12 Directed Metalation D. W. S L O C U M and D. I. S U G A R M A N
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
Southern Illinois University, Carbondale, Ill. 62901
The
directed metalation
reaction—lithiation
with n-butyl-
lithium of a position ortho to a substituent on an aromatic ring—is
described. Aromatic systems in which the reaction
has been studied are benzene, thiophene, naphthalene, and ferrocene. A systematic listing of the bond types that can be formed at the site of metalation
is provided. Also of
interest is the assessment of the relative directing abilities of directing substituents and
comments and
observations
on the mechanism of the reaction. Utility of the reaction is indicated by the results from asymmetric-directed tion and
lithia-
the synthesis of heterocycles.
T t has been known for 40 years that alkyllithium compounds will react with specifically substituted aromatic compounds to effect metalation — t h a t is, replace an aromatic proton with a metal ion. More recently the orientation in a variety of such metalations has been worked out resulting in the identification of substituents that have been demonstrated to direct metalation to an aromatic proton adjacent to said substituents. This, then, is the reaction that is now
called "the directed metalation
reaction." Since many of these substituents contain a directing nitrogen atom, it is appropriate that this process be reviewed here. Within the past decade, many additional directing substituents have been discovered so that the number of synthetic derivatives available through this method is large. One of the great advantages of this reaction is its extremely high specificity. Assuming that synthesis of a specific ortho-disubstituted benzene compound were feasible via electrophilic substitution, difficulty in separating the ortho from the para- and even meta-substitution product
might be
anticipated. Use
of the directed
metalation reaction in this instance, assuming the same compound could be
synthesized by
the two
methods, would yield pure ortho isomer
uncontaminated by all else save starting material. In addition there are 222 In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
SLOCUM
AND
223
Directed Metalation
SUGARMAN
m a n y groups t h a t c a n n o t be s i m p l y i n t r o d u c e d i n t o a n a r o m a t i c system b y e l e c t r o p h i l i c s u b s t i t u t i o n that c a n be r e a d i l y i n t r o d u c e d b y d i r e c t e d metalation.
T h u s e l e c t r o p h i l i c s u b s t i t u t i o n a n d d i r e c t e d m e t a l a t i o n of
substituted
aromatic
compounds
appear
to
complement
one
another
nicely. Aromatic Systems in Which Directed Metalations Have Been Effected T h e great a b i l i t y of n - b u t y l l i t h i u m or n - b u t y l l i t h i u m - T M E D A
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
p l e x to effect m e t a l a t i o n of a r o m a t i c c o m p o u n d s
com-
( 1 ) suggests that most
a r o m a t i c systems s h o u l d also u n d e r g o the d i r e c t e d m e t a l a t i o n r e a c t i o n p r o v i d e d a p p r o p r i a t e d i r e c t i n g groups are present. O n e e x c e p t i o n to this has b e e n the [2.2] p a r a c y c l o p h a n e system w h e r e no e v i d e n c e of m e t a l a t i o n b y either n - b u t y l l i t h i u m or its T M E D A c o m p l e x u n d e r a v a r i e t y of c o n d i t i o n s has b e e n seen
(2).
T o our k n o w l e d g e ,
no other
aromatic
system resists m e t a l a t i o n . T h u s the n u m b e r of systems i n w h i c h d i r e c t e d m e t a l a t i o n m i g h t be u s e f u l is p o t e n t i a l l y l a r g e a l t h o u g h o n l y f o u r h a v e been s y s t e m a t i c a l l y s t u d i e d . T h a t o n l y a s m a l l n u m b e r of s u c h systems h a v e b e e n e x p l o r e d u p to this t i m e is not to say that o n l y a f e w
such
systems exist; r a t h e r it is a n i n d i c a t i o n that f u r t h e r s t u d y is r e q u i r e d . Benzene.
T h e earliest w o r k i n d i r e c t e d m e t a l a t i o n was d o n e o n the
b e n z e n e system i n the e a r l y 1930's ( 3 ) .
T h a t the b e n z e n e r i n g w a s the
most p r o m i s i n g system for the e x p l o i t a t i o n of this r e a c t i o n appears l o g i c a l since i t w a s b y f a r the most e x a m i n e d a r o m a t i c system at t h a t time. o n l y h a v e the largest n u m b e r of d i r e c t i n g substituents b e e n
Not
successfully
d e m o n s t r a t e d for this system, b u t i n a l l p r o b a b i l i t y the d e m a n d for a c o n v e n i e n t route to a specific p o l y s u b s t i t u t e d a r o m a t i c c o m p o u n d
will
be h i g h e s t for this system. I n a l l cases e x a m i n e d , d i r e c t e d m e t a l a t i o n of a m o n o s u b s t i t u t e d b e n z e n e has y i e l d e d almost e x c l u s i v e l y ortho m e t a l a t i o n , w i t h o n l y o r t h o - d i s u b s t i t u t e d p r o d u c t s o b t a i n e d ( R e a c t i o n 1 ).
With
I)
m o r e t h a n one substituent o n the r i n g the s i t u a t i o n becomes m o r e c o m p l e x b u t not too m u c h m o r e so; i n most cases, s i m p l e rules p r e d i c t the p o s i t i o n of m e t a l a t i o n (see
below).
M o n o s u b s t i t u t e d benzenes t h a t u n d e r g o the d i r e c t e d m e t a l a t i o n r e a c t i o n are s u m m a r i z e d i n T a b l e I.
I n e v e r y case a v a r i e t y of
ortho-
d i s u b s t i t u t e d p r o d u c t s h a v e b e e n p r e p a r e d ; these w o u l d b e tedious or i m p o s s i b l e to p r e p a r e b y other routes.
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
224
POLY AMINE-CHELATED
Table I. Directing Substituent (R) in Equation 1 —CH N(CH ) —CH CH N(CH ) —CHOHCH N(CH ) —CH,OH —CH NHCH —CH NHPh —OCH —CONHCH —SO,N(CH ) —S0 NHCH —CF —N(CH ) —F 2
3
2
2
2
3
2
3
2
3
2
3
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
3
3
2
2
3
3
3
a 6
2
COMPOUNDS
Solvent
Substrate
Electrophile Ph CO Ph CO ClSi(CH ) CH I PhCHO Ph CO C0 Ph CO Ph CO Ph CO C0 Ph CO C0 2
2
M E T A L
Directed Metalation of Monosubstituted
2
2
ALKALI
2
3
3
2
2
2
2 2
2
2
2
ether/hexane ether/hexane ether/hexane ether/hexane hexane hexane ether/hexane THF/hexane THF/hexane THF/hexane ether hexane THF
2.0 1.2 2.5 2.6 2.5 ° 1.5 « 1.0 2.5 1.2 2.5 1.5 1.0 1.0
Reaction proceeded to give mostly styrene via elimination. Also gave 8% of meta acid as product.
Ferrocene
(Ruthenocene).
The
directed metalation reaction
has
p r o v e d to be of great s y n t h e t i c v a l u e i n the p r e p a r a t i o n of 1,2-disubstit u t e d ferrocenes.
F r o m a n o r g a n i c chemist's p o i n t of v i e w , ferrocene c a n
b e c o n s i d e r e d to h a v e p r o p e r t i e s s i m i l a r to
five-membered
c y c l e s — g r e a t s e n s i t i v i t y to a c i d a n d o x i d i z i n g c o n d i t i o n s .
ring
hetero-
M a n y electro
p h i l i c reactions cannot b e r u n o n ferrocene, a n d m e t a l a t i o n has thus c o m e to b e the p r e f e r r e d process for p r e p a r i n g m a n y m o n o s u b s t i t u t e d cenes (4, 5 ) .
I n a d d i t i o n , e l e c t r o p h i l i c s u b s t i t u t i o n of
ferro
monosubstituted
ferrocenes c o n t a i n i n g c o n v e n t i o n a l a c t i v a t i n g substituents gives m i x t u r e s of 1,2-, 1,3-, a n d Ι,Γ-disubstituted ferrocenes;
electrophilic substitution
of m o n o s u b s t i t u t e d ferrocenes c o n t a i n i n g c o n v e n t i o n a l d e a c t i v a t i n g s u b stituents y i e l d s o n l y Ι,Γ-disubstituted ferrocenes
(7).
A l l this reveals
t h e i n a c c e s s i b i l i t y , for the most p a r t , of h o m o a n n u l a r l y d i s u b s t i t u t e d ferrocenes b y a route i n v o l v i n g e l e c t r o p h i l i c s u b s t i t u t i o n . I n a n u m b e r of instances d i r e c t e d m e t a l a t i o n has p r o v i d e d c l e a n , concise routes
to
specific 1,2-disubstituted ferrocenes ( R e a c t i o n 2 ) that w e r e either difficult
(2)
to p r e p a r e or inaccessible b y c o n v e n t i o n a l e l e c t r o p h i l i c methods.
Syn
thesis of s u b s t i t u t e d ferrocenes b y m e t a l a t i o n of ferrocene itself or b y the d i r e c t e d m e t a l a t i o n of c e r t a i n s u b s t i t u t e d ferrocenes has b e e n r e v i e w e d («).
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
SLOCUM
AND
Benzenes with
tt-Butyllithium
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
Metalation Period, hrs
Temp, C°
18.00 11.00 21.00 18.00 1.50 4.00 21.00 0.25 0.25 0.25 6.00 2.00 7.00 c
225
Directed Metalation
SUGARMAN
%
Reference
Yield
6 66 2 2 56 66 33 46 53 52 67 68 12
84
25 25 25 25 25 25 35 65 0 0 35 68 -50
61 45 64 86 65 81 82 82 48 55 60
6
T M E D A required.
S e v e r a l d i r e c t i n g groups k n o w n to b e g o o d directors i n the b e n z e n e system h a v e b e e n f o u n d to p r o v i d e d i r e c t e d m e t a l a t i o n i n the
ferrocene
system; others, h o w e v e r , are u n i q u e to t h e ferrocene system.
Table II
s u m m a r i z e s the d i r e c t i n g substituents a v a i l a b l e for ferrocene.
O f these,
—CH N(CH ) , —CH CH N(CH ) , —CONHR, —CPh OH, —OCH , a n d — S 0 N ( C H ) are k n o w n directors i n benzene, b u t — C H O R , 2
3
2
2
2
3
2
3
2
2
3
2
2
— C I , and
are u n i q u e to ferrocene.
The — C H N ( C H ) 2
3
2
s i d e - c h a i n has also b e e n
f o u n d to effect d i r e c t e d m e t a l a t i o n i n r u t h e n o c e n e
(9).
A c o m p l i c a t i o n t h a t does not e x t e n d to other a r o m a t i c s exists i n ferrocene
T h i s is h e t e r o a n n u l a r d i m e t a l a t i o n , w h i c h
gives
p r o d u c t s t h a t often c o n t a m i n a t e the d e s i r e d 2 - m e t a l a t i o n p r o d u c t .
metalation.
This
phenomenon
w a s i n v e s t i g a t e d i n one i n s t a n c e a n d f r o m m e t a l a t i o n of
d i m e t h y l a m i n o m e t h y l f e r r o c e n e w i t h excess n - b u t y l l i t h i u m , the l , 2 , l ' - t r i substituted product shown i n Reaction 3 was isolated (10).
Considerable
amounts of a l , 2 , l ' - t r i s u b s t i t u t e d ferrocene p r o d u c t c o u l d also b e i s o l a t e d
Fe
Fe
Fe
(3)
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
226
P O LYA M I N E - C H E L A T E D
Table II. Directing Substituent R in Equation 2 —CH N(CH ) —CH CH N(CH ) —2-pyridyl —CPh OH —CH OCH —OCH —CI 2
3
2
3
Ph CO Ph CO Ph CO C0 Ph CO (CH 0)x CH I Ph CO 2 2
2
2
2
2
2
2
3
2
3
—S0 N(CH )
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
2
3
H.
C
H
3
2
COMPOUNDS
Substituents that Direct Solvent
2.5 1.5 25.5 2.5 1.6 1.6 2.0 1.2
ether/hexane ether/hexane ether/hexane ether ether/hexane ether/hexane ether/hexane ether/hexane
2
'
ClSi(CH )
3
2.5
ether/hexane
ClSi(CH )
3
1.16
ether/hexane
3
—CH(CH )N(CH ) 3
a
M E T A L
C 4H9L1/ Substrate
Electrophile
2
2
ALKALI
3
3
2
Isolated as — C H 0 - C H 2
3
from the metalation a n d condensation
of dimethylaminoethylferrocene
I t seems q u i t e p o s s i b l e that most, i f n o t a l l , t h e m o n o s u b s t i t u t e d
(11).
ferrocenes that u n d e r g o d i r e c t e d m e t a l a t i o n m a y p r o v i d e 2 , l - d i m e t a l a ,
tion under certain conditions. Naphthalene.
A l t h o u g h n o t as m u c h w o r k has b e e n p e r f o r m e d o n
the n a p h t h a l e n e system as o n t h e t h i o p h e n e system (see t h e next s e c t i o n ) , results i n these systems thus f a r are s t i l l i n t e r e s t i n g . P e r h a p s t h e m o s t u n u s u a l aspect of t h e m e t a l a t i o n of 1-substituted n a p h t h a l e n e s is that m e t a l a t i o n takes p l a c e at either t h e 2- or t h e 8-position. T o some extent the r a t i o of m e t a l a t i o n at t h e 2 - p o s i t i o n c a n b e c o n t r o l l e d b y j u d i c i o u s exercise of r e a c t i o n c o n d i t i o n s a n d m e t a l a t i n g reagent.
A m i x t u r e of 8-
a n d 2 - m e t a l a t e d i n t e r m e d i a t e s has b e e n p o s t u l a t e d ( R e a c t i o n 4 ) .
Those
g r o u p s at t h e 1-position t h a t h a v e b e e n d e m o n s t r a t e d t o p r o v i d e p a t t e r n of m e t a l a t i o n i n n a p h t h a l e n e a r e — F ( 1 2 ) , — O C H —CH N(CH ) 2
3
2
(15).
naphthalene compound
3
2 - F l u o r o n a p h t h a l e n e is t h e o n l y e x a m i n e d , a n d i t has b e e n
l i t h i a t i o n at b o t h t h e 3- a n d t h e 1-position
this
(13,14), a n d 2-substituted
f o u n d to
undergo
(16).
(4) U n L 4
9
Thiophene. R e c e n t w o r k i n t h e a u t h o r s ' laboratories has d e m o n s t r a t e d that the directed metalation concept works w e l l i n substituted thiophenes once a c e r t a i n l i m i t a t i o n is r e a l i z e d — n a m e l y , t h a t t h e 2,5-positions
of
t h i o p h e n e are m u c h m o r e r e a c t i v e t o w a r d m e t a l a t i o n t h a n are t h e 3,4-
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
SLOCUM
AND
SUGARMAN
227
Directed Metalation
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
Metalation in the Ferrocene Series Metalation Period, hrs
Temp, °C
1 2 6 36 2.5 3 3.5 6
25 25
45
Reference
Yield
25 25 25 25
71 68 51 72 32.5 60° 72 17
10 11 69 70 26 71 71 72
25
57
37
57.7
40
— 25
1
positions.
%
T h i s gives significance to the fact t h a t a n u m b e r of 3-substi-
t u t e d t h i o p h e n e s are m e t a l a t e d i n the 2-position w i t h little or no p r o d u c t s f r o m 5 - m e t a l a t i o n b e i n g d e t e c t e d ( R e a c t i o n 5 ). A s u m m a r y of the groups that p r o v i d e s u c h d i r e c t e d m e t a l a t i o n i n thiophenes is g i v e n i n T a b l e I I I .
(5)
S i n c e t h i o p h e n e itself is r e a d i l y m e t a l a t e d i n the 2-position, a 3-position substituent's c a u s i n g m e t a l a t i o n to take p l a c e at the 2 - p o s i t i o n suggests that the r e a d y m e t a l a t i o n at a p o s i t i o n adjacent to s u l f u r is f u r t h e r a i d e d b y the d i r e c t i n g 3-substituent. It has also b e e n f o u n d i n a f e w instances that w h e n a b l o c k i n g g r o u p is p l a c e d i n the 5-position of t h i o p h e n e , a directing
substituent i n the 2-position
3-position ( 1 7 ) .
will
direct
m e t a l a t i o n to
the
A n e x a m p l e of this is s h o w n i n R e a c t i o n 6.
V e r y f e w examples of d i r e c t e d m e t a l a t i o n i n f u r a n or p y r r o l e d e r i v a tives h a v e b e e n r e p o r t e d . 3 - B r o m o t h i o p h e n e has b e e n s h o w n to u n d e r g o m e t a l a t i o n i n the 2-position w i t h l i t h i u m d i i s o p r o p y l a m i d e
(18).
(6)
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
228
POLYAMINE-CHELATED
ALKALI
Table III. ireding Substituent R in Equation 5 —OCH —OC(CH ) —SCH —CN —Br —CH N(CH ) -CH OCH —CONHCH 3
3
2
2
3
2
2
2
2
3
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
3
Bond Types
C0 C0 C0 C0 C0 HCON(CH ) HCON(CH ) Ph CO 2
3
(Functional
2
Groups)
3
2
3
2
1.0 0.98 0.995 1.06 0.906 1.2
—
2.11
that can be
COMPOUNDS
Directed Metalation of
C4H9IA/ Substrate
Electrophile 2
3
M E T A L
Solvent ether
— —
ether ether ether/hexane
—
ether/hexane Introduced
at the Metalation Site O n e aspect of the d i r e c t e d m e t a l a t i o n r e a c t i o n that makes i t s u c h a p o w e r f u l s y n t h e t i c t o o l is the large n u m b e r of d e r i v a t i v e s that c a n b e p r e p a r e d at the site of l i t h i a t i o n .
T h e h i g h c o n c e n t r a t i o n of
negative
charge o n the c a r b o n a t o m b o n d e d to t h e l i t h i u m a t o m makes the f o r m e r h i g h l y n u c l e o p h i l i c , l i k e a G r i g n a r d reagent a n d a b o u t as versatile.
A
v a r i e t y of d e r i v a t i v e s h a v e b e e n p r e p a r e d , a n d there are p r o b a b l y
a
significant n u m b e r yet to c o m e . R e p r e s e n t a t i v e routes to most types of d e r i v a t i v e s are r e c o r d e d here w i t h recent l e a d i n g references. h a v e b e e n w o r k e d out w i t h N - c h e l a t e d i n t e r m e d i a t e s .
M o s t routes
The following
s y m b o l is u s e d to designate a g e n e r a l i z e d a r o m a t i c 2 - l i t h i o i n t e r m e d i a t e :
Carbon-Carbon Bonds.
S y n t h e t i c m e t h o d s i n v o l v i n g the f o r m a t i o n
of c a r b o n - c a r b o n b o n d s are a l w a y s of great interest. P r i m a r y , secondary, or t e r t i a r y alcohols c a n b e p r e p a r e d b y the r e a c t i o n of the l i t h i o i n t e r m e d i a t e w i t h the a p p r o p r i a t e a l d e h y d e or ketone ( R e a c t i o n s 7 - 9 )
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(6,
12.
SLOCUM
AND
SUGARMAN
229
Directed Metalation
3-Substituted Thiophenes with w-Butyllithium Metalation Period, hrs
Temp. °C
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
0.5 0.5 0.5 1.0 3.0 — — — 19).
35 34 35 -70 25 — — —
E t h y l e n e oxide
or other epoxides
% Yield
Reference
86 62 70 68 36 75 72 23
78 74 75 76 77 17 17 25
c a n also be
^ - s u b s t i t u t e d e t h y l a l c o h o l d e r i v a t i v e s ( R e a c t i o n 10)
u s e d to
prepare
(6).
K e t o n e s m a y b e p r e p a r e d b y the r e a c t i o n of the l i t h i o i n t e r m e d i a t e w i t h a n i t r i l e ( R e a c t i o n 11) (6).
N i t r i l e s possessing n o a l p h a h y d r o g e n s
w o r k best i n this r e a c t i o n . F o r m y l d e r i v a t i v e s of aromatics m a y b e s y n t h e s i z e d b y t r e a t i n g the l i t h i a t e d species w i t h d i m e t h y l f o r m a m i d e ( R e a c t i o n 12)
(19).
C a r b o x y l i c acids are r e a d i l y a v a i l a b l e b y c a r b o n a t i o n of
s u c h l i t h i o i n t e r m e d i a t e s (14,16).
T r e a t m e n t of these l i t h i o i n t e r m e d i a t e s
w i t h a r y l or a l k y l isocyanates y i e l d s a m i d e s ( R e a c t i o n 13)
(10).
T h e lithium atom may be replaced w i t h a m e t h y l group b y treating the m e t a l a t e d species w i t h m e t h y l i o d i d e o r d i m e t h y l s u l f a t e 14) (20).
(Reaction
I n this case the d i r e c t i n g g r o u p cannot be a n a m i n e since t h e
a m i n e site is also a l k y l a t e d i n the process, c o m p l i c a t i n g i s o l a t i o n
(21).
O t h e r a l k y l groups c a n n o t be i n t r o d u c e d this w a y because of the p r e d i l e c t i o n of a l k y l h a l i d e s for e l i m i n a t i o n i n t h e presence of strong base. R a t h e r , the routes to e t h y l , i s o p r o p y l , a n d other a l k y l d e r i v a t i v e s i n v o l v e r e d u c t i o n of the c o r r e s p o n d i n g a l c o h o l ( R e a c t i o n 15)
(22).
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
230
POLYAMINE-CHELATED
Carbon-Halogen Bonds.
ALKALI
METAL
COMPOUNDS
C a r b o n - h a l o g e n b o n d s m a y be
prepared
d i r e c t l y via the l i t h i o i n t e r m e d i a t e or a s e c o n d i n t e r m e d i a t e p r e p a r e d Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
f r o m the l i t h i o i n t e r m e d i a t e . F o r e x a m p l e , r e a c t i o n of with
2-lithiodimethylaminomethylferrocene
( R e a c t i o n 16)
(23).
hexachloroethane
gave the c h l o r o
derivative
H o w e v e r , p r e p a r a t i o n of other h a l o g e n d e r i v a t i v e s
via l i t h i o intermediates has not b e e n successful. A better a n d m o r e v e r satile m e t h o d
for p r e p a r i n g the c h l o r o , b r o m o ,
and iodo
derivatives
i n v o l v e s i s o l a t i n g a b o r o n i c a c i d i n t e r m e d i a t e as i n R e a c t i o n 17
(24).
(16)
Carbon-Nitrogen
and
Carbon-Oxygen
Bonds.
Carbon-nitrogen
b o n d s m a y b e f o r m e d b y t r e a t i n g the l i t h i o i n t e r m e d i a t e w i t h either m e t h o x y l a m i n e or e t h y l n i t r a t e ( R e a c t i o n s 18 a n d 19) (25).
T h e s e reac-
tions a p p a r e n t l y i n v o l v e a d i s p l a c e m e n t o n n i t r o g e n a n d result i n the p r e p a r a t i o n of the a m i n o a n d n i t r o d e r i v a t i v e , r e s p e c t i v e l y . oxygen
b o n d s m a y b e p r e p a r e d via a b o r o n i c
r e a c t i o n w i t h c u p r o u s acetate ( R e a c t i o n 2 0 )
Carbon-
acid intermediate and
(71), a reaction completely
analogous to the synthesis of h a l o g e n d e r i v a t i v e s d e s c r i b e d i n R e a c t i o n 17. Other Carbon-Heteroatom Bonds. C a r b o n - m e r c u r y b o n d s are r e a d i l y f o r m e d b y t r e a t i n g the m e t a l a t e d species w i t h m e r c u r i c c h l o r i d e tion 21)
(27).
T h e r e s u l t i n g c h l o r o m e r c u r y d e r i v a t i v e i n one case is a
u s e f u l i n t e r m e d i a t e i n the p r e p a r a t i o n of ferrocene
(Reac-
2-iododimethylaminomethyl-
(27).
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
SLOCUM
AND
Carbon-silicon bonds
231
Directed Metalation
SUGARMAN
can be formed
b y t r e a t i n g the l i t h i o i n t e r -
m e d i a t e w i t h h a l o g e n - c o n t a i n i n g silanes ( R e a c t i o n 2 2 )
(28).
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
phosphorus bonds can be prepared similarly (Reaction 23)
Relative Directing W h e n more
Abilities
of
Carbon-
(29).
Substituents
than one directing group
is present i n a n a r o m a t i c
m o l e c u l e i t is i m p o r t a n t to k n o w w h i c h d i r e c t i n g g r o u p w i l l exert the p r i n c i p a l effect—that
is, w h i c h is the stronger d i r e c t o r .
Competitive
m e t a l a t i o n of n i n e of the o r t h o - d i r e c t i n g substituents for t h e ring
has
recently
been
examined
in
our
laboratories.
—CH N(CH ) , —CH CH N(CH ) , —CONHR, —OCH , 2
3
2
2
2
3
2
3
2
3
2
2
are:
—N(CH ) ,
3
— C F , — F , — S 0 N ( C H ) , and — S 0 N H C H .
benzene
These
3
2
Ratings were based on
3
t h e c o m p e t i t i v e l i t h i a t i o n of the a p p r o p r i a t e p a r a - d i s u b s t i t u t e d benzenes. D a t a are n o w a v a i l a b l e for t h e c o m p e t i t i v e m e t a l a t i o n of the m e t h o x y g r o u p vs. the eight other d i r e c t i n g groups that — C H N ( C H ) 2 , 2
3
—CONHR,
(30).
T h e s e results d i c t a t e
— S O > N ( C H ) , and L
3
—S0 NHCH
2
2
: i
are stronger directors t h a n — O C H , a n d — C H C H N ( C H ) , — N ( C H ) , 3
— F , and — C F
3
2
2
3
2
3
2
are w e a k e r directors ( R e a c t i o n s 24 a n d 25 ). F r o m some
additional data now
a v a i l a b l e , i t is a p p a r e n t t h a t — C O N H C H
stronger d i r e c t o r t h a n — C H N ( C H ) 2
3
2
(31).
3
is a
I t is also l i k e l y t h a t the
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
232
POLYAMINE -CHEL ATED
sulfonamides
are the strongest
ALKALI METAL
COMPOUNDS
directors k n o w n so that a r a n k i n g of
—S0 NHCH ,
—S0 N(CH )
>
—CH CH N(CH ) , — N(CH ) , — F , —CF
2
3
—OCH
3
>
2
2
3
2
>
2
3
—CONHCH 2
3
3
>
—CH N(CH ) 2
2
3
3
2
m i g h t be
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
i n f e r r e d for the b e n z e n e system, at least.
I n a l l cases w h e r e
a meta-disubstituted benzene containing
o r t h o - d i r e c t i n g groups has b e e n e x a m i n e d , m e t a l a t i o n has t a k e n
two place
ortho to e a c h of the d i r e c t i n g g r o u p s — t h a t is, the 2-position of a 1,3disubstituted benzene (Reaction 26)
(30, 32).
F o r ortho-disubstituted
benzenes w h e r e b o t h groups w e r e ortho directors, the stronger d i r e c t i n g g r o u p (as d e t e r m i n e d a b o v e ) was f o u n d to c o n t r o l the m e t a l a t i o n site. M o d i f i c a t i o n of the m e t a l a t i o n p a t t e r n b y steric effects of some of the m o r e b u l k y substituents w a s not r e a l i z e d . A n extreme e x a m p l e of this has n o w b e e n e x a m i n e d .
o - t e r i - B u t y l a n i s o l e has b e e n m e t a l a t e d w i t h
n - b u t y l l i t h i u m ( R e a c t i o n 27)
(33).
A s a n t i c i p a t e d , the y i e l d of m e t a l a -
t i o n p r o d u c t w a s significantly d i m i n i s h e d c o m p a r e d w i t h t h e m e t a l a t i o n of anisole. H o w e v e r , even the 5 % y i e l d of p r o d u c t r e a l i z e d was that f r o m m e t a l a t i o n ortho to the m e t h o x y g r o u p — t h a t is, the site of m e t a l a t i o n h a d not c h a n g e d . TMEDA product
complex previously
M e t a l a t i o n of this c o m p o u n d brought a 3 0 % described
with n-butyllithium-
y i e l d of the same ortho m e t a l a t i o n
(Reaction
27).
Thus
the
steric
effect
o r i g i n a l l y n o t e d c o u l d be o v e r c o m e b y a stronger m e t a l a t i n g reagent. E x t e n s i o n of this s t u d y of the efficiency of d i r e c t i n g groups to other a r o m a t i c systems s h o u l d p r o v i d e f u r t h e r i n s i g h t i n t o the r e l i a b i l i t y of the a b o v e r a n k i n g .
The Directing
Mechanism
I n a l l d i r e c t e d metalations s t u d i e d , t h e l i t h i u m a t o m is d i r e c t e d to a p r o t o n adjacent to the d i r e c t i n g substituent. N o single e x p l a n a t i o n c a n b e p r o p o s e d n o w to a c c o u n t for a l l the k n o w n examples of the d i r e c t e d m e t a l a t i o n r e a c t i o n . R a t h e r , a c o m b i n a t i o n of v a r y i n g degrees of a
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
SLOCUM
233
Directed Metalation
AND SUGARMAN
(26)
(27)
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
c o o r d i n a t i o n m e c h a n i s m c o u p l e d w i t h a n i n d u c t i v e effect seems most appropriate. A g o o d e x a m p l e of the i n t e r v e n t i o n of a c o o r d i n a t i o n m e c h a n i s m is that i n the ortho m e t a l a t i o n of d i m e t h y l b e n z y l a m i n e (6).
T h e methylene
g r o u p essentially insulates t h e r i n g f r o m any i n d u c t i v e influence of the n i t r o g e n atom.
T h e fact t h a t this m o l e c u l e
c a n be
ortho
strongly indicates that some other effect is o p e r a t i n g .
metalated
S u c h a n effect
involves the c o o r d i n a t e d l i t h i o i n t e r m e d i a t e d e p i c t e d i n R e a c t i o n 28.
A
c o o r d i n a t i o n m e c h a n i s m w o u l d also seem to be the most l i k e l y d i r e c t i v e effect w i t h — C H C H N ( C H ) , — C O N H R , a n d — C H N H R side chains. 2
2
3
2
2
A most i n t r i g u i n g d e m o n s t r a t i o n of the c o o r d i n a t i n g effect of n i t r o g e n i n d i m e t h y l b e n z y l a m i n e is p r o v i d e d b y a s t u d y of r i n g vs. s i d e - c h a i n m e t a l a t i o n w i t h a l k y l sodio reagents (34).
T h e benzylamine was initially
m e t a l a t e d at the ortho p o s i t i o n , b u t after 20 hours, r e a r r a n g e m e n t to the m o r e stable a l p h a p o s i t i o n was c o m p l e t e ( R e a c t i o n 2 9 ) . rearrangement
could be
reversed b y
M o r e o v e r , the
adding lithium bromide
s o l u t i o n c o n t a i n i n g the a l p h a - m e t a l a t e d species ( R e a c t i o n 3 0 ) .
to
the
These
results c a n be i n t e r p r e t e d to signify that the a l p h a - m e t a l a t e d species w a s
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
234
POL Y AMINE-CHELATED
ALKALI
METAL
COMPOUNDS
(30)
m o r e c a r b a n i o n i c i n t h e case of t h e sodio d e r i v a t i v e . H e n c e , i t w a s m o r e c o n d u c i v e to resonance s t a b i l i z a t i o n at the b e n z y l p o s i t i o n , a n d t h e ortho p o s i t i o n m e t a l a t i o n site is greatly s t a b i l i z e d b y c o o r d i n a t i o n i n t h e case of t h e l i t h i o i n t e r m e d i a t e . T h e r m o d y n a m i c a n d k i n e t i c roles h a v e b e e n
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
r e v e r s e d i n these t w o instances. N o m e t a o r p a r a p r o d u c t w a s detected i n either sequence. Substituents s u c h as — S 0 N R , — C F , 2
—N(CH ) 3
2
2
3
— C l , — F ,—OCH , 3
and
s i g n i f i c a n t l y p o l a r i z e t h e a r o m a t i c r i n g a n d m i g h t b e s a i d to
operate b y some c o m b i n a t i o n of i n d u c t i v e a n d field effects. the s u l f o n a m i d e s a n d — C F
Certainly
possess significant field effect c o n t r i b u t i o n
3
w h i l e t h e r e m a i n i n g f o u r s u b s t i t u e n t s — e a c h w i t h a n electronegative a t o m b o n d to t h e r i n g — m u s t h a v e significant i n d u c t i v e c o n t r i b u t i o n .
Some
c o o r d i n a t i o n m a y also c o n t r i b u t e to t r a n s i t i o n states i n v o l v i n g — C l , — F , —OCH , 3
a n d — N ( C H ) , but d r a w i n g coordinate 3
2
structures s u c h as
that f o r t h e 2 - l i t h i a t i o n of d i m e t h y l b e n z y l a m i n e ( R e a c t i o n 2 8 ) for these substituents i n v o l v e s p o s t u l a t i o n of a f o u r - m e m b e r e d r i n g . T h i s c a n b e
Li
(Coordinating
A
butyls
have been
omitted from bottom and back
0(C H ) 2
5
f Q 2
ces
for
clarity.)
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
SLOCUM
AND
SUGARMAN
235
Directed Metalation
a v o i d e d w h e n the t e t r a m e r i c structure of n - b u t y l l i t h i u m (30) because a p s e u d o
five-membered
is i n v o k e d ,
r i n g c a n t h e n be d r a w n ( R e a c t i o n 31 ).
T h e i n t e r p l a y of i n d u c t i v e effect a n d c o o r d i n a t i o n is b r o u g h t out i n the c o m p e t i t i v e m e t a l a t i o n of p-fluoroanisole a n d p - d i m e t h y l a m i n o a n i sole. I n e a c h case the m e t h o x y g r o u p controls the site of m e t a l a t i o n C o o r d i n a t i o n effects f a l l i n the o r d e r — N ( C H ) 3
>
2
—OCH
3
(30).
> —F,
w h i l e the i n d u c t i v e o r d e r w o u l d b e just the reverse of this. S i n c e n e i t h e r o r d e r w a s o b s e r v e d , a c o m b i n a t i o n of effects is p r e s u m e d to b e o p e r a t i n g .
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
Asymmetric Directed
Lithiation
T h e r e s o l u t i o n of r a c e m i c m i x t u r e s is c e r t a i n l y the most w i d e l y u s e d m e t h o d of p r e p a r i n g o p t i c a l l y a c t i v e c o m p o u n d s .
A n alternate m e t h o d
of p r e p a r i n g c e r t a i n o p t i c a l l y active c o m p o u n d s ,
usually quicker and
often
P o s s i b l y the
m o r e p r a c t i c a l , is a s y m m e t r i c i n d u c t i o n .
newest
e x a m p l e of s u c h i n d u c t i o n is a s y m m e t r i c l i t h i a t i o n . T h e p r i n c i p l e of a s y m m e t r i c l i t h i a t i o n i n v o l v e s b o t h the fact that f o r m a t i o n of d i a s t e r e o m e r i c i n t e r m e d i a t e s s h o u l d i n v o l v e different energies of a c t i v a t i o n , a n d the i d e a that, i n d i r e c t e d l i t h i a t i o n s , a l i t h i u m a t o m is c o o r d i n a t e d w i t h n i t r o g e n or some other h e t e r o a t o m
(see
above).
W h e n the c o o r d i n a t i n g n i t r o g e n a t o m resides i n a c h i r a l e n v i r o n m e n t , one of the t w o possible diastereomeric l i t h i o i n t e r m e d i a t e s is e n e r g e t i c a l l y f a v o r e d for steric or other reasons.
T h u s one of the t w o possible i n t e r -
mediates s h o u l d be f o r m e d p r e f e r e n t i a l l y , w i t h the r e s u l t i n g c o n d e n s a t i o n p r o d u c t s reflecting the stereoselectivity of the l i t h i a t i o n . O n e of the earliest descriptions of a n a s y m m e t r i c l i t h i a t i n g reagent was r e p o r t e d b y N o z a k i a n d c o - w o r k e r s i n 1968 ( 3 5 ) .
( — )-Sparteine
w a s u s e d to c o o r d i n a t e n - b u t y l l i t h i u m , a n d this c o m p l e x stereoselectively a d d e d to several c a r b o n y l c o m p o u n d s
(Reaction 32).
Moreover,
the
S k a t t e b o l - M o o r e m e t h o d ( w h i c h consists of d e h a l o g e n a t i n g g e r a - d i h a l o cyclopropanes
w i t h a n a l k y l l i t h i u m c o m p l e x ) b y N o z a k i to synthesize
aliènes gave o p t i c a l l y a c t i v e p r o d u c t s w h e n the n - b u t y l l i t h i u m / ( — ) -sparteine c o m p l e x was u s e d
(36).
O n c e i t w a s d e m o n s t r a t e d t h a t i t adds stereoselectively, the n - b u t y l l i t h i u m / ( — ) -sparteine c o m p l e x w a s u s e d to p r e p a r e a series of o p t i c a l l y a c t i v e ferrocenes (36).
T r e a t m e n t of i s o p r o p y l ferrocene w i t h a 2.5-molar
excess of the l i t h i a t i n g c o m p l e x f o l l o w e d b y r e a c t i o n w i t h a n e l e c t r o p h i l e
Ph-
CHOH
(32)
^4 9 H
6%
optical yield
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
236
POLYAMINE-CHELATED
+
Enantiomer
ALKALI
M E T A L
COMPOUNDS
r Enantiomer R= - S i ( C H ) 3
-
C0 CH 2
3
3
-C0 H
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
2
(S)(R)
(S)
(S)(S)
(R)(R)
(R)
(R)(S)
I Electrophile
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
SLOCUM
237
Directed Metalation
A N D SUGARMAN
y i e l d e d 3 , l ' - d i s u b s t i t u t e d i s o p r o p y l ferrocenes i n 3 % o p t i c a l y i e l d ( R e a c t i o n 33 ). W e t e r m this a n a s y m m e t r i c m e t a l a t i o n p r o c e d u r e . Carrying
t h e c o n c e p t o f a s y m m e t r i c l i t h i a t i o n o n e step
further,
N o z a k i a n d co-workers incorporated the asymmetry-inducing complexing reagent w i t h t h e m e t a l a t e d m o l e c u l e ( ferrocene ) itself ( 37, 38 ). 1-Ferrocenylmethyl-2-methylpiperidine was resolved a n d treated w i t h n - b u t y l l i t h i u m to give a m i x t u r e of d i a s t e r e o m e r i c l i t h i o intermediates b y d i r e c t e d metalation (Reaction 3 4 ) . A n optical yield of 9 3 % was initially claimed for this r e a c t i o n , b u t subsequent w o r k b y U g i a n d c o - w o r k e r s
(39) re
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
s u l t e d i n t h e suggestion that o n l y a 6 7 % o p t i c a l y i e l d w a s o b t a i n e d . F u r t h e r syntheses i n v o l v i n g a s y m m e t r i c l i t h i a t i o n h a v e b e e n r e p o r t e d b y U g i (40). O p t i c a l l y active 1 - f e r r o c e n y l e t h y l d i m e t h y l a m i n e w a s u s e d to o b t a i n stereoselective syntheses i n 9 6 % o p t i c a l y i e l d ( R e a c t i o n 3 5 ) . K n o w l e d g e o f the configuration o f the s t a r t i n g a m i n e a l l o w e d t h e absolute c o n f i g u r a t i o n o f t h e p r i n c i p a l l i t h i o i n t e r m e d i a t e t o b e i n f e r r e d as t h e ( R ) ( R ) diastereomer.
A d d i t i o n a l s u p p o r t for this assignment has b e e n
p u b l i s h e d (41). A v e r y i n t e r e s t i n g c o m p o u n d m a y b e p r e p a r e d via this m e t h o d a n d u s e d i n t h e stereoselective
syntheses of peptides.
asymmetrically induced four-component
U g i has f o u n d that
syntheses
will form
optically
active p e p t i d e s ( R e a c t i o n 3 6 ) (42, 43). C o m p o u n d s o f the t y p e R * — N H , 2
m u s t , to b e u s e f u l i n this synthesis, m e e t these c r i t e r i a : 1) C o n d e n s a t i o n o f t h e a m i n e w i t h t h e other components, i f neces sary via t h e Schiff base o f t h e a m i n e a n d a l d e h y d e , s h o u l d take p l a c e rapidly and i n high yield. 2 ) A s a c o m p o n e n t o f t h e c o n d e n s a t i o n , t h e a m i n e m u s t also possess the effect o f a n a s y m m e t r i c a l l y i n d u c i n g steric m a t r i x a n d p r o v i d e f o r a h i g h l y steroselective synthesis o f t h e n e w l y f o r m e d a m i n o a c i d u n i t i n t h e d e s i r e d configuration. R, I -NH-CH-COgH
2
-r
NH I*
R
hi
R I CHO
?
2
-r
R I CN-CH-CO" 3
-f
ι
ft
2
- N H - C H - C O - N - C H - C O - N H - C H - C O I* *
(36)
R| R R-J I* I* I* * - N H - C H - C O - NH — C H — C O — N H — C H — C O — l - R — X 2
Denotes
optically active
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
238
POLYAMINE-CHELATED
ALKALI
M E T A L
COMPOUNDS
3) T h e residual R * must be readily cleaved from the intermediate polymer under m i l d conditions—for example, i n cold formic or trifluoroacetic a c i d — p r e f e r a b l y i n s u c h a w a y that t h e a m i n e c a n b e regenerated. T h e o n l y c o m p o u n d s m e e t i n g a l l these c r i t e r i a w e r e f e r r o c e n e c o m p o u n d s p r e p a r e d b y U g i via t h e a s y m m e t r i c d i r e c t e d m e t a l a t i o n m e t h o d , s h o w n i n R e a c t i o n 35. G o l d b e r g a n d B a i l e y (44) h a v e u s e d t h e a s y m m e t r i c - d i r e c t e d m e t a l a t i o n p r o c e d u r e as a route to c o m p o u n d s d e m o n s t r a t i n g ( f o r t h e first t i m e ) p s e u d o a s y m m e t r y i n ferrocenes.
A pseudoasymmetric
1,2-disubsti-
t u t e d ferrocene w a s p r e p a r e d b y procedures s u c h as those i l l u s t r a t e d i n Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
F i g u r e 1. Me
Bu Li
H00CCH - Men-H o
Men-H
Men-H
Men-H J ^Men-H
M e n - H means (-)-carbomenthoxy derivative Figure 1.
Preparation of a pseudoasymmetric 1,2-disubstituted ferrocene
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
SLOCUM
N(CH ) 3
239
Directed Metalation
A N D SUGARMAN
Ν (CH ) 3
2
2
I. n - C H L i 4
9
2. P h C O R
R=
(37)
H.Ph
CH.
0 200° R
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
A
Ph
phthalan
O u r c o n c l u s i o n is that t h e a s y m m e t r i c l i t h i a t i o n p r o c e d u r e a n d t h e a s y m m e t r i c d i r e c t e d m e t a l a t i o n r e a c t i o n a r e o f great p o t e n t i a l v a l u e f o r s y n t h e s i z i n g a v a r i e t y of c h i r a l c o m p o u n d s as w e l l as b e i n g elegant a n d p r o f o u n d exercises i n stereochemistry. Heterocyclic
Synthesis v i a Directed
Metalation
O n e of the most u s e f u l synthetic a p p l i c a t i o n s of t h e d i r e c t e d m e t a l a t i o n reactions is i n p r e p a r i n g h e t e r o c y c l i c systems. O f the a v a i l a b l e d i r e c t i n g groups, those i n v o l v i n g N - c h e l a t e d i n t e r m e d i a t e s have b e e n b y far t h e most u s e f u l . I n several instances t h e route p r o v i d e d b y ortho l i t h i a t i o n constitutes t h e o n l y a v a i l a b l e m e t h o d f o r p r e p a r i n g c e r t a i n heterocycles. I n other cases s u c h syntheses, a l t h o u g h n o t t h e o n l y routes a v a i l a b l e , represent a c o n s i d e r a b l e i m p r o v e m e n t over m o r e c o n v e n t i o n a l m e t h o d s , e s p e c i a l l y c o n s i d e r i n g t h e n u m b e r of steps i n t h e o v e r a l l synthesis a n d yields.
F u r t h e r m o r e m a n y of t h e h e t e r o c y c l i c c o m p o u n d s
p r o d u c e d via
d i r e c t e d m e t a l a t i o n procedures are of extreme interest i n that they a r e n a t u r a l p r o d u c t s or d e r i v a t i v e s thereof. I n i t i a l l y u s e d to p r o v e t h e 1,2-disposition o f t h e c o n d e n s a t i o n p r o d ucts of t h e respective compounds
lithio intermediates, cyclization to
rapidly developed
heterocyclic
i n t o a r e l a t i v e l y v a l u a b l e synthetic tool.
T h e b u l k o f t h e i n i t i a l w o r k i n this area w a s p e r f o r m e d b y H a u s e r a n d c o - w o r k e r s ; later, significant c o n t r i b u t i o n s ( e s p e c i a l l y i n n a t u r a l p r o d u c t heterocycle synthesis ) w e r e m a d e i n I n d i a b y N a r a s i m h a n a n d associates. O n e of the first uses of d i r e c t e d m e t a l a t i o n as a route to heterocycles w a s the synthesis of p h t h a l a n s ( 2 , 3 - b e n z o - l , 4 - d i h y d r o f u r a n s ) m a l l y i n d u c e d c y c l i z a t i o n of t h e m e t h i o d i d e s
b y the ther
of ortho-substituted d i -
methylbenzylamines (Reaction 37) ( 4 5 ) . T h e amine was lithiated i n the ortho p o s i t i o n b y n - b u t y l l i t h i u m a n d c o n d e n s e d w i t h b e n z a l d e h y d e a n d benzophenone.
T h e corresponding
alcohols
obtained
upon
w o r k - u p w e r e c o n v e r t e d t o t h e i r respective m e t h i o d i d e s .
aqueous
Heating the
m e t h i o d i d e s to 200 ° C f o r o n e h o u r u n d e r n i t r o g e n gave t h e p h t h a l a n s
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
240
POLYAMINE-CHELATED
ALKALI
M E T A L
CONHCH3
CONHCH;
COMPOUNDS
0
|.n-C H Li 4
9
2. P h C 0 2
(38)
NCH, /
3
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
Ph Ph
A phthalimidine
s h o w n i n R e a c t i o n 37. A q u i t e analogous p r o c e d u r e w i t h d i m e t h y l a m i n o m e t h y l f e r r o c e n e as t h e s t a r t i n g m a t e r i a l gave t h e ferrocene a n a l o g of t h e phthalan derived from the benzophenone
condensation ( 1 0 ) .
D i s c o v e r y that t h e N - s u b s t i t u t e d c a r b o x a m i d e
group could
direct
metalation(46) l e d to t h e e v e n t u a l establishment o f s y n t h e t i c routes t o a n u m b e r o f heterocycles, i n c l u d i n g s u b s t i t u t e d lactones, p h t h a l i m i d i n e s , a n d isocarbostyrils (47).
C y c l i z a t i o n o f t h e p r o d u c t s o f c o n d e n s a t i o n of
the l i t h i o i n t e r m e d i a t e s of N - m e t h y l b e n z a m i d e y i e l d e d heterocycles ( R e a c t i o n 3 8 ) (48).
the m e t h y l g r o u p w a s l i t h i a t e d , gave s i x - m e m b e r e d ( R e a c t i o n 3 9 ) (49).
five-membered
o-Methyl-N-methylbenzamide, i n which ring
heterocycles
T h e m e c h a n i s m of t h e c y c l i z a t i o n step i n t h e latter
p r o c e d u r e has b e e n dealt w i t h i n some d e p t h i n t h e l i t e r a t u r e ( 5 0 ) ; a n i n d e p e n d e n t r e i n v e s t i g a t i o n , h o w e v e r , has cast d o u b t o n t h e v a l i d i t y o f t h e d i h y d r o i s o c a r b o s t y r i l structures p r o p o s e d
(51).
S u l f o n a m i d e s as o r t h o - d i r e c t i n g substituents f o r m e t a l a t i n g a r o m a t i c systems o p e n e d (sultones)
t h e d o o r to synthetic routes t o c y c l i c sulfonic
a n d amides ( s u l t a m s ) .
esters
T h e first step i n this p r o c e d u r e f o r
p r e p a r i n g sultams i n v o l v e d t h e 2 - m e t a l a t i o n of 2V-alkylbenzenesulfonamides ( 5 2 ) a n d c o n d e n s a t i o n w i t h a v a r i e t y o f ketones.
T h e tertiary alco-
C O N H C H ,0
1
(39) 0
An
isocarbostyril
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
SLOCUM
AND
241
Directed Metalation
SUGARMAN
hols thus p r o d u c e d w e r e t h e r m a l l y d e h y d r a t e d to f o r m the c o r r e s p o n d i n g sultams ( R e a c t i o n 4 0 )
(52).
F o r the p r e p a r a t i o n of sultones,
N,N-ài-
methylbenzenesulfonamide was likewise 2-metalated (53) a n d condensed w i t h b e n z o p h e n o n e ( R e a c t i o n 41 ). T h i s p r o d u c t undergoes t w o reactions (54).
U p o n treatment w i t h cold, concentrated sulfuric a c i d / m e t h a n o l ,
the t e r t i a r y a l c o h o l w a s c y c l i z e d to the sultone. reagents
gave the m e t h y l ether.
reaction conditions
to
A t — 78 ° C , the same
similar effect—namely
o b t a i n different p r o d u c t s — w a s
changing
observed
with
tertiary alcohols p r o d u c e d b y c o n d e n s a t i o n of c a r b o n y l c o m p o u n d s
with
2 - l i t h i o b e n z a m i d e (48). Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
A
H e a t or w e a k a c i d c o n v e r t e d 2 - d i p h e n y l h y d r o x y -
m e t h y l - N - m e t h y l b e n z a m i d e to the
five-membered
lactone r i n g ( R e a c t i o n
3 8 ) , w h e r e a s t r e a t m e n t w i t h strong a c i d gave the c o r r e s p o n d i n g l a c t a m (Reaction 38).
M i l d a c i d i n the case of a c y c l i c ether i n the ferrocene
series o p e n e d t h e r i n g ( R e a c t i o n 42)
Ph
(55).
Λ.
Fe I
Fe I
H a u s e r et al. ( 56 ) h a v e r e p o r t e d the use of N - m e t h y l a m i n o m e t h y l as a n o r t h o - d i r e c t i n g substituent. T r e a t m e n t w i t h a c i d of the s e c o n d a r y a n d tertiary alcohols p r o d u c e d b y c o n d e n s a t i o n of the 2 - l i t h i o i n t e r m e d i a t e — i n this case w i t h b e n z a l d e h y d e a n d acetophenone,
respectively—produced
isoindolines (Reaction 43). N a r a s i m h a n a n d R a n a d e (57)
h a v e i n c o r p o r a t e d the 2 - m e t a l a t i o n
p r o c e d u r e i n t o t h e p r e p a r a t i o n of i s o q u i n o l i n e . F u r t h e r m o r e t h e i r obser-
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
242
POLYAMINE-CHELATED
ALKALI
M E T A L COMPOUNDS
v a t i o n t h a t m e t a l a t i o n occurs i n b e t w e e n t w o m e t a - o r i e n t e d ortho d i r e c t i n g groups ( R e a c t i o n 26) a l l o w e d t h e m to synthesize 5 - m e t h o x y i s o q u i n o lines via the d i r e c t e d m e t a l a t i o n process (see b e l o w ) .
B o t h condensation
of 2 - l i t h i o - N , N - d i m e t h y l b e n z y l a m i n e w i t h e t h y l e n e o x i d e f o l l o w e d c y c l i z a t i o n a n d subsequent d e h y d r o g e n a t i o n
(Reaction 44), and
by con-
d e n s a t i o n of 2 - l i t h i o N , ] V - d i m e t h y l - ^ - p h e n e t h y l a m i n e w i t h p a r a f o r m a l d e h y d e f o l l o w e d b y c y c l i z a t i o n a n d subsequent a r o m a t i z a t i o n ( R e a c t i o n 44) yielded isoquinoline. M e t h o x y - a n d ethoxy-substituted quinolines were metalated a n d c o n d e n s e d w i t h a v a r i e t y of electrophiles to y i e l d , after o t h e r steps, a v a r i e t y of n a t u r a l p r o d u c t s a n d d e r i v a t i v e s ( 5 8 ) .
A m o n g the c o n d e n s i n g
agents w e r e e t h y l e n e o x i d e a n d a l l y l b r o m i d e , a n d t h e
Figure 2.
heterocyclic
Synthesis of furoquinolines
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
12.
SLOCUM
A N D SUGARMAN
Rj = 0CH ; R =H
Dihydropteleine
Rj ' H ; R 2 0 C H
Dihydro"^~ fargarine
3
2
S
3
R|=R2=H Figure 3.
243
Directed Metalation
Dihydrodictamine Synthesis of edulitine, dihydropteleine, dihydro-y-fargarine, and dictamine
natural products
synthesized i n c l u d e d furoquinolines
(Figure 2) and
e d u l i t i n e , d i h y d r o p t e l e i n e , dihydro-γ-ίargarine, a n d d i c t a m i n e ( F i g u r e 3 ) . N a r a s i m h a n a n d B h i d e ( 5 9 ) have also d e v i s e d a n elegant route f o r t r a n s f o r m i n g l a u d a n o s i n e t o t e t r a h y d r o p a l m i t i n e via a d i r e c t e d m e t a l a t i o n procedure
( R e a c t i o n 4 5 ) . T h i s r e a c t i o n sequence is i m p o r t a n t b e c a u s e
there w a s p r e v i o u s l y n o s y n t h e t i c route f o r this t r a n s f o r m a t i o n .
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
244
POLYAMINE-CHELATED
ALKALI
METAL
COMPOUNDS
N a r a s i m h a n a n d B h i d e (60) also f o u n d that t h e d i m e t h y l a m i n o m e t h y l a n d 2V-methyl c a r b o x a m i d e f u n c t i o n a l groups are stronger ortho directors than the methoxy group.
A p p l y i n g this k n o w l e d g e , t h e y w e r e a b l e t o
synthesize m e t h o x y - s u b s t i t u t e d i s o q u i n o l i n e s a n d i s o c o u m a r i n s .
Among
t h e d e r i v a t i v e s of i s o c o u m a r i n p r e p a r e d w e r e m e l l e i n a n d 8-methoxyisoc o u m a r i n ( F i g u r e 4 ) (61, 62).
R e l a t e d d i r e c t e d metalations h a v e b e e n
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
p e r f o r m e d o n some p e r h y d r o i n d i a n d e r i v a t i v e s ( R e a c t i o n 4 6 ) (63, 64).
8 - methoxyisocoumarin Figure 4.
Preparation of isocoumarin derivatives mellein and 8-methoxyisocoumarin
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
12.
SLOCUM
AND
SUGARMAN
245
Directed Metalation
R = CH,,
Y=
49% (47)
3
R=Ph, Y *
22%
I n c r e a s i n g n u m b e r s of researchers are c o n t r i b u t i n g to syntheses u s i n g d i r e c t e d m e t a l a t i o n reactions a l t h o u g h the of this w o r k i n the l i t e r a t u r e is just b e g i n n i n g . (65)
Recently
heterocyclic appearance Lombardino
r e p o r t e d the synthesis of a c o m p l e x h e t e r o c y c l i c system c o n t a i n i n g
carbon, nitrogen, and sulfur (Reaction 47).
S y n t h e t i c routes to
these
c o m p o u n d s are c o m p a r e d — n a m e l y , that via d i r e c t e d m e t a l a t i o n a n d that i n v o l v i n g e l e c t r o p h i l i c s u b s t i t u t i o n . Y i e l d s f r o m the d i r e c t e d m e t a l a t i o n sequence w e r e h i g h e r a n d the n u m b e r of steps l o w e r t h a n those f r o m electrophilic
s u b s t i t u t i o n , thus
demonstrating
the
potential value
of
d i r e c t e d m e t a l a t i o n i n p r e p a r i n g c o m p o u n d s w h o s e synthesis has a l r e a d y b e e n established b y a n alternate route.
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
246
POLYAMINE-CHELATED
ALKALI
M E T A L
COMPOUNDS
Acknowledgment T h e authors a r e g r a t e f u l f o r p r o o f r e a d i n g assistance b y W . A c h e r mann, R. M a r c h a i , a n d R. Fellows. Special acknowledgment
is m a d e t o
M . V a n Ness f o r t y p i n g t h e m a n u s c r i p t a n d to B . S l o c u m f o r p r e p a r i n g the illustrations.
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36.
Mallan, J. M., Bebb, R. L . , Chem. Rev. (1969) 69, 693. Achermann, W., Slocum, D. W., unpublished results. Gilman, H . , Morton, J. W., Org. React. (1954) 8, 258. Plesske, K., Angew. Chem., Internat. Ed., Engl. (1962) 1, 312, 394. Bublitz, D. E . , Rinehart Jr., K. L . , Org. React. (1969) 17, 1. Jones, F. N., Vaulx, R. L., Hauser, C. R., J. Org. Chem. (1963) 28, 3461. Rosenblum, M., "Chemistry of the Iron Group Metallocenes," Wiley, New York, 1965. Slocum, D. W., Engelmann, T. R., Ernst, C., Jennings, C. Α., Jones, W., Koonsvitsky, B. P., Lewis, J., Shenkin, P., J. Chem. Educ. (1969) 46, 144. Hoofer, O., Schlögl, K., J. Organomet. Chem. (1968) 13, 443. Slocum, D. W., Rockett, B. W., Hauser, C. R.,J.Amer. Chem. Soc. (1965) 87, 1241. Slocum, D. W., Jennings, C. Α., Engelmann, T. R., Rockett, B. W., Hauser, C. R., J. Org. Chem. (1971) 36, 377. Gilman, H . , Soddy, T. S., J. Org. Chem. (1957) 22, 1715. Graybill, Β. M., Shirley, D. Α., J. Organomet. Chem. (1968) 31, 443. Shirley, D. Α., Cheng, C. F.,J.Organomet. Chem. (1970) 20„ 251. Gay, R. L . , Hauser, C. R.,J.Amer. Chem. Soc. (1967) 89, 2297. Kinstle, T. H . , Bechner, J. P., J. Organomet. Chem. (1970) 22, 497. Slocum, D. W., Gierer, P. L . , Chem. Comm. (1971) 305. Davies, G. M . , Davies, P. S., Tetrahedron Lett. (1972) 3507. Marr, G., Rockett, B. W., Rushworth, Α., J. Organomet. Chem. (1969) 16, 141. Slocum, D. W., Stonemark, F. S., J. Org. Chem. (1973) 38, 1677. Slocum, D. W., Jones, W. E., Crimmins, T. F., Hauser, C. R., J. Org. Chem. (1969) 34, 1973. Stonemark, F. S., Ph.D. Thesis, Southern Illinois University, 1971. Gay, R. L . , Crimmins, T. F., Hauser, C. R., Chem. Ind. (London) (1966) 1635. Marr, G., Moore, R. E., Rockett, B. W., J. Chem. Soc. C (1968) 24. Gierer, P. L., Ph.D. Thesis, Southern Illinois University, 1972. Slocum, D. W., Koonsvitsky, B. P., Chem. Commun. (1969) 846. Slocum, D. W., Engelmann, T. R., J. Organomet. Chem. (1970) 24, 753. Marr, G., J. Organomet. Chem. (1967) 9, 147. Marr, G., Hunt, T., J. Chem. Soc. C (1969) 1970. Slocum, D. W., Jennings, C. Α., "Abstracts of Papers," 161st National Meeting, ACS, Los Angeles, March 1971 ORGN 186. Sugarman, D. I., Slocum, D. W., unpublished results. Grocock, D. E . , Jones, T. K., Hallas, G., Hepworth, J. D.,J.Chem. Soc. C (1971) 3305. Slocum, D. W., Koonsvitsky, B. P., J. Org. Chem. (1973) 38, 1675. Puterbaugh, W. H . , Hauser, C. R., J. Amer. Chem. Soc. (1963) 85, 2467. Nozaki, H . , Aratani, T., Toraya, T., Tetrahedron Lett. (1968) 4097. Nozaki, H . , Aratani, T., Toraya, T., Noyori, R., Tetrahedron (1971) 905.
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by IMPERIAL COLL LONDON on June 7, 2014 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch012
12.
SLOCUM
A N D SUGARMAN
Directed Metafotion
247
37. Aratani, T., Gonda, T., Nozaki, H . , Tetrahedron (1970) 26, 5453. 38. Aratani, T., Gonda, T., Nozaki, H . , Tetrahedron Lett. (1969) 2265. 39. Gokel, G., Hoffmann, P., Kleinamm, H . , Klusacek, H . , Marquarding, D., Ugi, I., Tetrahedron Lett. (1970) 1771. 40. Marquarding, D., Klusacek, H . , Gokel, G., Hoffmann, P., Ugi, I.,J.Amer. Chem. Soc. (1970) 92, 5389. 41. Battelle, L . F., Bau, R., Gokel, G. W., Oyakawa, R. T., Ugi, I. K.,J.Amer. Chem. Soc. (1973) 95, 482. 42. Ugi, I., Rec. Chem. Prog. (1969) 30, 289. 43. Marquarding, D., Klusacek, H . , Gokel, G., Hoffmann, P., Ugi, I., Angew. Chem. Internat. Edit. (1970) 9, 371. 44. Goldberg, S. I., Bailey, W. D., Tetrahedron Lett. (1971) 4087. 45. Vaulx, R. L . , Jones, F. N., Hauser, C. R., J. Org. Chem. (1964) 29, 505. 46. Puterbaugh, W. H . , Hauser, C. R., J. Org. Chem. (1964) 29, 853. 47. Barnish, I. T., Mao, C. L., Gay, R. L., Hauser, C. R., Chem. Comm. (1968) 564. 48. Mao, C. L . , Barnish, I. T., Hauser, C. R., J. Heterocycl. Chem. (1969) 6, 475. 49. Mao, C. L., Barnish, I. T., Hauser, C. R.,J.Heterocycl. Chem. (1969) 6, 83. 50. Mao, C. L., Henoch, F. E . , Hauser, C. R., Chem. Comm. (1968) 1595. 51. Bailey, D. M., DeGrazia, C. G., Tetrahedron Lett. (1970) 633. 52. Watanabe, H . , Gay, R. L., Hauser, C. R., J. Org. Chem. (1968) 33, 900. 53. Watanabe, H . , Schwarz, R. Α., Hauser, C. R., Lewis, J., Slocum, D. W., Can. J. Chem. (1969) 47, 1543. 54. Watanabe, H . , Schwarz, R. A., Hauser, C. R., Chem. Comm. (1968) 287. 55. Slocum, D. W., Silverman, B., Rockett, B. W., Hauser, C. R., J. Org. Chem. (1967) 32, 464. 56. Ludt, R. E . , Hauser, C. R., J. Org. Chem. (1971) 36, 1607. 57. Narasimhan, N. S., Ranade, A. C., Chem. Ind. (London) (1967) 120. 58. Narasimhan, N. S., Paradkar, M. V., Alurkar, R. H . , