s i m i l a r
1, w h e r e the i m p u r i t y is rejected f r o m the c r y s t a l a n d
segregates i n t h e m e l t
(or
solution).
When E ( d
i m p
)
1. T h e d e p e n d e n c e of i m p u r i t y i n c o r p o r a t i o n o n c e l l p o t e n t i a l a n d d e c o m p o s i t i o n p o t e n t i a l is the basis for b o t h e l e c t r o c h e m i c a l p u r i f i c a t i o n a n d d o p i n g c o n t r o l . N e i t h e r process, h o w e v e r , has b e e n t h o r o u g h l y s t u d i e d yet.
T h e d e c o m p o s i t i o n p o t e n t i a l is, as c a n b e seen f r o m t h e
Nernst equation, a function of b o t h temperature a n d concentration.
Of
p a r t i c u l a r i m p o r t a n c e is t h e solute or i m p u r i t y c o n c e n t r a t i o n i n s o l u t i o n . Crystal
Growth
Studies
Comparison of Electrocrystallization with Thermal Crystallization Techniques.
E l e c t r o d e p o s i t i o n has i n c o m m o n w i t h o t h e r c r y s t a l l i z a t i o n
t e c h n i q u e s , s u c h as t h e s o l i d i f i c a t i o n of m e l t s , s u b l i m a t i o n , r e c r y s t a l l i z a t i o n f r o m s o l u t i o n , a n d c h e m i c a l v a p o r reactions, that b o t h n u c l e a t i o n a n d
13.
Crystal
FEIGELSON
249
Growth
g r o w t h p h e n o m e n a are i n v o l v e d i n t h e d e p o s i t i o n process. T o use M S E for c r y s t a l g r o w t h , therefore, i t is v e r y i m p o r t a n t to c o n t r o l b o t h n u c l e a t i o n process a n d t h e g r o w t h rate. T h e process of
the
electrochemical
c r y s t a l l i z a t i o n c a n b e t h o u g h t of as analogous to n o r m a l c r y s t a l g r o w t h , w h e r e the s u p e r s a t u r a t i o n ( o r t e m p e r a t u r e g r a d i e n t ) is r e p l a c e d b y t h e e l e c t r i c a l p o t e n t i a l i n excess of E ( A E ) as the d r i v i n g force. d
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
E l w e l l et a l . (5)
h a v e suggested a n a n a l o g y b e t w e e n n o r m a l c r y s t a l
g r o w t h f r o m s o l u t i o n a n d the flow of c u r r e n t i n a n e l e c t r o l y t e c e l l .
They
c o n s i d e r e d t h e v a r i o u s stages of g r o w t h as h a v i n g t h e c h a r a c t e r of a n i m p e d a n c e to the flow of c r y s t a l l i z i n g m a t e r i a l a n d , b y m e a s u r i n g t h e resistance i n t h e c i r c u i t a n d its d e p e n d e n c e o n e x p e r i m e n t a l p a r a m e t e r s , w e r e a b l e to s t u d y c r y s t a l g r o w t h m e c h a n i s m s
a n d the n a t u r e of
the
r a t e - c o n t r o l l i n g process. T h e l i n e a r g r o w t h rate (v)
e q u a t i o n for a t h e r m a l l y d r i v e n s o l u t i o n
g r o w t h process has b e e n d e r i v e d b y G i l m e r et a l . (6)
v
=
crD^n
£ A +
8 +
AA ZA" 8
2
+
A
(J^-
as f o l l o w s :
coth J L
_
i^J1 (5)
w h e r e o- is t h e r e l a t i v e s u p e r s a t u r a t i o n , D is the solute d i f f u s i o n coefficient, 7) is the e q u i l i b r i u m c o n c e n t r a t i o n of solute, O is the m o l a r v o l u m e , A is e
a n a d s o r p t i o n p a r a m e t e r , D / A is the d r i f t v e l o c i t y of m o l e c u l e s e n t e r i n g the a d s o r p t i o n l a y e r a n d b o u n d a r y l a y e r w i d t h , A
S
is a surface d i f f u s i o n
p a r a m e t e r , I is the step s p a c i n g , a n d A is the m e a n d i s t a n c e t r a v e l e d b y an adsorbed molecule.
T h e i m p e d a n c e s r e p r e s e n t e d b y t h e terms i n t h e
b r a c k e t relate to the v a r i o u s c r y s t a l g r o w t h steps, t h a t is, v o l u m e d i f f u s i o n a n d interface attachment kinetics incorporation).
(adsorption,
surface
diffusion,
and
T h e r e f o r e , t h e l i n e a r g r o w t h rate is p r o p o r t i o n a l to the
d r i v i n g f o r c e (o-) a n d i n v e r s e l y p r o p o r t i o n a l to t h e b r a c k e t e d i m p e d a n c e terms
(R). v
oc
At /
/ 11
-10-
1
-15
J
Journal of Crystal Growth
Figure 2. (a) Current vs. overpotential for tungsten bronzes: (O), Na W O ; (X), Na WO . Cathodic curves calculated using R = 0.612 + 0.164I ' fi and R = 0.458 + 0.09311" Q, respectively, (b) Current vs. overpotential for LaB (5). 061
0
a
1 2
7S
s
,/2
6
13.
Crystal
FEIGELSON
253
Growth
to t h e species to b e d e p o s i t e d .
M a n y s u c h s o l u t e - s o l v e n t systems are
l i s t e d i n the l i t e r a t u r e a n d c a n f o r m the b a s i c s t a r t i n g p o i n t for investigation.
an
O f p a r t i c u l a r i m p o r t a n c e i n M S E h a v e b e e n the m i x e d
a l k a l i m e t a l fluorides a n d m i x e d
fluoride-oxide
solvents.
H a v i n g chosen a n a p p r o p r i a t e solvent i n w h i c h t h e species to
be
d e p o s i t e d c a n be d i s s o l v e d i n reasonable c o n c e n t r a t i o n a n d h a v i n g c h o s e n Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
a s u i t a b l e solute t h a t has a l o w v o l a t i l i t y a n d p r o v i d e s a l a r g e f r a c t i o n of e l e c t r i c a l l y a c t i v e species, one m u s t next solve t h e p r o b l e m of c o m p a t i b i l i t y b e t w e e n this m o l t e n salt s o l u t i o n a n d t h e c r u c i b l e a n d
electrode
materials. A l s o , one m u s t r e m e m b e r that the c r u c i b l e a n d electrodes m u s t b e n o n r e a c t i v e w i t h the electrodeposit a n d m u s t b e c a p a b l e of w i t h s t a n d i n g t h e necessary o p e r a t i n g t e m p e r a t u r e of the system. A w i d e r a n g e of e l e c t r o d e a n d c r u c i b l e m a t e r i a l s h a v e b e e n u s e d i n v a r i o u s M S E cells. S i n c e i t is u s u a l l y necessary to use t w o different solute species electrodeposit a b i n a r y c o m p o u n d , t h e r e l a t i v e c o n c e n t r a t i o n of
to
solute
species i n s o l u t i o n is i m p o r t a n t . U s i n g s t o i c h i o m e t r i c ratios is not c o m m o n since i t is m o r e i m p o r t a n t to m a t c h the d e c o m p o s i t i o n p o t e n t i a l of the t w o species.
If the a p p r o p r i a t e c o m p o s i t i o n is not u s e d , t h e n one or the
other species m a y p l a t e out p r e f e r e n t i a l l y a n d a n excess of one
component
w i l l result. T h e a n o d e b y p r o d u c t c a n also present some p r o b l e m s . I n some cases (usually w h e n 0 away from
2
is f o r m e d at the a n o d e ) t h i s p r o d u c t m u s t be k e p t
the d e p o s i t e d
m a t e r i a l s since
a chemical reaction might
take p l a c e . Z u b e c k et a l . ( 7 ) chose l a n t h a n u m h e x a b o r i d e ( L a B ) , a m e m b e r of 6
the r e f r a c t o r y rare e a r t h b o r i d e s , as a m o d e l m a t e r i a l to s t u d y the p r o b l e m of c o n t r o l l e d n u c l e a t i o n a n d c r y s t a l g r o w t h .
