6
Photochemistry of Dibenzo-p-dioxins
JACK R. P L I M M E R and U T E I. K L I N G E B I E L Plant Science Research Division, Agricultural Research Service, U. S. Department of Agriculture, Beltsville, Md. 20705
Downloaded by COLUMBIA UNIV on March 31, 2013 | http://pubs.acs.org Publication Date: March 1, 1973 | doi: 10.1021/ba-1973-0120.ch006
D O N A L D G . CROSBY and A N T H O N Y S. W O N G Department of Environmental Toxicology, University of California, Davis, Calif. 95616
Chlorinated
dibenzo-p-dioxins
are contaminants of phenol
-based pesticides and may enter the environment where they are subject to the action of sunlight.
Rate
measurements
showed that 2,3,7,8-tetrachlorodibenzo-p-dioxin more rapidly
photolyzed
benzo-p-dioxin. zo-p-dioxin,
Initially TCDD
and
accompanied
in methanol
subsequent
by ring fission.
than
(TCDD)
yields 2,3,7-trichlorodibenreductive
dechlorination
Pure dibenzo-p-dioxin
polymeric material and some 2,2'-dihydroxybiphenyl radiation.
is
octachlorodi-
Riboflavin-sensitized
is
gave on ir-
photolysis of the potential
precursors of dioxins, 2,4-dichlorophenol and 2,4,5-trichlorophenol, in water gave no detectable dioxins.
The
identified were chlorinated phenoxyphenols and biphenyls.
products
dihydroxy-
In contrast, aqueous alkaline solutions of purified
pentachlorophenol gave traces of
octachlorodibenzo-p-dioxin
on irradiation.
" p e s t i c i d e s derived f r o m chlorinated phenols ( T a b l e I ) are among the •*· most p r o m i n e n t o f those c u r r e n t l y i n w o r l d w i d e use. S e v e r a l major h e r b i c i d e s h a v e b e e n a p p l i e d i n large q u a n t i t i e s i n s u b t r o p i c a l locations. C a l i f o r n i a u s e d m o r e t h a n 1,200,000 p o u n d s of 2 , 4 - d i c h l o r o p h e n o x y a c e t i c a c i d ( 2 , 4 - D ) a n d its d e r i v a t i v e s i n 1970 ( I ) ; H a w a i i c o n s u m e d some 465,000 p o u n d s o f p e n t a c h l o r o p h e n o l ( P C P ) i n 1968 ( 2 ) , a n d t h e a m o u n t of c o m b i n e d b u t y l esters o f 2 , 4 - D a n d 2 , 4 , 5 - t r i c h l o r o p h e n o x y a c e t i c a c i d ( 2 , 4 , 5 - T ) released i n o n e area o f C a m b o d i a d u r i n g t w o m o n t h s o f 1969 w a s e s t i m a t e d t o exceed 77,000 p o u n d s ( 3 ) . 44
In Chlorodioxins—Origin and Fate; Blair, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
6.
P L I M M E R
Photochemistry of Dioxins
E T A L .
Table I.
45
Some Pesticides Based on Polychlorophenols
Common Name (Use)
Chemical Name
2 , 4 - D (herbicide) 2 , 4 - D B (herbicide) N i t r o f e n (herbicide) G e n i t e (acaricide) Z y t r o n (herbicide)
2,4-E>ichlorophenoxyacetic a c i d 4-(2',4'-Dichlorophenoxy) butyric acid 2 , 4 - D i c h l o r o p h e n y l 4 - n i t r o p h e n y l ether 2 , 4 - D i c h l o r o p h e n y l benzenesulfonate 0-(2',4'-Dichlorophenyl) 0-methyl isopropylphosphoramidothioate 2 , 4 , 5 - T (herbicide) 2,4,5-Trichlorophenoxyacetic acid S i l v e x (herbicide) 2-(2',4',5 -Trichlorophenoxy) propionic acid E r b o n (herbicide) 2-(2 ,4',5'-Trichlorophenoxy) ethyl 2,2-dichloropropionate R o n n e l (insecticide) 0,0-Dimethyl 0-2,4,5-trichlorophenyl phosphorothioate G a r d o n a (insecticide) 2-Chloro-l-(2 ,4 ,5 -trichlorophenyl)v i n y l d i m e t h y l phosphate P C P (herbicide, insecticide), P e n t a c h l o r o p h e n o l wood preservative ,
Downloaded by COLUMBIA UNIV on March 31, 2013 | http://pubs.acs.org Publication Date: March 1, 1973 | doi: 10.1021/ba-1973-0120.ch006
,
,
,
,
V a r i a t i o n s i n the m a n u f a c t u r i n g process of 2,4,5-trichloro- a n d p e n t a chlorophenol ( b u t not 2,4-dichlorophenol)
h a v e sometimes
resulted i n
c o n t a m i n a t i o n o f the p r o d u c t b y s m a l l amounts o f h e t e r o c y c l i c i m p u r i t i e s (4,5). O f these, the c h l o r i n a t e d d i b e n z o - p - d i o x i n s s u c h as T C D D (2,3,7,8t e t r a c h l o r o d i b e n z o - p - d i o x i n ) h a v e r e c e i v e d m u c h scientific a n d p u b l i c a t t e n t i o n because o f t h e i r r e a l o r p o t e n t i a l t o x i c i t y (6,7).
