Vol. 5, No. 10, October 1966
CRYSTAL STRUCTURES AND MULTIPLE BONDING 1775 TABLE V COMPARISON OF BONDLENGTHS AND ANGLES
Compd
Ref
Ni(en j3(N03)2 Cu(en 12 (Nod2
C-C, A
N-C, A
N-N,a A
LN-M-N,
deg
LM-N-C, deg
LN-C-C, deg
1.500 (25) 1.498 (28) 82.3(10) 109.7(12) 111.1(23) C 1.487 (25) 1.545 (27) 86.2 109.1 109.6 1.476 (25) 108.5 110.6 Cu(en)z(SCN)z d 2.70 (3) 1.46 (3) 1.56 (4) 84.8 110.5 109.4 1.49 (3) 108.6 104.7 P d (en)zC1, e 2.713 (10) 1.469 (11) 1.518 (13) 83.6 (3) 108.2 (5) 107.2 (7) 1.484 (11) 109.6 (5) 107.1 (7) a Within a chelate ring. L. N. Swink and M. Atoji, Acta Cryst., 13, 639 (1960). Y. Komiyama and E. C. Lingafelter, i b i d . , 17v 1145 (1964). B. W. Brown and E. C. Lingafelter, ibid., 17,254 (1964). This investigation. b
2.790 (25) 2.772
TABLE VI PERTINENT DATAINVOLVED IN THE HYDROGEN-BONDING SCHEME^ Distances of the Hydrogen Atoms from the Line Joitiing the Chloride Ion and the Nitrogen Atoms Atoms defining line
Distance of hydrogen from the line, A
N(l)-Cl(III) N(2)'-Cl(II1) N(I )-Cl (111) N(I1j-Cl(II1 j
0.16 0.36 0.35 0.03
Angles Involved in the Hydrogen-Bonding N(l)-Cl(III)-N(2 j' N(1)-Cl(II1)-N(1) N(2)'-Cl(III)-N(I) X(1)-Cl(II1)-N(I1) N(2)'-Cl(111 )-N(I1 ) N(1)-Cl(II1)-N(I1)
Geometry 54.6' 100.9" 87.6" 153.4" 76.1" 86.8"
Clellanlg list N . .C1 hydrogen-bonded distances ranging from 2.91 to 3.41 A. These distances in the present structure fall quite nicely within this range. Table VI gives the distances of the hydrogen atoms from the lines joining the chloride ion and the nitrogen atoms. It can thus be seen that the positions of the hydrogen atoms indicate that there is hydrogen bonding taking place between the chloride ions and the nitrogen atoms. Some pertinent angles concerning the geometry of the nitrogen atoms surrounding the chloride ion are also given in Table VI. Acknowledgments.-The authors wish to thank the National Science Foundation for partial support of this work under grant No. GP-1601 and also the University of Washington Computer Center for a grant of computer time.
a The lettering refers to the atoms surrounding Cl(II1) in Figure 2.
(19) G. C. Pimentel and A. L. McClellan, "The Hydrogen Bond," W. H. Freeman and Co., San Francisco and London, 1960, p 290.
CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF SOUTHCAROLINA, COLUMBIA, SOUTH CAROLINA29208
Crystal Structures and Multiple Bonding in trans-Pt [P(C2H5),],C12and trans-Pt [P(C2H5)3]2Br2 BY G. G. MESSMER'
AND
E. L. AMMA2
Received May 2 , 1966 The crystal structures of the isomorphous pair trans-Pt[P(CzHs)3]zClzand trans-Pt[P(C2H6)3]2Br2have been determined from counter data by two- and three-dimensional single-crystal X-ray techniques, respectively. The structures consist of discrete molecules with the platinum, phosphorus, and halogen atoms in essentially a square-planar arrangement. Only van der Waals interactions exist between molecules. The Pt-P bond lengths were found to be 2.300 0.019 and 2.315 i.0.004 A in the chloride and bromide, respectively. A Pt-P distance of 2.41 A would be expected from the sum of the single-bond covalent radii. The Pt-Cl and Pt-Br distances were found to be normal single bonds a t 2.294 & 0.09 and 2.428 & 0.002 A, respectively. Within experimental error, the P-C distances were observed to be normal single bonds, and the Pt-P-C angles tetrahedral.
