11 Crystallinity and Disorder in Textile Fibers MICHEL SOTTON
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
Laboratory of the French Textile Institute, 35 rue des Abondances, 92100 Boulogne sur Seine, France
Crystallinity and disorder are important structural parameters for understanding relationships between structure and physical properties. Flaws and distortions are the main features that limit the ultimate properties of textile fibers. Some of these crazes, cracks and voids are revealed under the electron microscope, either on the surface or in cross sections stained with heavy metals (1,2). However, these staining techniques (that reveal the main morphological features) make it much more difficult to determine the degree of distortion of the crystalline fraction. Theoretically, line profile studies permit separation of effects due to crystalline size from those due to structural distortions. However, the lack of peaks in semicrystalline fiber x-ray patterns hinders that approach. Nevertheless, when we carry out x-ray crystallinity measurements on textile fibers, we must consider distortions that always affect crystalline material. Even in a completely crystalline material, the scattered x-ray intensity is not located exclusively in the diffraction peaks. That is because the atoms move away from their ideal positions, owing to thermal motion and distortions. Therefore, some of scattered x-rays are distributed over reciprocal space. Because of this distribution, determinations of crystallinity that separate crystalline peaks and background lead to an underestimation of the crystalline fraction of the polymer. In this paper, we attempt to calculate the real crystallinity for textile fibers from apparent values measured on the x-ray pattern. This is done by taking into account the factor of disorder following Ruland's method (3). Theoretical Review-Ruland's Method The basic equations proposed by Ruland for the calculation of the crystallinity of polymers are :
0-8412-0589-2/80/47-141-193$05.25/0 © 1980 American Chemical Society In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
194
FIBER
2
s T
I
Jo
, .ds cr(s)
l
2
ST
L
(s)
s: I
.ds
Jo
DIFFRACTION
2
METHODS
2
s f ds 2
2
s f j ) ds
where x = w e i g h t f r a c t i o n o f t h e c r y s t a l l i n e m a t e r i a l i n t h e p o l y m e r ; s = 2 s i n 9/A, m a g n i t u d e o f t h e r a d i a l v e c t o r s i n t h e r e c i p r o c a l s p a c e (2 0= d i f f r a c t i o n a n g l e , X- w a v e l e n g h e x p r e s s e d i n A) ; \ = coherent scattered i n t e n s i t y ; I = p a r t of the c o h e r e n t s c a t t e r i n g w h i c h i s c o n c e n t r a t e d i n t o the c r y s t a l l i n e p e a k s ; f = mean s q u a r e o f t h e s c a t t e r i n g f a c t o r s o f t h e atoms i n the p o l y m e r ; and rj = d i s o r d e r f u n c t i o n . T h i s method u s e s t h e f a c t o r |< f o r t h e " a p p a r e n t " c r y s t a l l i n i t y , w h i c h i s , i t s e l f , a f u n c t i o n o f t h e d i s o r d e r p a r a m e t e r , J) Q
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
2
t
oo 2
f. /
2
s f ds 2
2
s ? D ds
D i n c l u d e s t h e d i s o r d e r r e s u l t i n g f r o m b o t h t h e r m a l m o t i o n and l a t t i c e imperfections. R u l a n d showed t h a t t h e s e two k i n d s o f d i s o r d e r c o u l d be r e p r e s e n t e d a p p r o x i m a t e l y as one and t h e same function
under the assumption of i s o t r o p i c d i s o r d e r ; t h a t i s , the average atom moves away f r o m i t s i d e a l p o s i t i o n i n a l l d i r e c t i o n s . F o r a g i v e n p o l y m e r t h a t has v a r i a b l e amounts o f c r y s t a l l i n i t y , the s c a t t e r e d i n t e n s i t y over a l a r g e range of r e c i p r o c a l s p a c e may be i n t e g r a t e d o v e r a number o f i n t e r v a l s s - s . Such i n t e r v a l s c a n be d e f i n e d e x p e r i m e n t a l l y i n s u c h a way t h a t t h e f o l l o w i n g e q u a t i o n be v e r i f i e d i n d e p e n d e n t l y f r o m t h e c r y s t a l l i n i t y o f the m a t e r i a l Q
o
p
o
s and Sp b e i n g t h e l o w e r and u p p e r l i m i t s o f i n t e g r a t i o n . On t n e s e a n g u l a r i n t e r v a l s , e q u a t i o n s c a n be u s e d f o r any s a m p l e s , under the form
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
11.
