Article pubs.acs.org/jced
Density, Viscosity, Refractive Index, and Surface Tension for Six Binary Systems of Adamantane Derivatives with 1‑Heptanol and Cyclohexylmethanol Xiaofang Cao, Xiaomei Qin, Xi Wu, Yongsheng Guo,* Li Xu, and Wenjun Fang* Department of Chemistry, Zhejiang University, Hangzhou 310027, China S Supporting Information *
ABSTRACT: Measurements on densities (ρ), viscosities (η), and refractive indices (nD) from (293.15 to 333.15) K and at 0.1 MPa along with the surface tensions (γ) at 298.15 K and 0.1 MPa for binary mixtures of 1,3-dimethyladamantane (1,3-DMA), 1-ethyladamantane (1-EA), and 1,3,5trimethyladamantane (1,3,5-TMA) with 1-heptanol or cyclohexylmethanol have been carried out over the entire composition range. The experimental data are used to calculate the excess molar volumes (VmE), viscosity deviations (Δη), molar refraction deviations (ΔΦR), and surface tension deviations (Δγ). The VmE, Δη, ΔΦR, and Δγ values have been fitted to the Redlich−Kister polynomial equation. From these excess or deviation functions, the molecular interactions and nonideality of the binary systems are discussed. The results are expected to provide fundamental data for understanding the properties of adamantane derivatives as potential components and the composition optimization of new high energy-density hydrocarbon fuels.
1. INTRODUCTION Hydrocarbon fuels are directly related to the flight speed of aircrafts. Under normal circumstances, the fuels with higher density and heat value can provide more energy when they are filled in an aircraft fuel tank with a fixed volume. Increasing the density and volume heat value of fuels is the most effective way to improve the aircraft flight Mach number. With the development of versatile missile systems, several high energydensity fuels have been practically investigated.1 As an example, exo-tetrahydrodicyclopentadiene (JP-10) has been studied widely and applied successfully in recent years.2−5 Compared with JP-10, adamantane, as a cage hydrocarbon, possesses more compact structure, and higher density. The adamantane derivatives might be the candidates or additives of high energydensity fuels. The high density hydrocarbon fuels with high carbon− hydrogen ratio, however, may lead to combustion problems such as soot, spray, and strong flame radiation.6,7 Alcohols as additives are used in some hydrocarbon fuels to improve the ignition and combustion characteristics to a certain extent.8,9 In addition, long-chain or cyclic alcohols have relatively high densities, and the densities of the mixtures will not be decreased when a small amount of the alcohols are added into hydrocarbons. Hence, density, as a volumetric property, is primarily important to the energy density of hydrocarbon fuels. In the meantime, viscosity, as a transport property, is critical to the mass transportation of hydrocarbon fuels. Refractive index, as an optical property, is connected to the type and purity of hydrocarbon fuels. Surface tension, as an interfacial property, reveals information about the structure and essence of the energetic surface region between © 2014 American Chemical Society
two phases and has significant influences on the transfer of energy and mass across an interface.10,11 Therefore, these fundamental properties are of scientific and practical importance for preparation of advanced hydrocarbon fuels. In this paper, the densities, viscosities, refractive indices and surface tensions of a series of binary mixtures of 1,3dimethyladamantane, 1-ethyladamantane, and 1,3,5-trimethyladamantane with 1-heptanol or cyclohexylmethanol are measured, and the excess molar volumes, the viscosity deviations, the molar refraction deviations, and the surface tension deviations of the six binary systems are calculated. The experimental data and calculated results are provided for understanding the physical properties of high energy-density hydrocarbon fuels.
2. EXPERIMENTAL SECTION 2.1. Materials. The samples of 1,3-dimethyladamantane (1,3-DMA, CAS no. 702-79-4, w ≥ 0.99), 1-ethyladamantane (1-EA, CAS no. 770-69-4, w ≥ 0.99), and 1,3,5-trimethyladamantane (1,3,5-TMA, CAS no. 707-35-7, w ≥ 0.99) were supplied by Tokyo Chemical Industry (TCI). The samples of 1-heptanol (CAS no. 111-70-6, w = 0.99) and cyclohexylmethanol (CAS no. 100-49-2, w = 0.99) were obtained from Aladdin Industrial Corporation, Shanghai, China. All of the reagents are checked by GC-MS (7890A/5975C, Agilent). Table 1 shows the details of these pure components. The binary mixtures are prepared by Received: April 29, 2014 Accepted: July 22, 2014 Published: July 29, 2014 2602
dx.doi.org/10.1021/je500381c | J. Chem. Eng. Data 2014, 59, 2602−2613
Journal of Chemical & Engineering Data
Article
Table 1. Specification of the Chemicals Employed in This Work
a
name
source
initial purity (mass fraction)
purification method
measured mass fraction purity
analysis method
1,3-DMA 1-EA 1,3,5-TMA 1-heptanol cyclohexylmethanol
TCIa TCI TCI Aladdin Aladdin
0.99 0.99 0.99 0.99 0.99
none none none none none
0.999 0.994 0.997 0.995 0.996
GC−MS GC−MS GC−MS GC−MS GC−MS
TCI is the abbreviation of Tokyo Chemical Industry.
Table 2. Comparison of Experimental Densities (ρ), Viscosities (η), Refractive Indices (nD), and Surface Tensions (γ) of Pure Solvents with Literature Values at Temperature T = 298.15 K and Atmospheric Pressure P = 0.1 MPaa
solvent
ρ
η
g·cm−3
mPa·s
experimental
literature
%ARD
experimental
literature
%ARD
1,3-DMA
0.89804
3.371b
0.77
0.93358 0.88399 0.81879
0.006 0.004 0.15 0.07 0.01 0.09 0.03
3.345
1-EA 1,3,5-TMA 1-heptanol
0.89809b 0.8980c 0.9350d 0.8834c 0.8187e,f 0.819730g 0.8191h
5.869g 5.947h 5.770i
0.97 2.27 0.73
cyclohexylmethanol
0.92625
5.565 2.338 5.812
28.670 γ
nD
mN·m−1 experimental
literature
%ARD
experimental
1,3-DMA 1-EA 1,3,5-TMA 1-heptanol
solvent
1.4757 1.4927o 1.4736o 1.4220
1.4759b 1.4931d,o 1.4751d,o 1.4222f,j 1.4221k
0.01 0.03 0.10 0.01 0.007
27.88 29.87 26.17 26.23
cyclohexylmethanol
1.4612
literature
%ARD
26.38l 26.47m,n
0.6 0.9
32.43
Standard uncertainties u are u (T) = 0.01 K, u (P) = 0.2 kPa, uc (ρ) = 0.00005 g·cm−3, uc (η) = 0.005 mPa·s, uc (nD) = 0.0005 and uc (γ) = 0.01 mN·m−1. bRef 13. cRef 14. dRef 15. eRef 16. fRef 17. gRef 18. hRef 19. iRef 20. jRef 21. kRef 22. lRef 11. mRef 23. nRef 24. oValues given are at temperature T = 293.15 K. a