[ C h i c k edema
factor, a c u r i o u s t o x i c o l o g i c a l p r o b l e m to p o u l t r y p r o d u c e r s f o r several years, has b e e n s h o w n t o b e c o m p o s e d of c h l o r o d i b e n z o - p - d i o x i n s ( 8 ) . ] P h e n o l - b a s e d pesticides m a y b e a p p l i e d as f o l i a r sprays o r o t h e r w i s e enter t h e e n v i r o n m e n t w h e r e t h e y b e c o m e subject to t h e a c t i o n o f s u n l i g h t (7, 8, 9, 10).
C o n s e q u e n t l y , their c o n t a i n e d d i o x i n s also w i l l b e
exposed t o sunlight. T h e present s t u d y determines t h e extent, c o n d i t i o n s , a n d p r o d u c t s o f their p h o t o d e g r a d a t i o n . 2,4,5-T a n d 2 , 4 - D are d e g r a d e d i n s u n l i g h t t o a m i x t u r e o f p r o d u c t s i n w h i c h t h e p a r e n t p h e n o l is p r o m i nent (9,10).
T h e p o s s i b i l i t y that c h l o r i n a t e d phenols m i g h t f o r m d i o x i n s
b y t h e a c t i o n o f s u n l i g h t , as t h e y d o b y t h e r m a l r i n g closure, also w a s investigated. T h e p h o t o l y s i s o f c h l o r i n a t e d a r o m a t i c c o m p o u n d s occurs b y several processes w h i c h f o l l o w p r e d i c t a b l e routes (13). T h e y f r e q u e n t l y u n d e r g o p h o t o c h e m i c a l loss o f c h l o r i n e b y d i s s o c i a t i o n o f the e x c i t e d m o l e c u l e t o free r a d i c a l s or, a l t e r n a t i v e l y , t h r o u g h a n u c l e o p h i l i c d i s p l a c e m e n t reac t i o n w i t h a solvent o r substrate m o l e c u l e . E i t h e r m e c h a n i s m is p l a u s i b l e , a n d t h e o p e r a t i o n o f one o r t h e other m a y b e i n f l u e n c e d b y t h e r e a c t i o n m e d i u m a n d t h e presence o f other reagents.
In Chlorodioxins—Origin and Fate; Blair, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
46
CHLORODIOXINS
ORIGIN
AND
FATE
I n d i l u t e s o l u t i o n , the structure of the u l t r a v i o l e t ( U V ) i r r a d i a t i o n p r o d u c t s d e p e n d s o n the solvent.
I n m e t h a n o l , o - c h l o r o b e n z o i c a c i d is
p h o t o r e d u c e d q u i t e r a p i d l y to b e n z o i c a c i d , w h e r e a s a m i x t u r e of s a l i c y l i c a n d b e n z o i c acids forms s l o w l y i n w a t e r ; h o w e v e r , i n b e n z e n e the p r o d u c t is 2 - p h e n y l b e n z o i c a c i d . m - C h l o r o b e n z o i c a c i d reacts m u c h m o r e s l o w l y t h a n the o-isomer u n d e r the same c o n d i t i o n s , a n d a b e n z o i c a c i d c o n t a i n i n g ortho- a n d m e f a - c h l o r i n e atoms w i l l u n d e r g o p r e f e r e n t i a l loss of the ortho substituent (14,
A l t h o u g h the f a c i l e p h o t o l y t i c r e d u c t i o n
15).
of h a l o g e n a t e d a r o m a t i c c o m p o u n d s i n m e t h a n o l a n d other alcohols has p r e p a r a t i v e v a l u e a n d has b e e n i n v e s t i g a t e d b y several w o r k e r s (16, Downloaded by COLUMBIA UNIV on March 31, 2013 | http://pubs.acs.org Publication Date: March 1, 1973 | doi: 10.1021/ba-1973-0120.ch006
d e t a i l e d correlations b e t w e e n
p o s i t i o n a n d ease-of-loss of the
17),
chlorine
substituent a n d the effect of other substituents o n the r e a c t i o n h a v e not b e e n r e p o r t e d . W e m u s t r e c o g n i z e that s u c h p h o t o c h e m i c a l t r a n s f o r m a tions i n v o l v e a n e x c i t e d state a n d not the ground-state
electronic
dis
t r i b u t i o n to w h i c h H a m m e t t f u n c t i o n s are a p p l i c a b l e . The
Photolysis of
Dioxins
T h e b i o l o g i c a l a c t i v i t y of several h a l o g e n a t e d h e r b i c i d e s i n w a t e r is d e s t r o y e d b y u l t r a v i o l e t i r r a d i a t i o n (18). promising method for decontaminating
I r r a d i a t i o n seems to b e a
s m a l l quantities
of
pesticides.