SOTTON
195
Crystallinity and Disorder in Textile Fibers
s X
S
^cr(s)
n
ds
St K "o,
^
s
f2
p , D' ~ > -
2
P s irs;ds
K = 2
2
s f exp
ds
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
o The i n t e g r a t i o n i n t e r v a l s h a v i n g b e e n d e f i n e d , t h i s s y s t e m o f e q u a t i o n s c a n be s o l v e d b y c a l c u l a t i n g t h e nomogram o f « v a l u e s t h a t m a i n t a i n as a constant t h e c r y s t a l l i n i t y , x f o r a g i v e n function of disorder rj We have u s e d t h i s a p p r o a c h f o r s e v e r a l t e x t i l e f i b e r s , b u t b e f o r e s h o w i n g r e s u l t s , t h e e x p e r i m e n t a l c o n d i t i o n s w i l l be d e s cribed. Q
(
Experimental Sample P r e p a r a t i o n . F i b e r c r y s t a l l i n i t y studies require the p r e l i m i n a r y making o f a " g l o b a l sample" i n which a l l p r e f e r e n t i a l o r i e n t a t i o n h a s b e e n removed. The g e n e r a l way i s t o g e t a "powder" made o f f i b e r c r o s s s e c t i o n s . O u r c r o s s s e c t i o n s h a v e b e e n c u t w i t h a n a u t o m a t i c m i c r o t o m e (4) made e s p e c i a l l y f o r t h i s u s e , a l l o w i n g us t o make r e g u l a r c u t t i n g s . The l e n g h t o f t h e c r o s s s e c t i o n s c a n be a d j u s t e d f r o m 20 ym t o 200 ym, and we g e n e r a l l y c h o o s e a l e n g t h o f 80 ym f o r t h e d i f f e r e n t t e x t i l e f i b e r s . C r o s s s e c t i o n s a r e t h e n s i f t e d and p e l l e t e d i n s i d e s a m p l e h o l d e r s t h a t a r e o f d i f f e r e n t s i z e s , depending on whether the t r a n s m i s s i o n o r r e f l e c t i o n mode i s u s e d . I n t h e s y m m e t r i c a l t r a n s m i s s i o n mode, where s c a n s a r e p e r f o r m e d f r o m 7° t o 75° 2 9 , t h e s a m p l e t h i c k n e s s i s l e s s t h a n 1 mm. I n t h e s y m m e t r i c a l r e f l e c t i o n mode, w i t h s c a n s f r o m 70° t o 130° 2 9 , t h e s a m p l e t h i c k n e s s i s 3 mm. C a r e f u l work i s n e c e s s a r y t o remove a l l p r e f e r r e d o r i e n t a t i o n f r o m powder s a m p l e s . F i g u r e 1 shows r e s u l t s o b t a i n e d w i t h p o l y e t h y l e n e t e r e p h t h a l a t e (PET) f i b e r s . Curve £ i s a t y p i c a l azimut h a l s c a n o f t h e 010 peak (29 = 17,5°) f o r a b u n d l e o f p a r a l l e l f i b e r s p l a c e d p e r p e n d i c u l a r l y t o t h e x - r a y beam. C u r v e b^ i s t h e same s c a n c a r r i e d o u t o n a "powder" s a m p l e , s h o w i n g t h a t a l l p r e f e r r e d o r i e n t a t i o n i s removed i n o u r c o n d i t i o n s o f m o u l d i n g (350 kg/m2). F o r e a c h k i n d o f f i b e r , i t i s n e c e s s a r y t o do p r e liminary t r i a l s t o f i n d the best experimental conditions. F o r PET f i b e r s , we show o n F i g u r e 2 t h e r e l a t i v e c r y s t a l l i n i t y i n d e x and t h e r e s i d u a l o r i e n t a t i o n p l o t t e d a g a i n s t t h e c u t - l e n g h . ( 5 ) .
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
196
FIBER
Figure 1.
X-ray azimuthal scans of (010)
DIFFRACTION
METHODS
peak of PET fibers.
Curve a: bundle of parallelfibersput perpendicularly to the x-ray beam; Curve b: "powder" made of cut fibers. It can be ascertained that all preferential orientation is practically removed when a powder sample made of regular small cross section is used.
Figure 2.
Effect of cross-section length on crystallinity index ( preferential orientation ( )
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
) and
on
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
11.
SOTTON
Crystallinity and Disorder in Textile Fibers
197
P r e f e r e n t i a l o r i e n t a t i o n i n c r e a s e s r a p i d l y when t h e c u t - l e n g t h i s g r e a t e r t h a n 80 ym, a n d t h e c r y s t a l l i n i t y i n d e x goes t h r o u g h a maximum a t t h e same c u t - l e n g t h . To e x p l a i n s u c h r e s u l t s we s u g gest : - the weight o f the d e c r y s t a l l i z e d m a t e r i a l which c o u l d appear a t t h e b o t h ends o f c u t s , becomes g r e a t e r and g r e a t e r a s t h e c u t length decreases. - p r e f e r e n t i a l o r i e n t a t i o n s , n o t i c e d f o r t h e l o n g e s t c u t s have f o r e f f e c t s t o r e d u c e t h e o v e r a l l c r y s t a l l i n i t y o f t h e sample (peak extinctions...) T h e r e f o r e , 80-ym c u t - l e n g t h s were u s e d f o r PET s t u d i e s . F o r o t h e r more c r y s t a l l i n e f i b e r s , e x p e r i m e n t a l c o n d i t i o n s seem l e s s c r i t i cal. T a b l e I shows t h e c r y s t a l l i n i t y i n d i c e s f o r s e v e r a l c e l l u l o s i c f i b e r s c u t a t 30ym and a t 80 ym. Those i n d i c e s do n o t seem s e n s i b l y d i f f e r e n t i n t h i s range o f c u t - l e n g t h s . Table I Polynosic F i b e r s : E f f e c t o f cut length Crystallinity