L a n t h a n u m h e x a b o r i d e is
a g o o d e l e c t r o n e m i t t e r a n d is c u r r e n t l y b e i n g u s e d as a r e p l a c e m e n t for c o n v e n t i o n a l electron m i c r o s c o p e
filaments.
I t has a c u b i c m e t a l l i c s t r u c
t u r e a n d exists o v e r a w i d e s t o i c h i o m e t r y r a n g e . electrodeposited L a B
6
Andrieux (8)
f r o m a m i x t u r e of o x i d e a n d
fluoride
salts.
first The
d e p o s i t i o n p r o d u c t w a s i n t h e f o r m of s u b m i l l i m e t e r - s i z e d c r y s t a l l i t e s . It is a n e x a m p l e i n w h i c h the s o l u t e - s o l v e n t r a t i o is v e r y l o w , m a k i n g g r o w t h p a r t i c u l a r l y difficult b o t h b y e l e c t r o c h e m i c a l t e c h n i q u e s a n d other solution growth techniques. T h e emphasis of the L a B
6
w o r k b y Z u b e c k et a l . ( 7 ) w a s c o n t r o l l e d
e l e c t r o d e p o s i t i o n l e a d i n g to the p r o d u c t i o n of l a r g e single crystals. T h e electrolysis c e l l u s e d is s h o w n i n F i g u r e 3. u n d e r a n i n e r t H e atmosphere. c o n t a i n e d 2.2 m o l %
L a 0 , 33.5 m o l % 2
33.1 m o l % L i F . T h e B 0 2
source of b o r o n .
3
3
G r o w t h was
T h e b a t h used for
accomplished
electrodeposition
B 0 , 31.2 m o l % 2
3
L i 0 , and 2
w a s u s e d b o t h as a fluxing agent a n d as t h e
L i F w a s u s e d to dissolve the oxides a n d l o w e r m e l t
v i s c o s i t y a n d the L i 0 w a s p a r t of t h e l o w - t e m p e r a t u r e solvent. 2
254
SOLID S T A T E
CHEMISTRY: A CONTEMPORARY OVERVIEW
Valve for cathode removal
Viewing port
He Out
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
Vacuum port
He In ( B u b b l e r )
Light bulb Anode Thermocouple
Furnace windings
Crucible
Inconel atmosphere tube Journal of Crystal Growth
Figure 3.
Molten salt electrolysis system (7)
T h e c e l l reactions are as f o l l o w s : 2La 0 2
3
+
1 2 B 0 -> 4 L a B
A n o d e : 4 2 0 " -H> 2 1 0 2
Cathode: 4 L a
3 +
+
2
3
2
+
24B
3 +
N o t e that for e a c h m o l e c u l e of L a B
6
6
+
210
(17)
2
84e"
(18)
+ 84e" -> 4 L a B
(19)
6
e l e c t r o d e p o s i t e d , 21 electrons h a v e
to be t r a n s f e r r e d . A l a r g e n u m b e r of electrode m a t e r i a l s w e r e i n v e s t i g a t e d , f e w of w h i c h w e r e c o m p a t i b l e w i t h the m o l t e n salt solutions. G o l d w a s f o u n d to be the most suitable b o t h for the a n o d e a n d c a t h o d e .
Cell
c u r r e n t c o u l d be adjusted b y c h o o s i n g a n a p p r o p r i a t e electrode area ( 2 0 5 0 - m i l - d i a m e t e r w i r e for the c a t h o d e , 1.1-cm-wide
f o i l for the
anode).
A l l c o m p o u n d s u s e d w e r e i n the f o r m of reagent-grade c h e m i c a l s , b u t t h e baths w e r e p u r i f i e d b y preelectrolysis at a c e l l p o t e n t i a l near £ a n d the cathodes start of g r o w t h .
d
for L a B
s u b s e q u e n t l y r e p l a c e d w i t h n e w ones p r i o r to
6
the
13.
Crystal
FEIGELSON
255
Growth
U n d e r the c e l l c o n d i t i o n s d e s c r i b e d , E
d
for L a B
6
w a s 1.85 V . D e p o s i
t i o n , therefore, was a c c o m p l i s h e d w i t h c e l l potentials i n t h e r a n g e 2.1 V .
1.85-
It is p o s s i b l e to d r i v e the g r o w t h process i n e i t h e r a constant
c u r r e n t or v o l t a g e m o d e or b y v a r y i n g e i t h e r p a r a m e t e r i n a c o n t r o l l e d m a n n e r . F i g u r e 4 shows the c u r r e n t b e h a v i o r as a f u n c t i o n of t i m e for a constant c e l l p o t e n t i a l . T h e i n i t i a l c u r r e n t rise is d u e to the n u c l e a t i o n Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
of s m a l l crystallites that f o r m o n the c a t h o d e , i n c r e a s i n g s u b s t a n t i a l l y the surface area of the electrode a n d t h e r e b y l o w e r i n g t h e c e l l p o t e n t i a l . T h e c u r r e n t levels off as the crystals b e c o m e l a r g e r a n d the rate of surface area c h a n g e decreases s u b s t a n t i a l l y . N o r m a l l y i n a constant c u r r e n t m o d e the surface area increase d u e to d e p o s i t i o n w i l l result i n a d r o p i n c e l l p o t e n t i a l , w h i c h c a n t h e r e b y f a l l b e l o w E . U n d e r those c o n d i t i o n s the d
deposit w i l l start to dissolve or dissociate, as e v i d e n c e d b y e t c h p i t t i n g . I n fact, the range of c e l l p o t e n t i a l s possible f o r d e p o s i t i o n is v e r y n a r r o w a n d is a m a j o r f a c t o r to b e c o n t r o l l e d d u r i n g d e p o s i t i o n , a l o n g w i t h t h e c u r r e n t d e n s i t y ( w h i c h , as stated before, is e q u i v a l e n t to the g r o w t h rate).
The
best results, therefore,
were
obtained
with
constant
programmed cell potential.
t
Km A) 10-
642-
0
20
40
60
80 t(hr)-*
100 Journal of Crystal Growth
Figure 4.
Current vs. time for LaB
6
growth (7)
or
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
256
SOLID S T A T E
Figure 5.
LaB
6
CHEMISTRY: A
C O N T E M P O R A R Y OVERVIEW
electrodeposit after 100 hr of unseeded growth (7)
T h e stable g r o w t h rate range for L a B
6
crystals w a s f o u n d to
be
b e t w e e n 20 a n d 40 m A • ( c m ) " . A f t e r 300 h r , clusters of crystallites u p 2
1
to 4 m m i n d i a m e t e r w e r e p r o d u c e d , as s h o w n i n F i g u r e 5.
Observations
of t h e g r o w t h m o r p h o l o g y , r e p o r t e d b y E l w e l l et a l . ( 9 ) , s h o w e d t h a t at less t h a n 25 m A • ( c m ) " 2
1
crystals g r o w as layers f o r m e d at p y r a m i d a l
a c t i v e sites at the center of c r y s t a l faces, w i t h p r o p a g a t i o n o u t w a r d i n a l l d i r e c t i o n s . A s the c u r r e n t d e n s i t y is i n c r e a s e d to 3 0 - 5 0 m A • ( c m ) " , 2
1
t h e a c t i v e sites b e c o m e l o c a t e d at the corners a n d edges of the c r y s t a l l i t e s , w h i c h are closest to the source of n u t r i e n t , a n d the layers i n w a r d across the c r y s t a l face.
propagate
T h i s c o n d i t i o n is the p r e c u r s o r of h o p p e r
g r o w t h often seen i n s o l u t i o n g r o w t h . A t c u r r e n t densities greater t h a n 100 m A • ( c m ) " , d e n d r i t e s g r o w f r o m the corners a l o n g t h e [111]. 2
1
T h e electrodeposit s h o w n i n F i g u r e 5 c l e a r l y illustrates t h a t n u c l e a t i o n of L a B
6
is difficult to c o n t r o l e v e n at l o w c u r r e n t densities. N o t o n l y
is p r i m a r y n u c l e a t i o n a p r o b l e m b u t so, too, is s e c o n d a r y n u c l e a t i o n w h i c h results f r o m p e r t u r b a t i o n s i n t h e g r o w t h rate. To
a v o i d or m i n i m i z e p r i m a r y n u c l e a t i o n p r o b l e m s ,
use a seed c r y s t a l . I n the s t u d y b y Z u b e c k et a l . ( 7 )
LaB
6
one
should
seed crystals
13.