Table 3. Densities for the Binary Mixtures of 1-Heptanol (1) + 1,3-DMA (2), 1-Heptanol (1) + 1-EA (2), 1-Heptanol (1) + 1,3,5-TMA (2), Cyclohexylmethanol (1) + 1,3-DMA (2), Cyclohexylmethanol (1) + 1-EA (2) and Cyclohexylmethanol (1) + 1,3,5-TMA (2) with Different Mole Fractions (x1) at Temperatures from T = (293.15 to 333.15) K and Atmospheric Pressure P = 0.1 MPaa ρ g·cm−3 x1
293.15 K
298.15 K
303.15 K
0.0000 0.1001 0.1990 0.2998 0.3997 0.4997 0.6002 0.7000 0.7996 0.8999 1.0000
0.90158 0.89550 0.88911 0.88235 0.87532 0.86782 0.85993 0.85141 0.84245 0.83271 0.82228
0.89804 0.89187 0.88548 0.87872 0.87168 0.86419 0.85630 0.84782 0.83888 0.82921 0.81879
0.89448 0.88823 0.88184 0.87506 0.86801 0.86052 0.85265 0.84421 0.83528 0.82566 0.81528
0.0000 0.0999 0.1999 0.2988
0.93711 0.92759 0.91788 0.90792
0.93358 0.92402 0.91426 0.90428
0.92999 0.92037 0.91061 0.90060
308.15 K
313.15 K
1-heptanol (1) + 1,3-DMA (2) 0.89092 0.88735 0.88458 0.88092 0.87815 0.87446 0.87137 0.86767 0.86433 0.86062 0.85684 0.85313 0.84897 0.84527 0.84056 0.83688 0.83166 0.82801 0.82207 0.81846 0.81174 0.80816 1-heptanol (1) + 1-EA (2) 0.92640 0.92281 0.91670 0.91302 0.90692 0.90322 0.89692 0.89321 2603
318.15 K
323.15 K
328.15 K
333.15 K
0.88377 0.87724 0.87075 0.86395 0.85689 0.84940 0.84154 0.83318 0.82433 0.81480 0.80456
0.88019 0.87355 0.86702 0.86020 0.85314 0.84565 0.83779 0.82946 0.82062 0.81112 0.80092
0.87660 0.86984 0.86327 0.85643 0.84936 0.84186 0.83401 0.82568 0.81687 0.80740 0.79724
0.87301 0.86611 0.85950 0.85263 0.84556 0.83805 0.83019 0.82188 0.81308 0.80364 0.79352
0.91921 0.90933 0.89951 0.88949
0.91562 0.90562 0.89576 0.88574
0.91201 0.90191 0.89203 0.88197
0.90841 0.89819 0.88826 0.87819
dx.doi.org/10.1021/je500381c | J. Chem. Eng. Data 2014, 59, 2602−2613
Journal of Chemical & Engineering Data
Article
Table 3. continued ρ g·cm−3 x1
293.15 K
298.15 K
303.15 K
0.3991 0.4998 0.5995 0.7000 0.8002 0.9000 1.0000
0.89736 0.88628 0.87478 0.86260 0.84985 0.83645 0.82228
0.89370 0.88265 0.87116 0.85901 0.84629 0.83293 0.81879
0.89003 0.87899 0.86751 0.85539 0.84270 0.82937 0.81528
0.0000 0.1001 0.2001 0.3002 0.4004 0.5001 0.6002 0.7001 0.7999 0.9002 1.0000
0.88748 0.88247 0.87746 0.87211 0.86649 0.86053 0.85411 0.84723 0.83977 0.83144 0.82228
0.88399 0.87890 0.87388 0.86852 0.86291 0.85694 0.85053 0.84366 0.83622 0.82793 0.81879
0.88047 0.87531 0.87027 0.86491 0.85929 0.85332 0.84691 0.84005 0.83263 0.82438 0.81528
0.0000 0.1027 0.1995 0.3012 0.4004 0.4973 0.6008 0.7002 0.7892 0.9000 1.0000
0.90158 0.90321 0.90507 0.90715 0.90976 0.91251 0.91554 0.91870 0.92249 0.92592 0.92976
0.89804 0.89959 0.90144 0.90351 0.90613 0.90885 0.91197 0.91507 0.91888 0.92236 0.92625
0.89448 0.89596 0.89778 0.89985 0.90245 0.90516 0.90830 0.91144 0.91523 0.91875 0.92271
0.0000 0.1000 0.2002 0.2997 0.3999 0.4998 0.5989 0.7001 0.8023 0.8996 1.0000
0.93711 0.93613 0.93523 0.93437 0.93376 0.93310 0.93254 0.93193 0.93124 0.93057 0.92976
0.93358 0.93250 0.93158 0.93072 0.93009 0.92943 0.92887 0.92831 0.92768 0.92700 0.92625
0.92999 0.92884 0.92789 0.92706 0.92640 0.92574 0.92517 0.92463 0.92404 0.92340 0.92271
0.0000 0.1000 0.2001 0.2997 0.4000 0.4994 0.5991 0.7000 0.8010 0.8927 1.0000
0.88748 0.88970 0.89240 0.89541 0.89882 0.90262 0.90688 0.91164 0.91710 0.92252 0.92976
0.88399 0.88613 0.88882 0.89183 0.89523 0.89902 0.90329 0.90813 0.91353 0.91895 0.92625
0.88047 0.88254 0.88521 0.88821 0.89161 0.89540 0.89966 0.90452 0.90991 0.91534 0.92271
308.15 K
313.15 K
318.15 K
1-heptanol (1) + 1-EA (2) 0.88635 0.88264 0.87891 0.87531 0.87161 0.86788 0.86384 0.86015 0.85643 0.85175 0.84808 0.84437 0.83908 0.83543 0.83175 0.82579 0.82217 0.81853 0.81174 0.80816 0.80456 1-heptanol (1) + 1,3,5-TMA (2) 0.87694 0.87340 0.86986 0.87172 0.86810 0.86447 0.86665 0.86300 0.85934 0.86127 0.85762 0.85395 0.85565 0.85198 0.84830 0.84968 0.84601 0.84232 0.84328 0.83962 0.83593 0.83641 0.83276 0.82907 0.82902 0.82537 0.82170 0.82080 0.81719 0.81354 0.81174 0.80816 0.80456 cyclohexylmethanol (1) + 1,3-DMA (2) 0.89092 0.88735 0.88377 0.89231 0.88865 0.88498 0.89411 0.89042 0.88671 0.89617 0.89247 0.88875 0.89875 0.89503 0.89129 0.90146 0.89773 0.89398 0.90460 0.90087 0.89711 0.90777 0.90409 0.90037 0.91157 0.90787 0.90414 0.91512 0.91145 0.90774 0.91914 0.91553 0.91188 cyclohexylmethanol (1) + 1-EA (2) 0.92640 0.92281 0.91921 0.92516 0.92148 0.91779 0.92420 0.92049 0.91677 0.92339 0.91969 0.91595 0.92268 0.91895 0.91520 0.92203 0.91829 0.91453 0.92145 0.91771 0.91394 0.92092 0.91719 0.91343 0.92038 0.91667 0.91293 0.91977 0.91612 0.91244 0.91914 0.91553 0.91188 cyclohexylmethanol (1) + 1,3,5-TMA (2) 0.87694 0.87340 0.86986 0.87893 0.87532 0.87169 0.88159 0.87795 0.87430 0.88459 0.88094 0.87727 0.88797 0.88432 0.88063 0.89176 0.88809 0.88440 0.89602 0.89235 0.88866 0.90087 0.89720 0.89349 0.90627 0.90261 0.89890 0.91173 0.90808 0.90440 0.91914 0.91553 0.91188
323.15 K
328.15 K
333.15 K
0.87517 0.86413 0.85269 0.84064 0.82804 0.81485 0.80092
0.87139 0.86035 0.84892 0.83688 0.82429 0.81113 0.79724
0.86759 0.85655 0.84511 0.83308 0.82051 0.80738 0.79352
0.86631 0.86082 0.85566 0.85025 0.84459 0.83861 0.83221 0.82535 0.81799 0.80987 0.80092
0.86276 0.85716 0.85196 0.84653 0.84086 0.83486 0.82846 0.82160 0.81426 0.80615 0.79724
0.85920 0.85348 0.84824 0.84278 0.83709 0.83109 0.82468 0.81782 0.81048 0.80240 0.79352
0.88019 0.88129 0.88299 0.88501 0.88753 0.89021 0.89333 0.89661 0.90037 0.90400 0.90819
0.87660 0.87759 0.87924 0.88125 0.88375 0.88641 0.88951 0.89281 0.89656 0.90021 0.90445
0.87301 0.87388 0.87548 0.87747 0.87994 0.88258 0.88567 0.88898 0.89271 0.89638 0.90067
0.91562 0.91409 0.91303 0.91219 0.91142 0.91075 0.91015 0.90963 0.90916 0.90870 0.90819
0.91201 0.91038 0.90927 0.90841 0.90762 0.90694 0.90633 0.90581 0.90535 0.90492 0.90445
0.90841 0.90665 0.90550 0.90461 0.90381 0.90310 0.90249 0.90196 0.90150 0.90110 0.90067
0.86631 0.86804 0.87063 0.87358 0.87693 0.88069 0.88494 0.88976 0.89517 0.90068 0.90819
0.86276 0.86439 0.86694 0.86986 0.87320 0.87694 0.88118 0.88599 0.89140 0.89692 0.90445
0.85920 0.86072 0.86323 0.86613 0.86945 0.87317 0.87740 0.88220 0.88760 0.89312 0.90067
a x1 is the mole fraction of 1-heptanol or cyclohexylmethanol in the binary mixtures. Standard uncertainties u are u (T) = 0.01 K, u (P) = 0.2 kPa, u (x) = 0.0001. The combined uncertainty is uc (ρ) = 0.00005 g·cm−3.