Introduction The influence of T bonding on cis-trans isomexization and the trans-directing effect has been discussed for some I n Pt(I1) complexes the usually ( 1 ) In partial fulfillment for the Ph.D. requirements, University of Pittsburgh, 1966. ( 2 ) Address all correspondence t o this author. (3) J. Chatt and R. G. Wilkins, J. Chew. Soc., 273, 4300 (1952); 70 (1953); 525 (1956).
iionbonding 5d,,, 5d,, filled metal orbitals can interact with T orbitals of appropriate symmetry. With trialkylphosphine ligands these are the empty phosphorus (4) J. Chatt, L. A. Duncanson, and L. M. Venanzi, ibid., 4456, 4461 (1955). ( 5 ) J. V. Quagliano and L. Schubert, Chem. Rev., 60, 201 (1952). (6) F. Basolo and R. G. Pearson, Progr. Inorg. Chem., 4, 381 (1962). (7) F. Basolo and R. G. Pearson, "Mechanism of Inorganic Reactions," John Wiley and Sons, Inc., New York, N. Y., 1958, pp 172,249.
Inougartic Cherniskry 3d orbitals, whereas with chlorine or bromine ligands these are 3p-3d and 4p-4d hybrid orbitals, respectively. This type of a bonding is generally referred to as dnd a bonding. Chatt and Wilkens3 have collected considerable thermodynamic data on cis-trans equilibria in benzene solutions of Pt(lvlRa)2Xz,where M = P, As, or S b ; R = methyl, , , , , or n-pentyl; X = C1-or I-. Their results show that the cis isomer is more stable than the trans, and the cis isomer has a total bond energy approximately 10 kcal/mole greater than the trans isomer. This difference in bond energy was attributed to the difference in Pt-P da-da bonding in the two isomers. We undertook careful three-dimensional X-ray singlecrystal structure analyses in order to ascertain whether this difference in bond energy is reflected in the Pt-P bond lengths in the two isomers. There have been reports of Pt-P bond lengths as much as 0.15 A8s9shorter than the sum of the appropriate covalent radii. With a few notable exceptions,gmuch of the previous X-ray structure research has been from two-dimensional diffraction data8,10$11 limited in accuracy and frequently overinterpreted. We report here the results for the and Pt [P(C2HS)3]2Br2 isomers; trans Pt [P(C2HSj3j2C12 the results for the appropriate cis isomers will follow. Experimental Section Samples of tl.ans-Pt[P(CsHj)s]2X?, X = C1, Br, were kindly supplied by Dr. J. Chatt and were recrystallized from methanol solution. Cell constants were obtained with the Picker diffractometer equipped with a GE single-crystal orienter. Owing to the fact that different X-ray tubes were aligned on the diffractometer at different times, the cell parameters of the chloride isomer were measured with Cu Ka: (1.5418 A), and the bromide, with Mo Ka (0.7107 A ) . These cell constants were checked with calibrated Mo K a precession photographs, and they agreed within the stated error. The crystals were found to be isomorphous and monoclinic, P21/n with a = 11.00 i: 0.02 A , b = 11.52 0.02 A , c = 7.49 i: 0.01 A , p = 93’ 0’ i 15’ for the chloride and a = 11.28 f 0.02 -4, b = 11.58 =k 0.02 A, c = 7.63 i 0.01 A , p = 91” 55’ i 15’ for the bromide. With two formula units per cell, the X-ray density is 1.69 and 1.94 g cni-8 for the chloride and bromide, respectively (within 0.02 g of the density measured by flotation in carbon tetrachloridebromoform mixtures).
+
Structure Determinations trans-Pt [P(CzHS)3]2C12.-Preliminary photographic data were obtained on the Weissenberg and precession cameras for the three principal zones with AZO Kcr radiation. These photographs showed strong thermal diffuse scattering, probably due to motions of the ethyl groups. This diffuse scattering increased the background and mould complicate the location of the light atoms. Hence, this structure n-as determined using only tn7o-dimensional data solely to indicate that the results were consistent with those of trans-Pt [P(C2Hs)3]2Br2, but more limited in accuracy. With a crystal 0.20 X 0.23 X 0.50 mm, 250 inde(8) P. G. Owston, J. A I . Partridge, and J. >I. l i o w e , A d a C r y s t . , 13, 246 ( 1 960).