FEIGELSON
( 2 X 3 X 3
Crystal
257
Growth
m m ) w e r e o b t a i n e d f r o m a zone-refined b o u l e a n d u s e d i n
p l a c e of t h e g o l d w i r e cathode. o t h e r w i s e , the exposed
T h e seed h a d to b e e n t i r e l y s u b m e r g e d ;
p o r t i o n d e t e r i o r a t e d r a p i d l y . A f t e r 200 h r the
c r y s t a l size h a d i n c r e a s e d to 6 X 6 X 5 m m , as s h o w n i n F i g u r e 6.
By
e s t i m a t i n g the surface area of t h e seed c r y s t a l , the c e l l v o l t a g e c o u l d b e a d j u s t e d t o g i v e a c u r r e n t d e n s i t y of 20 m A • ( c m ) " . 2
1
Small periodic
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
adjustments i n c e l l p o t e n t i a l w e r e m a d e to c o n t r o l t h e shape of
the
current-versus-time curve. Secondary nucleation problems were eliminated through the mainte n a n c e of stable o p e r a t i n g c o n d i t i o n s ( c e l l v o l t a g e , c u r r e n t , a n d t e m p e r a -
Figure
6. Seeded growth of LaB suspended on gold wire cathode: (top) after 87 hr of growth; (bottom) after 200 hr of growth (7). 6
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
258
SOLID S T A T E
CONTEMPORARY OVERVIEW
7. Crystals of Na WO. grown by standard MSE techniques use as seeds in electrochemical Czochralski technique (10)
Figure
ture).
CHEMISTRY: A
for
x
After
possible.
longer
growth
periods
even
l a r g e r crystals s h o u l d
be
F o r the g r o w t h of v e r y l a r g e crystals, t h e size of t h e c r u c i b l e
a n d t h e q u a n t i t y of the s o l u t i o n w o u l d h a v e to b e i n c r e a s e d to m i n i m i z e t h e effects of solute d e p l e t i o n as the crystals g r o w .
Also, E
d
changes as
a result of the c h a n g e i n s o l u t i o n c o m p o s i t i o n as the c r y s t a l grows
(unless
a d i s s o l v i n g a n o d e is u s e d ) , a n d i n t h e g r o w t h of v e r y l a r g e crystals, the c e l l p o t e n t i a l m i g h t h a v e to be adjusted a c c o r d i n g l y . i Seeded Growth Czochralski
(Dynamic):
The
Electrochemical
Technique
O n e of t h e m o s t i m p o r t a n t c r y s t a l g r o w t h t e c h n i q u e s is t h e C z o c h r a l s k i m e t h o d ( c r y s t a l p u l l i n g ) . It is w i d e l y u s e d c o m m e r c i a l l y to g r o w l a r g e , n e a r - p e r f e c t crystals s u c h as s i l i c o n a n d g a d o l i n i u m g a l l i u m garnet. D e M a t t e i et a l . (10)
s t u d i e d t h e p o s s i b i l i t y of a d a p t i n g t h e c o n c e p t of
c r y s t a l p u l l i n g to e l e c t r o d e p o s i t i o n .
Sodium-tungsten bronze was
used
13.
Crystal
FEIGELSON
259
Growth
as a m o d e l g r o w t h system because of the ease w i t h w h i c h l a r g e single crystals c a n be g r o w n b y c o n v e n t i o n a l static g r o w t h t e c h n i q u e s , u s i n g a Na W0 -W0 2
4
3
m o l t e n salt s o l u t i o n ( F i g u r e 7 ) .
T h e N a ^ W O a system is
a n e x a m p l e of a system w i t h a h i g h solute content a n d a l o w z. a p p a r a t u s u s e d is s h o w n i n F i g u r e 8. s i m i l a r to the L a B
It contains a g r o w t h
The
chamber
e l e c t r o l y t i c c e l l except that n o w t h e c a t h o d e r o d is
6
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
a t t a c h e d to a C z o c h r a l s k i p u l l i n g system. T h e cathode c o u l d be r o t a t e d
MOTOR AND ^
SPEED REDUCER
ROTATING r*-l MERCURY -» L CONTACT
PULLER
CATHODE v CONNECTION^"
ANODE REFERENCE
He OUTLET = £ 3 : He INLET=g3=f| FURNACEWINDINGS QUARTZCONTAINMENT VESSEL
TT
I WATER COOLED FLANGE
C"
C" CRUCIBLE
ppEfczAUXILARY INLET/OUTLET
THREE FUNCTION TEMPERATURE CONTROLLER
I
ZERO CROSSING SCR CONTROLLER
— A
A
208 VAC
Journal of Crystal Growth
Figure 8. Schematic of electrochemical Czochralski crystal-pulling and rotation mechanism, growth furnace, and temperature controller (10)
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
260
SOLID S T A T E
CHEMISTRY: A CONTEMPORARY OVERVIEW
Figure 9. Electrochemical Czochralski crystals grown in [111] direction at two different current-^pull rate combinations: (top) constant pull rate, constant current; (bottom) constant pull rate, current increase of four times after initial growth period (10). as i n s t a n d a r d C z o c h r a l s k i g r o w t h .
S i n c e t h e c r y s t a l has to b e p u l l e d
a b o v e the surface of the m e l t d u r i n g g r o w t h , i t w a s f o u n d necessary to k e e p the o x y g e n generated a t t h e a n o d e f r o m t r a v e l i n g e i t h e r t h r o u g h t h e gas p h a s e or across t h e m e l t surface to the c r y s t a l , w h i c h results i n the chemical reaction Na*W0 Na W0 2
4
3
+
0
2
-> N a W 0 2
(20)
4
melts at t h e o p e r a t i n g . c e l l t e m p e r a t u r e ( 7 5 0 ° C ) .
To accomplish
this the a n o d e w a s p l a c e d i n a separate c o m p a r t m e n t s u c h t h a t H e gas flushed
the 0
2
g e n e r a t e d a w a y f r o m t h e c a t h o d e a n d o u t of the system.
T h e m e l t c o m p o s i t i o n u s e d w a s 25 m o l %
W0
3
a n d 75 m o l
N a W 0 , a n d at this c o m p o s i t i o n c u b i c N a a . W 0 is p r o d u c e d . 2
4
3
experiments were performed using [111]-oriented
The
% first
seeds o b t a i n e d f r o m
s t a t i c a l l y g r o w n crystals. C r y s t a l s of u p to 11 c m i n l e n g t h a n d 2.5 c m i n diameter were grown b y the electrochemical C z o c h r a l s k i technique, a t y p i c a l e x a m p l e of w h i c h is s h o w n i n F i g u r e 9.
S i n c e t h e r e are n o
t h e r m a l constraints to fix t h e shape of t h e i n t e r f a c e or d i a m e t e r of t h e c r y s t a l , b o t h t h e i n t e r f a c e a n d sides of t h e crystals w e r e h i g h l y f a c e t e d .
13.
FEIGELSON
Crystal
261
Growth
T h e crystal a n d interface morphology
are a f u n c t i o n of
the
growth
direction. I n F i g u r e 10 the v a r i a t i o n of m a x i m u m stable p u l l i n g rate w i t h seed r o t a t i o n rate is s h o w n .