2604
dx.doi.org/10.1021/je500381c | J. Chem. Eng. Data 2014, 59, 2602−2613
Journal of Chemical & Engineering Data
Article
Figure 1. Excess molar volumes (VmE) against the mole fraction (x1) of 1-heptanol or cyclohexylmethanol for the binary systems of (a) 1-heptanol + 1,3-DMA; (b) 1-heptanol + 1-EA; (c) 1-heptanol + 1,3,5-TMA; (d) cyclohexylmethanol + 1,3-DMA; (e) cyclohexylmethanol + 1-EA; and (f) cyclohexylmethanol + 1,3,5-TMA at 0.1 MPa and nine different temperatures: □, 293.15 K; ○, 298.15 K; △, 303.15 K; ▽, 308.15 K; ◇, 313.15 K; ◁, 318.15 K; ▷, 323.15 K; ⎔, 328.15 K; ☆, 333.15 K; , the Redlich−Kister correlations.
of ± 0.001 s. The viscosity values are calculated according to the following equation:
mass with an analytical balance (Mettler Toledo AL204), the uncertainty of which is ± 0.0001 g. 2.2. Methods. The densities are determined by an Anton Paar DMA 5000 M densimeter at a temperature range from T = (293.15 to 333.15) K and atmospheric pressure P = 0.1 MPa. Dry air and double-distilled water are used to calibrate the densimeter. The accuracy of temperature is ± 0.01 K, and the uncertainty of density is ± 0.00005 g·cm−3. The viscosities are determined by an Anton Paar AMVn viscometer at different temperatures from T = (293.15 to 333.15) K and at P = 0.1 MPa. Double-distilled water is applied to calibrate the viscometer. The apparatus is used to keep the temperature with a precision of ± 0.01 K and the efflux time with a precision
η = K(ρball − ρ)
(1)
where K is a constant of the viscometer, t is the averaged efflux time of the investigated sample, ρball is the density of the ball, and ρ is the density of the mixture. Two kinds of capillary/ball with different diameters (1.6 mm and 1.8 mm) are used to measure viscosities. When the efflux time is longer than 200 s, the tube with 1.8 mm diameter is chosen. The uncertainty of viscosity is ± 0.005 mPa·s. The refractive indices are determined by the WAY-2S refractometer from T = (293.15 to 333.15) K, and the HAAKE circulator 2605
dx.doi.org/10.1021/je500381c | J. Chem. Eng. Data 2014, 59, 2602−2613
Journal of Chemical & Engineering Data
Article
is used to maintain the constant temperature within ± 0.01 K. Double-distilled water is used to calibrate the refractometer.12 The uncertainty of refractive index is ± 0.0005. The surface tensions (γ) are determined by a Drop Meter A-100P tensiometer. The PolyScience digital temperature controller makes the temperature with an accuracy of ± 0.01 K. With the volume of a drop detaching from a known diameter capillary, the primary quantity is measured.13 The values of γ can be calculated by the following: γ=
Vρ g F R
(2)
where V is the critical volume, ρ is the density of the mixture, g is the gravitational acceleration constant, R is the radius of the capillary, and F is the correction factor by the manufacturer. The uncertainty of surface tension is ± 0.01 mN·m−1.
3. RESULT AND DISCUSSION The measured densities, viscosities, refractive indices and surface tensions of the pure liquids at 298.15 K and 0.1 MPa are compared with those from the available literature data11,13−24 in Table 2. The percent absolute relative deviations (%ARD) are calculated by the following equation:19 %ARD = 100
|Plit − P| Plit
(3)
where P represents the property (density, viscosity, refractive index, or surface tension) and Plit stands for the experimental value of the literature. The deviations between the measured values (viscosity and surface tension) and those reported in the literature are smaller than 2.27%, which are in acceptable agreement. The corresponding results for the six systems of 1,3-DMA, 1-EA, and 1,3,5-TMA with 1-heptanol or cyclohexylmethanol are provided and discussed in the following parts.
Figure 2. Excess molar volumes (VmE) against the mole fraction (x1) of 1-heptanol or cyclohexylmethanol for the binary systems (a) 1-heptanol + 1,3-DMA/1-EA/1,3,5-TMA and (b) cyclohexylmethanol + 1,3DMA/1-EA/1,3,5-TMA at temperature T = 313.15 K and pressure P = 0.1 MPa: □, 1,3-DMA; ○, 1-EA; △, 1,3,5-TMA; , the Redlich−Kister correlations.
