Article pubs.acs.org/jced
Cite This: J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Densities and Viscosities for the Ternary System of Decalin + Methylcyclohexane + Cyclopentanol and Corresponding Binaries at T = 293.15 to 343.15 K Xiaoyi Chen, Shenda Jin, Yitong Dai, Jianzhou Wu, Yongsheng Guo, Qunfang Lei, and Wenjun Fang* Department of Chemistry, Zhejiang University, Hangzhou 310058, China Downloaded via LEIDEN UNIV on March 19, 2019 at 01:34:18 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
S Supporting Information *
ABSTRACT: Densities (ρ) and viscosities (η) for the ternary system of decalin (1) + methylcyclohexane (2) + cyclopentanol (3) and three corresponding binary systems have been measured over the whole composition range at 11 temperature points from 293.15 K to 343.15 K under atmospheric pressure (0.1 MPa). The excess molar volumes (VEm) and viscosity deviations (Δη) of binary systems have been calculated and further fitted with the Redlich−Kister equation, while corresponding physical data of the ternary system have been correlated via the Clibuka, Singh, Nagata-Tamura, and Redlich−Kister equations. The VEm values are negative for the binary system of decalin (1) + methylcyclohexane (2) with a minimum when the moles of the two components are similar. For the system of decalin (1) + cyclopentanol (2), the VEm values are always positive with a maximun at about x1 = 0.6. At the same time, a sigmoid curve can be observed for the system of methylcyclohexane (1) + cyclopentanol (2). The minimum and maximum appear around x1 = 0.2 and x1 = 0.9, respectively. The Δη values of the three binary systems are all negative and the absolute values decrease with increase in temperature. For the ternary system, the VEm values are partially negative and the Δη values are negative over the entire concentration range. The nonideal behaviors of the mixtures are discussed in the perspective of intermolecular interaction and structural effect.
1. INTRODUCTION
pentanol, the physical data of which are still unavailable, are significant for the development of advanced high-density EHFs. In the present work, densities (ρ) and viscosities (η) for the ternary system of decalin (1) + methylcyclohexane (2) + cyclopentanol (3) and those for three corresponding binary systems were systematically measured over the whole composition range from 293.15 to 343.15 K under atmospheric pressure (0.1 MPa). The excess molar volumes (VmE ) and viscosity deviations (Δη) were then calculated and discussed.
The thermal management for hypersonic or supersonic aircrafts is indispensable,1−3 and endothermic hydrocarbon fuels (EHFs)4 can be applied as ideal coolants due to their smart thermal management performance. Naphthene, a conspicuous species of EHFs, is an important component of conventional jet fuels. For example, the JP-8 family is principally composed of monocyclic and bicyclic alkanes, and jet-A fuel contains up to 20% cycloalkanes. As the simplest alkyl-cycloalkane, methylcyclohexane possesses a chemical heat sink up to 2190 kJ·kg−1.5 As one notable naphthene, decalin, a bicyclic compound, is usually treated as a crucial component of EHFs because of its exceptional thermal stability and high energy-density. Moreover, as a hydrogen donor, decalin can restrain carbon deposits during the pyrolysis process and thus protect fuel delivery systems from fouling.6−9 However, the firing delay and inefficient combustion become inevitable problems as the fuel density increases, and thus limit the use of high-density fuels in aerospace to some extent.10 The addition of oxygenated compounds,11,12 such as alcohols, is an efficient way to alleviate the problems. Compared to linear alcohols, cyclopentanol has higher density and volumetric heat value due to its strong ring strain.13 It could be a better additive to improve the performance of fuels. Therefore, research on the thermodynamic behavior of the ternary system of decalin, methylcyclohexane, and cyclo© XXXX American Chemical Society
2. EXPERIMENTAL SECTION 2.1. Materials. Decalin (CAS no. 91-17-8), methylcyclohexane (CAS no. 108-87-2), cyclopentanol (CAS no. 96-41-3) were purchased from Aladdin Chemistry Co. Ltd., Shanghai, China. All chemicals had a mass fraction greater than 0.99 (verified with Agilent 7890A/5975C gas chromatography−mass spectrometer). Decalin consists of 58.54% trans-decalin and 41.26% cisdecalin. They were further degassed. The specification of chemicals in this work are listed in Table 1. 2.2. Methods. All reagents of the binary/ternary systems were weighed by a Mettler Toledo AL204 analytical balance Received: October 31, 2018 Accepted: March 7, 2019
A
DOI: 10.1021/acs.jced.8b01004 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 1. Specification of Chemicals in This Worka compound
source
CAS no.
provided mass fraction purity
measured mass fraction purity
analysis method
decalinb methylcyclohexane cyclopentanol
Aladdin Aladdin Aladdin
91-17-8 108-87-2 96-41-3
≥0.99 ≥0.99 ≥0.99
0.993 0.992 0.997
GC−MS GC−MS GC−MS
a
All samples were degassed with ultrasonic wave before measurement. bDecalin consists of 58.54% trans-decalin and 41.26% cis-decalin.
Experimental data for the ternary system at the same temperatures and pressure are presented in Tables 5 and 6. The excess molar volumes (VmE ) and viscosity deviation (Δη) of the three binary systems and the ternary system are calculated with eqs 5 and 6, respectively, with corresponding results in Tables S1−S2 and Tables S3−S4. The uncertainty of excess molar volumes (VmE ) and viscosity deviations (Δη) are also calculated by eq 1.
with an accuracy of 0.0001 g. The uncertainty of the mole fraction was calculated to be 0.0002 from the following equation, i ∂f y ∑ jjjjj zzzzzu2(xi) + 2 ∂x i=1 k i { N
uc2(y) =
N−1
N
∑ ∑ i=1 j=i+1
∂f ∂f u(xi , xj) ∂xi ∂xj (1)
where the xi is the standard uncertainty associated with the input estimate xi , and u(xi , xj) is the estimated covariance associated with xi and xj . The densities were measured by an Anton Paar DMA 5000 M densimeter at a temperature range from 293.15 to 343.15 K and p = 0.1 MPa. The densimeter was calibrated with dry air and double distilled water with a temperature accuracy of 0.01 K. Since the uncertainty caused by the impurity of reagents is some magnitudes larger than that by the densimeter, the relative standard uncertainty is calculated as 0.0008 with the following equation,14 ur(ρ) = ξ(1 − xs)
N
VmE
k
Y = x(1 − x) ∑ Ai (2x − 1)i − 1
i=1
(7)
i=1
where Y stands for the excess molar volume or viscosity deviation of the binary mixtures, x represents the mole fraction of decalin or methylcyclohexane, and Ai is the polynomial coefficient. The values of Ai obtained via least-squares correlation and t-test are given in Table S5. For the ternary system, the values of excess molar volume (VmE ) and viscosity deviation (Δη) are fitted to the following empirical equation. Y123 = Y12 + Y23 + Y13 + Δ123
(8)
where Y123 is excess molar volume or viscosity deviation for the ternary system of decalin (1) + methylcyclohexane (2) + cyclopentanol (3), and Y12 , Y13 and Y23 stand for the contribution of the binary systems. The value of Δ123 can usually be determined with different models.17
3. RESULTS AND DISCUSSION The measured densities and viscosities of three pure compounds at 11 temperature points and 0.1 MPa are listed in Table 2, coupled with corresponding literature values. The following equation is used to calculate the absolute average relative deviation.
