Direct Catalytic Enantioselective Benzylation from ... - ACS Publications

Nov 18, 2018 - and Rylan J. Lundgren*. Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada. •S Supporting Information...
0 downloads 0 Views 389KB Size
Subscriber access provided by Kaohsiung Medical University

Communication

Direct Catalytic Enantioselective Benzylation from Aryl Acetic Acids Patrick J. Moon, Zhongyu Wei, and Rylan J. Lundgren J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.8b11390 • Publication Date (Web): 18 Nov 2018 Downloaded from http://pubs.acs.org on November 18, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society

Direct  Catalytic  Enantioselective  Benzylation  from  Aryl  Acetic  Acids   Patrick  J.  Moon,†  Zhongyu  Wei,†  Rylan  J.  Lundgren*   Department  of  Chemistry,  University  of  Alberta,  Edmonton,  Alberta,  T6G  2G2,  Canada   Supporting  Information  Placeholder   ABSTRACT:  We  demonstrate  that  metal-­‐catalyzed  enantiose-­‐ lective  benzylation  reactions  of  allylic  electrophiles  can  occur   directly   from   aryl   acetic   acids.   The   reaction   proceeds   via   a   pathway  in  which  decarboxylation  is  the  terminal  event,  oc-­‐ curring   after   stereoselective   carbon–carbon   bond   formation.   This  mechanistic  feature  enables  enantioselective  benzylation   without  the  generation  of  a  highly  basic  nucleophile.  Thus,  the   process  has  broad  functional  group  compatibility  that  would   not  be  possible  employing  established  protocols.    

carbonyl  substrates  in  aldol  reactions  and  related  additions  to   2a,   7,   9   thus   their   larger   potential   in   selective   p-­‐electrophiles, synthesis  remains  unrealized.   A Decarboxylation Generates Reactive Intermediate R

– CO2 – H+

R'

R

Carboxylic   acids   are   stable   and   abundant   chemical   feed-­‐ stocks,  making  them  ideal  starting  materials  in  chemical  syn-­‐ 1 thesis.  The  extrusion  of  CO2  from  organic  acids  and  their  de-­‐ rivatives  is  a  key  mechanistic  step  in  both  classical  and  emerg-­‐ ing   bond-­‐forming   methodologies   used   in   the   preparation   of   2 functional  molecules.  Unmodified  carboxylic  acids  are  typi-­‐ cally   directly   engaged   in   catalytic   enantioselective   processes   through  mechanistic  pathways  initiated  by  decarboxylation  to   generate  a  reactive  intermediate.  Ionic  decarboxylation  leads   to  a  carbanion  intermediate  which  can  be  intercepted  stere-­‐ 3 oselectively  with  electrophiles  (Fig.  1a).  Alternatively,  single   electron  oxidation  leads  to  the  loss  of  CO2  by  homolysis,  gen-­‐ eration  of  a  radical  species,  and  stereoselective  trapping  with   4 a  chiral  catalyst  and  a  suitable  reaction  partner  (Fig.  1a).  In   both  these  reaction  manifolds,  acid  substrates  that  are  other-­‐ wise   recalcitrant   towards   decarboxylation   can   be   covalently   2f,   modified  by  fragments  that  can  undergo  oxidative  insertion 5 6  or  those  that  induce  homolysis  in  order  to  initiate  reactivity.   These   indirect   acid   coupling   strategies   decrease   overall   pro-­‐ cess  economy  and  efficiency.     A  third  mechanistic  framework  involves  a  stereoselective   7 bond-­‐forming  event  prior  to  decarboxylation  (Fig.  1b).  As  the   selectivity-­‐determining  bond  forming  event  is  separate  from   the   decarboxylation   step,   this   pathway   has   potential   ad-­‐ vantage  over  methods  relying  upon  the  irreversible  generation   and   trapping   of   reactive   intermediates.   Functionality   that   would  quench  highly  nucleophilic  species  (protic  groups,  elec-­‐ trophiles)  or  intercept  radicals  (p-­‐systems,  weak  abstractable   CH   bonds)   could   be   tolerated   in   this   pathway,   providing   broad  chemoselectivity  and  functional  group  compatibility  –   8   hallmarks  of  enabling  synthetic  methodologies. The  ability  to   induce   an   enantioselective   metal-­‐catalyzed   cross-­‐coupling   event  adjacent  to  a  free  carboxylate  unit  without  irreversible   interference  from  the  acid  itself  however,  presents  a  major  dif-­‐ ficulty.  Efforts  to  exploit  this  type  of  reactivity  have  been  re-­‐ stricted  to  the  use  of  malonic  half  esters  and  related  a-­‐carboxy  

