Densities and Viscosities of Binary Mixtures of 1 ... - ACS Publications

nonparametric model at T ) 298.15 K, obtaining average absolute deviations that are comparable to ... from the average flow time, t, by means of the e...
0 downloads 0 Views 104KB Size
J. Chem. Eng. Data 2005, 50, 677-682

677

Densities and Viscosities of Binary Mixtures of 1-Chlorobutane with Butanol Isomers at Several Temperatures Alejandro Anso´ n, Rosa Garriga, Santiago Martı´nez, Pascual Pe´ rez, and Mariano Gracia* Departamento de Quı´mica Orga´nica y Quı´mica Fı´sica (A Ä rea de Quı´mica Fı´sica), Facultad de Ciencias, Universidad de Zaragoza, 50009 Spain

Densities and viscosities of 1-chlorobutane + 1-butanol, + 2-methyl-1-propanol, + 2-butanol, or + 2-methyl2-propanol were measured at several temperatures between 288.15 K and 318.15 K. At each temperature, the experimental viscosity data were correlated by means of the McAllister biparametric equation. By using our previous thermodynamic measurements (VLE, HE), we have tested the Wei and Rowley nonparametric model at T ) 298.15 K, obtaining average absolute deviations that are comparable to those calculated for the biparametric model.

Introduction Although considerable progress has been achieved in the description of alkanol + alkane mixtures, the corresponding progress in mixtures of alkanol + a second polar component whose molecules may compete with alcohol molecules for hydrogen bond formation is rather limited. In recent publications, we presented equilibrium thermodynamic properties1,2 for mixtures of (1-chlorobutane + butanol isomers). In this paper, we report viscosity data for these systems at four temperatures between 288.15 K and 318.15 K as well as density data at three temperatures. Excess molar volumes, at 298.15 K, for mixtures of 1-chlorobutane + 1-butanol or 2-methyl-2-propanol have been published previously,3 as well as for mixtures of 1-chlorobutane + 2-methyl-1-propanol or 2-butanol.2 Data are in agreement with other authors’ measurements found in the literature4,5 at 298.15 K and 313.15 K. Experimental Section 1-Chlorobutane (mole fraction >0.995), 1-butanol (mole fraction >0.998), 2-methyl-1-propanol (mole fraction >0.995), 2-butanol (mole fraction >0.990), and 2-methyl-2-propanol (mole fraction >0.995) were Aldrich products. All of the chemicals had low water content, were supplied with an analysis certificate, and were used without further purification. Ubbelohde viscometers (Schott) with relatively long flow times (60 s to 600 s, with water) were used to minimize the kinetic energy corrections. At least three readings of the flow time with variations not exceeding (0.1 s were taken for each solution. The viscosities were calculated from the average flow time, t, by means of the equation

ν ) At -

B t

(1)

where ν is the kinematic viscosity. A and B are viscometer constants that were determined by using values from Marsh6 for the water viscosity together with the corresponding flow times measured in this study. The viscometer was held in a water bath whose temperature was * Corresponding author. Tel: +34-976-761195; Fax: +34-976-761202; E-mail: [email protected].

Table 1. Density G and Dynamic Viscosity η of the Pure Compounds F/g‚cm-3 compound