Index %
Samples Cut
l e n g t h 30 ym
Cut
l e n g t h 80 ym
Polynosic ref. A
68 %
72 %
Polynosic ref. B
62 %
62 %
Polynosic ref. C
58 %
60 %
T r e a t m e n t o f E x p e r i m e n t a l V a l u e s . The e x p e r i m e n t a l v a l u e s a r e c o r r e c t e d f o r a i r s c a t t e r i n g , p o l a r i z a t i o n , but a b s o r b t i o n - geom e t r i c ( L o r e n t z ) c o r r e c t i o n s a r e n o t made. A f t e r t h e v a r i a b l e 28 i s transformed i n t o s = 2 s i n 8 , the e x p e r i m e n t a l curves are n o r m a l i z e d , i n e l e c t r o n i c u n i t s , by adjustment t o a t h e o r e t i c a l curve. T h e o r e t i c a l c u r v e s ( t o t a l s c a t t e r i n g power, summing up c o h e r e n t and i n c o h e r e n t s c a t t e r i n g s ) a r e c a l c u l a t e d f r o m t h e s t o i c h i o m e t r i c composition o f polymers. I n o r d e r t o o b t a i n good a d j u s t e m e n t b e t w e e n e x p e r i m e n t a l a n d t h e o r e t i c a l c u r v e s , we c o r r e c t f o r t h e a b s o r b t i o n d i s c r e p a n c y b e t ween t h e c o h e r e n t and i n c o h e r e n t s c a t t e r i n g , w h i c h becomes l a r g e r at wide s c a t t e r i n g a n g l e s . Because o f t h i s d i s c r e p a n c y , c o r r e c t i o n s a r e s u c c e s s i v e l y made t o t h e r a t i o I ( i n c o h ) (3) f o r t h e I (coh) a b s o r b t i o n e f f e c t s i n t h e sample i n r e f l e c t i o n mode, t h e a i r p a t h , and t h e R o s s f i l t e r s . A f t e r a l l c o r r e c t i o n s are completed, the diagrams o f s I ^ v s . s a r e drawn. C o n v e n i e n t i n t e g r a t i o n i n t e r v a l s a r e d e t e r mined f o r c a l c u l a t i n g t h e nomogram o f K v a l u e s . F o r i n s t a n c e , 2
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
198
FIBER DIFFRACTION
METHODS
INTENSITY (ELECTRONIC UNIT)
Figure 3.
Theoretical curves of scattered intensity by PET and experimental normalized intensity by PET fibers
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
11.
SOTTON
Crystallinity and Disorder in Textile Fibers
199
F i g u r e 4 c o r r e s p o n d s t o a p o l y p r o p y l e n e sample and F i g u r e 5 t o a w e l l - c r y s t a l l i z e d PET s a m p l e . F o u r i n t e g r a t i o n i n t e r v a l s c h o s e n f o r the diagrams o f the main t e x t i l e f i b e r s . F o r PET f i b e r s , t h e y are : s
to s °
P
= 0.1 t o 0.4 0.1 t o 0.67
0.1 0.1
t o 1.0 t o 1.2
I t i s t h e r e f o r e p o s s i b l e t o c a l c u l a t e the K v a l u e s over these i n t e r v a l s w i t h d i f f e r e n t k v a l u e s . The r e s u l t s f o r PET a r e shown on F i g u r e 6. I t c a n be a s c e r t a i n e d , a s R u l a n d has a l r e a d y shown f o r p o l y e t h y l e n e , t h a t s t a r t i n g from a d i s o r d e r f u n c t i o n w i t h s p h e r i c a l symmetry, t h e p l o t s o f K v s . s ( t h e u p p e r l i m i t s o f i n t e g r a t i o n ) c a n be r e d u c e d t o a s e t o f s t r a i g h t l i n e s f o r t h e d i f ferent k values. F i n a l l y , b e f o r e c a r r y i n g out the c a l c u l a t i o n , i t i s n e c e s s a r y to s k e t c h t h e b o u n d a r y b e t w e e n t h e c r y s t a l l i n e p e a k s a n d t h e amorphous b a c k g r o u n d . T h i s l i n e c a n be c a l c u l a t e d i f a n amorphous sample has b e e n u s e d a s a r e f e r e n c e , s u c h a s f o r PET and c e l l u l o s e fibers. I f no amorphous s t a n d a r d s a r e a v a i l a b l e , t h e b a c k g r o u n d i s drawn m a n u a l l y , f o l l o w i n g a l i n e p a r a l l e l t o t h e t h e o r e t i c a l c u r v e (4,5) ( t o t a l s c a t t e r i n g power summing up c o h e r e n t a n d i n c o herent s c a t t e r i n g ) . T a b l e I I shows e f f e c t s o f t h e d i s o r d e r p a r a m e t e r o n t h e c a l c u l a t e d c r y s t a l l i n i t y o f c o t t o n , n y l o n 66 (PA 66) and PET f i b e r s a m p l e s . When k = 0, no c o r r e c t i o n f o r d i s t o r t i o n i s made d u r i n g calculation of crystallinity. A c c o r d i n g l y , v a l u e s o f X become s m a l l e r a s t h e i n t e g r a t i o n i n t e r v a l s i n c r e a s e . On t h e nomogram of K v a l u e s , i t i s p o s s i b l e t o determine the d i s o r d e r parameter v a l u e t h a t m a i n t a i n s as a p p r o x i m a t e l y c o n s t a n t t h i s c r y s t a l l i n i t y when u s i n g t h e d i f f e r e n t i n t e r v a l s : t h e d e v i a t i o n f r o m t h e c o n s tancy i s used, i n the computing program t o determine the b e s t v a l u e o f k and t o e s t i m a t e t h e e r r o r s o f t h e s e a n a l y s e s . The d i s o r d e r p a r a m e t e r k i s h i g h e r i n c o t t o n and PA 66 t h a n i n a l l PET f i bers. B e s i d e s , one c a n see t h a t a p p a r e n t c r y s t a l l i n i t y v a l u e s ( d i s o r d e r parameter not considered) are lower than the t r u e ones.