∑
(6)
where i stands for a pure component, xi and Mi represent the molar fraction and molar mass of component i in a mixture and N is the number of components in a mixture. The excess molar volume (VmE ) and viscosity deviation (Δη) of the corresponding binary systems are correlated to the Redlich−Kister equation.16
where k is the constant of the viscometer, ρball is the density of rolling ball, ρ is the density of the sample, and t is the averaged ball falling time of the sample. The values of k and ρball are 0.010030 and 7.66 kg·m−3, respectively. All measurements were made by the use of the same ball. Double distilled water was used to calibrate the viscometer and the relative standard uncertainty of viscosity is 0.01.15
%AARD = (100/n) ×
∑ xiηi i=1
(3)
|L lit − L| |L lit|
(5)
N
Δη = η −
where xs is the sample purity, and ξ , which is considered as 0.1, is the assumed fractional density difference between the compound of interest and the impurity. Measurements on the viscosities were carried out by an Anton Paar AMVn viscometer at different temperature points from 293.15 to 343.15 K and atmospheric pressure p = 0.1 MPa. The accuracy of temperature and ball falling time that was used to calculate viscosity is ±0.05 K and ±0.002 s, respectively. Viscosities are obtained from the following equation,
n
∑ xiMi[(1/ρ) − (1/ρi )] i=1
(2)
η = k(ρball − ρ)t
=
(1) Cibulka equation Δ123 = x1x 2x3(B1 + B2 x1 + B3x 2)
(9a)
(2) Singh equation Δ123 = x1x 2x3[C1 + C2x1(x 2 − x3) + C3x12(x3 − x 2)]
(4)
(9b)
where L lit stands for the literature value, and L represents the experimental value in this work. The measured densities and viscosities for the three binary systems at different temperature points from T = 293.15 to 343.15 K and atmospheric pressure are listed in Tables 3 and 4.
(3) Nagata-Tamura equation Δ123 = x1x 2x3RT (D1 − D2x1 − D3x 2 − D4 x12 − D5x 22 − D6x1x 2 − D7x13 − D8x 23 − D9x12x 2) B
(9c)
DOI: 10.1021/acs.jced.8b01004 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 2. Comparison of Experimental Densities (ρ) and Viscosities (η) for the Pure Components with the Literature Data at Corresponding Temperatures and Pressure p = 0.1 MPaa property ρ/g·cm−3
η/mPa·s
ρ/g·cm−3
η/mPa·s
T/K 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15
this study 0.88041 0.87664 0.87286 0.86910 0.86533 0.86156 0.85780 0.85402 0.85025 0.84647 0.84268 2.488 2.255 2.054 1.880 1.727 1.592 1.473 1.367 1.272 1.188 1.111
293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15
0.76935 0.76500 0.76065 0.75630 0.75193 0.74756 0.74316 0.73874 0.73429 0.72982 0.72532 0.735 0.689 0.647 0.611 0.577 0.547 0.519 0.495 0.473 0.453 0.434
293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 293.15 298.15
0.94699 0.94305 0.93905 0.93501 0.93091 0.92675 0.92253 0.91824 0.91389 0.90948 0.90499 11.883 9.722
literature Decalin 0.8803724 0.8766324 0.8728724 0.8653424 0.8578024
0.8804625 0.8767225 0.8729625 0.8691024 0.8654325 0.8615724 0.8570125
AARD/% 0.8802526 0.8727026 0.8651526 0.8576526
0.8494525
24
2.453 2.22324 2.02624 1.70324 1.45424
Methylcyclohexane 0.7693327 0.7650027 0.7606727 0.7563227 0.7519527 0.7475627 0.7431527 0.7387327 0.7342827
27
0.727 0.68127 0.64027 0.60427 0.57127 0.54227 0.51527 0.46927
0.8418725 2.50425 2.27225 2.06625 1.85424 1.73425 1.57124 1.47725
0.0094 0.0034 0.010 0.011 0.00070 0.037 0.094
2.5037826 2.0658626 1.7338526 1.4772226
0.097 1.0 1.1 0.98 1.4 0.91 1.3 0.79
1.26025
0.96
1.10225
0.86
0.7693528 0.7650528 0.7607128 0.7563728 0.7520028 0.7475828 0.7431728
0.7692929 0.7649729 0.7606829 0.756330 0.7519231
0.7342928
0.7342531
0.7253128 0.73528 0.69228 0.65128 0.61428 0.58028 0.54928 0.52228 0.49127 0.47628
0.7431331
0.736729 0.681629 0.646629 0.599732
0.0033 0.0035 0.0044 0.0039 0.0043 0.0016 0.0023 0.00068 0.0021 0.0011 0.46 0.88 0.60 1.2 0.78 0.64 0.68 0.83 0.74
Cyclopentanol ρ/g·cm−3
η/mPa·s
0.94679233 0.94285633 0.93887433 0.93484333 0.93075433 0.92661333
9.6234 C
0.020
1.1 DOI: 10.1021/acs.jced.8b01004 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 2. continued property
T/K
this study
literature
AARD/%
Cyclopentanol 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15
8.068 7.077 6.040 5.190 4.441 3.830 3.312 2.886 2.530
a
Standard uncertainties u are u(p) = 0.20 kPa, u(T) = 0.01 K, and relative standard uncertainties ur are ur(ρ) = 0.0008, ur(η) = 0.01.