T h e c h e m i c a l s i m i l a r i t y b e t w e e n the c h l o r i n a t e d d i o x i n s a n d other c h l o rinted aromatic their
compounds
photochemical
suggested
behavior,
that if there w e r e parallels i n
s u n l i g h t m i g h t destroy
dioxins i n
the
environment. 2 , 3 , 7 , 8 - T e t r a c h l o r o d i b e n z o - p - d i o x i n ( T C D D ) ( I ), a n o c c a s i o n a l c o n t a m i n a n t i n 2,4,5-T a n d other t r i c h l o r o p h e n o l d e r i v a t i v e s , is the t o x i c of the c o m m o n l y - e n c o u n t e r e d d i o x i n s (8)
most
a n d i t r e c e i v e d m o s t of
o u r attention. Its l o w s o l u b i l i t y i n c o m m o n solvents a n d w a t e r ( ca. 2 p p b ) l i m i t e d o u r experiments since the p r o d u c t s w e r e d i f f i c u l t to i d e n t i f y b y the c o n v e n t i o n a l t e c h n i q u e s of o r g a n i c c h e m i s t r y .
However, T C D D
a n a b s o r p t i o n m a x i m u m at 307 n m i n m e t h a n o l — w e l l w i t h i n the
has solar
s p e c t r u m o b s e r v e d at the earth's surface a n d near the r e g i o n of m a x i m u m intensity ( 3 1 0 - 3 3 0 n m ) of the U V l a m p s u s e d i n p r e v i o u s (14, 19).
experiments
T h e p h o t o l y s i s rate of several c h l o r i n a t e d d i o x i n s w a s d e t e r m i n e d i n m e t h a n o l (20)
(Figure 1).
Solutions of 2 , 7 - d i c h l o r o d i b e n z o - p - d i o x i n (5
m g / l i t e r ) , T C D D ( 5 m g / l i t e r ) , a n d o c t a c h l o r o d i b e n z o - p - d i o x i n (2.2 m g / l i t e r ) w e r e i r r a d i a t e d w i t h l i g h t h a v i n g a n i n t e n s i t y of a b o u t 100 /xW/cm
In Chlorodioxins—Origin and Fate; Blair, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
2
Downloaded by COLUMBIA UNIV on March 31, 2013 | http://pubs.acs.org Publication Date: March 1, 1973 | doi: 10.1021/ba-1973-0120.ch006
6.
P L I M M E R
E T
A L .
Photochemistry of Dioxins
47
Irradiation (hours) Science
Figure 1. Photolysis rates of chlorinated dibenzo-p-dioxins in methanol under ultraviolet light: 2,7-dichlorodibenzo-p-dioxin (III) (5 mg/liter), 2,3,7,8-tetrachlor odibenzo-p-dioxin (I) (5 mg/liter), 1,2,3,4,6,7,8,9octachlorodibenzo-p-dioxin (IV) (2.2 mg/ liter) ( 2 0 ) , © 1971 by AAAS at the a b s o r p t i o n m a x i m u m of T C D D ( 307 n m ). P h o t o l y s i s w a s p e r f o r m e d i n sealed b o r o s i l i c a t e glass vessels, a n d t h e c o n c e n t r a t i o n d e t e r m i n e d b y gas c h r o m a t o g r a p h y ( G L C ) .
change w a s
A s expected, r e d u c t i v e d e
c h l o r i n a t i o n o c c u r r e d d u r i n g i r r a d i a t i o n , a n d as the tetra- or o c t a c h l o r o compounds observed.
d i s a p p e a r e d , peaks TCDD
afforded
of shorter
G L C retention
2,3,7-trichlorodibenzo-p-dioxin
times
were
which was
i d e n t i f i e d b y G L C c o u p l e d to a mass spectrometer ( G C / M S ) ( F i g u r e 2 ) . A d i c h l o r o d i b e n z o - p - d i o x i n also w a s f o r m e d i n l o w y i e l d . Octachlorodibenzo-p-dioxin was photolyzed m u c h more slowly than T C D D ( F i g u r e 1 ). T h e rate of d i o x i n photolysis increased as t h e n u m b e r of substituent c h l o r i n e atoms decreased.
O c t a c h l o r o d i b e n z o - p - d i o x i n gave
w h a t seemed to b e a series o f c h l o r i n a t e d d i o x i n s of d e c r e a s i n g c h l o r i n e content
(20).
S i m i l a r results w e r e o b t a i n e d w h e n T C D D i n m e t h a n o l w a s exposed to n a t u r a l s u n l i g h t i n sealed b o r o s i l i c a t e glass tubes or beakers 3).