F o r a n y g i v e n r o t a t i o n rate a p u l l rate greater
t h a n the m a x i m u m gave rise to dendrites g r o w i n g at the g r o w t h interface. B a s e d i n L e v i c h ' s e q u a t i o n for the l i m i t i n g c u r r e n t d e n s i t y f o r a r o t a t i n g Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
electrode
(11),
the m a x i m u m a l l o w a b l e p u l l rate dy/dt
was calculated
to be
4^ —2.25 + fc't* 1
17
(21)
dt
w h e r e k! is a constant a n d w is the r o t a t i o n rate. 6|-
cj(rpm) Journal of Crystal Growth
Figure 10. Maximum stable pull rate vs. crystal rotation rate for electrochemical Czochralski growth of Na WO : (Q), experimental points; ( calculated; a = ± 0.06 (10). x
s
262
SOLID S T A T E
CHEMISTRY: A CONTEMPORARY OVERVIEW
T h e s o l i d c u r v e i n F i g u r e 10 w a s d e r i v e d f r o m values c a l c u l a t e d b y u s i n g E q u a t i o n 18 a n d the e x p e r i m e n t a l d a t a p o i n t s , u p to a seed r o t a t i o n rate of 30 r e v o l u t i o n s p e r m i n u t e ( r p m ) , w e r e i n excellent
agreement
w i t h the c a l c u l a t e d values. A b o v e 30 r p m the g r o w n crystals e x h i b i t e d a d e p l e t e d z o n e at the g r o w t h facets. T h i s w a s b e l i e v e d to b e c a u s e d b y f l o w s e p a r a t i o n at the apex of the i n t e r f a c e . Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
I n n o r m a l C z o c h r a l s k i g r o w t h a u t o m a t e d t e c h n i q u e s for control have been recently developed.
diameter
T h e s e t e c h n i q u e s are b a s e d
on
either m e a s u r i n g the w e i g h t c h a n g e of the c r y s t a l or m e l t d u r i n g g r o w t h or m o n i t o r i n g the meniscus at the g r o w i n g interface, either w i t h respect to t e m p e r a t u r e or p o s i t i o n . I n the e l e c t r o c h e m i c a l
Czochralski technique, however,
c o n t r o l is a n i n t r i n s i c feature.
The volume
(V)
diameter
of m a t e r i a l d e p o s i t e d
e l e c t r o c h e m i c a l l y is
(22)
w h e r e M is the m o l e c u l a r w e i g h t , Q is the t o t a l c h a r g e i n c o u l o m b s , a n d P is t h e d e n s i t y of the m a t e r i a l a n d n is the n u m b e r of electrons t r a n s f e r r e d p e r u n i t of m a t e r i a l d e p o s i t e d . D i f f e r e n t i a t i n g w i t h respect to t i m e t gives
(23)
where K =
(M/pnF)
is the g r o w t h rate constant.
m a t e r i a l g r o w n is e q u a l to A(dy/dt),
S i n c e the v o l u m e of
i t w a s s h o w n that
(24)
It is, therefore, p o s s i b l e to c o n t r o l c r y s t a l d i a m e t e r d i n the [111] d i r e c t i o n b y c o n t r o l l i n g o n l y the p u l l rate dy/dt a n d the c u r r e n t I . T h i s c a n be a c c o m p l i s h e d i n p r i n c i p l e w i t h great a c c u r a c y . T h e t u n g s t e n bronzes e x h i b i t a n i s o t r o p i c g r o w t h b e h a v i o r , w i t h the [111] d i r e c t i o n the fastest g r o w t h d i r e c t i o n . T h e l e n g t h a n d d i a m e t e r of [111]-oriented Growth
on
crystals, therefore,
other
axes, h o w e v e r ,
were
found
proved
to b e
easy to
m o r e difficult.
control.
During
the
g r o w t h of either [ 1 0 0 ] - or [110]-oriented crystals, the crystals p u l l e d out of the m e l t after several centimeters h a d b e e n g r o w n .
I n the
[111]
d i r e c t i o n there is no t e n d e n c y for l a t e r a l g r o w t h , b u t i n the [100] [110]
or
g r o w t h the f a s t - g r o w t h d i r e c t i o n is i n c l i n e d to the p u l l d i r e c t i o n ,
13.
Crystal
FEIGELSON
263
Growth
a n d i n the absence of t h e r m a l constraints t h e c r y s t a l d i a m e t e r w i d e n s out, as s h o w n i n F i g u r e 11. S i n c e m a t e r i a l is d e p o s i t e d at a constant rate, the i n c r e a s e d area of the g r o w t h i n t e r f a c e causes the a x i a l g r o w t h r a t e to d r o p b e l o w the p u l l rate a n d the c r y s t a l w i l l not stay i n the m e l t . I n the n o r m a l C z o c h r a l s k i m e t h o d the c r y s t a l d i a m e t e r is c o n t r o l l e d b y t h e f r e e z i n g i s o t h e r m at the m e l t surface, w h i c h is c r e a t e d b y t h e Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
r a d i a l t e m p e r a t u r e gradient.
I n the e l e c t r o c h e m i c a l
Czochralski tech
n i q u e , since no s u c h t h e r m a l constraint exists, a m e c h a n i c a l constraint s u c h as a c y l i n d r i c a l d i e or r i n g o n the m e l t surface w o u l d h e l p r e s t r a i n u n l i m i t e d g r o w t h of the c r y s t a l d i a m e t e r i n the f a s t - g r o w t h d i r e c t i o n s . D e M a t t e i a n d F e i g e l s o n (12)
l o o k e d at the e l e c t r o c h e m i c a l C z o c h
r a l s k i t e c h n i q u e f o r g r o w t h of m a t e r i a l s t h a t e x h i b i t i s o t r o p i c
growth
b e h a v i o r . F o r t h e t w o crystals c h o s e n for g r o w t h , m e t a l l i c N b a n d F e , t h e m a x i m u m a l l o w a b l e p u l l rate w a s e x c e e d i n g l y s l o w . p r o p o r t i o n a l to Kd,
S i n c e p u l l rate is
i t w a s i m p o r t a n t , therefore, to s t u d y the significance
of the g r o w t h rate constant K o n e l e c t r o c h e m i c a l C z o c h r a l s k i g r o w t h . F o r N a ^ - W C ^ , K equals 2.136 c m
3
• (A • hr)'
1
a n d g r o w t h is r e l a t i v e l y
fast. F o r the case of m o s t m e t a l s , h o w e v e r , K lies b e t w e e n 0.08 a n d 0.38 cm
3
• ( A • h r ) " . I n general, D e M a t t e i a n d Feigelson concluded that the 1
g r o w t h rate constant K h a d a c r i t i c a l v a l u e n e a r K =
1. I f K is greater
t h a n 1.0, t h e n g r o w t h rates greater t h a n 0.5 m m • ( h r ) "
1
are p o s s i b l e .
If
the v a l u e is less t h a n 1.0, t h e n either a s l o w g r o w t h m u s t b e t o l e r a t e d or t h e g r o w t h rate m u s t b e o p t i m i z e d b y v a r y i n g process p a r a m e t e r s s u c h as c o m p o s i t i o n , s t i r r i n g , a n d c e l l p o t e n t i a l ( a p p l i c a t i o n of e l e c t r o p o l i s h i n g techniques).
Material
Preparation
O n c e the t e c h n i q u e s discussed a b o v e f o r g r o w i n g l a r g e single crystals of s o m e m o d e l m a t e r i a l s w e r e d e v e l o p e d , t h e l o g i c a l next step w a s t o a p p l y this t e c h n o l o g y to the g r o w t h of materials that are i n the m a i n stream of d e v i c e interest a n d w h o s e p r o p e r t i e s are not y e t w e l l c o n t r o l l e d by conventional techniques.
T h e area of I I I - V e p i t a x i a l layers a n d b u l k
single crystals w a s c h o s e n for this p u r p o s e . T h e m a i n advantages of M S E i n this case are the precise
electronic
c o n t r o l of t h e g r o w t h process
c o m p a r e d to t h e r m a l l y d r i v e n systems, the l o w g r o w t h t e m p e r a t u r e s u s e d , the
i n s e n s i t i v i t y to
temperature
fluctuations,
a n d the
possibility
for
electrochemically controlled purification and doping. O n e i m p o r t a n t p r o b l e m area i n v o l v e s finding a s u i t a b l e substrate m a t e r i a l ( c a t h o d e ) t h a t is c o m p a t i b l e w i t h the m o l t e n salt b a t h a n d has the a p p r o p r i a t e c r y s t a l l o g r a p h i c , c h e m i c a l , a n d electronic p r o p e r t i e s f o r the electrodeposit.