Table 4. Viscosities for the Binary Mixtures of 1-Heptanol (1) + 1,3-DMA (2), 1-Heptanol (1) + 1-EA (2), 1-Heptanol (1) + 1,3,5-TMA (2), Cyclohexylmethanol (1) + 1,3-DMA (2), Cyclohexylmethanol (1) + 1-EA (2) and Cyclohexylmethanol (1) + 1,3,5-TMA (2) with Different Mole Fractions (x1) at Temperatures from T = (293.15 to 333.15) K and Atmospheric Pressure P = 0.1 MPaa η mPa·s x1
293.15 K
298.15 K
303.15 K
0.0000 0.1001 0.1990 0.2998 0.3997 0.4997 0.6002 0.7000 0.7996 0.8999 1.0000
3.764 3.692 3.788 3.972 4.181 4.522 4.920 5.419 5.924 6.447 6.887
3.345 3.271 3.342 3.475 3.686 3.909 4.218 4.611 5.028 5.454 5.812
3.004 2.913 2.963 3.066 3.238 3.414 3.657 3.967 4.304 4.649 4.950
0.0000 0.0999 0.1999 0.2988 0.3991
6.371 5.910 5.707 5.620 5.584
5.565 5.136 4.958 4.860 4.836
4.903 4.506 4.337 4.238 4.215
308.15 K
313.15 K
1-heptanol (1) + 1,3-DMA (2) 2.711 2.458 2.609 2.347 2.642 2.366 2.721 2.427 2.862 2.542 3.000 2.653 3.194 2.807 3.439 3.001 3.711 3.220 3.992 3.450 4.245 3.654 1-heptanol (1) + 1-EA (2) 4.348 3.878 3.965 3.516 3.814 3.376 3.722 3.286 3.692 3.251 2606
318.15 K
323.15 K
328.15 K
333.15 K
2.237 2.121 2.129 2.175 2.269 2.359 2.481 2.636 2.813 3.002 3.170
2.045 1.925 1.925 1.958 2.035 2.107 2.205 2.329 2.472 2.626 2.768
1.876 1.754 1.745 1.769 1.833 1.891 1.970 2.069 2.184 2.311 2.428
1.728 1.603 1.589 1.605 1.658 1.704 1.767 1.847 1.938 2.044 2.141
3.478 3.135 3.003 2.922 2.882
3.134 2.811 2.687 2.608 2.569
2.838 2.531 2.413 2.338 2.299
2.581 2.291 2.178 2.106 2.066
dx.doi.org/10.1021/je500381c | J. Chem. Eng. Data 2014, 59, 2602−2613
Journal of Chemical & Engineering Data
Article
Table 4. continued η mPa·s x1
293.15 K
298.15 K
303.15 K
0.4998 0.5995 0.7000 0.8002 0.9000 1.0000
5.647 5.843 6.077 6.410 6.719 6.887
4.859 4.989 5.156 5.422 5.683 5.812
4.215 4.306 4.424 4.630 4.841 4.950
0.0000 0.1001 0.2001 0.3002 0.4004 0.5001 0.6002 0.7001 0.7999 0.9002 1.0000
2.601 2.626 2.775 2.970 3.242 3.500 4.051 4.645 5.371 6.221 6.887
2.338 2.349 2.469 2.632 2.854 3.131 3.510 3.990 4.567 5.229 5.812
2.118 2.114 2.212 2.350 2.533 2.758 3.066 3.457 3.924 4.464 4.950
0.0000 0.1027 0.1995 0.3012 0.4004 0.4973 0.6008 0.7002 0.7892 0.9000 1.0000
3.764 4.113 4.718 5.602 6.901 8.435 11.198 14.925 21.139 28.689 37.751
3.345 3.615 4.111 4.827 5.842 7.114 9.121 11.896 16.634 22.114 28.670
3.004 3.204 3.618 4.192 5.005 5.993 7.528 9.630 13.353 17.360 22.339
0.0000 0.1000 0.2002 0.2997 0.3999 0.4998 0.5989 0.7001 0.8023 0.8996 1.0000
6.371 6.695 7.433 8.368 9.674 11.538 14.085 17.673 23.658 29.605 37.751
5.565 5.776 6.348 7.083 8.081 9.483 11.384 14.041 18.531 22.862 28.670
4.903 5.033 5.484 6.058 6.832 7.675 9.337 11.313 14.748 18.073 22.339
0.0000 0.1000 0.2001 0.2997 0.4000 0.4994 0.5991 0.7000 0.8010 0.8927 1.0000
2.601 2.872 3.328 3.955 4.859 6.211 8.288 11.514 16.659 24.616 37.751
2.338 2.550 2.939 3.455 4.184 5.256 6.866 9.343 13.222 19.186 28.670
2.118 2.297 2.615 3.041 3.639 4.492 5.760 7.681 10.654 15.278 22.339
308.15 K
313.15 K
318.15 K
1-heptanol (1) + 1-EA (2) 3.681 3.235 2.859 3.742 3.275 2.884 3.824 3.331 2.919 3.985 3.454 3.012 4.154 3.589 3.120 4.245 3.654 3.170 1-heptanol (1) + 1,3,5-TMA (2) 1.930 1.765 1.621 1.911 1.737 1.585 1.992 1.802 1.636 2.108 1.899 1.719 2.261 2.027 1.826 2.444 2.178 1.952 2.699 2.387 2.124 3.015 2.648 2.338 3.396 2.957 2.593 3.841 3.327 2.899 4.245 3.654 3.170 cyclohexylmethanol (1) + 1,3-DMA (2) 2.711 2.458 2.237 2.857 2.560 2.305 3.194 2.841 2.539 3.666 3.229 2.859 4.326 3.764 3.299 5.097 4.377 3.787 6.204 5.311 4.529 7.907 6.578 5.508 10.817 8.883 7.340 13.920 11.303 9.262 17.573 14.093 11.429 cyclohexylmethanol (1) + 1-EA (2) 4.348 3.878 3.478 4.417 3.897 3.463 4.772 4.182 3.688 5.224 4.542 3.973 5.833 5.016 4.350 6.657 5.663 4.857 7.748 6.499 5.504 9.236 7.629 6.374 11.881 9.750 8.051 14.389 11.655 9.556 17.573 14.093 11.429 cyclohexylmethanol (1) + 1,3,5-TMA (2) 1.930 1.765 1.621 2.072 1.878 1.710 2.336 2.100 1.898 2.694 2.402 2.151 3.187 2.811 2.494 3.876 3.371 2.954 4.884 4.181 3.609 6.386 5.366 4.552 8.659 7.126 5.932 12.261 9.952 8.189 17.573 14.093 11.429
323.15 K
328.15 K
333.15 K
2.540 2.555 2.573 2.644 2.728 2.768
2.267 2.271 2.280 2.333 2.399 2.428
2.033 2.030 2.033 2.070 2.121 2.141
1.494 1.452 1.494 1.561 1.652 1.756 1.899 2.049 2.287 2.541 2.768
1.384 1.335 1.368 1.424 1.500 1.587 1.707 1.855 2.029 2.239 2.428
1.284 1.232 1.257 1.303 1.367 1.440 1.540 1.663 1.808 1.984 2.141
2.045 2.085 2.280 2.546 2.911 3.302 3.896 4.604 6.145 7.642 9.354
1.876 1.894 2.057 2.279 2.580 2.898 3.375 3.992 5.076 6.342 7.766
1.728 1.727 2.105 2.048 2.300 2.560 2.946 3.443 4.253 5.984 6.462
3.134 3.094 3.270 3.497 3.798 4.199 4.707 5.378 6.705 7.906 9.354
2.838 2.777 2.915 3.096 3.338 3.657 4.059 4.581 5.629 6.508 7.766
2.581 2.507 2.613 2.756 2.952 3.208 3.525 3.935 4.674 5.472 6.462
1.494 1.564 1.723 1.936 2.224 2.604 3.140 3.899 4.990 6.785 9.354
1.384 1.435 1.569 1.752 1.994 2.311 2.751 3.367 4.238 5.705 7.766
1.284 1.322 1.436 1.590 1.797 2.061 2.426 2.930 3.632 4.772 6.462
a x1 is the mole fraction of 1-heptanol or cyclohexylmethanol in the binary mixtures. Standard uncertainties u are u (T) = 0.01 K, u (P) = 0.2 kPa, u (x) = 0.0001. The combined uncertainty is uc (η) = 0.005 mPa·s.