(Figure
A f t e r about 36 hours exposure, a y e l l o w n o n - v o l a t i l e g u m w a s o b
t a i n e d as t h e sole p r o d u c t b y e v a p o r a t i o n of t h e solvent.
It s h o w e d n o
U V a b s o r p t i o n a n d d i d n o t seem to r e t a i n t h e b e n z e n o i d c h r o m o p h o r e ;
In Chlorodioxins—Origin and Fate; Blair, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
48
CHLORODIOXINS
ORIGIN
AND FATE
Downloaded by COLUMBIA UNIV on March 31, 2013 | http://pubs.acs.org Publication Date: March 1, 1973 | doi: 10.1021/ba-1973-0120.ch006
10.0 ρ
4 6 Irradiation (hours) Science
Figure 2. Photoreduction of 2,3,7,8-tetrachlorodibenzo-p-dioxin (I) (2 mg/liter in methanol) as com pared with that of the 2,3,7-trichloro-homolog (II) (20), © 1971 by AAAS 100
2
4
6
Irradiation (hours) Science
Figure 3. Photolysis rate of 2,3,7,8-tetrachlorodibenzo-p-dioxin (5 mg/liter in meth anol) in sunlight ( 2 0 ) , © 1971 by AAAS
In Chlorodioxins—Origin and Fate; Blair, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
6.
P L I M M E R
E T
A L .
Photochemistry of Dioxins
49
since u n s u b s t i t u t e d d i b e n z o - p - d i o x i n shows a s t r o n g a b s o r p t i o n m a x i m u m at 290 n m i n m e t h a n o l , i t w a s n o t present as a r e a c t i o n p r o d u c t . It seems that deep-seated c l e a v a g e of the d i o x i n n u c l e u s m u s t a c c o m pany dechlorination i n methanol. irradiated i n cyclohexane
W h e n pure dibenzo-p-dioxin ( II ) was
s o l u t i o n i n a q u a r t z cuvette,
it darkened i n
color, a n d a p r e c i p i t a t e of i n t r a c t a b l e d a r k b r o w n m a t e r i a l w a s c o l l e c t e d a n d w a s i n s o l u b l e i n the c o m m o n solvents except f o r m e t h a n o l . A more concentrated
(1000 p p m ) s o l u t i o n of d i b e n z o - p - d i o x i n i n
m e t h a n o l w a s i r r a d i a t e d f o r 1.5 h o u r s u n d e r a 450-watt l a m p fitted w i t h a b o r o s i l i c a t e glass filter w h i l e n i t r o g e n w a s b u b b l e d c o n t i n u o u s l y t h r o u g h , Downloaded by COLUMBIA UNIV on March 31, 2013 | http://pubs.acs.org Publication Date: March 1, 1973 | doi: 10.1021/ba-1973-0120.ch006
the s o l u t i o n . of 8 5 % .
U n c h a n g e d starting m a t e r i a l w a s r e c o v e r e d to the extent
T h e p r i n c i p a l photolysis product again was a dark b r o w n
i n s o l u b l e g u m s i m i l a r to that d e s c r i b e d above.
Its m o b i l i t y o n t h i n layer
c h r o m a t o g r a p h y ( T L C ) w a s v e r y l o w i n the b e n z e n e / e t h y l acetate ( 4 : 1 ) solvent u s e d to separate the other p r o d u c t s . U n d e r U V l i g h t a t y p i c a l c h r o m a t o g r a m s h o w e d starting m a t e r i a l , a p o l y m e r i c substance, a n d t w o m o b i l e c o m p o u n d s w h i c h w e r e
isolated
b y p r e p a r a t i v e T L C . T h e m o r e m o b i l e c o m p o u n d has y e t to b e i d e n t i f i e d , b u t the mass s p e c t r u m of the least m o b i l e ( R 0.52 ) s h o w e d the m o l e c u l a r f
i o n at m/e 186 a n d f r a g m e n t ions at 168 ( M - 1 8 ), 158 ( M - 2 8 ), 157 ( M - 2 9 ), a n d 139 ( M - 2 9 - 1 8 ) . T h e m o l e c u l a r w e i g h t of 186 c o r r e s p o n d e d to either a phenoxyphenol or dihydroxybiphenyl; methylation w i t h gave a c o m p o u n d w i t h m/e
diazomethane
214 ( 186 — 2 H -f- t w o m e t h y l groups ) ac
c o m p a n i e d b y f r a g m e n t ions at m/e 185 ( M - 2 9 ) , 169 ( M - 4 5 ), 168 ( M - 4 6 ) , a n d 157 ( M - 5 7 ) .
Since i t gave a d i m e t h y l d e r i v a t i v e w i t h d i a z o m e t h a n e ,
this p r o d u c t m u s t b e a d i h y d r o x y b i p h e n y l , a n d its i d e n t i t y w a s c o n f i r m e d b y c o m p a r i n g its c h r o m a t o g r a p h i c
properties a n d mass s p e c t r u m
with
those of a n a u t h e n t i c s p e c i m e n o f 2 , 2 ' - d i h y d r o x y b i p h e n y l ( I V ) ( F i g u r e 4 ).