[100]
[no]
[ioo]«
L
J
OIRECTION
1
AXIAL GROWTH COMPONENT
J
LATERAL GROWTH — • COMPONENT
COMPONENT
G&WTH
LATERAL GROWTH r - ^ COMPONENT
Journal of Crystal Growth
PARALLEL TO GROWTH DIRECTION
Figure 11. Diagrams of interface morphologies found for electrochemical Czochralski crystals grown in the [111], [110], and [100] directions and their relationship to the fast-growth [111] direction (10)
ORIENTATION
PERPENDICULAR TO GROWTH DIRECTION
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
13.
FEIGELSON
Crystal
265
Growth
Silicon S i l i c o n w a s first d e p o s i t e d e l e c t r o c h e m i c a l l y i n 1854 f r o m a N a A l C U S i m o l t e n salt b a t h b y D e v i l l e (13)
a n d later b y U l l i k (14)
from K S i F 2
i n K F . S i n c e t h e n o n l y a f e w a d d i t i o n a l studies w e r e u n d e r t a k e n .
basic e l e c t r o d e p o s i t i o n process for S i d e p o s i t i o n i n v o l v e s c o n v e r t i n g S i ions i n a m o l t e n salt b a t h to e l e m e n t a l S i o n a s u i t a b l e cathode. Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
6
The 4 +
The
o v e r a l l r e a c t i o n c a n b e w r i t t e n as Si0
-> S i +
2
G r o j t h e i m a n d cG-workers (15,16) at a b o u t 1 0 0 0 ° C w i t h 5 w t %
Oat
( ) 2 5
p r e f e r r e d t h e Use of c r y o l i t e solutions
Si0
2
as the solute. C o o k (17)
deposited
S i at 8 0 0 ° C onto several r e f r a c t o r y metals f r o m a s o l u t i o n of K S i F 2
i n an
6
a l k a l i f l u o r i d e m i x t u r e ( p a r t i c u l a r l y the L i F / N a F / K F eutectic k n o w n as F l i n a k ) . F l i n a k c a n also be u s e d as a solvent f o r S i 0 , a n d e l e c t r o d e p o s i 2
t i o n b e l o w 1 0 0 0 ° C is possible.
M o s t of t h e S i p r o d u c e d i n these e a r l y
experiments was p o w d e r y or d e n d r i t i c i n character. C o h e n a n d H u g g i n s (18)
p r o d u c e d c o h e r e n t e p i t a x i a l a n d p o l y c r y s t a l l i n e layers b y u s i n g a
salt m i x t u r e c o n t a i n i n g 5 m o l % K S i F , 10 m o l % K H F , a n d 85 m o l % 2
6
2
L i F - K F (47.5-37.5 m o l % ) , u s i n g a n a p p a r a t u s s i m i l a r to t h a t s h o w n i n F i g u r e 3. T h e K H F
2
dissociates to K F a n d H F , a n d the H F reacts w i t h
a n y o x y g e n i n the system to p r o d u c e H 0 v a p o r , w h i c h p r e s u m a b l y is 2
flushed
out of the system w h e n e v a c u a t e d .
T h e i r baths w e r e p u r i f i e d b y
p r e e l e c t r o l y s i s , u s i n g a s a c r i f i c i a l m o l y b d e n u m strip c a t h o d e .
T h e anode
u s e d w a s h i g h - p u r i t y S i , w h i c h dissolves a n d is t h e n t r a n s p o r t e d to the cathode.
T h e cathodes
were
either
[111]
S i substrates f o r e p i t a x i a l
g r o w t h or W , A g , M o , N b , a n d a A g / N i a l l o y for p o l y c r y s t a l l i n e layers. U n i n t e n t i o n a l l y d o p e d films wer'e p - t y p e , w i t h resistivities i n the r a n g e 0.05-0.1 n
• cm.
I n p o l y c r y s t a l l i n e films g r a i n size w a s 4 0 - 5 0
/im i n
d i a m e t e r . G r o w t h rates, a n d therefore l a y e r m o r p h o l o g y , w e r e i m p r o v e d by
u s i n g a n a l t e r n a t i n g square
wave
pulse
technique.
Coherent
Si
deposits w e r e o b t a i n e d at c u r r e n t pulses u p to 40 m A • ( c m ) " . W i t h o u t 2
1
this t e c h n i q u e the a l l o w a b l e r a n g e was 1-10 m A • ( c m ) " . 2
Ill—V
1
Semiconductors
T h e gallium phosphide ( G a P ) investigation by C u o m o and G a m b i n o (19)
w a s the p i o n e e r i n g effort o n t h e e p i t a x i a l g r o w t h of I I I - V
com
p o u n d s b y m o l t e n salt electrolysis. T h e layers of G a P a n d I n P p r o d u c e d (details on I n P electrodeposition were very sketchy)
were on S i , Ge,
a n d C substrates f r o m melts c o n t a i n i n g N a P 0 , G a 0 , or l n 0 , 3
either m i x e d c h l o r i d e or
fluoride
fluxes.
2
3
2
3
and
T h e e l e c t r i c a l characteristics of
a G a P p - n junction diode were measured. T h e i r w o r k strongly indicated
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
266
SOLID S T A T E C H E M I S T R Y :
Figure
12.
A
CONTEMPORARY OVERVIEW
A GaP electrodeposit on a silicon substrate: (bottom) cross-sectional view (21).
(top)
surface;
that t h e G a P e p i t a x i a l layers w e r e r e l a t i v e l y easy to p r e p a r e b u t f e l l short of p r o v i d i n g a sufficiently refined process to a l l o w a d e q u a t e
comparison
of t h e properties of e l e c t r o c h e m i c a l l y p r o d u c e d m a t e r i a l to t h a t p r o d u c e d i n c o n v e n t i o n a l processes. S e v e r a l years later Y a m a m o t o a n d Y a m a g u c h i (20)
d e v e l o p e d a t e c h n i q u e for e l e c t r o d e p o s i t i n g
salt b a t h c o n t a i n i n g N a S e 0 D e M a t t e i et a l . (21)
ZnSe from a molten
and Z n O .
3
r e c e n t l y i d e n t i f i e d the v a r i a b l e s that c r i t i c a l l y
d e t e r m i n e the m o r p h o l o g y a n d u n i f o r m i t y of electrodeposited U s i n g a m o l t e n salt c o m p o s i t i o n phosphate
( N a P 0 ) , 7.7% 3
oxide ( G a 0 ) , 2
3
c o n t a i n i n g 75.1 w t
sodium
fluoride
G a P was electrodeposited
%
G a P layers.
sodium
( N a F ) , and 17.2%
metagallium
i n t h e 750°—900°C r a n g e
by
the f o l l o w i n g r e a c t i o n s : C a t h o d e : 16e~ + G a 0 2
3
+ 8 P ( V -> 2 G a P + 3 0 " + 2
16e" + G a a O s + 2 P 0 ' -> 2 G a P + 3
90 " 2
6P0
4
3
" (26)
13.
Crystal
FEIGELSON
Anode: 2 0 " - > 0 2
267
Growth + 4e"
2
2P0 ~ 4
3
2P0 " + 0 3
2
+ 4e"
(27)
T h e a p p a r a t u s u s e d w a s s i m i l a r to t h a t s h o w n i n F i g u r e 3. T h e c r u c i b l e u s e d w a s g r a p h i t e , w h i c h also s e r v e d as t h e a n o d e to h e l p scavenge t h e
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
0
2
i n t h e system b y t h e r e a c t i o n C + 0
Growths were
2
-> C 0 t
(28)
2
a t t e m p t e d o n three different substrate m a t e r i a l s :
(1)
g r a p h i t e , ( 2 ) p h o s p h o r u s - d o p e d n - t y p e ( 1 0 0 ) s i l i c o n (0.3 O • c m ) , a n d (3) sulfur-doped n-type (111) G a P single-crystal wafers. F i g u r e 12 shows a G a P l a y e r e l e c t r o d e p o s i t e d o n a n S i substrate at 900°C a n d 20 m A • ( c m ) " . T h e m i n i m u m decomposition potential was 2
1
0.5 V . T h e l a y e r is s i m i l a r i n a p p e a r a n c e to G a P layers p r o d u c e d o n s i l i c o n b y o r g a n o m e t a l l i c c h e m i c a l v a p o r d e p o s i t i o n (22).