2607
dx.doi.org/10.1021/je500381c | J. Chem. Eng. Data 2014, 59, 2602−2613
Journal of Chemical & Engineering Data
Article
Figure 3. Viscosity deviations (Δη) against the mole fraction (x1) of 1-heptanol or cyclohexylmethanol for the binary systems (a) 1-heptanol + 1,3-DMA; (b) 1-heptanol + 1-EA; (c) 1-heptanol + 1,3,5-TMA; (d) cyclohexylmethanol + 1,3-DMA; (e) cyclohexylmethanol + 1-EA; (f) cyclohexylmethanol + 1,3,5-TMA) at 0.1 MPa and nine different temperatures: □, 293.15 K; ○, 298.15 K; △, 303.15 K; ▽, 308.15 K; ◇, 313.15 K; ◁, 318.15 K; ▷, 323.15 K; ⎔, 328.15 K; ☆, 333.15 K; , the Redlich−Kister correlations.
the mixture. The calculated values of VmE for the six systems at different temperatures are listed in detail in Table S1 of the Supporting Information. The excess molar volumes are fitted to the Redlich−Kister equation
3.1. Volumetric Properties. The densities measured at temperatures from T = (293.15 to 333.15) K and at atmospheric pressure P = 0.1 MPa are summarized in Table 3. On the basis of these experimental data, the excess mole volumes (VmE) are calculated from the following equation: ⎛1 ⎛1 1⎞ 1⎞ VmE = x1M1⎜⎜ − ⎟⎟ + x 2M 2⎜⎜ − ⎟⎟ ρ1 ⎠ ρ2 ⎠ ⎝ρ ⎝ρ
i=0
Y = x1(1 − x1) ∑ Ai (2x1 − 1)i (4)
n
where ρ1, ρ2, M1, and M2 are the densities and the molar masses of the pure components 1 and 2, respectively, and ρ is the density of
(5)
VmE,
where Y refers to n refers to the number of adjusting parameters, and x1 is the mole fraction of 1-heptanol or 2608
dx.doi.org/10.1021/je500381c | J. Chem. Eng. Data 2014, 59, 2602−2613
Journal of Chemical & Engineering Data
Article
Table 5. Refractive Indices for the Binary Mixtures of 1-Heptanol (1) + 1,3-DMA (2), 1-Heptanol (1) + 1-EA (2), 1-Heptanol (1) + 1,3,5-TMA (2), Cyclohexylmethanol (1) + 1,3-DMA (2), Cyclohexylmethanol (1) + 1-EA (2) and Cyclohexylmethanol (1) + 1,3,5-TMA (2) with Different Mole Fractions at Temperatures T = (293.15 to 333.15) K and Atmospheric Pressure P = 0.1 MPa, and Surface Tensions at T = 298.15 K and P = 0.1 MPaa γ
nD
mN·m−1 x1
293.15 K
298.15 K
0.0000 0.1001 0.1997 0.2998 0.3997 0.4997 0.6002 0.7000 0.7996 0.8999 1.0000
1.4776 1.4735 1.4696 1.4642 1.4591 1.4541 1.4483 1.4427 1.4365 1.4299 1.4236
1.4757 1.4714 1.4678 1.4624 1.4572 1.4519 1.4468 1.4411 1.4351 1.4282 1.4220
0.0000 0.0999 0.1999 0.2988 0.3991 0.4998 0.5995 0.7000 0.8002 0.9000 1.0000
1.4927 1.4869 1.4809 1.4746 1.4682 1.4610 1.4546 1.4473 1.4397 1.4316 1.4236
1.4906 1.4847 1.4785 1.4725 1.4660 1.4594 1.4522 1.4451 1.4376 1.4298 1.4220
0.0000 0.1001 0.2001 0.3002 0.4004 0.5001 0.6002 0.7001 0.7999 0.9002 1.0000
1.4736 1.4695 1.4657 1.4617 1.4573 1.4524 1.4476 1.4424 1.4366 1.4303 1.4236
1.4715 1.4677 1.4637 1.4597 1.4552 1.4504 1.4458 1.4405 1.4348 1.4286 1.4220
0.0000 0.1002 0.1995 0.2996 0.4004 0.4973 0.6008 0.7002 0.7999 0.9000 1.0000
1.4776 1.4759 1.4754 1.4742 1.4732 1.4719 1.4705 1.4692 1.4673 1.4655 1.4629
1.4757 1.4738 1.4734 1.4722 1.4709 1.4698 1.4688 1.4670 1.4653 1.4638 1.4612
0.0000 0.1000 0.2002 0.2997 0.3999 0.4998
1.4927 1.4903 1.4877 1.4853 1.4828 1.4801
1.4906 1.4883 1.4861 1.4835 1.4807 1.4780
303.15 K
313.15 K
1-heptanol (1) + 1,3-DMA (2) 1.4734 1.4691 1.4695 1.4646 1.4654 1.4608 1.4603 1.4558 1.4551 1.4508 1.4495 1.4457 1.4442 1.4402 1.4389 1.4347 1.4333 1.4288 1.4265 1.4223 1.4203 1.4156 1-heptanol (1) + 1-EA (2) 1.4884 1.4839 1.4827 1.4782 1.4768 1.4722 1.4704 1.4660 1.4640 1.4596 1.4573 1.4528 1.4499 1.4462 1.4433 1.4389 1.4359 1.4316 1.4278 1.4236 1.4203 1.4156 1-heptanol (1) + 1,3,5-TMA (2) 1.4695 1.4649 1.4652 1.4612 1.4614 1.4571 1.4574 1.4530 1.4530 1.4487 1.4484 1.4438 1.4434 1.4389 1.4382 1.4341 1.4325 1.4283 1.4262 1.4224 1.4203 1.4156 cyclohexylmethanol (1) + 1,3-DMA (2) 1.4734 1.4691 1.4716 1.4673 1.4712 1.4669 1.4700 1.4656 1.4689 1.4645 1.4679 1.4633 1.4664 1.4620 1.4651 1.4607 1.4635 1.4584 1.4617 1.4571 1.4592 1.4550 cyclohexylmethanol (1) + 1-EA (2) 1.4884 1.4839 1.4861 1.4816 1.4836 1.4791 1.4812 1.4768 1.4783 1.4741 1.4757 1.4710 2609
323.15 K
333.15 K
298.15 K
1.4651 1.4606 1.4567 1.4514 1.4464 1.4411 1.4359 1.4301 1.4244 1.4178 1.4115
1.4610 1.4564 1.4527 1.4473 1.4422 1.4370 1.4316 1.4262 1.4206 1.4141 1.4077
27.88 27.82 27.69 27.48 27.35 27.15 27.02 26.79 26.56 26.36 26.23
1.4802 1.4740 1.4680 1.4618 1.4554 1.4486 1.4419 1.4349 1.4273 1.4198 1.4115
1.4759 1.4697 1.4635 1.4577 1.4510 1.4443 1.4373 1.4305 1.4230 1.4156 1.4077
29.87 29.66 29.21 28.87 28.72 28.42 28.10 27.75 27.23 26.74 26.23
1.4612 1.4569 1.4530 1.4489 1.4445 1.4398 1.4350 1.4299 1.4244 1.4182 1.4115
1.4568 1.4526 1.4485 1.4444 1.4401 1.4354 1.4303 1.4255 1.4195 1.4138 1.4077
26.17 26.19 26.22 26.26 26.32 26.34 26.36 26.32 26.30 26.29 26.23
1.4651 1.4626 1.4623 1.4610 1.4602 1.4590 1.4575 1.4564 1.4548 1.4535 1.4507
1.4610 1.4583 1.4578 1.4565 1.4554 1.4544 1.4529 1.4514 1.4500 1.4488 1.4463
27.88 28.20 28.36 28.56 28.74 28.95 29.35 29.83 30.46 31.33 32.43
1.4802 1.4775 1.4751 1.4725 1.4699 1.4672
1.4759 1.4725 1.4703 1.4678 1.4652 1.4627
29.87 30.21 30.84 30.99 31.23 31.51
dx.doi.org/10.1021/je500381c | J. Chem. Eng. Data 2014, 59, 2602−2613
Journal of Chemical & Engineering Data
Article
Table 5. continued γ
nD
mN·m−1 x1
293.15 K
298.15 K
0.5989 0.7001 0.8023 0.8996 1.0000
1.4770 1.4740 1.4708 1.4673 1.4629
1.4754 1.4721 1.4689 1.4655 1.4612
0.0000 0.1000 0.2001 0.2997 0.4000 0.4994 0.5991 0.7000 0.8010 0.8927 1.0000
1.4736 1.4727 1.4718 1.4711 1.4703 1.4694 1.4684 1.4673 1.4661 1.4650 1.4629
1.4715 1.4708 1.4700 1.4691 1.4681 1.4672 1.4663 1.4655 1.4641 1.4631 1.4612
303.15 K
313.15 K