Table 3. Measured Densities (ρ) at Different Mole Fractions (x1) for the Binary Mixtures of Decalin (1) + Methylcyclohexane (2); Decalin (1) + Cyclopentanol (2); Methylcyclohexane (1) + Cyclopentanol (2) at T = (293.15 to 343.15) K and Pressure p = 0.1 MPaa ρ/g·cm−3 x1
293.15 K
298.15 K
303.15 K
0.0000 0.0996 0.1998 0.3005 0.4005 0.5002 0.6003 0.6998 0.7994 0.8997 1.0000
0.76935 0.78313 0.79630 0.80889 0.82076 0.83188 0.84253 0.85266 0.86230 0.87155 0.88041
0.76500 0.77888 0.79212 0.80478 0.81670 0.82789 0.83859 0.84876 0.85846 0.86775 0.87664
0.76065 0.77461 0.78793 0.80066 0.81263 0.82388 0.83464 0.84485 0.85461 0.86394 0.87286
0.0000 0.1006 0.2013 0.3001 0.3969 0.4942 0.5997 0.6993 0.7971 0.8954 1.0000
0.94699 0.93616 0.92659 0.91822 0.91089 0.90431 0.89801 0.89277 0.88814 0.88399 0.88041
0.94305 0.93217 0.92257 0.91419 0.90687 0.90032 0.89406 0.88883 0.88424 0.88013 0.87664
0.93905 0.92812 0.91850 0.91013 0.90283 0.89630 0.89007 0.88489 0.88032 0.87625 0.87286
0.0000 0.0995 0.2005 0.2971 0.4001 0.5014 0.5994 0.6828 0.7949 0.8975 1.0000
0.94699 0.92417 0.90236 0.88238 0.86234 0.84389 0.82706 0.81360 0.79676 0.78242 0.76935
0.94305 0.92012 0.89822 0.87817 0.85807 0.83958 0.82273 0.80925 0.79238 0.77804 0.76500
0.93905 0.91602 0.89403 0.87391 0.85376 0.83524 0.81837 0.80487 0.78797 0.77363 0.76065
308.15 K
313.15 K
318.15 K
323.15 K
Decalin (1) + Methylcyclohexane (2) 0.75630 0.75193 0.74756 0.74316 0.77034 0.76605 0.76175 0.75744 0.78373 0.77952 0.77530 0.77106 0.79653 0.79239 0.78824 0.78408 0.80857 0.80449 0.80041 0.79632 0.81988 0.81586 0.81184 0.80781 0.83068 0.82672 0.82275 0.81878 0.84095 0.83704 0.83313 0.82922 0.85075 0.84690 0.84304 0.83918 0.86013 0.85632 0.85251 0.84870 0.86910 0.86533 0.86156 0.85780 Decalin (1) + Cyclopentanol (2) 0.93500 0.93091 0.92675 0.92253 0.92403 0.91990 0.91570 0.91146 0.91439 0.91024 0.90604 0.90179 0.90602 0.90188 0.89770 0.89348 0.89875 0.89464 0.89050 0.88631 0.89226 0.88819 0.88408 0.87994 0.88607 0.88204 0.87798 0.87389 0.88092 0.87693 0.87291 0.86887 0.87639 0.87244 0.86847 0.86448 0.87237 0.86847 0.86456 0.86063 0.86910 0.86533 0.86156 0.85780 Methylcyclohexane (1) + Cyclopentanol (2) 0.93500 0.93091 0.92675 0.92253 0.91187 0.90767 0.90341 0.89909 0.88979 0.88551 0.88117 0.87678 0.86961 0.86527 0.86088 0.85611 0.84941 0.84502 0.84059 0.83611 0.83086 0.82644 0.82199 0.81749 0.81397 0.80953 0.80506 0.80054 0.80045 0.79600 0.79151 0.78698 0.78354 0.77907 0.77457 0.77003 0.76919 0.76473 0.76023 0.75570 0.75630 0.75193 0.74756 0.74316
328.15 K
333.15 K
338.15 K
343.15 K
0.73874 0.75311 0.76681 0.77991 0.79221 0.80377 0.81481 0.82530 0.83531 0.84488 0.85402
0.73429 0.74876 0.76255 0.77573 0.78810 0.79973 0.81082 0.82137 0.83143 0.84106 0.85025
0.72982 0.74438 0.75826 0.77152 0.78397 0.79567 0.80683 0.81744 0.82755 0.83723 0.84647
0.72532 0.73998 0.75396 0.76731 0.77983 0.79161 0.80284 0.81350 0.82366 0.83339 0.84268
0.91824 0.90715 0.89750 0.88922 0.88209 0.87576 0.86977 0.86481 0.86047 0.85670 0.85402
0.91389 0.90279 0.89316 0.88491 0.87783 0.87156 0.86562 0.86071 0.85644 0.85275 0.85025
0.90948 0.89837 0.88876 0.88056 0.87353 0.86731 0.86144 0.85659 0.85238 0.84879 0.84647
0.90499 0.89389 0.88431 0.87615 0.86918 0.86302 0.85721 0.85243 0.84830 0.84481 0.84268
0.91824 0.89472 0.87233 0.85195 0.83158 0.81294 0.79597 0.78241 0.76545 0.75114 0.73874
0.91389 0.89028 0.86783 0.84740 0.82700 0.80834 0.79136 0.77779 0.76084 0.74655 0.73429
0.90948 0.88578 0.86328 0.84280 0.82237 0.80369 0.78671 0.77313 0.75620 0.74193 0.72982
0.90499 0.88121 0.85867 0.83813 0.81769 0.79900 0.78201 0.76843 0.75151 0.73727 0.72532
a
Standard uncertainties u are u(p) = 0.20 kPa, u(T) = 0.01 K, combined standard uncertainty uc is uc(x) = 0.0002, and relative standard uncertainty ur is ur(ρ) = 0.0008.
D
DOI: 10.1021/acs.jced.8b01004 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 4. Measured Viscosities (η) at Different Mole Fractions (x1) for the Binary Mixtures of Decalin (1) + Methylcyclohexane (2); Decalin (1) + Cyclopentanol (2); Methylcyclohexane (1) + Cyclopentanol (2) at T = (293.15 to 343.15) K and Pressure p = 0.1 MPaa η/mPa·s x1
293.15 K
298.15 K
303.15 K
0.0000 0.0996 0.1998 0.3005 0.4005 0.5002 0.6003 0.6998 0.7994 0.8997 1.0000
0.735 0.845 0.956 1.078 1.221 1.375 1.551 1.747 1.971 2.218 2.488
0.689 0.792 0.891 1.001 1.130 1.268 1.425 1.604 1.800 2.018 2.255
0.647 0.742 0.832 0.932 1.049 1.174 1.315 1.477 1.650 1.844 2.054
0.0000 0.1006 0.2013 0.3001 0.3969 0.4942 0.5997 0.6993 0.7971 0.8954 1.0000
11.883 8.771 6.710 5.338 4.398 3.753 3.264 2.959 2.737 2.570 2.488
9.722 7.272 5.648 4.565 3.816 3.296 2.900 2.648 2.461 2.319 2.255
8.068 6.094 4.808 3.944 3.340 2.917 2.594 2.384 2.225 2.103 2.054
0.0000 0.0995 0.2005 0.2971 0.4001 0.5014 0.5994 0.6828 0.7949 0.8975 1.0000
11.883 7.639 4.929 3.505 2.410 1.793 1.396 1.166 0.960 0.826 0.735
9.722 6.316 4.183 3.030 2.123 1.602 1.268 1.071 0.890 0.772 0.689
8.068 5.480 3.587 2.644 1.885 1.445 1.160 0.989 0.827 0.722 0.647
308.15 K
313.15 K
318.15 K
323.15 K
Decalin (1) + Methylcyclohexane (2) 0.611 0.577 0.547 0.519 0.697 0.657 0.620 0.588 0.780 0.733 0.690 0.652 0.871 0.816 0.766 0.721 0.977 0.913 0.855 0.803 1.091 1.016 0.949 0.890 1.218 1.132 1.055 0.986 1.365 1.265 1.177 1.098 1.520 1.404 1.302 1.211 1.693 1.560 1.444 1.339 1.880 1.727 1.592 1.473 Decalin (1) + Cyclopentanol (2) 7.077 6.040 5.190 4.441 5.153 4.389 3.767 3.257 4.126 3.567 3.105 2.720 3.433 3.007 2.650 2.351 2.942 2.608 2.325 2.083 2.598 2.327 2.093 1.890 2.331 2.104 1.906 1.734 2.154 1.954 1.782 1.629 2.019 1.840 1.684 1.546 1.917 1.754 1.610 1.483 1.880 1.727 1.592 1.473 Methylcyclohexane (1) + Cyclopentanol (2) 7.077 6.040 5.190 4.441 4.660 4.046 3.487 3.037 3.099 2.695 2.361 2.081 2.324 2.055 1.828 1.635 1.685 1.514 1.368 1.241 1.312 1.196 1.093 1.004 1.065 0.982 0.907 0.842 0.916 0.851 0.793 0.740 0.771 0.721 0.677 0.636 0.677 0.636 0.600 0.566 0.611 0.577 0.547 0.519
328.15 K
333.15 K
338.15 K
343.15 K
0.495 0.558 0.617 0.681 0.757 0.836 0.924 1.027 1.129 1.246 1.367
0.473 0.531 0.586 0.645 0.715 0.787 0.868 0.962 1.057 1.163 1.272
0.453 0.507 0.558 0.612 0.676 0.743 0.818 0.904 0.991 1.088 1.188
0.434 0.484 0.533 0.581 0.641 0.703 0.772 0.851 0.931 1.020 1.111
3.830 2.834 2.397 2.095 1.874 1.714 1.583 1.494 1.424 1.371 1.367
3.312 2.482 2.125 1.877 1.694 1.560 1.450 1.376 1.314 1.270 1.272
2.886 2.187 1.894 1.689 1.537 1.425 1.331 1.270 1.218 1.181 1.188
2.530 1.937 1.696 1.527 1.399 1.305 1.226 1.175 1.131 1.100 1.111
3.830 2.674 1.843 1.472 1.130 0.924 0.782 0.692 0.599 0.537 0.495
3.312 2.366 1.642 1.329 1.033 0.853 0.731 0.650 0.566 0.510 0.473
2.886 2.109 1.471 1.205 0.948 0.790 0.683 0.611 0.536 0.486 0.453
2.530 1.879 1.326 1.108 0.873 0.734 0.641 0.577 0.517 0.464 0.434
a
Standard uncertainties u are u(p) = 0.20 kPa, u(T) = 0.01 K, combined standard uncertainty uc is uc(x) = 0.0002, and relative standard uncertainty ur is ur(η) = 0.01.