R

[cat]

R'

E R'

carbanion

– 1e –

CO2H

G

R

– CO2 – H+

R'

E+

R

CO2H

R

[cat]

R'

G R'

radical

• stereoselective trapping of reactive intermediate [challenging] • electrophiles, R• acceptors quench intermediate [chemoselectivity problem] B Decarboxylation Post Coupling Event R' R

X

CO2H

R' R

[cat]

R'

XH CO2H

R

– CO2

XH

• selectivity-determining step prior to decarboxylation [improved compatibility] • limited to addition reactions to polarized π-units [Aldol, Mannich] C Potential Mechanism for Decarboxylative Benzylation Ar

Ar

X

CO2H R'

R'

R

R

cat. [M] O

R'

Ar

O

– CO2

re-enters cycle

R

Ir- or Pdbased catalyst

III

R

X R'

= R

R'

O Ar R'

R

R

R' O

[M] R'

X

cat. [M] [M] =

OH

R'

R

I

O Ar

allylic alcohol derivative

R II

[M] cat. allylic alcohol derivatives X X R

• catalytic benzylation without a highly basic intermediate [tolerant to reactive functionality]

X

R • enantioselective generation of II not contingent on irreversible decarboxylation step

Figure  1.  Mechanisms  for  enantioselective  decarboxylative  reac-­‐ tions.   (A)   Ionic   or   radical   paths.   (B)   Decarboxylation   after   ste-­‐ reodetermining   step.   (C)   Mechanistic   hypothesis   for   an   enanti-­‐ oselective  benzylation  process  from  aryl  acetic  acids.  

ACS Paragon Plus Environment

Journal of the American Chemical Society 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