Silicon was
chosen because o f its a v a i l a b i l i t y a n d close l a t t i c e m a t c h w i t h G a P . S i , h o w e v e r , a p p e a r e d to react s l i g h t l y w i t h t h e m e l t t o f o r m S i 0 , a n d since 2
there is also a l a r g e t h e r m a l e x p a n s i o n m i s m a t c h b e t w e e n S i a n d G a P , the use of S i as a u s e f u l substrate m a t e r i a l is l i m i t e d . G a P substrates w e r e also f o u n d to react w i t h t h e m e l t at t e m p e r a t u r e s of 9 0 0 ° C o r greater. A t 8 0 0 ° C , h o w e v e r , t h e r e a c t i o n is r e d u c e d to a
Figure 13. GaP electrodeposits on GaP substrates for a deposition time of 20 min at current densities of 48 mA • (cm )' (a and c); 24 mA • (cm ) (b and f); 12 mA • (cm )' (c and g); and 6 mA - (cm )' (d and h) (21). 2
2
1
1
2
2
1
1
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
268
SOLID S T A T E
CHEMISTRY: A
CONTEMPORARY OVERVIEW
77 (VOLTS) (SUPERSATURATION) Journal of Crystal Growth
Figure 14.
Plot of current (I) versus overpotential (rj) for the deposition GaP on GaP (21)
of
p o i n t w h e r e e t c h i n g is n o t serious. T h e m i n i m u m d e c o m p o s i t i o n p o t e n t i a l w a s 1.16 V . T o increase t h e c o n d u c t i v i t y of t h e electrodeposit a n d a v o i d d e n d r i t i c g r o w t h , t h e researchers a d d e d 0 . 1 % Z n O to t h e m e l t , g i v i n g a Z n - d o p e d l a y e r . F i g u r e 13 shows a series of experiments r u n w i t h a systematic v a r i a t i o n i n c a t h o d i c c u r r e n t d e n s i t y [ 6 - 4 8 m A • ( c m ) " ] . 2
1
T h e cross sections of t h e deposits p r e p a r e d at t h e l o w e r c u r r e n t d e n s i t y s h o w t h e f o r m a t i o n of coherent layers of u n i f o r m thickness. T h e r e w a s no e v i d e n c e of d e n d r i t e s o r p o l y c r y s t a l s . A t 12 m A • ( c m ) " 2
1
a n d greater,
craters a p p e a r e d at t h e surface, a n d t h e y increase i n size a n d d e p t h as the c u r r e n t d e n s i t y increases. of excess p h o s p h o r u s
T h e s e craters are r e l a t e d to t h e f o r m a t i o n
(gas b u b b l e s )
at t h e cathode.
T h e f o r m a t i o n of
s m a l l G a P d e n d r i t e s adjacent to t h e b u b b l e s is q u i t e v i s i b l e . I t w a s clear f r o m this s t u d y that c u r r e n t densities b e l o w
10-20 m A • ( c m ) " 2
1
are
necessary f o r stable g r o w t h c o n d i t i o n s a n d t h e p r e p a r a t i o n of u n i f o r m layers of c o n t r o l l e d thickness.
13.
FEIGELSON
Crystal
269
Growth
I n o r d e r to u n d e r s t a n d the influence of g r o w t h rate ( c u r r e n t d e n s i t y ) o n the g r o w t h process, the researchers p l o t t e d I against -q ( u s i n g a G a P reference e l e c t r o d e ) , as s h o w n i n F i g u r e 14. T h e c u r v e consisted of
(1)
a n i n i t i a l l i n e a r r e g i o n , w h i c h is p o s t u l a t e d to represent a r e g i o n w h e r e g r o w t h is c o n t r o l l e d b y v o l u m e d i f f u s i o n of solute ions; ( 2 )
a transition
r e g i o n ; a n d ( 3 ) a second l i n e a r r e g i o n at h i g h c u r r e n t densities, w h i c h is Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
also v o l u m e - d i f f u s i o n - c o n t r o l l e d a n d w h e r e the g r o w t h is h i g h l y d e n d r i t i c . F i g u r e 15 shows t w o G a P layers g r o w n at 8 0 0 ° C a n d at 10 m A • (cm )" . 2
1
T h e l a y e r o n the left w a s d e p o s i t e d i n 20 m i n , o n the r i g h t i n
3 h r . N o t e that the surface features are r e l a t i v e l y smooth. N o p r o p e r t y measurements w e r e m a d e i n this s t u d y , n o r w a s there a n y a t t e m p t to i m p r o v e the p u r i t y of the d e p o s i t b y s t a r t i n g w i t h u l t r a h i g h p u r i t y c h e m i c a l s or b y preelectrolysis of the m o l t e n salt b a t h . InP I n P has b e c o m e , i n recent years, a p o t e n t i a l l y i m p o r t a n t m a t e r i a l for e l e c t r o n i c d e v i c e a p p l i c a t i o n s . It has b e e n t r a d i t i o n a l l y difficult to
grow
h i g h - q u a l i t y single crystals of this m a t e r i a l because the h i g h v a p o r p r e s sure of P makes s t o i c h i o m e t r y , a n d therefore t h e electronic difficult t o c o n t r o l .
properties,
I n P is subject t o t h e r m a l d e c o m p o s i t i o n
by
loss
of P . C o n v e n t i o n a l m e t h o d s u t i l i z e temperatures near the m e l t i n g p o i n t (1062°C),
Figure
w h e r e the e q u i l i b r i u m pressure is 27.5 a t m . T h e a p p a r a t u s
15.
GaP layers electrodeposited at 800°C and 10 mA • (cm )' for 20 min (left) and 3 hr (right) (21) 2
1
270
SOLID S T A T E
Table III.
CHEMISTRY: A
CONTEMPORARY OVERVIEW
Solvent Systems Studied for InP Electrodeposition Major Advantages
Solvent LiCl-KCl
Major Disadvantages
L o w melting point eu- H i g h volatility. Reactectic ( 3 2 8 ° C ) . H i g h tivity with nickel, s o l u b i l i t y for l n 0 N o I n P deposits, and I n F 2
3
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
3
NaPOa-NaF
U s e d for electrodepo s i t i o n of G a P
H i g h viscosity. Rather highmp (490°C). L o w s o l u b i l i t y of l n 0 at ~ 600°C. 2
3
Oxygen-free. L o w mp L o w solubility for l n 0 and I n F . eutectic ( 4 5 4 ° C ) . K P F as source of L o w viscosity. H a s phosphorus is v e r y g i v e n I n P deposits. hygroscopic.
LiF-NaF-KF
2
3
3
6
V e r y l o w s o l u b i l i t y for U s e d w i d e l y i n electrocrystallization ln 0 e.g. for L a B . Q u i t e low viscosity and volatility.
Li 0-B 0 -LiF 2
2
3
2
3
6
NaP0 -NaF-KP0 -KF
L o w e r m p eutectic (~ 439°C). Gives good I n P deposits. Low volatility
Rather high viscosity
LiP0 -LiF-KP0 -KF
Lower viscosity than NaP0 -NaFKP0 -KF
L o w e r s o l u b i l i t y for l n 0 than N a P 0 NaF-KP0 -KF ( £ l m / o ) . L i F is insoluble i n water.
V e r y low melting point (300°C)
H a s not given I n P de posits. L i F is i n s o l u ble i n w a t e r .