3.1. Binary Systems. The variations of the excess molar volumes (VmE ) for the binary systems over the whole composition range at 11 temperature points from 293.15 to 343.15 K and p = 0.1 MPa are shown in Figure 1. For the system of decalin (1) + methylcyclohexane (2), the values of the excess molar volumes are negative and the minimum is found at the mole fraction around 0.4 (x1). For the system of decalin (1) + cyclopentanol (2), the VmE values are positive over the entire range of composition and the maximum appears at the mole fraction around 0.6 (x1). At the same time, the sigmoid curve can be observed for the system of methylcyclohexane (1) + cyclopentanol (2). The minimum and maximum appear around x1 = 0.2 and x1 = 0.9, respectively. These different changes of excess molar volumes are probably caused by intermolecular interaction force, including physical forces (electrostatic force, induced force, and dispersion force) and hydrogen bonding, and molecular structure.17−19 As the system of decalin (1) +
Redlich-Kister equation Δ123 = x1x 2x3[A + B(x1 − x 2) + C(x 2 − x3) + D(x3 − x1) + E(x1 − x 2)2 + F(x 2 − x3)2 + G(x3 − x1)2 ]
(9d)
where the adjustable parameters (B1, B2 , B3, C1, C2 , C3, D1, . . ., D9 and A, . . ., G) obtained via least-squares correlation and t-test are in Tables S6−S9. The standard deviation (σ) is defined as ÄÅ É ÅÅ ∑ (Y − Y )2 ÑÑÑ1/2 cal Ñ Å Å ÑÑ σ = ÅÅ ÅÅÅ (n − k) ÑÑÑÑ Ç Ö
(10)
where n is the number of experimental data points and k is the number of fitted parameters. E
DOI: 10.1021/acs.jced.8b01004 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 5. Measured Densities (ρ) at Different Mole Fractions (x1) for the Ternary Mixtures of Decalin (1) + Methylcyclohexane (2) + Cyclopentanol (3) at T = (293.15 to 343.15) K and Pressure p = 0.1 MPaa ρ/g·cm−3 x1
x2
293.15 K
298.15 K
303.15 K
308.15 K
313.15 K
318.15 K
323.15 K
328.15 K
333.15 K
338.15 K
343.15 K
0.7985 0.6946 0.6990 0.5999 0.5980 0.5952 0.4974 0.4986 0.4967 0.4957 0.4011 0.3955 0.4003 0.3999 0.3963 0.2975 0.2977 0.3000 0.2978 0.2974 0.2995 0.2005 0.1993 0.2009 0.1994 0.2004 0.2008 0.1995 0.1017 0.0997 0.1000 0.1003 0.1005 0.1012 0.0994 0.0999
0.1001 0.1986 0.1005 0.2996 0.2006 0.0996 0.3989 0.2994 0.2059 0.0993 0.4986 0.4054 0.3001 0.1989 0.1065 0.5895 0.4997 0.3980 0.3025 0.2010 0.1024 0.6958 0.6020 0.4967 0.3981 0.2989 0.1999 0.0985 0.7965 0.6966 0.5996 0.4980 0.3984 0.2994 0.1989 0.1000
0.87471 0.86544 0.87850 0.85504 0.86859 0.88315 0.84458 0.85819 0.87177 0.88815 0.83340 0.84639 0.86154 0.87719 0.89262 0.82279 0.83554 0.85019 0.86533 0.88214 0.89941 0.80964 0.82277 0.83830 0.85378 0.87054 0.88803 0.90721 0.79647 0.81049 0.82477 0.84094 0.85787 0.87578 0.89503 0.91491
0.87080 0.86149 0.87456 0.85104 0.86461 0.87918 0.84053 0.85415 0.86774 0.88414 0.82930 0.84229 0.85746 0.87312 0.88857 0.81862 0.83138 0.84606 0.86121 0.87804 0.89531 0.80541 0.81855 0.83409 0.84960 0.86636 0.88389 0.90313 0.79217 0.80620 0.82049 0.83667 0.85364 0.87159 0.89088 0.91081
0.86689 0.85752 0.87060 0.84702 0.86059 0.87518 0.83646 0.85008 0.86369 0.88010 0.82517 0.83816 0.85335 0.86903 0.88448 0.81442 0.82719 0.84189 0.85706 0.87391 0.89119 0.80115 0.81430 0.82986 0.84538 0.86215 0.87972 0.89901 0.78784 0.80187 0.81619 0.83237 0.84937 0.86735 0.88670 0.90667
0.86295 0.85353 0.86662 0.84298 0.85656 0.87116 0.83236 0.84600 0.85961 0.87603 0.82102 0.83401 0.84921 0.86492 0.88038 0.81021 0.82298 0.83769 0.85288 0.86975 0.88705 0.79687 0.81002 0.82560 0.84113 0.85793 0.87552 0.89485 0.78348 0.79752 0.81184 0.82805 0.84508 0.86308 0.88246 0.90250
0.85901 0.84954 0.86262 0.83893 0.85251 0.86711 0.82826 0.84188 0.85550 0.87194 0.81685 0.82984 0.84505 0.86077 0.87624 0.80597 0.81874 0.83347 0.84866 0.86555 0.88288 0.79256 0.80571 0.82130 0.83686 0.85367 0.87128 0.89064 0.77910 0.79314 0.80747 0.82370 0.84075 0.85877 0.87819 0.89829
0.85505 0.84552 0.85859 0.83487 0.84843 0.86304 0.82413 0.83775 0.85137 0.86782 0.81266 0.82564 0.84086 0.85659 0.87208 0.80171 0.81448 0.82921 0.84442 0.86132 0.87868 0.78824 0.80137 0.81698 0.83254 0.84938 0.86701 0.88640 0.77469 0.78872 0.80307 0.81931 0.83637 0.85442 0.87387 0.89403
0.85108 0.84149 0.85455 0.83079 0.84433 0.85894 0.81999 0.83359 0.84721 0.86367 0.80846 0.82141 0.83664 0.85238 0.86787 0.79743 0.81018 0.82492 0.84014 0.85706 0.87444 0.78388 0.79700 0.81261 0.82819 0.84504 0.86269 0.88211 0.77026 0.78427 0.79862 0.81489 0.83196 0.85002 0.86951 0.88972
0.84709 0.83744 0.85048 0.82669 0.84021 0.85481 0.81582 0.82940 0.84302 0.85949 0.80423 0.81716 0.83239 0.84814 0.86364 0.79312 0.80585 0.82060 0.83582 0.85275 0.87015 0.77950 0.79260 0.80821 0.82379 0.84066 0.85833 0.87777 0.76579 0.77978 0.79413 0.81041 0.82750 0.84558 0.86509 0.88537
0.84309 0.83338 0.84639 0.82257 0.83606 0.85065 0.81164 0.82519 0.83880 0.85527 0.79998 0.81287 0.82810 0.84385 0.85936 0.78879 0.80150 0.81624 0.83146 0.84840 0.86581 0.77509 0.78817 0.80377 0.81936 0.83623 0.85393 0.87339 0.76130 0.77525 0.78960 0.80590 0.82299 0.84109 0.86063 0.88095