  In   considering   new   transformations   that   could   leverage   the  advantage  of  pre-­‐decarboxylative  coupling  of  acids  in  en-­‐ antioselective  catalysis,  we  questioned  whether  aryl  acetic  ac-­‐ 10 ids  could  be  used  as  benzylating  reagents  in  metal-­‐catalyzed   asymmetric  coupling  reactions.  In  particular,  we  sought  to  de-­‐ velop   the   stereocontrolled   benzylation   of   allylic   electro-­‐ 11,  12 philes,  owing  to  the  diverse  utility  of  chiral  allylated  prod-­‐ ucts  and  the  known  ability  of  transition  metals  to  affect  nucle-­‐ 13 ophile   allylation   processes.   This   approach   would   contrast   methods  that  require  stoichiometric  quantities  of  strong  base   to   generate   highly   reactive   benzyl   anions   from   2-­‐pyridinyl   14 15 substrates  or  Cr(CO)3  complexed  toluenes.     A   pathway   for   the   decarboxylative   benzylation   could   in-­‐ volve  reversible  metal-­‐catalyzed  carboxylate  O-­‐allylation  from   an  allylic  electrophile  to  generate  an  allyl  aryl  acetate  (I  in  Fig.   1c).  This  species  could  undergo  a  second  metal-­‐catalyzed  al-­‐ lylic   substitution   at   the   enolate   position   to   form   a   new   car-­‐ bon–carbon  bond  (II).  Reversible  O-­‐deallylation  via  oxidative   insertion   would   generate   a   new   metal-­‐allyl   fragment   for   re-­‐ entry   into   the   catalytic   cycle   and   liberate   the   functionalized   carboxylic  acid  (III).  At  this  stage,  the  decarboxylation  event   3 3 would   generate   the   benzylated   C(sp )–C(sp )   coupled   prod-­‐ uct.  As  the  key  stereocenter  is  generated  prior  to  decarboxyla-­‐ tion,  substrates  less  prone  to  CO2  extrusion  could  be  subjected   to   reaction   conditions   to   enable   product   formation   without   impacting   the   selectivity   determining   step   (ie   by   heating).   This  strategy  would  allow  for  enantioselective  benzylation  to   occur   without   the   generation   of   a   strongly   basic,   functional   group-­‐intolerant  benzyl  anion,  enabling  the  reaction  to  occur   16 in  the  presence  of  protic  and  electrophilic  groups.  Further-­‐ more,  the  process  has  the  potential  to  be  highly  chemoselec-­‐ tive  for  benzylic  acids  in  the  presence  of  other  carboxylic  acid   groups  typically  employed  in  radical-­‐  or  ionic-­‐decarboxylative   cross-­‐coupling   reactions,   should   O-­‐allylation   be   reversible   17,  18 over  the  course  of  the  reaction.   Fig.  2a  provides  an  example  of  the  enantioselective  decar-­‐ boxylative  benzylation  of  allylic  electrophiles.  In  the  presence   19 of  Ir-­‐catalyst  [Ir]-­‐1  and  DBU,  the  diacid  substrate  (1)  under-­‐ goes  enantioselective  coupling  exclusively  at  the  benzylic  po-­‐ sition   to   generate   2a   without   interference   from   the   benzoic   acid   unit.   Monitoring   of   reaction   mixtures   using   a   series   of   simpler  aryl  acetic  acids  clearly  showed  the  rapid  generation   and  slow  decay  of  intermediate  I  which  converts  to  II  that  is   formed  as  an  ultimately  inconsequential  mixture  of  diastere-­‐ omers  with  high  enantioselectivity  at  the  allylic  position.  Spe-­‐ cies  II  readily  O-­‐deallylates  to  form  III  which  decarboxylates   to   give   the   chiral   benzylated   product.   These   observations,   along  with  cross-­‐over  experiments,  confirmed  the  mechanis-­‐ tic  hypothesis  outlined  in  Fig  1c  (see  Fig  S1-­‐S2  in  the  SI  for  de-­‐ tails).  The  generality  of  the  approach  is  demonstrated  with  the   benzylation  of  cyclic  allylic  electrophiles  (3a)  via  Pd-­‐catalysis   20 using  a  Trost-­‐type  system  and  BSA  as  the  base  (Fig.  2b).  In   cases  where  decarboxylation  is  not  spontaneous  at  room  tem-­‐ perature,  heating  the  reaction  at  70–90  °C  for  short  periods  of   time  delivers  product  with  high  yield  and  no  impact  on  enan-­‐ tioselectivity  (2b–2g,  Fig.  2c).     A   comprehensive   functional   group   compatibility   survey   showed  the  reaction  proceeded  with  similar  yields  and  enan-­‐ tioselectivities   in   the   presence   of   electrophilic   and   protic  

Page 2 of 5

groups  (aldehyde,  ketone,  free  NH-­‐groups,  alkyl  chloride,  N-­‐ Boc   amino   acid,   alkyl   alcohol,   phenol,   alternative   carboxylic   acids,  conjugate  acceptors,  N-­‐heterocycles  Fig.  2d,  see  Figs  S3– S5  for  more  examples).  Many  of  these  groups  would  quench  or   undergo  other  reactions  with  organometallic  nucleophiles,  or   species   generated   upon   single-­‐electron   oxidation,   highlight-­‐ ing  the  advantage  of  the  current  approach.     A Ir-Catalyzed Decarboxylative Benzylation NO 2

Ph

DBU, rt – CO2

CO2H

HO 2C

NO 2

OBoc 5% [Ir]-1

HO 2C

1

Ph 2a 88%, 99% ee

B Pd-Catalyzed Decarboxylative Benzylation R OCO 2Me CO2H 5% Pd(dba) 2, 5.5% L1 BSA, 0ºC – CO2

O 2N

O 2N 3a 80%, 91% ee

C Post-Coupling Thermal Decarboxylation Ar

CO2H

Ph

Ar

[Ir]-1

CO2H

Ph

OBoc

heat

Ar

70 to 90 ºC – CO2

Ph

N

R N CN 2b 94%, >99% ee SO2Me 2c 90%, 99% ee CF3 2d 85%, 99% ee

N

N

2e 2f 60%, >99% ee 90%, 99% ee

2g 75%, 99% ee

D Functional Group Compatibility Me

CHO

Br

Bpin

OH

CO2H

N H N

O Ph

N Boc

Me O

Ph

HO 6

NH 2 Ph

Ir

Ph

L1

O P

O

O Me [Ir]-1

Ar Ar = 2-OMeC6H 4

OH

EtOH CO2Me [5% by vol.]