3
3
3
3
3
3
LiP0 -LiF-NaP0 -NaF 3
3
2
3
3
3
u s e d is expensive a n d u n d e r a h i g h a m b i e n t pressure, w h i c h is p o t e n t i a l l y dangerous. E l w e l l a n d F e i g e l s o n ( 2 3 ) h a v e r e c e n t l y started a p r o g r a m to i n v e s t i gate the c o n d i t i o n s necessary to p r e p a r e h i g h - q u a l i t y I n P e p i t a x i a l layers a n d crystals b y M S E a n d to s t u d y t h e i r electronic p r o p e r t i e s .
Electro
c h e m i c a l synthesis c a n p r o v i d e c o n t r o l over s t o i c h i o m e t r y a n d i m p u r i t i e s , as stated before.
U s e of a l o w m e l t i n g solvent a n d o p e r a t i o n u n d e r a
s l i g h t l y p o s i t i v e pressure s h o u l d h e l p to c o n t r o l P e v a p o r a t i o n . G e n e r a l l y , t h e defect c o n c e n t r a t i o n w o u l d b e e x p e c t e d
to b e l o w e r i n m a t e r i a l s
p r e p a r e d u n d e r these c o n d i t i o n s , a n d the e l e c t r o c h e m i c a l e q u i p m e n t is i n e x p e n s i v e a n d easy to assemble.
13.
Crystal
FEIGELSON
271
Growth
W h i l e i t w a s e x p e c t e d that I n P w o u l d electroplate as r e a d i l y as G a P from a similar bath composition by simply substituting l n 0 2
as suggested b y C u o m o a n d G a m b i n o ( 1 9 ) ,
for G a 0 ,
3
2
this w a s f o u n d n o t to
3
be
the case because of significant c h e m i c a l d i s s i m i l a r i t i e s b e t w e e n I n a n d G a salts. I n c o m p o u n d s
w e r e less soluble i n the melts s t u d i e d a n d h a d
h i g h e r v a p o r pressures t h a n s i m i l a r G a
compounds.
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
T a b l e I I I gives a n i d e a of the v a r i o u s m o l t e n salts s t u d i e d for the e l e c t r o d e p o s i t i o n of the I n P . T h e attractiveness of a c o m p l e t e l y system s u c h as t h e F l i n a k ( L i F , N a F , K F e u t e c t i c )
+
InF
nonoxide
-f KPF
3
o b v i o u s , b u t so f a r a s u i t a b l e , stable m e l t c o m p o s i t i o n has n o t
6
is
been
f o u n d f r o m w h i c h I n P c o u l d be d e p o s i t e d . T h e most s u i t a b l e b a t h f o u n d to date for I n P e l e c t r o d e p o s i t i o n is a q u a t e r n a r y solvent c o m p o s i t i o n c o n t a i n i n g N a P 0 / K P 0 / N a F / K F 3
nak) and l n 0 2
as t h e source of I n . T h e l n 0
3
2
3
3
(Pof-
s o l u b i l i t y w a s greater i n
this m e l t t h a n i n a c o m p a r a b l e m e l t of L i P 0 / K P 0 / L i F / K F , w h i c h h a d 3
3
a l o w e r v i s c o s i t y a n d m e l t i n g t e m p e r a t u r e . T h e I n P deposits f r o m P o f n a k w e r e of better q u a l i t y . T h e P o f n a k m e l t , therefore, has r e c e i v e d the most a t t e n t i o n to date.
T a b l e I V shows the s u i t a b i l i t y of v a r i o u s
electrode
m a t e r i a l s f o r I n P d e p o s i t i o n i n this m e l t . O f t h e m e t a l cathodes s t u d i e d , o n l y n i c k e l w a s r e a s o n a b l y c o m p a t i b l e w i t h t h e m e l t a n d t h e I n P deposit. T w o other c a t h o d e m a t e r i a l s w e r e f o u n d to b e v e r y g o o d substrate m a t e rials, I n P a n d C d S single crystals. T h e C d S I n P h e t e r o j u n c t i o n is a p o t e n 3
t i a l l y i m p o r t a n t s t r u c t u r e f o r solar c e l l a p p l i c a t i o n , a n d t h e
electrodepo
s i t i o n m e t h o d p r o v i d e s a l o w - c o s t process for p r o d u c i n g s u c h a m a t e r i a l .
Table I V .
Cathode Materials Studied for InP Electrodeposition
Material
Adhesion
of InP
Deposit
G r a p h i t e (rod)
P o o r ; adheres i n s m a l l , i s o l a t e d regions.
Germanium (single c r y s t a l )
P o o r ; adheres i n i s o l a t e d patches o n l y .
P y r o l y t i c graphite
F a i r l y p o o r ; o n l y l i t t l e better t h a n n o r m a l graphite. V e r y p o o r ; no t r a c e of I n P s h o w n b y microscope.
T u n g s t e n (sheet) I n d i u m phosphide (single c r y s t a l )
V e r y good
M o l y b d e n u m (sheet)
V e r y poor
G o l d (foil)
A t t a c k e d b y phosphate m e l t s
N i o b i u m (sheet)
Poor A t t a c k e d b y p h o s p h a t e melts
P l a t i n u m (foil) C a d m i u m sulfide (single c r y s t a l )
V e r y good
N i c k e l (sheet) T a n t a l u m (sheet)
Good V e r y poor
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
272
SOLID S T A T E
Figure 16.
CHEMISTRY: A
InP layer electrodeposited
CONTEMPORARY OVERVIEW
on a CdS substrate
M a n y I n P deposits h a v e b e e n p u t d o w n o n C d S substrates, one of w h i c h is s h o w n i n F i g u r e 16. T h i c k n e s s e s r a n g e f r o m 1-10 /*m d e p e n d i n g u p o n d e p o s i t i o n t i m e . A t present, a n analysis of surface
morphology,
c h e m i c a l c o m p o s i t i o n , i m p u r i t y content, a n d e l e c t r i c a l p r o p e r t i e s is u n d e r w a y . T h e effectiveness of e l e c t r o c h e m i c a l p u r i f i c a t i o n t e c h n i q u e s is also b e i n g s t u d i e d i n these experiments. T h e g e n e r a l c o n d i t i o n s u s e d to electrodeposit I n P o n C d S f r o m the P o f n a k m e l t are as f o l l o w s : ( 1 ) m e l t c o m p o s i t i o n 6 0 . 9 % N a P 0 , 1 4 . 0 % 3
K P 0 , 20.5% N a F , 4.7% K F , 3 % l n 0
3
6 0 0 ° C ; ( 3 ) c e l l p o t e n t i a l 0.90 V ( E
0.80 V ) ; ( 4 c u r r e n t d e n s i t y a b o u t
3
2
d
«
(mol % ) ;
(2) cell temperature
5 m A • ( c m ) " ; (5) deposition time 1 hr. 2
1
GaAs A f e w arsenides (see D e M a t t e i et a l . (24)
T a b l e I I ) h a d been previously electrodeposited.
i n v e s t i g a t e d the p o s s i b i l i t y of e l e c t r o d e p o s i t i n g the
most i m p o r t a n t of I I I - V s e m i c o n d u c t o r s , G a A s . A s a s t a r t i n g p o i n t , t h e y a t t e m p t e d s i m p l y to substitute N a A s 0 NaP0
3
3
(sodium
m e t a arsenate)
for
i n the p r e v i o u s l y d e s c r i b e d G a P g r o w t h s o l u t i o n . S i n c e the m e t a
arsenate is easily r e d u c e d , w i t h c o n v e r s i o n of A s
5 +
to A s
3 +
or e l e m e n t a l A s
i n the p r e s e n c e of c a r b o n , metals, or G a A s , t h e y f o u n d N a A s 0
2
(sodium
arsenite) to be a m o r e s u i t a b l e source of A s for G a A s e l e c t r o d e p o s i t i o n . T h e m e l t c o m p o s i t i o n t h a t gave the best results c o n s i s t e d of 6 7 . 4 % B 0 , 2
20.3%
N a F , 4.2%
G a 0 , and 8.1% 2
c o n c e n t r a t i o n s of N a A s 0
3
2
N a A s 0 , by weight. 2
a n d G a Q w e r e 4 . 1 % a n d 1.4%, 2
3
3
T h e molar respectively.