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
p
Q
Experimental
Results
P o l y e s t e r F i b e r s . The f i r s t example i n v o l v e s two i n d u s t r i a l PET y a r n s . The f i r s t y a r n has a r e s i d u a l s h r i n k a g e o f 8 % ( F i g u r e 7) a n d t h e s e c o n d y a r n has u n d e r g o n e i n d u s t r i a l s t a b i l i z i n g h e a t t r e a t m e n t and has a l m o s t no r e s i d u a l s h r i n k a g e (0,6 % ) . We see t h a t t h e s e c o n d sample i s , o f c o u r s e , more c r y s t a l l i n e t h a n t h e f o r m e r b u t t h a t i t has a h i g h e r d i s o r d e r p a r a m e t e r ( g i v e n i n brackets). B o t h s a m p l e s were a n n e a l e d f o r 1 h o u r a t 220°C i n a s l a c k s t a t e ( s h r i n k a g e d u r i n g a n n e a l i n g was a l l o w e d ) . The sample t h a t s h r i n k s 8 % c r y s t a l l i z e s a t a l e v e l c l o s e t o t h a t o f the i n d u s t r i a l l y s t a b i l i z e d y a r n . But s i m u l t a n e o u s l y w i t h
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
to o o
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
2
Figure 5. Is vs. s diagram for a well-crystallized PETfiber( ) and an amorphousfibersample ( ). The amorphous background has been calculated in the ranges A-B, B-C, C-D . . . from the amorphous curve and a factor of proportionality.
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
to Ο
S
* > • .
S'
ι
1'
§
S*
î
H H Ο
8
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
202
FIBER
DIFFRACTION
2
METHODS
Figure 6. Nomogram of K (s k) values for PET fibers in the hypothetical ideal case where an isotropic disorder exists in the crystalline fraction of those fibers and calculated for the chemical composition (C O H ) and s = 0.1 p
10
4
8
n
0
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
: s -s o p
: s -s o p
2nd
3rd
X
c
|
CV % 5,8
0,41
0,434
0,401
0,381
0,422
C.V.
!
j
!
I
I
|
Crystallinity
0,08
0,100
0,146
0,204
Coefficient
Crystallinity
: Variation
T.C. : T r u e
A.C. : A p p a r e n t
i
!
!
0,122
0,101
!
!
0,184
0,317
2,3
0,236
0,239
0,231
0,232
0,242
P o l y e s t e r Y a r n (PET) A.C. i T.C. k = 0 | k = 2,5
as F u n c t i o n o f k and I n t e g r a t i o n
Cotton Fibers A.C. | T.C. k = 0 ! k = 4
Fraction X
Average
4 t h : s -s o p
: s -s o p
1st
- s o p Intervals
s
Crystalline
Table II
0,161
0,191
0,260
0,474
1
j
I
i
!
!
7 , 3
0,563
0,601
0,555
0,508
0,586
P o l y a m i d e Y a r n (66) A.C. i T.C. k = 0 I k = 3,3
Intervals
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
204
FIBER
DIFFRACTION
METHODS
a 0,40 annealed
sample
4
level
(2,8)
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
0,30
i n i t i a l sample (2,5) level
0,20^
IQ
50
0,40
4
annealed
. yg c
3
l e s
100
sample
level
[ _ . — : = = — „ . . , T
i n i t i a l sample l e v e l !
L
0,30
(2,1)
4— (2,9)
(2,4)
(1,7)
0,20 j
1.0 50
Figure 7.
ycles
100
Effect of annealing treatment and mechanical fatigue on crystallinity and disorder for two samples of PET fiber.
(a) PET singlefilamentyarn (industrial sample): 110 tex f 220 S 28 tpm (Tergal 5 dtex), shrinkage capacity 8%; (b) PET singlefilamentyarn (industrial sample): 116 tex f 220 S 32 tpm (Tergal 5,25 dtex), stabilized sample (conditions of stabilization are unknown), residual shrinkage 0.6%. The values of k appear between brackets. Annealing treatment (1 hr at 220°C) produces an increasing of crystallinity: the range of this change is represented by arrows on the figures for the two samples of PET fibers. Mechanical fatigue produces an increase in crystallinity for the less crystallized sample—8% shrinkage (Figure 7a), and a decrease in crystallinity for the stabilized, well crystallized sample—0.6% shrinkage (Figure 7b). In both cases fatigue produces a decrease in the disorder parameter.
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
11.