Ph

ClO 4

N Ar

Me

CO2H

O NH HN P Ph 2

P Ph 2

Cl 8

Me Me

Ph

compatibility 1 equiv. of additive: 2b obtained in >65% y, 97% ee 99% ee [B]

O 2N

O O S

O

HO 2C

NO 2

2w R’ = NH 2 86%, 99% ee [2 steps] 2x R’ = Cl 52%, 98% ee [3 steps] 2y R’ = H 66%, 97% ee [3 steps] [R = 3-Br-C6H 4]

R’

N Me 2v 80%, >99% ee [B]

EtO 2C

2u 85%, 99% ee [B]

2s 67%, >85% ee [A] a

2r 61% (ee nd) [A]

O

MeO

O O

NO 2

N

2q 78%, >99% ee [B]

Me Me i-PrO

O

HO 2C

N

2p 58%, 98% ee [B]

NO 2

2m 95%, 99% ee [A] a 87%, 98% ee [B]

2l 76%, >99% ee [B]

O

F

2o 77%, 98% ee [B]

2t 74%, >99% ee [A]

2g 75%, 99% ee [A] a 90%, 99% ee [B] CN

2k 70%, 99% ee [A]

CF3

F 3C

HO

N

NO 2 I

2n 77%, 97% ee [B]

[Ir]-1Ar = 2-OMeC6H 4 [Ir]-2 Ar = Ph

H

2h 2i 85%, 99% ee [A] a 82%, 99% ee [B] 0.1 mol% [Ir-1] 65%, 99% ee [B] a CF3 Cl NO 2 Br

Me

Ar

N 2f 90%, 99% ee [A] a 93%, 97% ee [B]

2e 60%, >99% ee [A] a 61%, >99% ee [B]

O

O

Ar

N

2d 85%, 99% ee [A] a 65%, 99% ee [B]

O

O 2N

P N

R

F 3C

2c 90%, 99% ee [A] a 87%, 99% ee [B]

O

Ir

N 2b 94%, >99% ee [A] a 85%, 99% ee [B]

ClO 4

Ar

O

DBU, THF, rt [then heat]

R

[condition A]

Ph

O

1% [Ir]-2

allylic partner [Ar = 4-(NO2)-C6H 4 or indicated] Br

O Cl

F 3C

MeO

4a 94%, 98% ee [B]

4b 78%, 98% ee [B]

Cl

F

Br

4h 75%, 90% ee [B]b

4g 90%, 93% ee [B]

Me

4d 74%, 98% ee [B]

N 4i 80%, 94% ee [B]

S

N

4m R’ = NO 2 83%, 97% ee [B] 4n R’ = CN 66%, 99% ee [B] 4o R’ = NH 2 86%, 98% ee [2 steps]

R’

O

BocHN

4c 91%, 95% ee [B]

4j 86%, 96% ee [B] NC

4e 85%, 98% ee [B]

4f 86%, 99% ee [B] 3 gram scale

Me

BzO

4k 78%, 99% ee [B]

4l 80%, 97% ee [B]

MeO 2S

NC

N Me 4p 68%, >99% ee [B]

BocHN

Me 4q 64%, >99% ee [B]

4r 50%, >99% ee [B]

Me 4s 65%, 99% ee [B]

B Scope: Pd-Catalyzed Decarboxylative Benzylation

Ar

5% Pd(dba) 2 5.5% L1

MeO 2CO CO2H

BSA, DCE, rt [then heat]

[condition A] O 2N

3a 80%, 91% ee [A]b

Ar

Ac

3b 73%, 84% ee [B]

L1

5% Pd(dba) 2 5.5% L1 BSA, DCE, rt [then heat]

NC

3c 91%, 89% ee [A]

O

O

NH HN

Ar

O

P Ph 2

[condition B] CN

3d 99%, 88% ee [A]

N N 3e 84%, 86% ee [B]

O

P Ph 2

N 3f 73%, 86% ee [B]

Figure  3.  Scope  of  the  enantioselective  decarboxylative  benzylation  (A)  Ir-­‐catalyzed  process  (B)  Pd-­‐catalyzed  process.  Unless  noted,  yields   are  of  isolated  material.  See  SI  for  complete  details.  aYield  determined  by  1H  NMR  using  an  internal  standard;  bConducted  at  0  °C.