0.83907 0.82930 0.84228 0.81844 0.83188 0.84646 0.80744 0.82095 0.83455 0.85101 0.79571 0.80856 0.82378 0.83953 0.85504 0.78443 0.79710 0.81184 0.82706 0.84401 0.86143 0.77066 0.78369 0.79929 0.81488 0.83177 0.84947 0.86895 0.75677 0.77069 0.78503 0.80135 0.81844 0.83655 0.85611 0.87646
0.83504 0.82521 0.83814 0.81429 0.82768 0.84224 0.80321 0.81668 0.83026 0.84672 0.79142 0.80421 0.81942 0.83517 0.85068 0.78005 0.79268 0.80740 0.82262 0.83957 0.85701 0.76619 0.77918 0.79477 0.81036 0.82725 0.84497 0.86446 0.75222 0.76608 0.78042 0.79676 0.81384 0.83196 0.85154 0.87193
a
Standard uncertainties u are u(p) = 0.20 kPa, u(T) = 0.01 K, combined standard uncertainty uc is uc(x) = 0.0002, and relative standard uncertainty ur is ur(ρ) = 0.0008.
molar volumes. In the system of methylcyclohexane and cyclopentanol, the molecules are tightly associated together because of the hydrogen bonds when the concentration of cyclopentanol in the mixture is high, which causes the VmE values to be negative. As the concentration of methylcyclohexane increases, the dispersion force gradually becomes the main factor, thus leading to the positive values of VmE . The different phenomena of the two cyclopentanol-containing binary systems may be explained by the structural effect between unlike molecules. The structure of decalin is different from that of cyclopentanol and the bicyclic structure is probable more conducive to the destruction of hydrogen bonds. On the contrary, methylcyclohexane and cyclopentanol are similar in structure and a small amount of methylcyclohexane not only could not destroy the hydrogen bonds but also makes the molecular arrangement more compact. Furthermore, with the rise of temperature, the values of VmE incresase, this could be
methylcyclohexane (2) are composed of nonpolar molecules, there are hardly any chemical intermolecular forces, and the physical intermoleculars are also weak. Hence, the negative excess molar volumes are mainly ascribed to the structural effect among the unlike molecules. Decalin is a bicyclic compound with a boat or chair structure and methylcyclohexane also has a boat or chair structure with a short alkyl. When they mixed, there are possibilities that the molecular arrangement is more compact. From the microscopic point of view, the space between molecules is diminished, and from the macroscopic point of view, the volume of the binary system is diminished. Therefore, the excess molar volumes are negative in the mixture of decalin and methylcyclohexane. With the increase of temperature, the absolute values of VmE for the mixture show a slight upward trend. In the cyclopentanol-containing binary systems, the values of excess molar volumes are primarily influenced by the hydrogen bonds among cyclopentanol molecules.19−21 When decalin is added into cyclopentanol, the breaking of hydrogen bonds gives rise to the positive excess F
DOI: 10.1021/acs.jced.8b01004 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 6. Measured Viscosities (η) at Different Mole Fractions (x1) for the Ternary Mixtures of Decalin (1) + Methylcyclohexane (2) + Cyclopentanol (3) at T = (293.15 to 343.15) K and Pressure p = 0.1 MPaa η/mPa·s x1
x2
293.15 K
298.15 K
303.15 K
308.15 K
313.15 K
318.15 K
323.15 K
328.15 K
333.15 K
338.15 K
343.15 K
0.7985 0.6946 0.6990 0.5999 0.5980 0.5952 0.4974 0.4986 0.4967 0.4957 0.4011 0.3955 0.4003 0.3999 0.3963 0.2975 0.2977 0.3000 0.2978 0.2974 0.2995 0.2005 0.1993 0.2009 0.1994 0.2004 0.2008 0.1995 0.1017 0.0997 0.1000 0.1003 0.1005 0.1012 0.0994 0.0999
0.1001 0.1986 0.1005 0.2996 0.2006 0.0996 0.3989 0.2994 0.2059 0.0993 0.4986 0.4054 0.3001 0.1989 0.1065 0.5895 0.4997 0.3980 0.3025 0.2010 0.1024 0.6958 0.6020 0.4967 0.3981 0.2989 0.1999 0.0985 0.7965 0.6966 0.5996 0.4980 0.3984 0.2994 0.1989 0.1000
2.283 2.028 2.410 1.783 2.113 2.600 1.575 1.863 2.239 2.863 1.391 1.616 1.968 2.474 3.179 1.237 1.430 1.719 2.135 2.781 3.746 1.079 1.245 1.505 1.863 2.402 3.251 4.616 0.946 1.093 1.304 1.776 2.088 2.942 3.948 6.022
2.067 1.843 2.176 1.626 1.917 2.337 1.441 1.695 2.022 2.553 1.279 1.476 1.782 2.217 2.809 1.140 1.311 1.565 1.921 2.466 3.266 0.998 1.145 1.374 1.682 2.139 2.844 3.964 0.877 1.010 1.196 1.644 1.863 2.642 3.402 5.142
1.881 1.682 1.974 1.491 1.748 2.111 1.325 1.549 1.834 2.293 1.181 1.355 1.623 1.999 2.502 1.054 1.206 1.430 1.739 2.204 2.875 0.927 1.058 1.262 1.528 1.918 2.510 3.436 0.818 0.936 1.100 1.509 1.676 2.370 2.960 4.510
1.720 1.543 1.799 1.371 1.598 1.916 1.223 1.422 1.673 2.070 1.094 1.247 1.484 1.813 2.241 0.979 1.114 1.312 1.582 1.979 2.545 0.863 0.981 1.160 1.393 1.730 2.231 3.002 0.764 0.869 1.017 1.382 1.516 2.131 2.595 3.897
1.579 1.420 1.647 1.266 1.467 1.744 1.132 1.309 1.530 1.877 1.017 1.152 1.362 1.649 2.016 0.911 1.033 1.208 1.444 1.786 2.266 0.807 0.912 1.072 1.276 1.567 1.993 2.639 0.716 0.811 0.942 1.273 1.377 1.915 2.289 3.402
1.453 1.311 1.511 1.172 1.350 1.595 1.050 1.209 1.405 1.707 0.948 1.068 1.252 1.504 1.823 0.850 0.959 1.115 1.321 1.619 2.029 0.756 0.850 0.992 1.171 1.425 1.788 2.333 0.673 0.758 0.875 1.173 1.257 1.726 2.031 2.971
1.343 1.214 1.391 1.089 1.247 1.463 0.978 1.119 1.293 1.558 0.885 0.992 1.156 1.377 1.654 0.796 0.893 1.032 1.215 1.472 1.826 0.710 0.793 0.921 1.079 1.300 1.613 2.076 0.634 0.710 0.815 1.087 1.150 1.566 1.811 2.618