(9) R . Eisenberg and J.A. Ibers, Iizorg. C h ~ n i .4, , 7 7 3 (1965). (10) P. G. Owston and J. LI. Rowe, Acto C r y s t . , 13, 263 (ISGO). ( 1 1 ) S. S.Ratsanov, Rziss. J . I n o r g , Chein., 4 , 773 (1959). ( A summary, see datailed references therein.)
pendent reflections for the three principal zones (h01, Okl, hk0) were measured by a scanning technique on the Picker diffractometer with a GE single-crystal radiation. For details, see data orienter using Cu KCY collection for Br isomer. No corrections were made for absorption or extinction. The linear absorption coefficient for this crystal with Cu K a radiation is 177 ClTl --I
In space group P21/n with two molecules per unit cell, the Pt atoms must be on centers of symmetry, The sets of centers of symmetry positions in P21/n differ only in choice of origin; we chose the set 0, 0,0 and l / 2 , l / 2 , ‘/z. This confirms the trans configuration for this compound and further requires the Pt and its four nearest neighbors to be coplanar. The phosphorus and chlorine atoms were readily located by Patterson projections in the general positions of P21/n; +(x, y, z; -b x, - y , ‘/z 2 ) . Carbon atoms were located from electron density and difference electron density projections.12 The structure was refined by least squares,13 including anisotropic temperature factors for Pt, C1, P, but only a single isotropic temperature factor for C. Scattering factors for neutral platinum, chlorine, phosphorus, and carbon were from the compilation of 1 b e ~ s . I A ~ real dispersion correction was made to the platinum, chlorine, and phosphorus scattering factors from the values given by Cromer.lS The imaginary dispersion term was neglected. The effect of real and imaginary dispersion terms on atomic coordinates was carefully examined for the Br isomer (see below) and justifies this procedure. The function using equal weights. minimized was Z w ( F o The final values of the disagreement index Ij 24b
b 65 7 283 0 37 Y 342 10 3 11 1'11 12 7 Vi(') 0 I37 I 31 2 I>? 3 5h 4 340 5 ,I7 6
233
,7
b
-h8
252 -27 314 -6
lie 3 143 -34
30b 33 305 I1 I9h
17
n 330
308
13 2 5 1
267
11
14
27
'IXO
I 254 2
7s
'3'1 -12
300
147
95
2?L'< -2 111
?+9 -iq
273 -50 212
41
ini
- 35 F'211. I
31
9 ?bo
1: 46 11 1 4 2 13 122
3KO
116 41
I ? 111
72 262
337 -33
1 4 125
4
225 214
2 31 1 -01
326
11 3 2 3
I3
30
22 3 75 02
ac
- L O 183 -12
6
'IC
41e
H04
212 -41 233 71 1b3 21 135
74
23
235
IO 135 I2 2C3 1 4 c7
139
569
475
7 337 -1 2 9 3 4 33C
11s
3
8 ?54
237
90 5 h .. 46
hkO
6 439
517 272
73
FICI FICI OK3 4 141
LO 396
12 2 4 7
b
65 11 51 51
144
229
-IC
2
4
135
L77
-12
1
23C 111 350 224 350 119
237
-5 5 2 0
19
1
4ih
0 2PC -0
19
65
2
2 2b5 -2 7 2 5 4 17C -4 550 e 415 -6 3 8 4
153
5
43 OK8
384 447
HO ?