be  easily  accessed  in  reasonable  yield  by  nitro  group  manipu-­‐ lations  (52–86%  yield,  97–99%  ee  2w,  2x,  2y).  The  allyl  frag-­‐ ment  can  vary  in  structure  and  also  host  a  number  of  poten-­‐ tially  reactive  functional  groups  without  significant  change  to   process  efficiency  (halogens,  NH-­‐groups,  N-­‐  and  S-­‐heterocy-­‐ cles,   90–99%   ee).   Alkyl-­‐   substituted   allylic   electrophiles   are   competent  partners,  giving  access  to  simple  methyl  4m–4p),   long-­‐chain  alkyl  (4k,  4q),  and  heteroatom-­‐substituted  (4l,  4r)   22 chiral   benzylated   products.   Pd-­‐catalyzed   processes   can   be   used   to   access   benzylated   cyclic   allylic   stereocenters   with  

slightly   lower   selectivity   (83–91%   ee),   but   similarly   broad   scope  of  aryl  acetic  acid  partner  from  either  allylic  carbonates   or  allylic  ester  electrophiles  (3a–3f).     The   use   of   this   method   to   access   high-­‐value,   chiral   ben-­‐ zylated   intermediates   of   importance   to   human   health   was   demonstrated  by  the  expedient  preparation  of  the  core  frag-­‐ ments  of  Elacestrant  and  Taranabant  (Fig  4).  Briefly,  conden-­‐ sation  between  aryl  acetic  acids  and  suitably  functionalized  al-­‐ lylic  alcohols,  followed  by  Ir-­‐catalyzed  enantioselective    

ACS Paragon Plus Environment

Journal of the American Chemical Society 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

OMe

1. EDCl, DMAP 2. 2% [Ir]-1, DBU

Ar HO

CO2H R

51%, 99% ee [2 steps]

O 2N

5a

1. Zn, MeOH 2. t-BuONO, CuCl 3. [Pd], TBHP 4. L-Selectride

1. EDCl, DMAP 2. 0.5% [Ir]-2, DBU 71%, 99% ee [2 steps] 2.3 grams

1. GH-II 2. Pd/C, H 2 3. NaNO 2, H 2O

OMe

4f

H

5b 76%, 99% ee [3 steps]

HO

OMe

Elacestrant

H

EtN

HO

Et

NH

Taranabant CN

Br O 2N

Page 4 of 5

Cl

HO

Br 5c 40%, 98% ee Me [4 steps]

Cl

HN O

Me O

N

Me Me

Figure  4.  Applications:  Synthesis  of  the  cyclic  core  of  Elacestrant  and  a  late-­‐stage  intermediate  of  Taranabant,  see  the  SI  for  details.  

decarboxylative   benzylation   gives   effectively   single-­‐enantio-­‐ mer  products  (5a,  4f  both  99%  ee)  primed  for  conversion  to   bioactive  targets,  including  at  multi-­‐gram  scale.  Ring-­‐closing   metathesis,   hydrogenation,   and   Sandmeyer   hydroxylation   converts  5a  to  cyclic  product  5b  which  bears  the  chiral  core  of   23 Elacestrant.  Conversion  of  the  nitro  group  in  4f  to  chlorine,   24 followed  by  ketone-­‐selective  Wacker  oxidation  and  diaster-­‐ oselective  reduction  gives  product  5c,  which  can  be  converted   25 to  (ent)-­‐Taranabant  via  an  established  route.   The   enantioselective   benzylation   of   allylic   electrophiles,   directly  from  aryl  acetic  acids  has  been  established.  The  reac-­‐ tion  proceeds  via  a  pathway  in  which  decarboxylation  is  the   terminal  event,  occurring  after  stereoselective  carbon–carbon   bond  formation,  enabling  the  tolerance  of  protic  and  electro-­‐ philic   functionality.   Collectively,   these   studies   show   this   ap-­‐ proach   has   value   in   generating   carbon–carbon   bonds   with   high   levels   of   enantioselectivity   in   the   presence   of   complex   chemical  functionality.  

Supporting  Information   Experimental  procedures  and  compound  characterization   data.    This  material  is  available  free  of  charge  via  the  Internet   at  http://pubs.acs.org.    