η/mPa‚s

T/K

exptl

lit

1-chlorobutane

288.15 298.15 303.15 308.15 313.15 318.15

0.891 87 0.880 18 0.875 19 0.869 64 0.863 94 0.858 31

0.8909a 0.8804c 0.8750c 0.8694a 0.8639c 0.8581a

0.477 0.469b 0.429 0.427b 0.409 0.405b 0.390 0.372 0.354

exptl

1-butanol

288.15 298.15 308.15 318.15

0.813 42 0.805 40 0.798 14 0.790 19

0.8134d 0.8060e 0.7983d 0.7907d

3.346 2.560 1.991 1.569

3.3790c 2.5710f 2.000f 1.5786f

2-methyl-1-propanol 288.15 298.15 308.15 318.15

0.805 47 0.797 37 0.790 10 0.781 99

0.8055d 0.7978e 0.7897d 0.7818d

4.805 3.435 2.508 1.870

4.6556f 3.3330f 2.445f 1.834f

2-butanol

288.15 298.15 308.15 318.15

0.810 72 0.801 82 0.794 07 0.785 15

0.8111d 0.8026e 0.7939d 0.7854d

4.509 3.035 2.111 1.523

4.444f 2.998f 2.1019f 1.525f

2-methyl-2-propanol 298.15 303.15 308.15 313.15 318.15

0.779 96 0.775 30 0.770 19 0.764 83 0.759 52

0.7812e 0.7757e 0.7703d 0.7649e 0.7594d

4.433 3.355 2.611 2.074 1.685

4.438f 3.390f 2.644f 2.1037f 1.705f

a Interpolated from ref 7. b From ref 8. c From ref 7. lated from ref 9. e From ref 9. f From ref 10.

d

lit

Interpo-

controlled to within (10 mK. Three different viscometers were used during the course of this investigation. The masses of both components were determined by weighing, and the uncertainties in the mole fractions are estimated to be less than 0.0003. Flow-time measurements were performed with an electrical stopwatch to (0.01 s. The uncertainty in the kinematic viscosity measurements is estimated to be (2 × 10-9 m2‚s-1. Excess molar volumes were calculated from density measurements made with a densimeter (Anton Paar DMA 60/DMA 602). The uncertainty for VE is 0.002 cm3‚mol-1. Results Table 1 presents density and dynamic viscosity data of the pure compounds, which are compared with values

10.1021/je0496140 CCC: $30.25 © 2005 American Chemical Society Published on Web 02/04/2005

678

Journal of Chemical and Engineering Data, Vol. 50, No. 2, 2005

Table 2. Experimental Densites G and Excess Molar Volumes VE at Several Temperatures x2

F

VE

F

VE

F

VE

g‚cm-3

cm3‚mol-1

g‚cm-3

cm3‚mol-1

x2

g‚cm-3

cm3‚mol-1

0.6747 0.7342 0.7698 0.8509 0.9022 0.9582

0.841 19 0.836 40 0.833 49 0.826 62 0.822 13 0.817 04

-0.019 -0.033 -0.040 -0.043 -0.037 -0.018

x2

0.0620 0.1027 0.1383 0.2032 0.2597 0.2859 0.3764

0.886 96 0.883 98 0.881 38 0.876 67 0.872 57 0.870 67 0.864 06

0.059 0.072 0.080 0.084 0.080 0.076 0.056

1-Chlorobutane (1) + 1-Butanol (2) T ) 288.15 K 0.3967 0.862 58 0.048 0.4541 0.858 30 0.034 0.4822 0.856 17 0.028 0.5076 0.854 25 0.020 0.5466 0.851 25 0.012 0.5818 0.848 53 0.002 0.6332 0.844 49 -0.009

0.1056 0.1979 0.2842

0.861 88 0.855 62 0.849 82

0.132 0.164 0.172

0.3908 0.4964 0.5913

T ) 308.15 K 0.842 67 0.835 50 0.828 95

0.158 0.129 0.095

0.6908 0.7917 0.9003

0.821 85 0.814 48 0.806 19

0.063 0.026 0.000

0.0612 0.0913 0.1849 0.2759

0.853 78 0.851 66 0.845 48 0.839 66

0.111 0.149 0.201 0.211

0.3836 0.4858 0.5859 0.6868

T ) 318.15 K 0.832 82 0.826 26 0.819 71 0.812 99

0.193 0.162 0.125 0.076

0.7868 0.8906

0.806 09 0.798 56

0.035 0.008

1-Chlorobutane (1) + 2-Methyl-1-propanol (2) T ) 288.15 K 0.4421 0.855 33 0.089 0.5564 0.845 76 0.057 0.5739 0.844 30 0.049 0.6250 0.839 91 0.035 0.6843 0.834 73 0.020 0.7309 0.830 64 0.005