OK4
L
359
HO2
OK3
1 451 2 134 3 514 4 40 i 358 6 77 7 230 52 9 244 I 1 134 12 I 2 13 IC1
h 2'1 7 2hl H 41
h01
i 7
I10
I,i
c I
4K0
447
'lll
ai
iic 4 w
1 4 6 1
3I5C
147
4 431 5 I4 h 3h'l 7 216
41'1
I2 I'r4 114
i 31 4 I53
-36
13
-31
13x0 I 63 3 106 4 42
IIL 53
5
151 153
F ( C ) = lOF(ca1cd); F(calcd)absoiute= F(calcd)/scale factor.
trans-Pt [P(CzH5)3]J3rz.-A single crystal 0.2 X 0.2 X 0.5 mm was mounted about the needle axis ( [ O O l ] direction) on the GE single-crystal orienter and used to collect intensity data with the Picker diffractometer using Zr-filtered Mo KCY radiation. Backgrounds were estimated by stationary count for 40 sec a t *1.67", 28 of the peak maxima. The peak was then scanned for 100 sec by a 28 scan. The net peak intensity was then computed by scaling the background to 50 sec
Inorgitnic Chemistry TABLE I1 DATAFOR Ivans-Pt[P(CzHs)3]zCI:! Positional atid Temperature Parameters and Errors; Atom
%/a
Pt C1 1' C1 Cz CB C4 Cs Cg
0.5000 0.6980 0.4295 0.3024 0.3581 0.3848 0.4460 0.5391 0.5076
Pt C1 P
, ,
.'
82 88 482 660 948 1717 415 679
U'
= u
y/b
c'(db)
z/c
0.5000 0.4549 0.3314 0.3623 0.4299 0.2393 0.1930 0.2797 0.1158
..
0.5000 0.4604 0.3676 0.1814 0.0675 0.6155 0.5425 0.2040 0.1829
.a
120 157 958 1306 907 1597 893 793
X LOs o'(z/c)
..
.a
168 292 1322 1731 1647 621 919 1215
Thermal Parameters and Standard Deviations; Anisotropic Temperature Factors of the Form 2hhl 2@23k3)1; c' = u X lo5 exp[ - ( h h 2 Pztk2 p d 2 2bthk c' p?3 833 0' 819 a' a' p. 2 P1l 813 a' 15 0.0009 -0.0018 91 0.0001 15 42 0.0202 0.0023 18 0.0049 94 -0.0047 -0.0011 363 -0.0004 69 0.0286 102 0.0011 65 0.0049 79 -0.0012 0,0031 456 -0.0007 73 0.0283 0.0020 68 0.0022 112
+
Atom
n'(x/a)
+
+
+
+
U'
63
... 219
Isotropic Carbon Temperature Factors B,
B,
B,
Atom
A'
a
Atom
A2
C1 Cz
4.8 6.7
1.6 3.3
CB C4
8.9 8.0
,r
5.5 3.4
Atom
Cs Ce
A?
u
3.8 1.4 4.2 3.2
Scale Factors Zone
Scale factor
h0Z Okl hk0
0.3829i0.0039 0.3380 f 0.0083 0,3599 zk 0,0050
Parameter fixed by symmetry.
TABLE I11 ISTERATOYIC DISTANCES, ANGLES,AND ERRORS FOR trans-Pt [P(C2Hj)a]~C12 Intramolecular, A Pt-C1 2.294 zk 0.009 c1-ct 1 . 3 3 r t 0.12 Pt-P 2 298 3I 0.018 c3-c4 1.743I0.11 Ca-Ce 1.69 f 0 . 1 0 P-C1 1 . 8 9 i.0.05 P-Cs 1 . 6 3 310.11 X-Pt-X angles P-Cs 1.77 3 ~ 0 . 0 5 P-Pt-C1 8 7 . 3 f 0.14" Pt-Pt-C1 9 2 . 7 0.14'
each and subtracting them from the peak scan. A total of 1953 independent hkZ values was measured by this means. The linear absorption coefficient for this crystal with Mo K a radiation is 124 cm-l. No corrections were made for absorption. The maximum difference in crystal dimension is only a factor of 2.5; and with linear absorption coefficients of the same magnitude, others have neglected absorption correct i o n ~ . ~ $ -Further, ?~ i t is generally accepted that neglect of absorption corrections does not affect atomic positional parameters but only thermal parame t e r ~ . ~ ~The , ~ least-squares ~ - ~ ~ esd involves the assumption that all errors are random. Absorption is a systematic error and our bond length estimates of