OH
OH Figure 4.
Irradiation of pure dibenzo-p-dioxin
W h e n the crude reaction mixture was examined b y G C / M S , a n addi t i o n a l c o m p o u n d w i t h m/e
186, w h i c h gave a m o n o m e t h y l ether, w a s
In Chlorodioxins—Origin and Fate; Blair, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
50
CHLORODIOXINS
d e t e c t e d i n trace amounts.
ORIGIN
T h i s corresponds to the e x p e c t e d
p h e n o l ( I I I ) , the i n i t i a l p r o d u c t of r i n g o p e n i n g ( F i g u r e T h e photolytic rearrangement
The
(21).
r e a c t i o n p r o c e e d e d t h r o u g h ether b o n d fission f o l l o w e d b y w h i c h recombined
2-phenoxy-
4).
a n d it w a s suggested
intramolecular rearrangement
to g i v e h y d r o x y l a t e d b i -
p h e n y l s . A trace of p h e n o l w a s also o b t a i n e d . dependent,
FATE
of d i p h e n y l ether to o- a n d p - p h e n y l -
p h e n o l has b e e n d e s c r i b e d b y O g a t a et al. of the r a d i c a l fragments
A N D
T h e yields were
solvent
that f o r m a t i o n of a h y d r o g e n
bond
f r o m the a l c o h o l solvent to the ethereal o x y g e n a t o m m i g h t a i d C — Ο — C bond
fission.
It is c o n c e i v a b l e that the d i o x i n s y i e l d i n i t i a l l y 2-phenoxy-
Downloaded by COLUMBIA UNIV on March 31, 2013 | http://pubs.acs.org Publication Date: March 1, 1973 | doi: 10.1021/ba-1973-0120.ch006
p h e n o l w h i c h c a n g i v e s y m m e t r i c a l h y d r o x y b i p h e n y l s b y ether fission,
rearrangement,
droxybenzenoid
and radical recombination.
compounds
might
be
formed
bond
Alternatively, dihy-
a n d w o u l d be
readily
susceptible to p h o t o o x i d a t i o n , y i e l d i n g p o l y m e r i c c o m p o u n d s . A l t h o u g h the effectiveness of s u n l i g h t i n d e s t r o y i n g T C D D i n d i l u t e m e t h a n o l s o l u t i o n was established c o n c l u s i v e l y , the i n s o l u b i l i t y of T C D D l i m i t e d studies i n aqueous systems.
P u r e c r y s t a l l i n e T C D D as a suspen
s i o n i n d i s t i l l e d w a t e r s e e m e d to b e u n c h a n g e d b y i r r a d i a t i o n w i t h s u n l a m p . H o w e v e r , i f a f e w drops of a s o l u t i o n of
1 4
a
C - T C D D i n benzene
w a s a d d e d to w a t e r a n d the d i s p e r s i o n was s t a b i l i z e d b y a
surfactant
s u c h as T w e e n - 8 0 , i r r a d i a t i o n w i t h a s u n l a m p w a s effective i n r e d u c i n g the T C D D content of the system.
B y contrast,
T C D D a p p l i e d to soil
or a s o l i d s u r f a c e s e e m e d to be extremely resistant to the a c t i o n of s u n l i g h t a n d d e c o m p o s e d v e r y s l o w l y . A spot of a m e t h a n o l i c s o l u t i o n of TCDD
(2.4
p p m ) was a p p l i e d to glass plates c o a t e d w i t h a u n i f o r m
250-/xm l a y e r of either N o r f o l k s a n d y s o i l or H a g e r s t o w n silty c l a y l o a m . T h e d r i e d spot w a s i l l u m i n a t e d for 96 hours w i t h a fluorescent u l t r a v i o l e t l a m p . A t the e n d of this p e r i o d T C D D c o u l d b e r e c o v e r e d q u a n t i t a t i v e l y unchanged.
T h e same results w e r e g i v e n b y d r y plates or b y
m o i s t e n e d w i t h w a t e r d u r i n g the experiment.
plates
Similarly, there was neg
l i g i b l e c h a n g e i n the q u a n t i t y of T C D D i r r a d i a t e d as a film o n a glass p l a t e f o r u p to 14 days (20).
It seems l i k e l y , therefore, that a n y loss of
T C D D f r o m a s o i l surface w o u l d o c c u r b y m e c h a n i c a l transfer o n dust particles rather t h a n b y v o l a t i l i z a t i o n or b y p h o t o d e g r a d a t i o n . Photochemical
Generation
of
Dioxins
L i g h t c a n effect the c o u p l i n g of p h e n o l s . M i l l e r (22)
F o r example, J o s c h e k a n d
f o u n d that p h e n o x y p h e n o l s c o u l d be p r o d u c e d i n the
flash
p h o t o l y s i s of p h e n o l , b u t a l t h o u g h sought, no d i o x i n was d e t e c t e d i n the reaction
products.