0.7517 0.7555 0.7567 0.8490 0.9196 0.9806

0.828 80 0.828 45 0.828 35 0.819 90 0.813 20 0.807 26

-0.002 -0.002 -0.003 -0.016 -0.015 -0.007

0.0369 0.0769 0.1526 0.2287 0.2853 0.3791

0.888 52 0.885 16 0.878 94 0.872 74 0.868 15 0.860 52

0.050 0.079 0.109 0.121 0.119 0.103

0.1006 0.1959 0.2770

0.861 12 0.853 68 0.847 47

0.169 0.231 0.254

0.3894 0.4895 0.5863

T ) 308.15 K 0.838 94 0.831 33 0.823 90

0.251 0.227 0.189

0.6914 0.7941 0.8989

0.815 70 0.807 44 0.798 78

0.137 0.088 0.038

0.0905 0.1869 0.2712

0.850 62 0.843 28 0.837 05

0.196 0.277 0.306

0.3772 0.4806 0.5812

T ) 318.15 K 0.829 29 0.821 73 0.814 29

0.311 0.290 0.256

0.6819 0.7816 0.8896

0.806 85 0.799 34 0.791 03

0.197 0.129 0.048

0.6634 0.7388 0.7984 0.8286 0.8840 0.9367

0.838 14 0.832 24 0.827 45 0.824 99 0.820 50 0.816 07

0.240 0.180 0.137 -1.326 -0.980 -0.579

0.0500 0.1177 0.1435 0.1962 0.2227 0.3400

0.887 10 0.881 38 0.879 24 0.874 99 0.872 88 0.863 63

0.129 0.219 0.246 0.283 0.296 0.325

1-Chlorobutane (1) + 2-Butanol (2) T ) 288.15 K 0.4058 0.858 45 0.326 0.4104 0.858 09 0.326 0.4986 0.851 12 0.315 0.5241 0.849 12 0.307 0.5527 0.846 87 0.296 0.6114 0.842 23 0.272

0.1007 0.1941 0.2775

0.860 49 0.853 08 0.846 72

0.291 0.410 0.471

0.3881 0.4876 0.5897

T ) 308.15 K 0.838 47 0.831 15 0.823 73

0.503 0.495 0.453

0.6927 0.7950 0.8963

0.816 37 0.808 99 0.801 67

0.370 0.269 0.146

0.0864 0.1906 0.2732

0.850 35 0.842 10 0.835 88

0.299 0.466 0.540

0.3820 0.4862 0.5852

T ) 318.15 K 0.828 00 0.820 61 0.813 65

0.576 0.565 0.523

0.6823 0.7865 0.8928

0.806 95 0.799 78 0.792 59

0.443 0.330 0.171

1-Chlorobutane (1) + 2-Methyl-2-propanol (2) T ) 303.15 K 0.3800 0.834 23 0.653 0.4810 0.824 02 0.689 0.5729 0.814 91 0.679

0.6749 0.7778 0.8938

0.804 89 0.795 09 0.784 46

0.630 0.515 0.300

0.0924 0.1915 0.2758

0.864 09 0.853 49 0.844 75

0.325 0.497 0.592

0.0969 0.1912 0.2786

0.857 96 0.847 87 0.838 90

0.357 0.527 0.620

0.3839 0.4811 0.5844

T ) 308.15 K 0.828 23 0.818 50 0.808 35

0.693 0.721 0.702

0.6849 0.7881 0.8957

0.798 55 0.788 78 0.779 05

0.648 0.527 0.313

0.0930 0.1869 0.2685

0.852 60 0.842 51 0.834 13

0.365 0.546 0.639

0.3778 0.4841 0.5777

T ) 313.15 K 0.823 11 0.812 56 0.803 43

0.715 0.739 0.718

0.6796 0.7766 0.8972

0.793 58 0.784 47 0.773 57

0.657 0.541 0.305

0.0918 0.1839 0.2674

0.847 04 0.837 08 0.828 47

0.380 0.571 0.677

0.3797 0.4809 0.5799

T ) 318.15 K 0.817 22 0.807 29 0.797 62

0.750 0.764 0.747

0.6780 0.7833 0.8905

0.788 38 0.778 42 0.768 84

0.661 0.545 0.324

Journal of Chemical and Engineering Data, Vol. 50, No. 2, 2005 679 Table 3. Absolute Viscosities η and Viscosity Deviations ∆η for {1-Chlorobutane (1) + Butanol Isomers (2)} at Different Temperatures T ) 288.15 K