Corresponding  Author   *  [email protected]     †   These  authors  contributed  equally  

ACKNOWLEDGMENT     We  thank  S.  Bachman  and  D.  Hall  for  helpful  analysis  of   this  manuscript.  We  are  grateful  to  NSERC  Canada  (Discovery   Grant   to   R.J.L.,   CGS   fellowships   to   P.J.M),   the   Killam   Trusts   (I.W.K.  fellowship  to  P.J.M)  and  the  Canadian  Foundation  for   Innovation  for  support  of  this  work.  

REFERENCES   1. Schwarz, J.; Konig, B., Decarboxylative reactions with and without light - a comparison. Green Chem. 2018, 20, 323. 2. (a) Nakamura, S., Catalytic enantioselective decarboxylative reactions using organocatalysts. Org. Biomol. Chem. 2014, 12, 394; (b) Patra, T.; Maiti, D., Decarboxylation as the Key Step in C-C Bond-Forming Reactions. Chem. Eur. J. 2017, 23, 7382; (c) Rodriguez, N.; Goossen, L. J., Decarboxylative coupling reactions: a modern strategy for C-C-bond formation. Chem. Soc. Rev. 2011, 40, 5030; (d) Smith, J. M.; Harwood, S. J.; Baran, P. S., Radical Retrosynthesis. Acc. Chem. Res. 2018, 51, 1807; (e) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C., The merger of transition metal and photocatalysis. Nat. Rev. Chem. 2017, 1, 52; (f) Weaver, J. D.; Recio, A., 3rd; Grenning, A. J.; Tunge, J. A., Transition metal-catalyzed decarboxylative allylation and benzylation reactions. Chem. Rev. 2011, 111, 1846. 3. (a) Yin, L.; Kanai, M.; Shibasaki, M., Nucleophile generation via decarboxylation: asymmetric construction of contiguous trisubstituted and quaternary stereocenters through a Cu(I)-catalyzed decarboxylative Mannich-