T h e i r r a d i a t i o n of aqueous solutions of 2 , 4 - d i c h l o r o p h e n o l a n d 2,4,5t r i c h l o r o p h e n o l w i t h U V l i g h t at w a v e l e n g t h s a b o v e 280 n m g a v e little
In Chlorodioxins—Origin and Fate; Blair, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
6.
P L I M M E R
reaction.
E T
A L .
51
Photochemistry of Dioxins
H o w e v e r , i n t h e presence of r i b o f l a v i n as a sensitizer, t h e
p h e n o l s w e r e efficiently c o n s u m e d (23).
A d d e d o x y g e n seemed to i m
prove reaction yields, perhaps b y oxidizing reduced riboflavin. The
reaction products f r o m 2,4-dichlorophenol were
tetrachloro-
p h e n o x y p h e n o l s a n d t e t r a c h l o r o d i h y d r o x y b i p h e n y l s ( F i g u r e 5 ) , as d e t e r m i n e d f r o m t h e i r mass spectra
a n d those of t h e i r m e t h y l ethers.
4 , 6 - D i c h l o r o - 2 - ( 2 , 4 - d i c h l o r o p h e n o x y ) p h e n o l ( V ) w a s t h e major p h e n o x y /
phenol;
,
t h e mass s p e c t r a l f r a g m e n t a t i o n
pattern
of o - h y d r o x y p h e n o l
ethers is q u i t e characteristic since a h y d r o g e n transfer occurs d u r i n g t h e f r a g m e n t a t i o n ( F i g u r e 6 ) . A trace of a t r i c h l o r o p h e n o x y p h e n o l also w a s Downloaded by COLUMBIA UNIV on March 31, 2013 | http://pubs.acs.org Publication Date: March 1, 1973 | doi: 10.1021/ba-1973-0120.ch006
d e t e c t e d a n d w a s f o r m e d p r e s u m a b l y b y the u n s e n s i t i z e d r e d u c t i v e loss of c h l o r i n e , d i s c u s s e d p r e v i o u s l y . Two
i s o m e r i c t e t r a c h l o r o d i h y d r o x y b i p h e n y l s (m/e
3 2 2 ) also oc
curred i n the reaction mixture a n d were characterized b y the formation
CI Figure 5.
HO CI
Irradiation of 2,4-dichlorophenol + ·
CI
CI
CI
CI m/e 177
Figure 6.
Fragmentation of 4,6-dichloro-2-(2',4'-dichhrophenoxy)phenol
In Chlorodioxins—Origin and Fate; Blair, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
52
CHLORODIOXINS
of t h e i r d i m e t h y l ethers (m/e
350).
ORIGIN
AND
FATE
H o w e v e r , despite extensive destruc
t i o n of the p h e n o l s , t h e i r c o n v e r s i o n to d i m e r i c p r o d u c t s w a s less t h a n 5%.
A l t h o u g h measurements
w e r e c o n d u c t e d at several t i m e intervals,
at no t i m e c o u l d d i b e n z o - p - d i o x i n s b e detected i n the m i x t u r e of p r o d u c t s b y e l e c t r o n - c a p t u r e gas c h r o m a t o g r a p h y (20,
23).
OH
Cl> A^ci ClA^CI Jj
light ÔÏÏ®
>
Downloaded by COLUMBIA UNIV on March 31, 2013 | http://pubs.acs.org Publication Date: March 1, 1973 | doi: 10.1021/ba-1973-0120.ch006
CI
Figure 7.
Photolysis of pentachlorophenol
B y contrast, a l k a l i n e a q u e o u s solutions of 2 , 4 - d i c h l o r o p h e n o l , 2,4,5trichlorophenol, and pentachlorophenol rapidly colored w h e n
exposed
to s u n l i g h t . T h e i s o l a t i o n of several p h o t o l y s i s p r o d u c t s p r e d i c t a b l y de r i v e d b y h y d r o l y t i c a n d r e d u c t i v e reactions sorcinol f r o m pentachlorophenol)
(including
tetrachlorore-
suggested s t r o n g l y that a n u c l e o p h i l i c
i o n i c m e c h a n i s m is o p e r a t i v e ( F i g u r e 7 ). P u r e d i o x i n - f r e e P C P , i r r a d i a t e d as a 1000 p p m s o l u t i o n i n aqueous s o d i u m h y d r o x i d e w i t h l i g h t i n the 3 0 0 - 3 5 0 n m r e g i o n , gave a n e u t r a l b e n z e n e - s o l u b l e
extract w h i c h c o n
t a i n e d o c t a c h l o r o d i b e n z o - p - d i o x i n as s h o w n b y G L C / M S . y i e l d i n repeated
experiments
w a s not consistent
A l t h o u g h the
a n d the
maximum
c o n c e n t r a t i o n w a s o n l y 36 p p m i n a n y s i n g l e i r r a d i a t i o n , a s m a l l e r a m o u n t of a n u n i d e n t i f i e d n e u t r a l constituent also w a s present w h o s e r e t e n t i o n t i m e o n G L C c o r r e s p o n d e d to that of a h e p t a c h l o r o d i b e n z o - p - d i o x i n . Discussion It w o u l d b e d i f f i c u l t to estimate the q u a n t i t y of T C D D w h i c h enters the e n v i r o n m e n t e a c h year.