SOTTON
205
Crystallinity and Disorder in Textile Fibers
t h i s n e o c r y s t a l l i z a t i o n , the d i s o r d e r parameter i n c r e a s e s from k = 2.5 t o k = 2.8. A l s o , t h e a n n e a l i n g t r e a t m e n t does n o t g r e a t l y i m p r o v e t h e c r y s t a l l i n i t y o f t h e s t a b i l i z e d sample b u t does a l l o w d i s t o r t i o n t o b e removed ( k d e c r e a s e s f r o m 2.9 t o 2 . 6 ) . These two s a m p l e s h a v e a l s o u n d e r g o n e m e c h a n i c a l f a t i g u e ( t h o u s a n d s o f c y c l e s o f e x t e n s i o n i n t h e Hooke's Law zone b e t w e e n two l e v e l s o f s t r e s s ) . The c u r v e s ( F i g u r e 7) show changes o f c r y s t a l l i n i t y and changes o f t h e d i s o r d e r p a r a m e t e r when p l o t t e d a g a i n s t t h e number o f c y c l e s . The s a m p l e t h a t was i n i t i a l l y l e s s c r y s t a l l i n e r e g i s t e r e d a n i n c r e a s e i n c r y s t a l l i n i t y and a r e d u c t i o n i n d i s t o r t i o n s a f t e r the f a t i g u e t r e a t m e n t . T h i s r e s u l t i s u n u s u a l . F o r most c r y s t a l l i n e m a t e r i a l s , f a t i g u e r e d u c e s t h e c r y s t a l l i n e f r a c t i o n and t h e amount o f d i s t o r t i o n . P a r a d o x i c a l l y , such a m e c h a n i c a l f a t i g u e a p p a r e n t l y a c t s as a t r e a t m e n t f o r r e l a x a t i o n o f s t r e s s and a l l o w s f l a w s , l o c a t e d a t the s t r e s s a r e a s t o be p a r t l y d i s s i p a t e d . A l s o , m e c h a n i c a l f a t i g u e t r e a t m e n t s can e l i m i n a t e e f f e c t s o f a p r e v i o u s t h e r m a l t r e a t m e n t . Two s a m p l e s t h a t were i n i t i a l l y d i f f e r e n t became more s i m i l a r w i t h r e g a r d t o t h e i r c r y s t a l l i n i t y a f t e r 50 x 1 0 c y c l e s . They had a medium l e v e l o f c r y s t a l l i n i t y c h a r a c t e r i z e d b y d i s o r d e r p a r a m e t e r v a l u e s t h a t a r e p a r t i c u l a r l y low. F i g u r e 7 a l s o shows t h a t t h e two s a m p l e s c o u l d become i d e n t i c a l a f t e r the a n n e a l i n g treatments, t h i s time a t a h i g h l e v e l o f c r y s t a l l i n i t y and c h a r a c t e r i z e d b y s t r o n g d i s t o r t i o n s . I t seems d i f f i c u l t t o remove, b y a n n e a l i n g , t h e s e d i s t o r t i o n s ( c h a i n f o l d i n g s ) t h a t a p p e a r d u r i n g a t h e r m a l t r e a t m e n t w i t h t h e sample allowed t o shrink. I n t h e c a s e o f a n amorphous sample a n n e a l e d s e v e r a l hours t o get a c r y s t a l l i n e s t a n d a r d , r e a l c r y s t a l l i n i t y was a s h i g h a s 0.66 b u t k r e m a i n e d a s h i g h a s 2.6 (_5). These r e s u l t s a r e n o t t h e o n l y ones t h a t c o u l d be r e g i s t e r e d , and e x t e n s i v e changes o c c u r i n the amorphous f r a c t i o n . For i n s t a n c e , t h e o r i e n t a t i o n f u n c t i o n o f t h e m o l e c u l e s i n t h e amorphous zone changes s t r o n g l y a f t e r e a c h t r e a t m e n t . The r e s u l t s i n T a b l e I I I a n d I V w i l l n o t be d i s c u s s e d h e r e i n d e t a i l , b u t s i m u l t a n e o u s d e t e r m i n a t i o n s o f t h e amorphous m o r p h o l o g y and c r y s t a l l i n e perfection could lead t oa better understanding o f f i b e r properties. They c o u l d g i v e a b e t t e r u n d e r s t a n d i n g o f SAXS p a t t e r n s , the i n t e n s i t y d i f f e r e n c e s o f w h i c h are d i f f i c u l t t o e x p l a i n on t h e b a s i s o f changes i n c r y s t a l l i n i t y . T a b l e V shows r e s u l t s o b t a i n e d o n t e t r a m e t h y l e n e t e r e p h t h a l a t e f i b e r s , h e a t t r e a t e d a t 220°C f o r d i f f e r e n t t i m e s i n a r e l a x e d s t a t e . T h e r e a g a i n , we o b s e r v e a g r e a t improvement i n t h e amount o f t h e c r y s t a l l i n e m a t e r i a l b u t a l s o i n c r e a s i n g d i s t o r tions . 3
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
initial
-
f am
c S A X
2,4
2,1
1,7
2,0
2,6
2,9
k
V c
193
203
216
203
217
189
10
3
A
Crystallinity 3
R x 3,6
R x 2,9
-
R x 2,3
R x 6,9
R x 3.6
S A X S
2
Parameters L
A x
0,839 0,843
0,984 0,982
150 152
0,831
0,745
0,790
^ am
0,840
0,985
0,984
0,984
f
L
Amorphous
0,985
-
150
143
150
P
o
: 0 ,6 %
a
o
87
81
-
78
75
82
A
Amorphous
length.