1.244 1.128 1.285 1.014 1.154 1.346 0.913 1.039 1.194 1.427 0.829 0.924 1.070 1.266 1.507 0.747 0.834 0.958 1.120 1.343 1.650 0.668 0.743 0.857 0.997 1.191 1.462 1.856 0.598 0.667 0.762 1.008 1.056 1.428 1.624 2.322
1.157 1.050 1.189 0.947 1.072 1.242 0.855 0.967 1.105 1.310 0.778 0.863 0.993 1.166 1.377 0.703 0.780 0.891 1.034 1.231 1.497 0.631 0.697 0.801 0.923 1.094 1.330 1.667 0.567 0.628 0.714 0.938 0.973 1.304 1.462 2.067
1.078 0.981 1.104 0.887 0.998 1.149 0.802 0.903 1.026 1.207 0.733 0.808 0.924 1.078 1.262 0.662 0.732 0.831 0.958 1.131 1.363 0.597 0.656 0.749 0.858 1.009 1.214 1.505 0.538 0.592 0.670 0.872 0.899 1.196 1.324 1.848
1.007 0.918 1.028 0.832 0.931 1.075 0.755 0.844 0.954 1.115 0.692 0.758 0.861 0.998 1.160 0.626 0.688 0.777 0.890 1.043 1.245 0.566 0.619 0.704 0.799 0.932 1.112 1.363 0.513 0.560 0.630 0.815 0.833 1.101 1.203 1.664
a
Standard uncertainties u are u(p) = 0.20 kPa, u(T) = 0.01 K, combined standard uncertainty uc is uc(x) = 0.0002, and relative standard uncertainty ur is ur(η) = 0.01.
the viscosity deviation decrease when temperature rises, which might be caused by the weakening of hygrogen bonds at high temperature, and the dispersion forces are getting stronger with the increase of temperature. 3.2. Ternary Systems. The changes of the excess molar volume (VmE ) for the ternary system with compositions are shown in Figure 3. It can be easily observed that the VmE are partially negative and the values increase with increase in temperature. The obtained excess molar volumes are influenced by weakening of hydrogen bonds between the cyclopentanol molecules and spatial factors between different molecules. When the concentration of cyclopentanol in the mixture is low, the spatial factors account for the main part and the VmE values are negative. When the concentration of cyclopentanol in the mixture is high, the positive values of VmE indicate that the weakening of the hydrogen bond plays a leading role. The variations of the viscosity deviation (Δη) for the ternary system over the whole range of composition are shown in Figure
illustrated by the effortless distruction of hydrogen bonds and intense molecular motion at high temperature.22,23 The changes of viscosity deviation (Δη) are exhibited in Figure 2. From the curves of Δη−x, we can find that the values of Δη are all negative over the entire composition range at different temperature points. For the binary systems of decalin (1) + cyclopentanol (2) and methylcyclohexane (1) + cyclopentanol (2), the maximun negative values of viscosity deviation appeared when the mole fraction of decalin or methylcyclohexane is approximately 0.3. When cycloalkane was added to cyclopentanol, the self-associated cyclopentanol molecules became unbonded since the hydrogen bonds were destroyed. Consequently, the mobility of the mixtures wass enhanced, leading to negative viscosity deviations. As for the mixture of decalin with methylcyclohexane, the maximun values of Δη are observed with x1 = 0.5. Because of the lower interraction between the two molecules, the absolute Δη values of the bianary system are clearly lower than those of the two cyclopentanol-containing systems. From Figure 2, it is apparent that the absolute values of G
DOI: 10.1021/acs.jced.8b01004 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Figure 1. Excess molar volumes, VmE , as a function of mole fraction of decalin or methylcyclohexane for the binary systems of (a) decalin (1) + methylcyclohexane (2); (b) decalin (1) + cyclopentanol (2); (c) methylcyclohexane (1) + cyclopentanol (2) at 0.1 MPa and 11 different temperatures: ■, 293.15 K; ●, 298.15 K; ▲, 303.15 K; ▼, 308.15 K; ◆,313.15 K; ◀, 318.15 K; ▶, 323.15 K; ⬢, 328.15 K; ★, 333.15 K; ⬟, 338.15 K, △, 343.15 K; , the Redlich−Kister correlations.
Figure 2. Viscosity deviations, Δη, as a function of mole fraction of decalin or methylcyclohexane for the binary systems of (a) decalin (1) + methylcyclohexane (2); (b) decalin (1) + cyclopentanol (2); (c) methylcyclohexane (1) + cyclopentanol (2) at 0.1 MPa and 11 different temperatures: ■, 293.15 K; ●, 298.15 K; ▲, 303.15 K; ▼, 308.15 K; ◆,313.15K;◀, 318.15 K; ▶, 323.15 K; ⬢, 328.15 K; ★, 333.15 K; ⬟, 338.15 K, Δ, 343.15 K; , the Redlich−Kister correlations.
4. It is obvious that the Δη are negative in the entire concentration area and the values increase with enhancement in temperature. This phenomenon should be attributed to the weak hydrogen bond in cyclopentanol molecules. Moreover, the values of excess molar volume and viscosity deviation for the ternary system are fitted to Clibuka, Singh, Nagata-Tamura, and
Redlich−Kister equations. Tables S6−S9 demonstrate that the four equations get similar results of deviations for the correlated
VmE and Δη. H
DOI: 10.1021/acs.jced.8b01004 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Figure 3. Curves of VmE (cm3·mol−1) for the ternary system decalin (1) + methylcyclohexane (2) + cyclopentanol (3) correlated by the Nagata−Tamura equation at (a) T = 303.15 K; (b) T = 343.15 K.