error should be viewed as lower limits. However, an independent structure determination from equiinclination Weissenberg photographic data25b gave Pt-X bond lengths not significantly dift'erent from those reported below (Table VI) but with esd's two to four times larger than the present results. The geometries of the counter and Weissenberg techniques are sufficiently different, so that, if absorption errors significantly affected atomic positions, they would produce significant Pt-X bond length changes. Further, our thermal parameters compare favorably with those in similar compounds in which absorption corrections have been calculated (see below). An estimate of the magnitude of the absorption correction might be obtained from the variation in the transmission factor for P t H [P(C6H5)2C2H5]Cl9of 0.1i-0.59 with I.L = 5 i cm-l. The coordinates of platinum, phosphorus, and halogen were taken from the results of the chloride isomer. Bearing in mind the criteria for the location of light atoms cited above, the carbon atoms were located independently by Fourier and difference Fourier techniques. l 2 The structure was refined with complete matrix least squares including anisotropic temperature factors for all atoms by minimizing the function
(19) G. W. Smith and J. A. Ibers, Acta Cryst., 19, 269 (1965). (20) M. B. Lang and K. S. Truehlood, ibid., 19, 373 (1965). (21) N. C. Stephenson, i b i d . , 17, 1517 (1964). (22) J. Donohue, J. D. Dunitz, K. Trueblood, and ivI. S. Webster, J. A m . Chem. Soc., 86, 851 (1963). (23) G. D. Christofferson, I L 12s 120 222 b LI1 I 3 8 8 I 5 22 1 1 I 3 2 125 I 2 22 I 1 I + b l b$ lb 32 10 20 I+ 11 *I< 1 182 2 5 b
2 3
I5
b5
12
26
.b
51
5 2.1 2'. b 1, -1. 1 18 17 O b 5 9 1 1 2 110 10 I 1 - 1 9 I 1 71 L P 11 I1 11 15 5 b 56 I1 12 L O H2 J 0 2 3 2 220 I La - 2 ,
2 3
21 bk
20
11
L 191 191
5 12 I O b 158 155
6 8 11 P 2 LO LO 128 120 1 1 J k -11 12 21 2 b 13 b 1 1 1 * 8 49 Ib 2 1 2 b 8
"12
L
187 I 1 1 2 Cb -55 3 ' I D 102
*5
51 -55 1 9 1 9, 8 I 8 .I 9 I 1 9 118 I 1 b 2 bo 15 18 18 HlG
0 208 201 Illb-L18
8 9 IO 11 12
105 I8 1.4 -39 122 I1 - 2 9 78 l b 56 5 8 84 8 5 20 - 2 2 31 3 1
11
2b
26
1I
31
38
2 I01 3 15 4 136 5 10 b 118
1
H I5116 9 161
78 -7. 3 125 121
2
+
b5
4b
5 119 1 2 2 b 94 -93 7 bl 64 8 +2 +b 9 10 72 11 5 5 5 7 1 1 LO 62 15 15 3 k "60 0 1 3 9 138 I 8b -86 2 115 1 1 5 3 5 2 52 4 LO2 105 b bb b5 1 20 - 2 2 8 51 5b 9 12 31 1 0 5 1 54 11 10 -11 1 2 L8 50 1 1 19 10 14 17 17 16 2 9 24 "10 L 1 2 1 120 2 12 -11 3 120 118 k 111 81 I
67 28 -28 8 2 80 6.
b 1 8 9 10
22 51
51
1 b -18
11
I2 nso 0
21
I 3 I6 8 -13 35 18 11 2 1 52 31 - 2 8 bo
1 2 115 110 I C b Lb k I+ 11 b 13 82 a 81 81
11
1b
1,
I2
50 41 I* I 8 I1 "96 I k 2 +1 2 L I -19 3 P I 95 L LO I 1 5 67 L P b 27 - 2 6 7 9 1 89 8 9 12 9 62 41
11
35 1 1 28 1 5 11 "12" 0 2LI
3. 21 9
13
1
22 - 2 5
2
96
I b 8
10 12 1.
92
1 -10 53 51 51 51 61 59 2, 22 39 16 15 1.