C r y s t a l Volume c a l c u l a t e d f r o m t h e 010 - 100 and 105 l i n e - b r e a d t h (5) I n t e n s i t y o f t h e S A X S d i a g r a m s , i n a r b i t r a r y u n i t s , and e x p r e s s e d compared to the i n t e n s i t y R o f the i n i t i a l (8% shrinkage) f i b e r diagram. L o n g P e r i o d by S A X S. O r i e n t a t i o n f u n c t i o n of the c r y s t a l l i n e f r a c t i o n ( 1 2 ) . O r i e n t a t i o n f u n c t i o n o f t h e amorphous f r a c t i o n c a l c u l a t e d f o l l o w i n g D u m b l e t o n ' s method ( J . P o l y m . S c i . A V o l . 6 7 9 5 ) , 1968.
0,33
110.000
V
0,32
57.000
0,35
0,39
0,30
cycles
c
0,35
X
26.000
fatigue 4.500
- a n n e a l e d 220°C
-
S a m p l e
POLYESTER Y a r n - 2 GT - R e s i d u a l S h r i n k a g e
Changes i n c r y s t a l l i n e and amorphous f r a c t i o n s o f PET f i b e r s a f t e r a n n e a l i n g t r e a t m e n t and m e c h a n i c a l f a t i g u e .
Table I I I
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
to o
C5/
D
§
W H
O H O
m
03
ON
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
initial
-
c
0,25 0,28 0,31 0,25
0,37
0,24
X
L
am
c S A X S
V
fatigue 4.500 c y c l e s 25.000 63.800 82.000
- a n n e a l e d 220°C
-
S a m p l e 3
au
S A X S
109 99 96 119 R x 2
R x 1,9 R x 1 ,5
L
137 138 137 137
131
138
A P
: 8 %
0,987 0,985 0,985 0,991
0,854
0,854 0,832
o
A
Amorphous
length.
2
O r i e n t a t i o n f u n c t i o n o f t h e amorphous f r a c t i o n c a l c u l a t e d D u m b l e t o n ' s method ( J . P o l y m . S c i . A V o l . 6 795) 1968.
O r i e n t a t i o n f u n c t i o n o f t h e c r y s t a l l i n e f r a c t i o n (12) following
I n t e n s i t y o f t h e S A X S d i a g r a m s , i n a r b i t r a r y u n i t s , and e x p r e s s e d compared t o t h e i n t e n s i t y R o f t h e i n i t i a l (8 % s h r i n k a g e ) f i b e r d i a g r a m . L o n g P e r i o d by S A X S.
(5)
76 81 77 76
70
0,690
0,976
a 77
am
L
0,832
x
f
0,987
f
Amorphous
C r y s t a l v o l u m e c a l c u l a t e d f r o m t h e 010 - 100 a n d 105 l i n e - b r e a d t h
2 2,4 1,9 2
R x 5,4
A
181
3
2,8
10 R
c 111
V
Parameters
2,5
k
Crystallinity
POLYESTER Y a r n - 2 GT - R e s i d u a l S h r i n k a g e
Changes i n c r y s t a l l i n e and amorphous f r a c t i o n s o f PET f i b e r s a f t e r a n n e a l i n g t r e a t m e n t and m e c h a n i c a l f a t i g u e .
T a b l e IV
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
208
FIBER
DIFFRACTION
METHODS
Table V
POLYESTER 4 GT x
Sample -
Yam
initial
c
k
0.22
1.9
f
0.43
2.6
15'
0.41
2.8
30'
0.43
2.6
- a n n e a l e d 220°C
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
shrink time
: 30 :
2
%
N y l o n F i b e r s . T a b l e V I shows t h a t PA 66 f i b e r s a r e d i f f e r e n t , t h a t h e a t t r e a t m e n t s o f 2 s e c o n d s a t 220°C, w i t h s h r i n k a g e a l l o w e d , do n o t m o d i f y t h e c r y s t a l l i n i t y . Such m o d i f i c a t i o n r e quires annealing f o r 3 minutes, with shrinkage allowed. The r e a l c r y s t a l l i n i t y o f PA 66 f i b e r s i s h i g h e r t h a n t h a t o f PET f i b e r s , b u t i n c o n t r a s t w i t h r e s u l t s o b t a i n e d w i t h PET f i b e r s , h e a t t r e a t ments d e c r e a s e t h e k p a r a m e t e r . V a r i a t i o n s o f k must be compared w i t h v a r i a t i o n s i n a P e r f e c t i o n C r y s t a l l i n e Index ( I P ) obtained a c c o r d i n g to D u m b l e t o n ' s method, f r o m t h e 010 and 100 p e a k s ( 7 ) . I P increases r a p i d l y a f t e r heat treatments. An i n c r e a s e o f t h i s i n d e x i s p r o o f of a p r o g r e s s i v e t r a n s f o r m a t i o n from a pseudohexagonal phase i n t h e i n i t i a l sample ( d i s t u r b e d as s e e n f r o m t h e k v a l u e ) d e c r e a s i n g to g i v e a l e s s d i s t u r b e d t r i c l i n i c phase a f t e r thermal treatment^ We a l s o n o t i c e a c o n s i d e r a b l e i n c r e a s e o f t h e SAXS i n t e n s i t y t h a t c o u l d n o t be e x p l a i n e d by t h e change o f c r y s t a l l i n i t y ( w h i c h r e m a i n s p r a c t i c a l l y c o n s t a n t ) b u t c o u l d p a r t l y be e x p l a i n e d by a d e c r e a s e d k. C
C
A c r y l i c F i b e r s . T a b l e V I I shows t h a t c r y s t a l l i n i t y o f p o l y a c r y l o n i t r i l e i s o n l y s l i g h t l y m o d i f i e d by h e a t t r e a t m e n t s . The f r a c t i o n o f c r y s t a l l i n e m a t e r i a l seems r a t h e r d i s t o r t e d , as j u d g e d by t h e k v a l u e s . Wet t r e a t m e n t s a l o n e a l l o w s u b s t a n t i a l amounts o f d i s t o r t i o n s t o be removed. W a t e r m o l e c u l e s c o u l d e n t e r t h e o r d e r e d r e g i o n s and r e l a x d i p o l e - d i p o l e i n t e r a c t i o n s , a l l o w i n g some m o l e c u l a r m o t i o n .