T ) 298.15 K

T ) 308.15 K

T ) 318.15 K

η

∆η

η

∆η

η

∆η

η

∆η

x2

mPa‚s

mPa‚s

mPa‚s

mPa‚s

mPa‚s

mPa‚s

mPa‚s

mPa‚s

0.0949 0.1964 0.2961 0.3949 0.4941 0.5915 0.6954 0.7940 0.8920

0.509 0.570 0.655 0.774 0.940 1.175 1.503 1.934 2.529

-0.241 -0.470 -0.671 -0.836 -0.954 -0.999 -0.969 -0.821 -0.507

1-Chlorobutane (1) + 1-Butanol (2) 0.452 -0.179 0.407 0.504 -0.343 0.448 0.570 -0.489 0.501 0.661 -0.609 0.576 0.788 -0.694 0.670 0.955 -0.735 0.797 1.204 -0.707 0.984 1.525 -0.596 1.226 1.955 -0.375 1.547

-0.134 -0.256 -0.363 -0.446 -0.510 -0.539 -0.519 -0.434 -0.271

0.367 0.401 0.444 0.503 0.577 0.674 0.816 0.993 1.238

-0.102 -0.191 -0.269 -0.331 -0.377 -0.398 -0.383 -0.326 -0.200

0.1003 0.1993 0.2979 0.3954 0.4960 0.5936 0.6894 0.7923 0.8912

0.511 0.568 0.654 0.784 0.948 1.198 1.570 2.196 3.098

-0.401 -0.772 -1.113 -1.405 -1.676 -1.848 -1.891 -1.710 -1.237

1-Chlorobutane (1) + 2-Methyl-1-propanol (2) 0.454 -0.276 0.408 0.499 -0.529 0.445 0.567 -0.758 0.497 0.663 -0.955 0.574 0.787 -1.132 0.663 0.970 -1.243 0.801 1.230 -1.272 0.986 1.669 -1.142 1.295 2.284 -0.824 1.724

-0.194 -0.367 -0.523 -0.654 -0.777 -0.846 -0.864 -0.772 -0.554

0.369 0.397 0.440 0.498 0.567 0.682 0.808 1.025 1.330

-0.137 -0.259 -0.365 -0.455 -0.539 -0.572 -0.591 -0.530 -0.374

0.0965 0.1973 0.2962 0.3934 0.4917 0.5923 0.6919 0.7931 0.8933

0.496 0.542 0.601 0.688 0.805 0.995 1.286 1.764 2.648

-0.370 -0.731 -1.071 -1.376 -1.655 -1.870 -1.981 -1.911 -1.431

1-Chlorobutane (1) + 2-Butanol (2) 0.444 -0.237 0.399 0.478 -0.465 0.426 0.524 -0.677 0.462 0.587 -0.867 0.510 0.675 -1.035 0.577 0.811 -1.162 0.676 1.011 -1.221 0.818 1.334 -1.161 1.034 1.901 -0.856 1.419