61
i
I. - I O
I
78 20 50
12 21
2b 8
23 I
21
25
21
2b I1
5
1 9
10 I1 11 15
1 HI10 0 *3 I V 2 bP 4 3. b 28
n
34
10 12
11
30
16 18 8113
1
38
I
Lb 5 25 1
4 5
6 1
8
50
61
1, 28
12 11 21 13 35 '8 2 26 7
38
15
LO
-b 19 19
2 k
32 2b
I1 2b
6 8
18
28 28 15
LO 12
10 1b I8
Ik L2 Him I 22
3
25
5 1
22
9
17
25
HlbO 0 16 2 20 L 15 b 13 8 lb HOI -1 222 1 240 '-1 119 I 60 - 5 219 5 217 -1 5 1 Cb -9
18 21 18
lb I4
213 293 I09
*I 205 205 -b 19
IO1 16
91
Ob
.o
62
JO 55
11 II 55
-15 15 5 8 17 3 I1 -17 IS LL I' I5 15 HI, 0 298 130 -1 6 8 7 * 1 64 $ 1 - 2 LO5 9 1 2 l o b 91 -1 b8 - b 9
b2
- k 251 25b L 151 151 5 10 29 -6 102 95 6 I58 152 -7 I5 -19 7 + 2 -62 -8 bb 65 8 32 32 -9 16 - 1 2 -10 I 1 2 108 LO 111 I28 20 21 -11 -12 14 15 12 1 5 36 -1' e5 b l IC *I .8 n2 1 0 99 88 - 1 115 111 I 2 0 5 218 2 6 . -58
-1 I32 115 I -b
5) 58 89 -88
b 8 3 81 -5 21a 224 5 2 2 b 228 -b 1 1 18
b -7 1 -0 8
k l -4. k8 51 11
-8 8 -9
Y
-1c
IO -11 IL I2 -13 13
14 -15 15
I1
bb
L S -.a 11 - I 2
1.6 LIL 9 82 81 -10 18 2 2 -11 56 52 I 1 16 11 -12 I 1 -11 11 38 -15 o. 60 15 k b 6 1 -11 2 1 -9
91
Sl
%9 - 5 1 eo 6. " I 99
39 -.1 39 31
r e LOO I 1 I9
79 15 19
48
LP
76
-v P
-1) -11 I1 -12
11 I1 MY1
1 100
-w
-2
4
5 -b
-1
-6
68
68
b 65 -I 6 8 8 10 P 16
b5
L -2 2
-3 3
10
ib I1
16
-2
2 125 11 22 - k 11 4 81 5 18 -6 7b b TO -7 14 1 '2 '8 66 8 19 -9 L6 9 I. -10 31 10 '5 -11 12 I1 25 -12 42 I 2 '5 -13 I1 I3 L2
19
b8 -14 -42
LI 77 -11 16
16 4,
-5 5 -1 1 -Y 9
30 - 1 1 -2.
+I $5
-10
2b
8 23
28
27
11
22 25
30 19 20 2* 18
h 28
14
II
k
26
I 90 -85
-1b
Ik
20
2 110 Ilk - 3 b5 - 6 8
-b
20
16 -18 18
15
I8
b -8 8
25
161 174 k 151 151
-5
,I 3a ~. ..
-b
9c 9 1 b 185 1 8 7 7 3 3 -11 -I 90 98 (1 6 1 LP -9 1 9 -18 9 + I +2 'IO 111 I 0 8 13 v 3 9, -I1 32 30 I L 2 0 -20 -12 2b 2 1 I 2 2 1 25 -11 2 1 -19 -1) ,9 .I
II
30
33
15
11
11
1.