I n a d d i t i o n to the c o m m o n pesticides l i s t e d
i n T a b l e I, other c h l o r o p h e n o l s Tand t h e i r d e r i v a t i v e s are u s e d w i d e l y . F o r e x a m p l e , large a m o u n t s of the d i s i n f e c t a n t , h e x a c h l o r o p h e n e
(2,2 r
m e t h y l e n e b i s ( 3 , 4 , 6 - t r i c h l o r o p h e n o l ) ), are u s e d i n homes, hospitals, a n d i n d u s t r y , a n d the D o w c i d e s 2 a n d Β ( 2 , 4 , 5 - t r i c h l o r o p h e n o l a n d its s o d i u m s a l t ) are i n d u s t r i a l m i c r o b i o c i d e s . M o r e t h a n 50,000,000 lbs of t r i c h l o r o p h e n o l are m a d e i n the U n i t e d States e a c h y e a r (24), e v e n t u a l l y m u s t b e d i s p e r s e d i n the e n v i r o n m e n t . seems to b e v a r i a b l e b u t is g e n e r a l l y b e l o w 0.5 p p m
a n d m u c h of i t
The dioxin
content
(25).
Synthesis of T C D D i n s u n l i g h t c o u l d not b e e x p e c t e d to a d d a p p r e c i a b l y to this e n v i r o n m e n t a l b u r d e n .
T h e f o r m a t i o n rate f r o m c h l o r o
p h e n o l s is s t r o n g l y c o n c e n t r a t i o n - d e p e n d e n t ,
a n d its m e c h a n i s m r e q u i r e s
In Chlorodioxins—Origin and Fate; Blair, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
6.
P L I M M E R
E T
A L .
53
Photochemistry of Dioxins
that t h e t w o c o l l i d i n g p h e n o l m o l e c u l e s b e i n a n i o n i c f o r m . T h e rate of t r i c h l o r o p h e n o l f o r m a t i o n f r o m d e r i v a t i v e s s u c h as 2,4,5-T is e x t r e m e l y s l o w , a n d its d i s p e r s a l i n the e n v i r o n m e n t w o u l d b e u n f a v o r a b l e t o p h e n o l f o r m a t i o n at levels r e q u i r e d f o r T C D D synthesis since 2,4,5-T is not c o n v e r t e d d i r e c t l y i n t o T C D D . I f w e c o n s i d e r t h e r a p i d rate at w h i c h the s i m p l e r d i o x i n s u n d e r g o p h o t o l y s i s , i t seems u n l i k e l y that 2,4,5-T a n d other c h l o r o p h e n o l - b a s e d p e s t i c i d e s — o r
2,4-D,
even the phenols
themselves—normally w i l l f o r m the dioxins i n the environment. P C P presents a different p i c t u r e f r o m that of the l o w e r c h l o r o p h e n o l s
Downloaded by COLUMBIA UNIV on March 31, 2013 | http://pubs.acs.org Publication Date: March 1, 1973 | doi: 10.1021/ba-1973-0120.ch006
and their derivatives.
T h e c o r r e s p o n d i n g d i o x i n shows m u c h m o r e sta
b i l i t y to l i g h t t h a n does T C D D , e n o u g h to p e r m i t its p r o l o n g e d existence at l o w concentrations
i n a photoreactor.
A s a phenol it can directly
y i e l d d i o x i n s , a process f a v o r e d b y its n o r m a l m o d e of a p p l i c a t i o n as t h e s o d i u m salt. A l t h o u g h o c t a c h l o r o d i b e n z o - p - d i o x i n has m u c h l o w e r m a m malian toxicity than T C D D
( 6 ) , its f o r m a t i o n , properties, a n d effects
d e m a n d a d d i t i o n a l i n v e s t i g a t i o n . T e c h n i c a l p r e p a r a t i o n s of P C P are fre q u e n t l y mixtures of tetra- a n d p e n t a c h l o r o p h e n o l s ; c o n s e q u e n t l y ,
hepta-
a n d p o s s i b l y h e x a c h l o r o d i b e n z o - p - d i o x i n s m i g h t b e expected as p h o t o l y s i s products i n addition to the octachloro derivative. T C D D d e t e c t i o n has n o t b e e n r e p o r t e d i n the
field.