Figure 4. Curves of Δη (mPa·s) for the ternary system decalin (1) + methylcyclohexane (2) + cyclopentanol (3) correlated by the Nagata− Tamura equation at (a) T = 303.15 K; (b) T = 343.15 K.
4. CONCLUSION Measurements on density (ρ) and viscosity (η) for the three binary systems of decalin (1) + methylcyclohexane (2), decalin (1) + cyclopentanol (2), and methylcyclohexane (1) + cyclopentanol (2), and the ternary system of decalin (1) + methylcyclohexane (2) + cyclopentanol (3) over the entire range of compositions have been carried out at 11 temperature points T = 293.15 to 343.15 K and atmospheric pressure. The excess molar volumes (VmE ) and viscosity deviations (Δη) have been calculated from the measured data. The Redlich−Kister equation has been applied to correlated the binary systems. The VmE values for the system of cyclopentanol-containing is affected by the weakening of hydrogen bonds among cyclopentanol molecules and the structural effect of different molecules, while those for the system of decalin and methylcyclohexane is mainly influenced by the spatial factors. In the meantime, the Δη values for the three binary systems are negative in the entire concentration area, which is ascribed to the dissociating of self-associated molecules and lower interraction between different molecules. The excess molar volume and viscosity deviation for the ternary system have been fitted to Clibuka, Singh, Nagata-Tamura, and Redlich−Kister equations. It can be observed that the VmE of the ternary system are partially negative
as a result of the broken hydrogen bonds between cyclopentanol and the structural effect in unlike molecules. Meanwhile, the Δη of the ternary system are observed negative over the whole composition range, which is mainly influenced by the weakening hydrogen bond among cyclopentanol molecules. These results provide valuable reference information toward researches on high-density hydrogen fuel additives.
■
ASSOCIATED CONTENT
S Supporting Information *
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jced.8b01004. The values of excess molar volumes (VmE ), viscosity deviations (Δη) for binary systems and ternary systems. The coefficients and deviations of VmE and Δη with the semiempirical equations for binary and ternary systems (PDF) I
DOI: 10.1021/acs.jced.8b01004 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
■
Article
(14) Chirico, R. D.; Frenkel, M.; Magee, J. W.; Diky, V.; Muzny, C. D.; Kazakov, A. F.; Kroenlein, K.; Abdulagatov, I.; Hardin, G. R.; Acree, W. E.; Brenneke, J. F.; Brown, P. L.; Cummings, P. T.; de Loos, T. W.; Friend, D. G.; Goodwin, A. R. H.; Hansen, L. D.; Haynes, W. M.; Koga, N.; Mandelis, A.; Marsh, K. N.; Mathias, P. M.; McCabe, C.; O’Connell, J. P.; Padua, A.; Rives, V.; Schick, C.; Trusler, J. P. M.; Vyazovkin, S.; Weir, R. D.; Wu, J. T. Improvement of Quality in Publication of Experimental Thermophysical Property Data: Challenges, Assessment Tools, Global Implementation, and Online Support. J. Chem. Eng. Data 2013, 58, 2699−2716. (15) Taylor, B. N.; Kuyatt, C. E. NIST Technical Note 1297. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; NIST: 1994. (16) Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345−348. (17) Jin, S.; Wu, X.; Dai, Y.; Guo, Y.; Fang, W. Densities and Viscosities for the Ternary System of exo-Tetrahydrodicyclopentadiene (1) + Methylcyclohexane (2) + Cyclopropanemethanol (3) and Its Binaries at T = 293.15 to 333.15 K. J. Chem. Eng. Data 2018, 63, 3534− 3544. (18) Luning Prak, D. J. L.; Ye, S.; McLaughlin, M.; Cowart, J. S.; Trulove, P. C. Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Selected Ternary Mixtures of nButylcyclohexane plus a Linear Alkane (n-Hexadcane or n-Dodecane) + an Aromatic Compound (Toluene, n-Butylbenzene, or nHexylbenzene). J. Chem. Eng. Data 2017, 62, 3452−3472. (19) Ghanadzadeh Gilani, A.; Ramezani, S. Permittivities, Refractive Indices, Densities, and Excess Properties for Binary Systems Containing 1-Alkanols and Cyclopentanone. J. Chem. Eng. Data 2018, 63, 2888− 2903. (20) Raveendra, M.; Chandrasekhar, M.; Reddy, K. C.; Venkatesulu, A.; Sivakumar, K.; Reddy, K. D. Study on Thermo Physical Properties of Binary Mixture Containing Aromatic Alcohol with Aromatic, Substituted Aromatic Amines at Different Temperatures Interms of FT-IR, 1H NMR Spectroscopic and DFT Method. Fluid Phase Equilib. 2018, 462, 85−99. (21) Kaur, P.; Dubey, G. P. FT-IR Studies and Excess Thermodynamic Properties of Binary Liquid Mixtures 2-(2-Butoxyethoxy) Ethanol with 1-Hexanol, 1-Octanol and 1-Decanol at Different Temperatures. J. Chem. Thermodyn. 2018, 126, 74−81. (22) Cheng, X. X.; Dai, Y. T.; Zhao, J.; Wu, J. Z.; Sun, H. Y.; Guo, Y. S.; Fang, W. J. Densities and Viscosities for the Ternary System of Cyclopropanemethanol (1) + n-Dodecane (2) + Butylcyclohexane (3) and Corresponding Binaries at T = 293.15−343.15 K. J. Chem. Eng. Data 2017, 62, 2330−2339. (23) Li, G. Q.; Chi, H.; Guo, Y. S.; Fang, W. J.; Hu, S. L. Excess Molar Volume along with Viscosity and Refractive Index for Binary Systems of Tricyclo 5.2.1.0(2.6) decane with Five Cycloalkanes. J. Chem. Eng. Data 2013, 58, 3078−3086. (24) Cai, M.; Liu, Z.; Sun, H.; Guo, Y.; Fang, W. Densities and Viscosities for the ternary System of Cyclopropanemethanol (1) + 2, 2, 4-Trimethylpentane (2) + Decalin (3) and Corresponding Binaries at T = 293.15−323.15 K. Phys. Chem. Liq. 2018, 1. (25) Qin, X.; Cao, X.; Guo, Y.; Xu, L.; Hu, S.; Fang, W. Density, Viscosity, Surface Tension, and Refractive Index for Binary Mixtures of 1, 3-Dimethyladamantane with Four C10 Alkanes. J. Chem. Eng. Data 2014, 59, 775−783. (26) Silva, A. A.; Reis, R. A.; Paredes, M. L. L. Density and Viscosity of Decalin, Cyclohexane, and Toluene Binary Mixtures at (283.15, 293.15, 303.15, 313.15, and 323.15) K. J. Chem. Eng. Data 2009, 54, 2067− 2072. (27) Zhao, J.; Wu, J. Z.; Dai, Y. T.; Cheng, X. X.; Sun, H. Y.; Guo, Y. S.; Fang, W. J. Density, Viscosity, and Freezing Point for Four Binary Systems of n-Dodecane or Methylcyclohexane Mixed with 1-Heptanol or Cyclohexylmethanol. J. Chem. Eng. Data 2017, 62, 643−652. (28) Zhang, C.; Li, G.; Yue, L.; Guo, Y.; Fang, W. Densities, Viscosities, Refractive Indices, and Surface Tensions of Binary Mixtures
AUTHOR INFORMATION
Corresponding Author
*E-mail:
[email protected]. Tel.: 86−571−88981416. Fax: +86−571−88981416. ORCID
Jianzhou Wu: 0000-0002-3131-6206 Yongsheng Guo: 0000-0001-7609-1891 Wenjun Fang: 0000-0002-5610-1623 Funding
The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant No. 21773209). Notes
The authors declare no competing financial interest.