*E1 0 o. -1 11 1 72 -2 2
I
IS 12 68
-2
15 -15 -3 19 78 3 111 116
-+
6
-5 5 -b b -1 1 -8
36 LB 67 51
1 2 -10 I 1 48 4b L9 bb b 5 23 22 2 8 -16 91 9 1 92 89 31 -29
2 -'I
I5
19
21
-1c
13 LO 12 nib1 - 1 20 I 22
14 24 21
kh
86
-b 6
- 11
I6
12
12
10 68
30 be
3 -5
Lk 11 13
5
I3
0 2
-b -5 5
27
21
50 1 5k
50 50 5 51
4 -b
bl
42
b 8
10 1
-3 3
21
29
23
10 20
15
-5 5 -1
21 111 1
-9
-11
12
IO bC
55 5
57
0
3
22 - 2 1 12 29
'I
58 25 13 *b 23
59
-5
38 8 18
5 -6 b
13
I O
1
11 -13 11 -15 15 17 19
81
83 10 31
bO 55 10 .I 29 19
12 29 I1 b I3 161
IO 10 11 I
0
2I 10
-1 1
-2
50
7 12 62 89
21
2
4 -12
-1
21 3b 5
-k
11
4
45
21
-5
23 21 21
-6 b -7
13 10
11
-8
-8
12
8 9
-10 10 - 112 2
J5 3 18 21 23 8
-14 16
1b 11
18
8
LO
-16
8
12
-10
11
"94 0 1 11 -1 e5 61 1 35 IB -2 I 1 -12
-16 14
22 21 11
2 -1 I -I '
11 10
-6
2b 2 15 29 27
-5 5 -1 1
IO
21
-8 -9 9
-11
0
18 1') 11
2b LA 21 20 21 I3 10
15 15 IO
2' +2
-b
2c 39 J9 20 21
32 i l
10
-1 1
lb
-1
25 12
22
8
-s
10 -1. .I
- _. .I
40 ,I
53
-I 18
-k
62
L -5 5
10 13
20 17
-6
2,
Lb
-1
,I
21
65
13 15 12 15
+I .8 I5 - 1 2 4,
A0
12
13 8 30
11
1,
b
11
,b
27
-b
Lb - 1 9
8
29 d l d
I5
1' DY
-9 I " -1c 2, 13 15
39
9
2. I8 LI 11 2,
L
-e
60
78 I6 -13
18
21
21
73
20
-9 9
2b
2
10
28 2b 27
4
.b 50 11 11
-1 I
-5 5 -7 1
-2 2 -b
2 LOP 108 -6 250 2,b
F(C)= lOF(ca1cd); F(Ca1Cd)absolute = F(calcd)/scale factor.
2
"12% 0 2L
9 11 L2 MOL 0 215 203 LO
-1
-11 II I 3
-2 31
216 1
P
I
18
9
3b
38 - LIJ1 10 3b -3 11 2 2 12 H35 ,I 0 b5 10 1 12 -1 -2 I5
9
20 -12 9 1 2 19 I' 15 HI1k
25 22
21 40
38 51 11
-10 IO
50
15 82 18 -1, 2' -19 Bb 50 5 2
I2
L
6
k
49
12
-2 2
-8 8
10
24 14
-..
28
P
21 11
-1
25 30
ZL
-3 I
28
*LO,
18 20
15
-1 1 -2 2
8 28 Ib I 15 2b 25 12 15
15
26
21
55 13 2 29
6 -1 1 -8 -9 9
23
b3 +I 20
I1 11
1b
I1 12
-5
HZ5 0 I.
15
8
13
11 69
b7 .2 Ib 10 68
2 86
>I 11 7
89
5
2b
2b
1b
-2
61
- 1I 2O 2371 1 2 . IO
-5 5
-11 11 -13 I3
lb
I
I
$1' 2 -5
17 2 1 9 -15
-7
18
27
1
12
5,
16 12
8
20 11 1, 12 27 53 50 10 *I 28 15
25 13
28
,I
Y
9
12 b
*IS
60 42
11 11
"0,
21
69
-+
9
-1--13
1 -2 2
12 15 11 12
I8 9
IC Lb 2
12 -11 2k 2 1 + I 19 12 7
LO
11 10
niw -4
58
I1
1 7
61
I2
15
IL 8
-3
61
I1 11 20
Ib
b4
30
15 10 11
b
19
HI54 I4 15
I
-3
21 29
19
10
P
23
B
1b 11
0
P
1i
9
47