P e r h a p s , this
s h o u l d not b e s u r p r i s i n g , c o n s i d e r i n g t h e serious d i f f i c u l t y of its analysis, its p h o t o l y t i c b r e a k d o w n , a n d the f a c t that a n o r m a l a p p l i c a t i o n ( 2 l b s / a c r e ) of 2,4,5-T, f o r e x a m p l e , u s u a l l y w o u l d represent the d i s p e r s a l of n o m o r e t h a n 450 μg of the d i o x i n o n each treated acre, a s s u m i n g a d i o x i n content of < 0 . 5 p p m . L i k e w i s e , there seem t o b e n o reports of t h e d e c a y of h i g h l y d i s p e r s e d d i o x i n s o n leaf surfaces, a n d it m u s t b e r e c o g n i z e d that t h e experiments w e h a v e r e p o r t e d here w e r e c o n d u c t e d o n l y u n d e r the a r t i f i c i a l c o n d i t i o n s of the l a b o r a t o r y .
Nevertheless, the p h o t o c h e m
istry of t h e d i o x i n s s h o u l d p r o v i d e a w o r t h w h i l e r e m i n d e r that s u n l i g h t c a n act o n m a n - m a d e c h e m i c a l s i n the e n v i r o n m e n t t o f o r m p r o d u c t s w h i c h m a y b e m o r e toxic t h a n t h e o r i g i n a l to some l i f e f o r m a n d that a c o m p o u n d s h o w n to b e h i g h l y t o x i c u n d e r r i g i d l y s t a n d a r d i z e d c o n d i t i o n s does n o t necessarily present the same h a z a r d w h e n the toxicant is exposed to t h e forces of nature.
Literature
Cited
1. California Department of Agriculture, "Pesticide Use Report 1970," Sacra mento, California, 1971. 2. Kimura, H . S., Hurov, H. R., "Evaluation of Pesticide Problems in Hawaii," Appendix, p. 25, Hawaii Department of Agriculture, Honolulu, 1969. 3. Whiteside, T., "Defoliation," p. 129, Ballantine, New York, 1970. 4. Kimmig, J., Schulz, Κ. H . , Dermatologica (1957) 195, 540. 5. Bauer, H . , Schulz, Κ. H., Arch. Pathol. Gewerbehyg. (1961) 583.
In Chlorodioxins—Origin and Fate; Blair, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by COLUMBIA UNIV on March 31, 2013 | http://pubs.acs.org Publication Date: March 1, 1973 | doi: 10.1021/ba-1973-0120.ch006
54
CHLORODIOXINS
ORIGIN
A N D FATE
6. Panel on Herbicides, President's Science Advisory Committee, "Report on 2,4,5-T," Executive Office of the President, Washington, D . C . (1971). 7. Emerson, J. L., Thompson, D . J., Strebing, R. J., Gerbig, C. G., Robinson, V. B., Fd. Cosmet. Toxicol. (1971) 9, 395. 8. Higginbotham, G. R., Huang, Α., Firestone, D., Verrett, J., Ress, J., Camp bell, A. D., Nature (1968) 220, 702. 9. Crosby, D. G . , Tutass, H . O., J. Agr. Food Chem. (1966) 14, 596. 10. Crosby, D. G . , Wong, A. S., 161st Nat. Meet. Amer. Chem. Soc., Los Angeles (April 1971). 11. Crosby, D . G . , Hamadmad, N., J. Agr. Food Chem. (1971) 19, 1171. 12. Kuwahara, M . , Kato, N . , Munakata, K., Agr. Biol. Chem. (Tokyo) (1966) 30, 232, 239. 13. Plimmer, J. R., Residue Rev. (1971) 33, 47. 14. Plimmer, J. R., Hummer, Β. E., 155th Nat. Meet. Amer. Chem. Soc., San Francisco (April 1968). 15. Crosby, D . G . , Leitis, E . , J. Agr. Food Chem. (1969) 17, 1033. 16. Pinhey, J. T., Rigby, R. D. G . , Tetrahedron Lett. 1970, 1267. 17. Wolf, W., Kharasch, N . , J. Org. Chem. (1965) 30, 2493. 18. Kearney, P. C., Woolson, Ε . Α., Plimmer, J. R., Isensee, A. R., Residue Rev. (1969) 29, 137. 19. Crosby, D . G . , Residue Rev. (1969) 25, 1. 20. Crosby, D. G., Wong, A. S., Plimmer, J. R., Woolson, Ε. Α., Science (1971) 173, 748. 21. Ogata, Y., Tagaki, K., Ishino, I., Tetrahedron (1970) 26, 2703. 22. Joschek, Η. I., Miller, S. I., J. Amer. Chem. Soc. (1971) 88, 407. 23. Plimmer, J. R., Klingebiel, U . I., Science (1971) 174, 407. 24. United States Tariff Commission, "Synthetic Organic Chemicals," p. 52, T C Publication 295, Washington, D . C., 1969. 25. Woolson, Ε . Α., Thomas, R. F . , Ensor, P. D . J., J. Agr. Food Chem. (1972) 20, 351. R E C E I V E D February 23,
1972.
In Chlorodioxins—Origin and Fate; Blair, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.