13.
FEIGELSON
The B 0 2
Crystal
w a s u s e d to r e d u c e
3
v o l a t i l i t y of N a A s 0
2
273
Growth the m e l t t e m p e r a t u r e a n d t h e r e b y
the
at the e l e c t r o d e p o s i t i o n t e m p e r a t u r e s , w h i c h w e r e
i n the r a n g e 7 2 0 ° - 7 6 0 ° C . T h e d e c o m p o s i t i o n p o t e n t i a l f o r d e p o s i t i o n o n a G a A s substrate w a s 1.7 V , a n d i t w a s 2.4 V o n n i c k e l . A n e p i t a x i a l
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
10-/xm-thick l a y e r of G a A s w a s d e p o s i t e d o n a G a A s substrate.
Conclusions Molten
salt e l e c t r o c h e m i s t r y
is a n o l d t e c h n o l o g y
t h a t has
just
r e c e n t l y b e g u n to b e c o n s i d e r e d seriously f o r use i n c r y s t a l g r o w t h . W h i l e c o n v e n t i o n a l t e c h n i q u e s u t i l i z e a t h e r m a l d r i v i n g force, e l e c t r o d e p o s i t i o n is a n e l e c t r o n i c a l l y d r i v e n process, a n d , as s u c h , t h e g r o w t h process i n p r i n c i p l e c a n b e v e r y p r e c i s e l y c o n t r o l l e d . R e c e n t w o r k has c o n c e n t r a t e d o n u n d e r s t a n d i n g the e l e c t r o d e p o s i t i o n processes w i t h respect to
both
n u c l e a t i o n a n d g r o w t h p h e n o m e n a , to p e r m i t the c o n t r o l l e d g r o w t h of l a r g e h i g h - q u a l i t y single crystals. T h e a p p l i c a t i o n of this k n o w l e d g e t h e p r e p a r a t i o n of i m p o r t a n t s e m i c o n d u c t o r
to
m a t e r i a l s s u c h as S i , I n P ,
G a A s , a n d S i C has just started, a n d the competitiveness of m o l t e n salt e l e c t r o c h e m i c a l c r y s t a l g r o w t h w i t h c o n v e n t i o n a l processes w i l l b e e v a l u a t e d o v e r the next f e w years.
Glossary of Symbols A c
=
area of electrode c o n c e n t r a t i o n of solute i n l i q u i d
L
C D
s
=
c o n c e n t r a t i o n of solute i n s o l i d
=
solute d i f f u s i o n coefficient
D/A
drift velocity crystal diameter
d
m a x i m u m a l l o w a b l e p u l l rate
dy/dt E°
=
standard cell potential
E = decomposition potential F == F a r a d a y ' s constant d
i= I = K = k
=
current density
(I/A)
cell current g r o w t h rate constant d i s t r i b u t i o n coefficient constant
K I=
step s p a c i n g
M — molecular weight = m o l t e n salt e l e c t r o c h e m i s t r y
MSE
t o t a l charge
Q R
= =
gas constant or i m p e d a n c e
Ret
=
i m p e d a n c e d u e to c h a r g e transfe
274
SOLID S T A T E
R R
CHEMISTRY: A
CONTEMPORARY OVERVIEW
i k
=
i m p e d a n c e d u e to i n t e r f a c e a t t a c h m e n t k i n e t i c s
v d
=
i m p e d a n c e d u e to v o l u m e d i f f u s i o n
T =
temperature ( K )
V =
volume
v =
l i n e a r g r o w t h rate
w = r o t a t i o n rate Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
z =
n u m b e r of electrons t r a n s f e r r e d
[ ] =
c o n c e n t r a t i o n or a c t i v i t y of r e a c t i n g species
A =
a n o d e species ( e l e c t r o c h e m i c a l l y o x i d i z e d )
C = c a t h o d e species ( e l e c t r o c h e m i c a l l y r e d u c e d ) C =
constant
E =
equilibrium potential
^d(imp) = Ed(cmpd) =
d e c o m p o s i t i o n p o t e n t i a l of i m p u r i t y d e c o m p o s i t i o n p o t e n t i a l of c o m p o u n d
n = n u m b e r of electrons t r a n s f e r r e d u e r u n i t of m a t e r i a l d e p o s i t e d y =
i o n i z a t i o n state for a n o d e species
z = i o n i z a t i o n state f o r cathods species A = =
c
y = rj = e
relative supersaturation d e p o s i t i o n efficiency overpotential e q u i l i b r i u m c o n c e n t r a t i o n of solute
A = adsorption parameter A = s
surface d i f f u s i o n p a r a m e t e r
X=
m e a n distance t r a v e l e d b y a n a d s o r b e d m o l e c u l e
p=
density
Q = molar volume 8 = boundary layer w i d t h o- = r e l a t i v e s u p e r s a t u r a t i o n en =
constant
Literature Cited 1. Kunnmann, W. "Preparation and Properties of Solid State Materials"; Lefever, R. A., Ed.; Dekker: New York, 1971; p. 1. 2. Wold, A.; Bellavance, D. "Preparative Methods in Solid State Chemistry"; Hagenmuller, P., Ed.; Academic: New York, 1972; p. 279. 3. Elwell, D. "Crystal Growth and Materials"; Kaldis, E.; Scheel, H. J., Eds.; North Holland: Amsterdam, 1976; p. 606. 4. Bostanov, V. J. Cryst. Growth 1977, 42, 194. 5. Elwell, D.; De Mattei, R. C.; Zubeck, I. V.; Feigelson, R. S.; Huggins, R. A. J. Cryst. Growth 1976, 33, 232. 6. Gilmer, G. H.; Ghez, R.; Cabrera, N. J. Cryst. Growth 1971, 8, 79. 7. Zubeck, I. V.; Feigelson, R. S.; Huggins, R. A.; Pettit, P. A. J. Cryst. Growth 1976, 34, 85. 8. Andrieux, L. Ann. Chim. (Paris) 1929, 12, 423. 9. Elwell, D.; Zubeck, I. V.; Feigelson, R. S.; Huggins, R. A. J. Cryst. Growth 1975, 29, 65.
Solid State Chemistry: A Contemporary Overview Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 03/24/16. For personal use only.
13.
FEIGELSON
Crystal
Growth
275
10. De Mattei, R. C.; Huggins, R. A . ; Feigelson, R. S. J. Cryst. Growth 1976, 34, 1. 11. Levich, V . C. "Physiochemical Hydrodynamics"; Prentice-Hall: Englewood Cliffs, NJ, 1962. 12. De Mattei, R. C.; Feigelson, R. S. J. Cryst. Growth, in press. 13. Deville, H. St. C. Compt. Rend. 1854, 39, 323. 14. Ullik, F . Ber. Akad. Wien 1865, 52, 115. 15. Grjotheim, K.; Matiasovsky, K.; Fellner, P. Can. Met. 1971, Q10, 19. 16. Boe, G.; Grjotheim, K.; Matiasovsky, K.; Fellner, P. Can. Met. 1971, Q10, 179. 17. Cook, N. C. U.S. Patent Re. 25 630 1964; Sci. Am. 1969, 38. 18. Cohen, U.; Huggins, R. A . J. Electrochem. Soc. 1976, 123, 381. 19. Cuomo, J. J.; Gambino, R. J. J. Electrochem. Soc. 1968, 115, 755. 20. Yamamoto, A.; Yamaguchi, M . Jpn. J. Appl. Phys. 1975, 14, 561. 21. De Mattei, R. C.; Elwell, D . ; Feigelson, R. S., submitted for publication in J. Cryst. Growth. 22. André, J. P.; Hallais, J.; Schiller, C. J. Cryst. Growth 1975, 31, 147. 23. Elwell, D . ; Feigelson, R. S., private communication. 24. De Mattei, R. C.; Elwell, D . ; Feigelson, R. S. J. Cryst. Growth 1978, 43, 643. RECEIVED September 29,
1978.