cyclohexylmethanol (1) + 1-EA (2) 1.4733 1.4687 1.4700 1.4657 1.4668 1.4623 1.4634 1.4593 1.4592 1.4550 cyclohexylmethanol (1) + 1,3,5-TMA (2) 1.4695 1.4649 1.4686 1.4641 1.4676 1.4633 1.4669 1.4625 1.4659 1.4618 1.4650 1.4608 1.4643 1.4600 1.4632 1.4590 1.4621 1.4580 1.4609 1.4568 1.4592 1.4550
323.15 K
333.15 K
298.15 K
1.4645 1.4616 1.4584 1.4553 1.4507
1.4599 1.4571 1.4541 1.4510 1.4463
31.86 31.98 32.10 32.21 32.43
1.4612 1.4600 1.4589 1.4582 1.4573 1.4565 1.4556 1.4549 1.4539 1.4528 1.4507
1.4568 1.4552 1.4545 1.4538 1.4530 1.4522 1.4513 1.4504 1.4492 1.4486 1.4463
26.17 26.18 26.40 26.77 27.22 27.65 28.16 28.88 29.74 30.63 32.43
a x1 is the mole fraction of 1-heptanol or cyclohexylmethanol in the binary mixtures. Standard uncertainties u are u (T) = 0.01 K, u (P) = 0.2 kPa, u (x) = 0.0001. The combined uncertainties: uc (nD) = 0.0005, uc (γ) = 0.01 mN•m−1.
cyclohexylmethanol. The coefficients Ai, are obtained with a leastsquares regression method, and summarized in Table S2 of the Supporting Information with the standard deviations (σ) ⎡ ∑i = 1 (Y ⎤1/2 expt, i + Ycalc, i) N ⎥ σ=⎢ ⎢⎣ ⎥⎦ (N − n)
cyclohexylmethanol, the hydrogen bonding can be neglected and the dispersion forces and steric hinder are much stronger than those with 1-heptanol, which contribute positively to the VmE values. As a result, the systems containing cyclohexylmethanol give much positive VmE values over the entire composition range. 3.2. Viscometric Properties. Experimental viscosities (η) for the binary systems are measured from T = (293.15 to 333.15) K at atmospheric pressure P = 0.1 MPa, which are summarized in Table 4. It is observed that the viscosity increases monotonically as the increase of the mole fraction of 1-heptanol when 1-heptanol is mixed with 1,3-DMA or 1,3,5-TMA and that the viscosity has a minimum value for the binary system of 1-heptanol with 1-EA. The viscosities for binary systems of cyclohexylmethanol with adamantane derivatives increase with increasing the mole fraction of cyclohexylmethanol. The viscosity of cyclohexylmethanol is much higher than that of 1-heptanol and each adamantane derivative. On the basis of these experimental data, the viscosity deviations (Δη) are calculated by the following equation:
(6)
where N is the number of experimental datum points and n is the order of the polynomial, Yexpt,i is the calculated value from the experimental measurement, and Ycalc,i is the value obtained from eq 5. The changes of the excess molar volumes (VmE) with the mole fraction (x1) of 1-heptanol or cyclohexylmethanol for different systems are shown in Figure 1 and also compared in Figure 2. It is indicated that the binary mixtures with the same alcohol and different adamantine derivative give similar shapes of the plots of VmE versus composition. For the systems with the linear alcohol 1-heptanol, the VmE value increases to the maximum, and then decreases to the minimum when 1-heptanol is mixed with 1,3-DMA, 1-EA, and 1,3,5-TMA, respectively. Although for the binary systems of cyclohexylmethanol + 1,3-DMA/1-EA/1,3,5TMA, only the maximum values of VmE are observed. It should be the different molecular structures and interactions that determine the VmE values for these binary systems of alcohols with alkanes.25−28 Usually, the physical interactions contribute positively and the chemical interactions contribute negatively to the excess molar volume.28 For the systems with 1-heptanol, the effect of both dispersion force and space resistance is stronger than that of the hydrogen bonding when the concentration of 1-heptanol is low, and the combined effect leads to the observation of the positive values of VmE. With increasing the concentration of 1-heptanol, the hydrogen bonding gradually holds the dominant effect, and causes the negative values of VmE. With increasing the temperature, the hydrogen bonding is significantly destroyed, therefore, the VmE values become more and more positive. For the systems with the cyclic alcohol
ΔY = Y − (x1Y1 + (1 − x1)Y2)
(7)
where Y stands for the viscosity (η) of the mixture, Y1, Y2 represent the η values of the pure components 1 and 2, respectively, and x1 is the mole fraction of 1-heptanol or cyclohexylmethanol. The values of viscosity deviations (Δη) are listed in Table S3 of the Supporting Information and shown in Figure 3. All of the Δη values are negative. Because of the more complex steric structure of cyclohexylmethanol than that of 1-heptanol, the systems containing cyclohexylmethanol have much larger values of Δη. The Redlich−Kister type equation (eq 5) is also used to represent the composition dependence of Δη. The correlated results of the polynomial coefficients (Ai) with the standard deviations (σ) are listed in Table S4 of the Supporting Information. 3.3. Refractive Index and Molar Refraction. Experimental refraction indices for the binary systems are measured from T = (293.15 to 333.15) K and at atmospheric pressure P = 0.1 MPa, 2610
dx.doi.org/10.1021/je500381c | J. Chem. Eng. Data 2014, 59, 2602−2613
Journal of Chemical & Engineering Data
Article
Figure 4. Molar refraction deviations (ΔΦR) against the volume fraction (Φ1) of 1-heptanol or cyclohexylmethanol for the binary systems (a) 1-heptanol + 1,3-DMA; (b) 1-heptanol + 1-EA; (c) 1-heptanol + 1,3,5-TMA; (d) cyclohexylmethanol + 1,3-DMA; (e) cyclohexylmethanol + 1-EA; (f) cyclohexylmethanol + 1,3,5-TMA at 0.1 MPa and six different temperatures: □, 293.15 K; ○, 298.15 K; △, 303.15 K; ▽, 308.15 K; ◇, 313.15 K; ◁, 318.15 K; ▷, 323.15 K; ⎔, 328.15 K; ☆, 333.15 K; , the Redlich−Kister correlations.