type reaction. J. Am. Chem. Soc. 2009, 131, 9610; (b) Hara, N.; Nakamura, S.; Funahashi, Y.; Shibata, N., Organocatalytic enantioselective decarboxylative addition of malonic acids half thioesters to Isatins. Adv. Synth. Catal. 2011, 353, 2976; (c) Shibatomi, K.; Kitahara, K.; Sasaki, N.; Kawasaki, Y.; Fujisawa, I.; Iwasa, S., Enantioselective decarboxylative chlorination of beta-ketocarboxylic acids. Nat. Commun. 2017, 8, 7; (d) Grugel, C. P.; Breit, B., Rhodium-Catalyzed Enantioselective Decarboxylative Alkynylation of Allenes with Arylpropiolic Acids. Org. Lett. 2018, 20, 1066. 4. (a) Zuo, Z. W.; Gong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C., Enantioselective Decarboxylative Arylation of alpha-Amino Acids via the Merger of Photoredox and Nickel Catalysis. J. Am. Chem. Soc. 2016, 138, 1832; (b) Li, J. T.; Kong, M. M.; Qiao, B. K.; Lee, R.; Zhao, X. W.; Jiang, Z. Y., Formal enantioconvergent substitution of alkyl halides via catalytic asymmetric photoredox radical coupling. Nat. Commun. 2018, 9, 9; (c) Yin, Y. L.; Dai, Y. T.; Jia, H. S.; Li, J. T.; Bu, L. W.; Qiao, B. K.; Zhao, X. W.; Jiang, Z. Y., Conjugate Addition-Enantioselective Protonation of N-Aryl Glycines to alpha-Branched 2-Vinylazaarenes via Cooperative Photoredox and Asymmetric Catalysis. J. Am. Chem. Soc. 2018, 140, 6083. 5. Early reports: (a) Behenna, D. C.; Stoltz, B. M., The enantioselective Tsuji allylation. J. Am. Chem. Soc. 2004, 126, 15044; (b) Trost, B. M.; Xu, J. Y., Regio- and enantioselective Pd-catalyzed allylic alkylation of ketones through allyl enol carbonates. J. Am. Chem. Soc. 2005, 127, 2846. 6. (a) Wang, D. H.; Zhu, N.; Chen, P. H.; Lin, Z. Y.; Liu, G. S., Enantioselective Decarboxylative Cyanation Employing Cooperative Photoredox Catalysis and Copper Catalysis. J. Am. Chem. Soc. 2017, 139, 15632; (b) Proctor, R. S. J.; Davis, H. J.; Phipps, R. J., Catalytic enantioselective Minisci-type addition to heteroarenes. Science 2018, 360, 419. 7. Magdziak, D.; Lalic, G.; Lee, H. M.; Fortner, K. C.; Aloise, A. D.; Shair, M. D., Catalytic enantioselective thioester aldol reactions that are compatible with protic functional groups. J. Am. Chem. Soc. 2005, 127, 7284. 8. (a) Collins, K. D.; Glorius, F., A robustness screen for the rapid assessment of chemical reactions. Nat. Chem. 2013, 5, 597; (b) Foley, D. J.; Nelson, A.; Marsden, S. P., Evaluating New Chemistry to Drive Molecular Discovery: Fit for Purpose? Angew. Chem. Int. Ed. 2016, 55, 13650. 9. Pan, Y. H.; Kee, C. W.; Jiang, Z. Y.; Ma, T.; Zhao, Y. J.; Yang, Y. Y.; Xue, H. S.; Tan, C. H., Expanding the Utility of Bronsted Base Catalysis: Biomimetic Enantioselective Decarboxylative Reactions. Chem.-Eur. J. 2011, 17, 8363. 10. 2000 (hetero)aryl acetic acids are available for purchase via eMolecules, MilliporeSigma lists >1000 compounds with this motif. 11. For achiral or racemic approaches that propose decarboxylation prior to coupling, see: (a) Waetzig, S. R.; Tunge, J. A., Palladium-catalyzed decarboxylative sp(3)-sp(3) coupling of nitrobenzene acetic esters. J. Am. Chem. Soc. 2007, 129, 14860; (b) Waetzig, S. R.; Tunge, J. A., Regio- and diastereoselective decarboxylative coupling of heteroaromatic alkanes. J. Am. Chem. Soc. 2007, 129, 4138; (c) Lang, S. B.; O'Nele, K. M.; Tunge, J. A., Decarboxylative Allylation of Amino Alkanoic Acids and Esters via Dual Catalysis. J. Am. Chem. Soc. 2014, 136, 13606. For the decarboxylative arylation of aryl acetates see (d) Shang, R.; Huang, Z.; Chu, L.; Fu, Y.; Liu, L., Palladium-Catalyzed Decarboxylative Coupling of Potassium Nitrophenyl Acetates with Aryl Halides Org. Lett. 2011, 13, 4240; (e) Xu, Z. R.; Wang, Q.; Zhu, J. P., Palladium-­‐‑Catalyzed Decarboxylative Vinylation of Potassium Nitrophenyl Acetate: Application to the Total Synthesis of (±)-­‐‑Goniomitine Angew. Chem. Int. Ed. 2013, 52, 3272; (f) Moon, P. J.; Fahandej-Sadi, A.; Qian, W.; Lundgren, R. J., Decarboxylative Benzylation of Aryl and Alkenyl Boronic Esters Angew. Chem. Int. Ed. 2018, 57, 4612.