-0.157 -0.303 -0.437 -0.556 -0.658 -0.733 -0.762 -0.721 -0.508

0.362 0.382 0.410 0.450 0.498 0.571 0.676 0.825 1.072

-0.105 -0.202 -0.290 -0.364 -0.431 -0.476 -0.486 -0.456 -0.326

x2 0.0966 0.2000 0.2904 0.3901 0.4897 0.5956 0.6919 0.8008 0.8889

T ) 298.15 K

T ) 303.15 K

T ) 308.15 K

T ) 313.15 K

T ) 318.15 K

η

∆η

η

∆η

η

∆η

η

∆η

η

∆η

mPa‚s

mPa‚s

mPa‚s

mPa‚s

mPa‚s

mPa‚s

mPa‚s

mPa‚s

mPa‚s

mPa‚s

-0.373 -0.754 -1.074 -1.414 -1.728 -2.015 -2.200 -2.211 -1.876

1-Chlorobutane (1) + 2-Methyl-2-propanol (2) 0.419 -0.275 0.397 -0.207 0.378 0.449 -0.549 0.423 -0.411 0.400 0.486 -0.779 0.456 -0.579 0.428 0.537 -1.021 0.502 -0.754 0.468 0.611 -1.241 0.565 -0.912 0.525 0.727 -1.438 0.664 -1.049 0.608 0.892 -1.555 0.801 -1.125 0.724 1.232 -1.536 1.081 -1.087 0.947 1.752 -1.276 1.474 -0.890 1.255

-0.159 -0.313 -0.438 -0.568 -0.681 -0.778 -0.826 -0.788 -0.630

0.359 0.380 0.404 0.439 0.488 0.560 0.658 0.841 1.083

-0.124 -0.241 -0.337 -0.435 -0.518 -0.587 -0.617 -0.580 -0.455

0.442 0.476 0.517 0.577 0.662 0.799 1.000 1.425 2.112

found in the literature. Excess molar volumes, dynamic viscosity, and viscosity deviations were calculated according to the following equations

(

)

(

1 1 1 1 VE ) x1M1 + x2M2 F F1 F F2 η ) νF

)

volumes and viscosity deviations, which were fitted to a polynomial m

∑A (x

Q ) x 1x2 (2)

1

- x2)i

(5)

where Q denotes VE or ∆η. Table 4 lists the Ai coefficients together with the standard deviation, which is defined by

(3) s(Q) )

∆η ) η - (x1η1 + x2η2)

i

i)0

(4)

where F and η are the density and the viscosity of the mixture, x is the mole fraction, M is the molar mass, and subscripts 1 and 2 indicate 1-chlorobutane and alcohol, respectively. Tables 2 and 3 show the density and viscosity measurements at several temperatures together with excess molar

[

∑(Q

- Qcalcd)2 N-m

exptl

]

(6)

where N is the number of experimental points and m is the number of parameters in the corresponding analytical equation. In Figures 1 and 2, the excess molar volume and the viscosity deviation are plotted at T ) 318.15 K. Discussion For all systems, both VE and ∆η increase with increasing temperature, and for mixtures containing 2-methyl-2-

680

Journal of Chemical and Engineering Data, Vol. 50, No. 2, 2005

Table 4. Coefficients Ai and Standard Deviations s(VE) and s(∆η) for Equation 5 VE/cm3‚mol-1 T/K 288.15 298.15 308.15 318.15 288.15 298.15 308.15 318.15 288.15 298.15 308.15 318.15 298.15 303.15 308.15 313.15 318.15

A0

A1

A2

∆η/mPa‚s A3

s(VE)

A1

A2

A3

s(∆η)

1.738 1.286 0.940 0.691

-0.421 -0.329 -0.241 -0.215

-0.218 -0.199 -0.227 -0.169

0.007 0.002 0.002 0.003

-2.923 -1.920 -1.279 -0.887

1.427 0.911 0.555 0.429

0.014 0.010 0.007 0.005

1-Chlorobutane (1) + 2-Butanol (2) 0.823 0.004 -6.634 -4.156 0.697 0.008 -2.650 0.878 0.006 -1.725

4.901 2.944 1.808 1.087

-4.598 -2.610 -1.468 -0.911

3.076 1.648 0.735 0.520

0.017 0.009 0.004 0.004

1-Chlorobutane (1) + 2-Methyl-2-propanol (2) -6.898 5.603 1.072 0.814 0.006 -4.968 3.921 1.207 0.768 0.008 -3.659 2.784 1.207 0.817 0.008 -2.738 2.001 1.253 0.717 0.009 -2.086 1.464