■
REFERENCES
(1) Edwards, T. Liquid Fuels and Propellants for Aerospace Propulsion: 1903−2003. J. Propul. Power 2003, 19, 1089−1107. (2) Yue, L.; Wu, J. Z.; Gong, Y.; Hou, J. W.; Xiong, L. P.; Xiao, C. J.; Fang, W. J. Heat Transfer and Cracking Performance of Endothermic Hydrocarbon Fuel when It Cools a High Temperature Channel. Fuel Process. Technol. 2016, 149, 112−120. (3) He, G. J.; Shen, Y. Y.; Li, J.; Zhang, L. F.; Guo, Y. S.; Dionysiou, D. D.; Fang, W. J. Solubilization of the Macroinitiator Palmitoyl Modified Hyperbranched Polyglycerol (PHPG) in Hydrocarbon Fuels. Fuel 2017, 200, 62−69. (4) Qin, X.; Chi, H.; Fang, W.; Guo, Y.; Xu, L. Thermal Stability Characterization of n-Alkanes from Determination of Produced Aromatics. J. Anal. Appl. Pyrolysis 2013, 104, 593−602. (5) Orme, J. P.; Curran, H. J.; Simmie, J. M. Experimental and Modeling Study of Methyl cyclohexane Pyrolysis and Oxidation. J. Phys. Chem. A 2006, 110, 114−131. (6) Huber, M. L.; Lemmon, E. W.; Diky, V.; Smith, B. L.; Bruno, T. J. Chemically Authentic Surrogate Mixture Model for the Thermophysical Properties of a Coal-derived Liquid Fuel. Energy Fuels 2008, 22, 3249−3257. (7) Oehlschlaeger, M. A.; Shen, H. P. S.; Frassoldati, A.; Pierucci, S.; Ranzi, E. Experimental and Kinetic Modeling Study of the Pyrolysis and Oxidation of Decalin. Energy Fuels 2009, 23, 1464−1472. (8) Chi, H.; Li, G. Q.; Guo, Y. S.; Xu, L.; Fang, W. J. Excess Molar Volume along with Viscosity, Flash Point, and Refractive Index for Binary Mixtures of cis-Decalin or trans-Decalin with C9 to C11 nAlkanes. J. Chem. Eng. Data 2013, 58, 2224−2232. (9) Chen, F.; Li, N.; Yang, X. F.; Li, L.; Li, G. Y.; Li, S. S.; Wang, W. T.; Hu, Y. C.; Wang, A. Q.; Cong, Y.; Wang, X. D.; Zhang, T. Synthesis of High-Density Aviation Fuel with Cyclopentanol. ACS Sustainable Chem. Eng. 2016, 4, 6160−6166. (10) Hui, X.; Kumar, K.; Sung, C. J.; Edwards, T.; Gardner, D. Experimental Studies on the Combustion Characteristics of Alternative Jet Fuels. Fuel 2012, 98, 176−182. (11) Ribeiro, N. M.; Pinto, A. C.; Quintella, C. M.; da Rocha, G. O.; Teixeira, L. S. G.; Guarieiro, L. L. N.; Rangel, M. D.; Veloso, M. C. C.; Rezende, M. J. C.; da Cruz, R. S.; de Oliveira, A. M.; Torres, E. A.; de Andrade, J. B. The Role of Additives for Diesel and Diesel Blended (Ethanol or Biodiesel) Fuels: A review. Energy Fuels 2007, 21, 2433− 2445. (12) Damodharan, D.; Sathiyagnanam, A. P.; Rana, D.; Saravanan, S.; Kumar, B. R.; Sethuramasamyraja, B. Effective Utilization of Waste Plastic Oil in a Direct Injection Diesel Engine Using High Carbon Alcohols as Oxygenated Additives for Cleaner Emissions. Energy Convers. Manage. 2018, 166, 81−97. (13) Sheng, X. R.; Li, N.; Li, G. Y.; Wang, W. T.; Yang, J. F.; Cong, Y.; Wang, A. Q.; Wang, X. D.; Zhang, T. Synthesis of High Density Aviation Fuel with Cyclopentanol Derived from Lignocellulose. Sci. Rep. 2015, 5, 9565. J
DOI: 10.1021/acs.jced.8b01004 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
of 2,2,4-Trimethylpentane with Several Alkylated Cyclohexanes from (293.15 to 343.15) K. J. Chem. Eng. Data 2015, 60, 2541−2548. (29) Iloukhani, H.; Rezael-Sameti, M.; Basiri-Parsa, J.; Azizian, S. Studies of Dynamic Viscosity and Gibbs Energy of Activation of Binary Mixtures of Methyleyclohexane with n-Alkanes (C5-C10) at Various Temperatures. J. Mol. Liq. 2006, 126, 117−123. (30) Baragi, J. G.; Aralaguppi, M. I. Excess and Deviation Properties for the Binary Mixtures of Methylcyclohexane with Benzene, Toluene, p-Xylene, Mesitylene, and Anisole at T = (298.15, 303.15, and 308.15) K. J. Chem. Thermodyn. 2006, 38, 1717−1724. (31) Luning Prak, D. J. L.; Mungan, A. L.; Cowart, J. S.; Trulove, P. C. Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Binary Mixtures of Ethylcyclohexane or Methylcyclohexane with n-Dodecane or n-Hexadecane at 0.1 MPa. J. Chem. Eng. Data 2018, 63, 1642−1656. (32) Ranjbar, S.; Momenian, S. H. Densities and Viscosities of Binary and Ternary Mixtures of (Nitrobenzene + 1-Bromobutane), (1Bromobutane + Methylcyclohexane), (Nitrobenzene + Methylcyclohexane), and (Methylcyclohexane + Nitrobenzene+1-Bromobutane) from (293.15 to 308.15) K. J. Chem. Eng. Data 2011, 56, 3949−3954. (33) Dzida, M. Study of the Effects of Temperature and Pressure on the Thermodynamic and Acoustic Properties of Pentan-1-ol, 2-Methyl2-butanol, and Cyclopentanol in the Pressure Range from (0.1 to 100) MPa and Temperature from (293 to 318) K. J. Chem. Eng. Data 2009, 54, 1034−1040. (34) Fujisaki, N.; Comte, P.; Infelta, P. P.; Gaeumann, T. Absorption Spectra of Solvated Electrons and Radicals Observed in the Pulse Radiolysis of Cis and Trans Isomers of Methylcyclohexanols and Cyclopentanol to Cyclooctanol. J. Phys. Chem. 1991, 95, 6259−6264.
K
DOI: 10.1021/acs.jced.8b01004 J. Chem. Eng. Data XXXX, XXX, XXX−XXX