ACS Paragon Plus Environment

Page 5 of 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society 12. For examples of enantioselective allylic alkylations using alkyl-zinc reagents, see: (a) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M., IridiumCatalyzed Enantioselective Allylic Alkylation with Functionalized Organozinc Bromides. Angew. Chem. Int. Ed. 2015, 54, 7644; (b) Petrone, D. A.; Isomura, M.; Franzoni, I.; Rossler, S. L.; Carreira, E. M., Allenylic Carbonates in Enantioselective Iridium-Catalyzed Alkylations. J. Am. Chem. Soc. 2018, 140, 4697. 13. (a) Trost, B. M.; VanVranken, D. L., Asymmetric transition metalcatalyzed allylic alkylations. Chem. Rev. 1996, 96, 395; (b) Hartwig, J. F.; Stanley, L. M., Mechanistically Driven Development of Iridium Catalysts for Asymmetric Allylic Substitution Acc. Chem. Res. 2010, 43, 1461. (c) Grange, R. L.; Clizbe, E. A.; Evans, P. A., Recent Developments in Asymmetric Allylic Amination Reactions. Synthesis 2016, 48, 2911. (d) Shockley, S. E.; Hethcox, J. C.; Stoltz, B. M., Intermolecular Stereoselective Iridium-Catalyzed Allylic Alkylation: An Evolutionary Account Synlett, DOI: 10.1055/s-0037-1610217 14. (a) Trost, B. M.; Thaisrivongs, D. A.; Hartwig, J., Palladium-catalyzed asymmetric allylic alkylations of polynitrogen-containing aromatic heterocycles. J. Am. Chem. Soc. 2011, 133, 12439; (b) Liu, X. J.; You, S. L., Enantioselective Iridium-Catalyzed Allylic Substitution with 2Methylpyridines. Angew. Chem. Int. Ed. 2017, 56, 4002; (c) Murakami, R.; Sano, K.; Iwai, T.; Taniguchi, T.; Monde, K.; Sawamura, M., PalladiumCatalyzed Asymmetric C(sp(3))-H Allylation of 2-Alkylpyridines. Angew. Chem. Int. Ed. 2018, 57, 9465. 15. Mao, J. Y.; Zhang, J. D.; Jiang, H.; Bellomo, A.; Zhang, M. N.; Gao, Z. D.; Dreher, S. D.; Walsh, P. J., Palladium-Catalyzed Asymmetric Allylic Alkylations with Toluene Derivatives as Pronucleophiles. Angew. Chem. Int. Ed. 2016, 55, 2526. 16. For chemoselective carbonyl addition reactions that proceed via the catalytic generation of metal-allyl nucleophiles, see: (a) Ketcham, J. M.; Shin, I.; Montgomery, T. P.; Krische, M. J., Catalytic Enantioselective C-H Functionalization of Alcohols by Redox-Triggered Carbonyl Addition: Borrowing Hydrogen, Returning Carbon. Angew. Chem. Int. Ed. 2014, 53, 9142; (b) Nguyen, K. D.; Park, B. Y.; Luong, T.; Sato, H.; Garza, V. J.; Krische, M. J., Metal-catalyzed reductive coupling of olefin-derived nucleophiles: Reinventing carbonyl addition. Science 2016, 354, 300 (and references therein). 17. For reports that aryl acetic esters similar in structure to proposed intermediate I are suitable nucleophiles in metal-catalyzed enantioselective allylic alkylations, see: (a) Schwarz, K. J.; Amos, J. L.; Klein, J. C.; Do, D. T.; Snaddon, T. N., Uniting C1-Ammonium Enolates and Transition Metal Electrophiles via Cooperative Catalysis: The Direct Asymmetric alphaAllylation of Aryl Acetic Acid Esters. J. Am. Chem. Soc. 2016, 138, 5214;

(b) Jiang, X. Y.; Beiger, J. J.; Hartwig, J. F., Stereodivergent Allylic Substitutions with Aryl Acetic Acid Esters by Synergistic Iridium and Lewis Base Catalysis. J. Am. Chem. Soc. 2017, 139, 87. 18. During our studies, Kanai reported that allylic esters can undergo Pd/B catalyzed fragmentation and recombination to generate chiral homoallylic acids (analogous to the conversion of I to III with linear allylic substitution): Fujita, T.; Yamamoto, T.; Morita, Y.; Chen, H. Y.; Shimizu, Y.; Kanai, M., Chemo- and Enantioselective Pd/B Hybrid Catalysis for the Construction of Acyclic Quaternary Carbons: Migratory Allylation of OAllyl Esters to alpha-C-Allyl Carboxylic Acids. J. Am. Chem. Soc. 2018, 140, 5899. 19. (a) Kiener, C. A.; Shu, C. T.; Incarvito, C.; Hartwig, J. F., Identification of an activated catalyst in the iridium-catalyzed allylic amination and etherification. Increased rates, scope, and selectivity. J. Am. Chem. Soc. 2003, 125, 14272; (b) Lipowsky, G.; Miller, N.; Helmchen, G., Regio- and enantioselective iridium-catalyzed allylic alkylation with in situ activated P,C-chelate complexes. Angew. Chem. Int. Ed. 2004, 43, 4595. See the SI for optimization details. 20. Trost, B. M.; Fandrick, D. R., Palladium-catalyzed dynamic kinetic asymmetric allylic alkylation with the DPPBA ligands. Aldrichimica Acta 2007, 40, 59. 21. For scope examples using cinnamyl derivatives, only the branched regioisomer was observed. For allylic acetates bearing long-chain linear alkyl groups, the linear regioisomer is observed as a minor product (typically