-7.149 -4.660 -3.090 -2.095 -1.473

6.033 3.692 2.299 1.446 0.914

0.046 0.028 0.018 0.011 0.007

A0

1-Chlorobutane (1) + 1-Butanol (2) 0.357 0.003 -3.835 -2.799 0.422 0.003 -2.055 0.517 0.004 -1.519

0.096

0.515

0.165

0.505 0.619

0.600 0.729

0.279 0.373

0.284

0.572

0.882 1.136

0.670 0.591

1-Chlorobutane (1) + 2-Methyl-1-propanol (2) 0.181 0.311 0.003 -6.703 4.333 -4.531 2.844 0.345 0.337 0.004 -3.099 1.891 0.335 0.859 0.004 -2.133 1.225

1.245

0.489

0.226

1.947 2.237

0.565 0.589

0.562 0.675

2.738 2.858 2.930 3.039

-0.133 -0.090 0.045 0.209

Figure 1. Excess molar volume at T ) 318.15 K for 0, {x1 1-chlorobutane + x2 1-butanol}; ], {x1 1-chlorobutane + x2 2-methyl-1-propanol}; 4, {x1 1-chlorobutane + x2 2-butanol}; O, {x1 1-chlorobutane + x2 2-methyl-2-propanol}; and s, from analytical equations.

propanol, we observe the lowest variation in VE and the highest variation in ∆η. At T ) 318.15 K, Figures 1 and 2 show the experimental data for the four mixtures (1chlorobutane + butanol isomers). VE increases with the branching around the OH group, and for ∆η, the more negative values are observed in mixtures containing 2-methyl-2-propanol. Many semitheoretical and empirical equations have been used to fit the isothermal viscosity data of mixtures. These equations can be distinguished as predictive or correlative and have been reviewed and discussed extensively by Mehrotra et al.11 We have selected the McAllister twoparameter equation12 based on Eyring’s equation, which takes into account interactions of both like and unlike

Figure 2. Viscosity deviation at T ) 318.15 K for 0, {x1 1-chlorobutane + x2 1-butanol}; ], {x1 1-chlorobutane + x2 2-methyl-1-propanol}; 4, {x1 1-chlorobutane + x2 2-butanol}; O, {x1 1-chlorobutane + x2 2-methyl-2-propanol}; s, from analytical equations.

molecules by a 2D three-body model. The McAllister equation is given by

ln ν ) x13 ln ν1 + 2x12x2 ln ν12 + 2x1x22 ln ν21 +

(

)

(

x23 ln ν2 -

)

M2 2 + {M2}/{M1} ln x1 + x2 + 3x12x2 ln + M1 3

(

3x1x22 ln

)

( )

1 + {2M2/M1} M2 + x23 ln 3 M1

(7)

Journal of Chemical and Engineering Data, Vol. 50, No. 2, 2005 681 Table 5. Mixed Kinematic Viscosity Parameters and Average Absolute Deviations (AAD) of Experimental and Calculated Kinematic Viscosities (10-6 m2‚s-1) at Several Temperatures 1-chlorobutane (1) + 1-butanol (2)

2-methyl-1-propanol (2)

2-butanol (2)

2-methyl-2-propanol (2)

T/K

ν12

ν21

ν12

ν21

ν12

ν21

288.15 298.15 303.15 308.15 313.15 318.15 AAD/%

0.648 0.583

1.616 1.285

0.673 0.600

1.406 1.131

0.677 0.601

0.908 0.770

0.527

1.059

0.544

0.928

0.536

0.676

0.884

0.493

0.787

0.486

0.481 0.41

0.594

0.56

ν12

ν21

0.690 0.633 0.580 0.537 0.502

0.541 0.545 0.547 0.542 0.532

0.92

2.17

Figure 3. Dynamic viscosity at T ) 298.15 K for (a) {x1 1-chlorobutane + x2 2-butanol} and (b) {x1 1-chlorobutane + x2 2-methyl-2propanol}. O, Experimental, from the NRTL model: ‚‚‚, with σ ) 0.00; s, with σ ) 0.25 (predictive), - ‚ - ‚ -, with σ (fitted).