where R is the molar refraction of the mixture, R1 and R2, Φ1 and Φ2 are the molar refractions and the volume fractions of the two components, respectively. The values of R and ΔΦR are summarized in Table S5 of the Supporting Information. The ΔΦR values at different temperatures from T = (293.15 to 333.15) K are shown in Figure 4, and Figure 5 shows the ΔΦR values of the six binary systems at temperature T = 313.15 K. It can be seen that the values of molar refraction (R) of the binary systems become smaller with increasing the volume fraction (Φ1) of 1-heptanol or cyclohexylmethanol. All of the ΔΦR values are observed to be negative, and do not exhibit significant changes against the temperature. With the same
which are listed in Table 5. The molar refractions (R) are calculated along with the measured densities from the following equation: R = Vm
(nD2 − 1) (nD2 + 2)
(8)
where Vm is the molar volume and nD is the value of refractive index. The molar fraction deviations (ΔΦR) are then calculated by the following equation: ΔΦR = R − Φ1R1 − Φ2R 2
(9) 2611
dx.doi.org/10.1021/je500381c | J. Chem. Eng. Data 2014, 59, 2602−2613
Journal of Chemical & Engineering Data
Article
Figure 7. Surface tension deviations (Δγ) against the mole fraction (x1) of 1-heptanol or cyclohexylmethanol for the binary systems at temperature T = 298.15 K and pressure P = 0.1 MPa: ■, 1-heptanol + 1,3-DMA; ●, 1-heptanol + 1-EA; ▲, 1-heptanol + 1,3,5-TMA; □, cyclohexylmethanol + 1,3-DMA; ○, cyclohexylmethanol + 1-EA; △, cyclohexylmethanol + 1,3,5-TMA. , the Redlich−Kister correlations.
Figure 5. Molar refraction deviations (ΔϕR) against the volume fraction (Φ1) of 1-heptanol or cyclohexylmethanol at temperature T = 313.15 K and pressure P = 0.1 MPa for the binary systems: ■, 1-heptanol + 1,3-DMA; ▲, 1-heptanol + 1-EA; ▼, 1-heptanol + 1,3,5-TMA; □, cyclohexylmethanol + 1,3-DMA; △, cyclohexylmethanol + 1-EA; ▽, cyclohexylmethanol + 1,3,5-TMA); , the Redlich−Kister correlations.
coefficients (Ai) with the standard deviations (σ) are listed in Table S8 of the Supporting Information. The surface tensions of the five pure components from large to small are in the following order: cyclohexylmethanol > 1-EA > 1,3-DMA > 1,3,5-TMA > 1-heptanol. The binary systems of cyclohexylmethanol + 1,3-DMA/1,3,5-TMA show negative deviations, and the others show small positive deviations from the ideal linear relationship.
4. CONCLUSION A series of fundamental data of densities, viscosities, refractive indices and surface tensions are reported for the binary mixtures of 1,3-dimethyladamantane, 1-ethyladamantane, and 1,3,5trimethyladamantane with 1-heptanol or cyclohexylmethanol over the entire composition range. The corresponding excess or deviation functions of these properties are calculated. The excess molar volumes (VmE) and viscosity deviations (Δη) are well fitted to Redlich−Kister polynomial equation. Significantly different relationships of the excess molar volume versus composition are observed between the binary mixtures of adamantine derivatives with 1-heptanol and those with cyclohexylmethanol, which can be explained from different contributions of the steric effect, physical interactions, and chemical interactions to the excess molar volume. The viscosity deviations (Δη) and molar refraction deviations (ΔΦR) for these binary mixtures are shown negative. The values of surface tension for five pure materials are in the order: cyclohexylmethanol >1-EA > 1,3-DMA > 1,3,5TMA > 1-heptanol. The binary systems of cyclohexylmethanol + 1,3-DMA/1,3,5-TMA show negative deviations, and the others show small positive deviations. The experimental data and calculated results could provide useful information for the development of potential high energy-density hydrocarbon fuels.
Figure 6. Surface tensions (γ) against the mole fraction (x1) of 1-heptanol or cyclohexylmethanol for the binary systems at temperature T = 298.15 K and pressure P = 0.1 MPa: ■, 1-heptanol + 1,3-DMA; ●, 1-heptanol + 1-EA; ▲, 1-heptanol + 1,3,5-TMA; □, cyclohexylmethanol + 1,3-DMA; ○, cyclohexylmethanol + 1-EA; △, cyclohexylmethanol + 1,3,5-TMA.
adamantane derivative as the component, the mixtures with cyclohexylmethanol possess more negative values of ΔΦR. With the same alcohol as the component, the ΔΦR values for the binary systems are in the order: 1,3,5-TMA + 1-heptanol/ cyclohexylmethanol < 1,3-DMA + 1-heptanol/cyclohexylmethanol < 1-EA + 1-heptanol/cyclohexylmethanol. The values of ΔΦR can also be fitted to the Redlich−Kister correlation. The coefficients (Ai) of the equation with the standard deviations (σ) are listed in Table S6 of the Supporting Information. 3.4. Surface Tension. The surface tensions are measured at T = 298.15 K and atmospheric pressure P = 0.1 MPa, which are listed in Table 5 and shown in Figure 6. The surface tension deviations (Δγ) are calculated by eq 7, which are summarized in Table S7 of the Supporting Information. The plots of surface tension deviations (Δγ) versus composition are shown in Figure 7. The Redlich−Kister type equation is also used to represent the composition dependence of Δγ. The correlated
■
ASSOCIATED CONTENT
S Supporting Information *
Values of excess molar volume (VmE), viscosity deviation (Δη), molar fraction (R), molar fraction deviation (ΔΦR), surface tension deviation (Δγ), and correlation coefficients (Ai) of the Redlich−Kister equation with standard deviations (σ) for VmE, Δη, ΔΦR, and Δγ. This material is available free of charge via the Internet at http://pubs.acs.org. 2612
dx.doi.org/10.1021/je500381c | J. Chem. Eng. Data 2014, 59, 2602−2613
Journal of Chemical & Engineering Data
■
Article
(16) Shan, Z.; Asfour, A. F. A. Viscosities and Densities of Nine Binary 1-Alkanol Systems at 293.15 and 298.15 K. J. Chem. Eng. Data 1999, 44, 118−123. (17) Sastry, N. V.; Raj, M. M. Densities, Speeds of Sound, Viscosities, Dielectric Constants, and Refractive Indices for 1-Heptanol + Hexane and + Heptane at 303.15 and 313.15 K. J. Chem. Eng. Data 1996, 41, 612−618. (18) Habibullah, M.; Rahman, I. M. M.; Uddin, M. A.; Anowar, M.; Alam, M.; Iwakabe, K.; Hasegawa, H. Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure. J. Chem. Eng. Data 2013, 58, 2887−2897. (19) Faria, M. A. F.; Martins, R. J.; Cardoso, M. J. E. M.; Barcia, O. E. Density and Viscosity of the Binary Systems Ethanol + Butan-1-ol, + Pentan-1-ol, + Heptan-1-ol, + Octan-1-ol, Nonan-1-ol, + Decan-1-ol at 0.1 MPa and Temperatures from 283.15 K to 313.15 K. J. Chem. Eng. Data 2013, 58, 3405−3419. (20) Sastry, N. V.; Valand, M. K. Viscosities and Densities for Heptane + 1-Pentanol, + 1-Hexanol, + 1-Heptanol, + 1-Octanol, + 1-Decanol, and + 1-Dodecanol at 298.15 K and 308.15 K. J. Chem. Eng. Data 1996, 41, 1426−1428. (21) Fernandez, J.; Pintos, M.; Baluja, M. C.; Jimenez, E.; Paz Andrade, M. I. Excess Enthalpies of Some Ester Alcohol Binary Mixtures. J. Chem. Eng. Data 1985, 30, 318−320. (22) Vij, J. K.; Scaife, W. G.; Calderwood, J. H. The Pressure and Temperature Dependence of the Static Permittivity and Density of Heptanol Isomers. J. Phys. D: Appl. Phys. 1978, 11, 545−559. (23) Segade, L.; Llano, J. J.; Domínguez-Pérez, M.; Cabeza, O.; Cabanas, M.; Jiménez, E. Density, Surface Tension, and Refractive Index of Octane + 1-Alkanol Mixtures at T = 298.15 K. J. Chem. Eng. Data 2003, 48, 1251−1255. (24) Jiménez, E.; Casas, H.; Segade, L.; Franjo, C. Surface Tensions, Refractive Indexes and Excess Molar Volumes of Hexane + 1-Alkanol Mixtures at 298.15 K. J. Chem. Eng. Data 2000, 45, 862−866. (25) Treszczanowicz, A. J.; Benson, G. C. Excess Volumes for nAlkanols + n-Alkanes I. Binary Mixtures of Methanol, Ethanol, nPropanol, and n-Butanol + n-Heptane. J. Chem. Thermodyn. 1977, 9, 1189−1197. (26) Treszczanowicz, A. J.; Benson, G. C. Excess Volumes for nAlkanols + n-Akanes II. Binary Mixtures of n-Pentanol, n-Hexanol, nOctanol and n-Decanol + n-Heptane. J. Chem. Thermodyn. 1978, 10, 967−974. (27) Treszczanowicz, A. J.; Benson, G. C. Excess Volumes for nAlkanols + n-Alkanes III. Binary Mixtures of Hexan-1-ol + n-Pentane, + n-Hexane, + n-Octane, and + n-Decane. J. Chem. Thermodyn. 1980, 12, 173−179. (28) Estrada-Baltazar, A.; Iglesias-Silva, G. A.; Caballero-Cerón, C. Volumetric and Transport Properties of Binary Mixtures of n-Octane + Ethanol, + 1-Propanol, + 1-Butanol, and + 1-Pentanol from (293.15 to 323.15) K at Atmospheric Pressure. J. Chem. Eng. Data 2013, 58, 3351− 3363.
AUTHOR INFORMATION
Corresponding Authors
*E-mail:
[email protected]. Tel: +86 571 8898 1416. Fax: +86 571 8898 1416. *E-mail:
[email protected]. Tel: +86 571 8898 1416. Fax: +86 571 8898 1416. Funding
This work was financially supported by the National Natural Science Foundation of China under No. 20973154, 21173191, 21273201, and J1210042. Notes
The authors declare no competing financial interest.
■
REFERENCES
(1) Chung, H. S.; Chen, C. S. H.; Kremer, R. A.; Boulton, J. R. Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels. Energy Fuels 1999, 13, 641−649. (2) Xing, Y.; Fang, W. J.; Xie, W. J.; Guo, Y. S.; Lin, R. S. Thermal Cracking of JP-10 under Pressure. Ind. Eng. Chem. Res. 2008, 47, 10034− 10040. (3) Wang, W.; Chen, J. G.; Song, L. P.; Liu, Z. T.; Liu, Z. W.; Lu, J.; Xiao, J. L.; Hao, Z. P. One-Step, Continuous-Flow, Highly Catalytic Hydrogenation-Isomerization of Dicyclopentadiene to exo-Tetrahydrodicyclopentadiene over Ni-Supported Catalysts for the Production of High-Energy-Density Fuel. Energy Fuels 2013, 27, 6339−6347. (4) Chenoweth, K.; Duin, A. C. T. V.; Dasgupta, S.; Goddard, W. A. Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP10 Hydrocarbon Jet Fuel. J. Phys. Chem. A 2009, 113, 1740−1746. (5) Outcalt, S. L.; Laesecke, L. Measurements of Density and Speed of Sound of JP-10 and a Comparison to Rocket Propellants and Jet Fuels. Energy Fuels 2011, 25, 1132−1139. (6) Xing, Y.; Shao, D. B.; Fang, W. J.; Guo, Y. S.; Lin, R. S. Vapor Pressures and Flash Points for Binary Mixtures of Tricyclo[5.2.1.02.6]decane and Dimethyl Carbonate. Fluid Phase Equilib. 2009, 284, 14−18. (7) Roy, G. D. Utilization of High-Density Strained Hydrocarbon Fuels for Propulsion. J. Propul. Power 2000, 16, 546−551. (8) Pal, A.; Gaba, R. Volumetric, Acoustic, and Viscometric Studies of Molecular Interactions in Binary Mixtures of Dipropylene Glycol Dimethyl ether with 1-alkanols at 298.15 K. J. Chem. Thermodyn. 2008, 40, 818−828. (9) Zhang, L. L.; Guo, Y. S.; Xiao, J.; Gong, X. J.; Fang, W. J. Density, Refractive Index, Viscosity, and Surface Tension of Binary Mixtures of exo-Tetrahydrodicyclopentadiene with Some n-Alkanes from (293.15 to 313.15) K. J. Chem. Eng. Data 2011, 56, 4268−4273. (10) Prak, D. J. L.; Alexandre, S. M.; Cowart, J. S.; Trulove, P. C. Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of n-Dodecane with 2,2,4,6,6Pentamethylheptane or 2,2,4,4,6,8,8-Heptamethylnonane. J. Chem. Eng. Data 2014, 59, 1334−1346. (11) Rafati, A. A.; Ghasemian, E.; Abdolmaleki, M. Surface Properties of Binary Mixtures of Ethylene Glycol with a Series of Aliphatic Alcohols (1-Pentanol, 1-Hexanol, and 1-Heptanol). J. Chem. Eng. Data 2008, 53, 1944−1949. (12) Li, G. Q.; Chi, H.; Guo, Y. S.; Fang, W. J.; Hu, S. L. Excess Molar Volume along with Viscosity and Refractive Index for Binary Systems of Tricyclo[5.2.1.02.6]decane with Five Cycloalkanes. J. Chem. Eng. Data 2013, 58, 3078−3086. (13) Qin, X. M.; Cao, X. F.; Guo, Y. S.; Xu, L.; Hu, Shenlin; Fang, W. J. Density, Viscosity, Surface Tension, and Refractive Index for Binary Mixtures of 1,3-Dimethyladamantane with Four C10 Alkanes. J. Chem. Eng. Data 2014, 59 (3), 775−783. (14) Varushchenko, R. M.; Pashchenko, L. L.; Druzhinina, A. I.; Abramenkov, A. V. Thermodynamics of Vaporization of Some Alkyladamantanes. J. Chem. Thermodyn. 2001, 33, 733−744. (15) Melkhanova, S. V.; Pimenova, S. M.; Kolesov, V. P. The Standard Molar Enthalpies of Formation of Some Alkyladamantanes. J. Chem. Thermodyn. 2000, 32, 1311−1317. 2613
dx.doi.org/10.1021/je500381c | J. Chem. Eng. Data 2014, 59, 2602−2613