5
5
25 I1
HI*
1, I1 I1 13
I1 17 Lb 11
I2 18
1b 1I
I6
8 -10
1b
50
21 11 1. 21 20 21
-8
2 I
11
3b 6C 65 25 15
20 18 18 do
IS
-*b2
12
68
16
k
51 51
v s
19
3 "1.. G 11 -2 I2
- 114 6
9
IC
LO
P
59
-11 11 LJ I5
-16
-10 -11 I1 -13 13 - 1I55
LO
3 -5 5
15
10 bl
10 12 1'
-1 1 -8 -9
I5
-1
-7 1 -9
5. I1 11
11
50
6
27
I1
-Lk 1'
-4
0 I1
19 -5 22
HI1 3 2 1 8 213 - 1 I + 9 136
15
5
12 6
51 bO 26
-1 I 45 ' 6 '1 b -19 2 2 2 -20 -3 >2 5 1
90
22
nisi 0 -1 -2
P
Ik -22 1b -11
0
33 - I 1 I 5 7,
Hlkl - I 25 1 25 -1 29 I 11
10 - 2 t
",A
44 11 2 8 21 -b -15 9 10 15 15 9 9 26 ~ 1 3 1 17 0 i5 2 5 10 1 16 15 -8 -2 52 50 LP 2 4 1 LO L7 -1 LO 0 I L -I 2 8 28 LO L '1 16 -5 12 - 7 99 -6 3 3 32 bC b 2 1 24 -12 -8 27 2b 127 8 32 11 119 -10 20 15 -17 - I 2 2 1 19 26 1 2 22 19 15 - 1 4 4 8 84 II 13 11
22
-9
25
41
-1 3
15 15 LI 5 18 I t
25
>I
113
I
-12
ni.ii
I5
Lb
b
-7
12 32 3b - 23
I+ 12 1 12 I1 11 7 14 12 1 1 16 13
-13
-5
Ib 181
12 -14
11 26
3
12 t.
58 57
-6
10
I MI,. -1 21
. 6
JO
b5
I2
b -5 5
L -1
Ib
I1
LO
-4
-15 29 15 2 9 -16 I1 16 10 -11 25 11 20 -19 15 I9 12 I411 3 I01 -1 63 1 35
3
IJ
25 Ib
ba
-9
2
45 I O
-. -3
12 I*
I.
10
17
45 .6 ,I -82
-13
b5
17
2
5 2)
1%
- 111 1
0
60
I -2
12
-1 8 -10 10
,b
17 31 22 41
'6
-.
I1
5b 11
-12
1 2
-15
21 22
bY
18
88 19
21 22
I5 16 HLI 0 +I -1 11
bB
-1
90
- 1 13
b -1 1 -8 8
IO PO I 7
1
b* k3 18 26 11 1b 3. 16 8 -11
I2
LI
L -5
-1
15 -I 33 -32 3 90 61 6 5 b 51 59 L 5 -9 29 -31 -5 13 P 51 5 1 5 14 -10 5 9 58 -6 I 3 I O 6 7 70 -7 69 -11 2 1 2 1 7 62 I 1 2 1 -21 -? 21 -I2 39 18 9 33 1 2 6 7 49 -11 35 -11. 2 8 - 2 9 11 25 11 5 LI -11 2b 16 -1) 18 38 - 1 5 11 16 l b 17 - 1 1 -lb 2 1 2 2 *ILL 0 6s 16 I 7 2 b -2 81 -18 I 1 Lb 2 11 Hbl -4 3k 0 $5 5 1 - 1 I 5 1 151 4 39 $1 1 124 1 2 1 - b b 2C -2 28 2 8 -8 37 2 50 - 5 2 I '9 - 3 145 150 I 9 h 101 13 iI -I $ 2 -,5 -12 31 I 73 12 3 3 17 -5 99 101 n121 5 6 1 b6 - 1 61 1 10 -6 5 1 51 2 9 (I $ 1 -38 -3 -7 10 1 2 58 I 55 1 hl bC -5 -8 *I - 4 , 26 8 15 1, 5 19 -9 c7 47 -7 '4 9 60 b L 7 38 - v 12 -10 22 25 9 29 - 1 1 42 $1 11 5 L 5 7 -11 2 3 -12 2 0 I1 22 -1'
10
I1
1 4 1 168 8 8 89 59 50
7 -8 8
-11 I1
P -lY -11
32 I3
I12 I 1 3 2 109 109 I. -1 5 7 -55 -1b I 1 2 11 1h
-+
11
3, 21 12 - 1 5 16 89 97 PI I 1 -I5 7 L