Anal. Chem. 1992, 64, 1021-1029
(CO)3(rl3-Ph2PCH2CH2P(Ph)CH2CH2PPhz)]+, 135681-21-9; Pt, 7440-06-4; CH2C12, 75-09-2;Bu~NBF,,429-42-5. REFERENCES (1) Howell, J. 0.; Wlghtman, R. M. Anal. Chem. 1984, 56. 524. (2) Wehmeyer, K. R.; Wlghtman, R. M. Anal. Chem. 1985, 57, 1989. Kuhr, W. 0.;Ensman, R. E.; Wightman, R. M. J. Elec(3) Howell, J. 0.; troanal. Chem. Interfacial Electrochem. 1988,209, 77. (4) Montenegro, M. I.; Pletcher, D. J. Electroanel. Chem. Interfacial Electrochem. 1988, 200, 371. ( 5 ) Fltch, A.; Evans, D. H. J. E k t m n a l . Chem. Interfackrl Electrod". 1988, 202, 83. (6) Amatore, C.; Jutland, A.; Pfiiiger, F. J. Electroanal. Chem. Interfacial Electrochem. 1987, 218, 361. Wightman, R. M. Anal. Chem. 1988,60. 2460. (7) Wipf, D. 0.; Kristensen, E. W.; Deakin. M. R.; Wlghtman. R. M. Anal. (8) Wipf, D. 0.; Chem. 1988, 80, 306. (9) Andrieux. C. P.; Hapbt. P.; SavCnt. J. M. Chem. Rev. 1990,90, 723 and references clted therein. (IO) Wlpf, D. 0.; Wlghtman, R. M. Anal. Chem. 1990, 62, 98. (11) Oldham, K. 8. J. Electroanal. Chem. InterfacialElectrmhem. 1987, 237, 303. (12) Bruckenstein, S.Anal. Chem. 1987, 59. 2098. (13) Bond, A. M.; Flelschmann. M.; Robinson, J. J. Electroanal. Chem. Interfacial Electrochem. 1984, 168. 299. (14) Bond. A. M.; Flelschmann. M.; Robinson, J. J. Elecfroanal. Chem. IntertacklEktrochem. 1984, 172, 11. (15) Ciszkowska, M.; Stojek, 2. J. Electroanal. Chem. InterfacialE k t r o chem.1988, 213, 189. (16) Oldham, K. B. J. Electroanal. Chem. Interfacial Electrochem. 1988, 250, 1. (17) Aokl, K.; Akimato, K.; Tokuda, K.; Matsuda, H.; Osteryoung. J. J. Electroanel. Chem. Interfacial Electrochem. 1984, 171, 219. (18) Wlpf, D. 0.;Mlchael. A. C.; Wightman, R. M. J. Electroanal. Chem. Intertacial Electrochem. 1980, 269, 15. (19) Bond, A. M.; Colton, R.; Feldberg, S. W.; Mahon, P. J.; Whyte, T. Organometallics 1990, 10, 3320. (20) Evans, D. H.; OConneii, K. M. I n Electroanalytical Chemistry-A Series of Advances; Bard, A. J., Ed.; Marcel Dekker: New York, 1986, Voi. 14, p 113. (21) Evans, D. H. Chem. Rev. 1990, 90, 739. (22) FeMberg, S.W. J. Electroanal. Chem. InterfacialE~ctrochem.1990, 290. 49.
1021
(23) Chatt, J.; Watson, H. R. J. Chem. Soc.1981, 4980. (24) King, R. B.; Kapoor, P. N.; Kapm, R. N. Inorg. Chem. 1971, 29, 105. (25) King, R. B.; Cbyd, J. C. Inorg. Chem. 1975, 14. 1550. (28) Bard, A. J.; Faulkner, L. R. Electrochemhl Methods: Fundementak and Appllcatlons; John Wiiey and Sons: New York, 1980; p 220. (27) Delahay, P. New Instrumental Methods In Electrochemistry; Interscience: New York, 1954; pp 166-7. (28) Brown, E. R.; McCord, T. 0.;Smith, D. E.; DeFord, D. D. Anal. Chem. 1968, 38, 1119. (29) Bond. A. M. Modem P&rographic Methods In Analytcal Chemistry; Marcel Dekker: New York. 1980 pp 157-9. (30) Bond, A. M.; Mann, T. F. Electrochim. Acta 1987. 32, 863. (31) Anderson, J. L. Chem. Instrum. 1978, 7 , 25. (32) Baranski, A. S.;Lu, W. J. Electroanal. Chem. Interfacial Electrochem. 1989, 260, 1. (33) Bond, A. M.; Luscombe, D. L.; Oldham, K. B.; Zoski, C. G. J. Electroanal. Chem. Interfacial Electrochem. 1988, 249, 1. (34) Kadish, K. M.; Dlng, J. 0.; MaHnski. T. Anal. Chem. 1984, 58, 1741. (35) Newman, J. J. Electrochem. Soc.1986. 113. 501. (36) Nadjo, L.; Savhnt, J. M.; Tessier, D. J. Electroanal. Chem. Interfacial Electrochem. 1974, 52, 403. (37) Andrieux, C. P.; Oeneau. D.; Hapiot, P.; Pinson, J.; Savhnt, J. M. J. Ektroanal. Chem. Interfacial Electrochem. 1988,243, 321. (38) G " u , D.; Hapld, P.; SavCnt, J. M. J. Electroanal. Chem. Interfacial Electrochem. 1990,281, 73. (39) Savltsky, A.; Way, M. J. E. Anal. Chem. 1984, 36, 1627. (40) Bowyer, W. J.; Engelman, E. E.; Evans, D. H. J. Electroanal. Chem. Interfacial Electrochem. 1989, 262, 67. (41) Lerke, S. A.; Evans, D. H.; Feldberg, S. W. J. Electroanel. Chem. Interfacial Electrochem. 1990, 296, 299. (42) DuFort. E. C.; Frankei, S. P. Math. Tables AMs Comput. 1953. 7 , 135. (43) Mlchael, A. C.; Wightman, R. M.; Amatore, C. A. J. Electroanel. Chem. Interfacial Electrochem. 1989. 267, 33. (44) Lavkon, E.; Roulller, L. J. Elecboanal. Chem. InterfacialElectrochem. 1985. 186, 1. (45) Geiger. W.; Richards, T. Private communlcation. (46) Oldham, K. B.; Myland, J. C.; Zoski, C. G.; Bond, A. M. J. Electroanel. Chem. Interfacial Electrochem. 1989,270, 79.
RECEIVED for review October 1,1991. Accepted January 22, 1992.
Determining Volatile Organic Compounds in Human Blood from a Large Sample Population by Using Purge and Trap Gas ChromatographyIMass Spectrometry David L. Ashley,* Michael A. Bonin, Frederick L. Cardinali, Joan M. McCraw, James S. Holler, Larry L. Needham, and Donald G. Patterson, Jr. Division of Environmental Health Laboratory Sciences, Center for Environmental Health and Injury Control, Centers for Disease Control, Public Health Service, U.S. Department of Health and Human Services, Atlanta, Georgia 30333
Volatlk organlc compounds (VOCs) are a major publk health concern, k a w w , of thelr ublqultous nature and the possible health effects associated wlth exposure to them. An analytlcal method has been developed that enabled the determination of parts per trllllon levels of 32 VOCs In 10 mL of blood. Special efforts toward reduclng blank levels and Improving ~ s s w e m e n l ~ Mhave t y resutled In an analytkal method that shows excellent reproduclblllty and recovery even at these ultratrace levels. Results on normal human Mood Indkate that quantlflabk lev& of eleven VOCs can be found In vlrluaHy aH whok bkod samples. I n a fractkn of the samples, dx other VOCs can also be determlned at levels above detection Ilmlts. Thls method shows promlse as a technique for estbnatlng the normal basellne level of VOCs In human blood and may have future appllcatlons In cases of exposure.
* To whom correspondence should be addressed.
INTRODUCTION Volatile organic compounds (VOCs) are found to some degree in virtually all homes and workplaces in our modern technological society. The consumer items we use, the energy sources we require, and the water we drink (because of the reaction between chlorine used for water disinfection and organic matter in the water) all increase our exposure to these c~mpounds.l-~ A wide array of health effects may be linked with exposure to VOCs. Liver, renal, and hematologic effects have been noted in people exposed to chlorinated hydrocarbons,4.Sas has central nervous system damage in those suffering extreme exposure.4 The combination of ubiquitous exposure and possible serious health effects makes VOCs a major public health concern. To better understand the extent of detrimental health effects due to exposure to VOCs, researchers must determine the degree of actual exposure of susceptible organ systems. Blood is the best biological sample with which to assess this exposure, since it is the medium through which toxic com-
This article not subject to US. Copyright. Published 1992 by the American Chemical Society
1022
ANALYTICAL CHEMISTRY, VOL. 64, NO. 9, MAY 1, 1992
was carefully cleaned to be certain to remove possible VOC pounds reach the affected organ system^.^^^ Once the level contamination. After being washed with reagent-grade methanol, of exposure has been established, the relationship of the exthe volumetric flasks, ampules, and storage bottles were heated posure level to the extent of health effeda can be identified. at 150 OC in a vacuum oven (LabLine Instruments, Inc., Melrose This information is vital for properly assessing measures to Park, IL) with an independent vacuum source for at least 8 h to curb harmful exposures. remove adsorbed VOCs. The independent vacuum source was Measuring the levels of VOCs in a normal Yunexposedn necessary to prevent cross-contamination from other laboratory population is an obvious first step in establishing an index operations. There is the risk of changing the calibration of for exposure to VOCs. To determine normal levels, a large volumetric glassware by heating, but the error resulting from this number of samples from a diverse population must be meais small compared to other sources of error. The glassware was cooled to room temperature under vacuum, and pressure was sured. For measurements of this type to be correct, several restored using 99.9999% nitrogen. After removal from the oven, requirements must be met: sample collection methods which all glassware was sealed with Teflon-lined caps until used in are familiar to a large section of the biomedical community standard preparation. must be used in large population studies, since these will Water used as a blank and for the final dilution of standards provide the opportunity for samples to be collected by the was obtained from a rural well, after investigating many other large number of biomedical technicians available worldwide; water sources. VOC levels in the well water proved to be acthe analysis method must be highly sensitive, since many ceptable (