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
11.
SOTTON
Crystallinity and Disorder in Textile Fibers
209
Table V I
PA 66 Y a r n - 78 d t e x Sample
k
c
SAXS Integrated intensity
PI
%
0.56
3.3
47
164 a.u.
+ 2 %
0.56
2.5
69
235
0 %
0.59
2.9
67
350
- 2 %
0.55
2.9
66
545
- 4 %
0.56
2.8
67
473
- 6 %
0.56
2.6
72
493
- a n n e a l e d - 3'
0.61
2.7
80
-
-
initial
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
- heat t r . 220°O2"
220°C - 10 %
Table V I I
CRYLOR
(homopolymer)
Sample
X
k c
-
initial
- d r y heat
3.8
0.37 0.39
3.6 3.6
0.33 0.38
3.3 3.3
treated
140°C 170°C - wet h e a t
0.34
treated
130°C 180°C
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
210
FIBER DIFFRACTION
METHODS
C o t t o n F i b e r s . F i g u r e 8 shows t h e way t h e b a c k g r o u n d was drawn on t h e x - r a y d i a g r a m , i n r e f e r e n c e t o a s t a n d a r d amorphous p a t t e r n . As w i t h PAN f i b e r s , t h e c r y s t a l l i n e f r a c t i o n i n c o t t o n seems r a t h e r d i s t u r b e d by d i s t o r t i o n s , j u d g e d by t h e h i g h k v a l u e s (Table V I I I ) . A m e r c e r i z i n g treatment w i t h c a u s t i c soda s o l u t i o n , which transforms c e l l u l o s e I to C e l l u l o s e I I , produces a reduct i o n o f the o v e r a l l c r y s t a l l i n i t y , w i t h a r e l a x a t i o n o f t h e i n i t i a l crystalline distortions. P e r c e n t a g e s o f c e l l u l o s e I and c e l l u l o s e I I , as w e l l as t h e o v e r a l l c r y s t a l l i n i t y d e t e r m i n e d a c c o r d i n g t o a r e l a t i v e method ( 5 ) , a r e shown i n t h e r i g h t p a r t o f Table V I I I . We c o u l d assume t h a t t h e d e c r e a s e o f k t h r o u g h merc e r i z a t i o n c o u l d be a c c o u n t e d f o r by t h e f o l l o w i n g simultaneous effects. The f i r s t e f f e c t i s t h e r e m o v a l o f t h e most d i s t u r b e d f r a c t i o n of the i n i t i a l l y c r y s t a l l i n e , f i b r i l l a r s u r f a c e of the cellulose. The s e c o n d e f f e c t i s a r e g e n e r a t i o n o f a l e s s d i s t u r b e d p h a s e . I f we r e c a l l t h a t c h a i n - f o l d i n g c a u s e d d i s o r d e r i n PET, t h e r e g e n e r a t i o n o f a l e s s d i s o r d e r e d p h a s e s u g g e s t s t h a t t h e f o r m a t i o n of c e l l u l o s e I I occurs without c h a i n - f o l d i n g . Table V I I I
COTTON 53/2 Sample
X
- Menoufi
k
Cell.I
%
Cell.II %
Cr.
%
c -
initial
0.41
4
80
-
80
-
mercerized
0.27
3.1
29
48
77
K e v l a r F i b e r s . T a b l e I X shows r e s u l t s o b t a i n e d w i t h K e v l a r 950 f i b e r s . The c r y s t a l l i n i t y o f t h i s a r o m a t i c p o l y a m i d e i s o n l y s l i g h t l y h i g h e r than t h a t f o r the a l i p h a t i c polyamide samples t h a t we s t u d i e d ( T a b l e V I ) . But i n K e v l a r , as f o r PET f i b e r s , t h e d i s o r d e r p a r a m e t e r k i s s m a l l e r t h a n i n PA 66 f i b e r s . Thermal t r e a t m e n t a t 220°C f o r 1 h o u r i n s l a c k c o n d i t i o n s does n o t s u b s t a n t i a l l y i n c r e a s e t h e a v e r a g e c r y s t a l l i n i t y o f t h e K e v l a r 950 f i b e r s and p r o d u c e s more d i s t o r t i o n s . C o n s e q u e n t l y , we c o n c l u d e t h a t the b e h a v i o r o f t h i s A r a m i d f i b e r d u r i n g our a n n e a l i n g t r e a t m e n t i s s i m i l a r t o PA 66 as f a r as c r y s t a l l i n i t y i s c o n c e r n e d K e v l a r 950 i s a l s o s i m i l a r t o PET f i b e r w i t h r e g a r d t o t h e b e h a v i o r o f the d i s o r d e r p a r a m e t e r .
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
2
Figure 8. Is vs. s diagram for cottonfibers( ) and amorphous cellulose ( ). The amor phous background has been calculated from the amorphous curve and a factor of proportionality. ( ) Experimental curve; (·---) amorphous cellulose sample; (· · -) amorphous background.
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
ι—*
Κ)
a
S*
I
Î
Ο Η Η Ο
212
FIBER DIFFRACTION
METHODS
Table IX
Intervals
Kevlar
s
t y p e 950
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
o
- s p
1st i n t s -s o p 2nd i n t s - s o p 3rd i n t s -s o p 4th i n t s -s o p Moy. X
q
CV %
K e v l a r t y p e 950 annealed 220°C - 1 h (slack)
C.A. k=0
C.V. k = l ,8
C.A. k=0
C.V. k=2
0,486
0,564
0,514
0,606
0,409
0,593
0,401
0,604
0,328
0,591
0,294
0,560
0,235
0,561
0,240
0,615
0,577
0,596
2,9 %
4,1 %
Conclusion These e x a m p l e s i l l u s t r a t e how t o o b t a i n r e s u l t s a b o u t c r y s t a l l i n i t y and d i s o r d e r f o r a b e t t e r u n d e r s t a n d i n g o f t h e r e l a t i o n s h i p s b e t w e e n s t r u c t u r e and p r o p e r t i e s . The r e a d e r i s , h o w e v e r , c a u t i o n e d t h a t c r y s t a l l i n i t y and d i s o r d e r p a r a m e t e r s d e t e r m i n e d by x - r a y d i f f r a c t o m e t r y a r e a v e r a g e v a l u e s and t h a t t h e y s h o u l d be c a r e f u l l y compared w i t h l o c a l o r d e r measured b y e l e c t r o n d i f f r a c t i o n on u l t r a - t h i n c r o s s s e c t i o n s o f t e x t i l e f i b e r s ( 9 ) w i t h d i f f e r i n g c r y s t a l l i t e s i z e s (10,11).
Abstract Corrections of the apparent crystallinity values of fibers materials have been carried out by taking into account a disorder parameter k, following Ruland's method. Peculiar care was taken about samples preparation (cutting and pelleting of fibers), data collection and reduction, which will be briefly described. Cryst a l l i n i t y and disorder parameter measurements have been performed on main textile fibers (polyester, polyamide, aramid, polypropylene, cellulosic fibers) and the results w i l l be discussed comparatively, with those got by more conventional x-ray crystallinity determinations. The complementarities of these different approaches w i l l be illustrated with several examples. For instance,
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by TUFTS UNIV on November 24, 2015 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch011
11.
SOTTON
Crystallinity and Disorder in Textile Fibers
213
polyester fibers exhibit, after heat treatments in the slack state, higher crystallinity but also higher disorder parameter, and after mechanical fatigue, an increasing of the crystalline fraction with this time a reduction of the k value. For example, after 65,000 cycles of extension between two levels of stress choosen in the Hooke's zone - the crystallinity in a Poly(ethylene terephthalate) fibers increases from 23 % to 30 % and k decreases from 2.5 to 1.9. On the contrary in 66 polyamide fibers, after heat treatments, the crystalline fraction does not increase a lot, but a significant decrease of the k parameter is registered simultaneously with greater percentage of the gamma to alpha phase transformation. As far as cotton fibers are concerned,mercerizing treatments in caustic soda, produce a significant decrease of the overall crystallinity and a removing of distortions, in proportion as transformation c e l l . I to c e l l . I I increases. Literature Cited 1. SOTTON, M. C.R. Acad. Sc. Paris, 1970, 270, série B, 1261. 2. SOTTON, M. Textile Research Journal, 1971, 41, 834. 3. RULAND, W. Acta Crystallogr., 1961, 14, 1180. 4. SOTTON, M. ; ARNIAUD, A.M. ; RABOURDIN, C. J . Appl. Polym. S c i . , 1978, 22, 2585. 5. SOTTON, M. ; ARNIAUD, A.M. ; RABOURDIN, C. Bulletin Scientifique ITF, 1978, 7, 265. 6. ALEXANDER, L.E. "X-Ray Diffraction Methods In Polymer Science"; Wiley, 1969. 7. DUMBLETON, J.H. J. Appl. Polym. S c i . , 1968, A 2, 2067. 8. RHÔNE POULENC TEXTILE - Private Communication. 9. HAGEGE, R. "Diffraction Methods for Structural Determination of Fibrous Polymers" ; American Chemical Society : Washington, 1979, in Press. 10. HINDELEH, A.M. ; JOHNSON, D.J. Polym. 1972, 13, 27. 11. JOHNSON, D.J. ; "Diffraction Methods for Structural Determination of Fibrous Polymers" ; American Chemical Society : Washington, 1979, in Press. 12. URBANCZYK, G.W. ; Kolloid Z . , 1960, 2, 128. RECEIVED May
21,
1980.
In Fiber Diffraction Methods; French, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.