i ) 1 for 1-chlorobutane and 2 for alcohol, ν is the kinematic viscosity of the pure compounds, x is the mole fraction, M is the molar mass, and ν12 and ν21 are fitting parameters that denote viscosity contributions for 112 and 221 interactions, respectively, and have been calculated for each temperature by a least-squares method. For each system at several temperatures, the mixed viscosity parameters are collected in Table 5 together with the average absolute deviations (AAD) that are defined by

AAD )

∑|

100 N

[

ln νexptl - ln νcalcd

|]

j

ξ)



φiξ0i +

i

- ξ0j )

ji

φi

∑φ G l

σHE

-

RT

(10)

li

l

∑(φ φ ξ ) / / 0 i ii i

ξji ) ξij )

i



(11) (φ/j

φ/jj)

j

(8)

where for an i, j (i * j) pair of interactions

(

Gji ) exp -

Rowley13,14

proposed a local composition model Wei and for the multicomponent nonelectrolyte liquid mixture viscosity, which requires only binary equilibrium thermodynamic information (HE, GE) in addition to pure-component data. No mixture viscosities and no adjustable parameters are required. The basic equations of the model are given by

exp(ξ) V



ji

j

i

where N is the number of experimental points.

η)

[ ] ∑φ G (ξ

(9)

(

φ/j ) (1 + Γji)-1

Γji )

)

RAji RT

φ/ii ) 1 +

( )( ) [ Vi Gij Vj Gji

1/2

exp

(12)

)

φ/j Gji φ/i

]

ξ0i - ξ0j 2

-1

(13)

(14)

The * symbol stands for the volume fraction at specific

682

Journal of Chemical and Engineering Data, Vol. 50, No. 2, 2005

Table 6. Standard Deviations s(η) for Experimental and Calculated Dynamic Viscosity η (mPa‚s) According to the Wei and Rowley Model at T ) 298.15 K for σ ) 0.00, σ ) 0.25, and σ (Fitted) system 1-chlorobutane (1) + 1-butanol (2) 1-chlorobutane (1) + 2-methyl-1-propanol (2) 1-chlorobutane (1) + 2-butanol (2) 1-chlorobutane (1) + 2-methyl-2-propanol (2)

σ

s(η)

σ

s(η)

σ

s(η)

0.00 0.099 0.25 0.140 -0.39 0.060 0.00 0.039 0.25 0.103 -0.12 0.020 0.00 0.083 0.25 0.037

0.23 0.036

0.00 0.272 0.25 0.173

0.60 0.109

composition defined by eq 12, and ξ0i denotes the purecomponent i value

ξ0i ) ln(ηiVi)

(15)

The same notation as in the original paper is used. R, Aij, and Aji stand for the binary NRTL parameters. In this work, these parameters have been calculated from our vapor pressure data, and HE values have been taken from our experimental results.1-3 If the σ factor in eq 10 is taken to be 0.25, as in the original paper, then the validity of the model as a nonparametric predictive method is then tested. In Table 6, standard deviations s(η), defined by eq 6, at 298.15 K for three σ values [σ ) 0.00 (no HE contribution), σ ) 0.25 (predictive), and σ (fitted)] are collected, and the corresponding dynamic viscosity is plotted in Figure 3 for 2-butanol and 2-methyl-2-propanol, the best and the worst standard deviation for σ ) 0.25, respectively. We can conclude that in all systems η is well described by the predictive model (σ ) 0.25). The agreement with the experimental results is comparable to that obtained with σ (fitted) (monoparametric) or with the McAllister biparametric equation. Previous studies of mixtures of butanol isomers with butanone or butanenitrile yield similar agreement between experimental and calculated results.15,16 By taking into account the complicated interactions in these mixtures, we can conclude that the NRTL model (predictive) gives an adequate representation of these systems. Literature Cited (1) Garriga, R.; Martı´nez, S.; Pe´rez, P.; Gracia, M. Isothermal (vapour + liquid) equilibrium at several temperatures of (1-chlorobutane + 1-butanol, or 2-methyl-2-propanol). J. Chem. Thermodyn. 2001, 33, 523-534.

(2) Garriga, R.; Martı´nez, S.; Pe´rez, P.; Gracia, M. Thermodynamic excess properties for binary mixtures of 1-chlorobutane with 2-butanol or 2-methyl-1-propanol. Fluid Phase Equilib. 2001, 181, 203-214. (3) Pe´rez, P.; Royo, F.; Gracia, M.; Gutie´rrez Losa, C. HEm and VEm of some (1-chlorobutane + alkanol or cyclohexanol) mixtures. J. Chem. Thermodyn. 1985, 17, 711-718. (4) Lafuente, C.; Artigas, H.; Pardo, J.; Royo, F. M.; Urieta, J. S. Viscosities of 1-Chlorobutane and 1,4-Dichlorobutane with Isomeric Butanols at 25 and 40 °C. J. Solution Chem. 1996, 25, 303313. (5) Artigas, H.; Santafe´, J.; Lo´pez, M. C.; Royo, F. M.; Urieta, J. S. Excess volumes of (an alkanol + a haloalkane) at the temperatures 298.15 K and 313.15 K. J. Chem. Thermodyn. 1993, 25, 1403-1407. (6) International Union of Pure and Applied Chemistry: Recommended Reference Materials for the Realization of Physicochemical Properties; Marsh, K. N., Ed.; Blackwell Scientific Publications: Boston, 1987. (7) TRC Thermodynamic Tables. Non-Hydrocarbons; Thermodynamics Research Center, Texas A&M University System: College Station, Texas, 1981; p d-7040. (8) Timmermans, J. Physico-Chemical Constants of Pure Organic Compounds; Elsevier: New York, 1950; Vol. I, pp 261 and 320. Timmermans, J. Physico-Chemical Constants of Pure Organic Compounds; Elsevier: New York, 1965; Vol. II, p 205. (9) TRC Thermodynamic Tables. Non-Hydrocarbons; Thermodynamics Research Center, Texas A&M University System: College Station, Texas, 1966; p d-5030. (10) TRC Thermodynamic Tables. Non-Hydrocarbons; Thermodynamics Research Center, Texas A&M University System: College Station, Texas, 1971; p c-5030. (11) Mehrotra, A. K.; Monnery, W. D.; Svrcek, W. Y. A review of practical calculation methods for the viscosity of liquid hydrocarbons and their mixtures. Fluid Phase Equilib. 1996, 117, 344355. (12) McAllister, R. A. The Viscosity of Liquid Mixtures. AIChE J. 1960, 6, 427-431. (13) Wei, I. C.; Rowley, R. L. Binary Liquid Mixture Viscosities and Densities. J. Chem. Eng. Data 1984, 29, 332-335. (14) Wei, I. C.; Rowley, R. L A Local Composition Model for Multicomponent Liquid Mixture Shear Viscosity. Chem. Eng. Sci. 1985, 40, 401-408. (15) Martı´nez, S.; Garriga, R.; Pe´rez, P.; Gracia, M. Densities and Viscosities of Binary Mixtures of Butanenitrile with Butanol Isomers at Several Temperatures. J. Chem. Eng. Data 2000, 45, 1182-1188. (16) Martı´nez, S.; Garriga, R.; Pe´rez, P.; Gracia, M. Densities and viscosities of binary mixtures of butanone with butanol isomers at several temperatures. Fluid Phase Equilib. 2000, 168, 267279.

Received for review November 3, 2004. Accepted December 28, 2004. We are grateful for the financial support of the Spanish Ministry of Science and Technology (project BQU2000-1154).

JE0496140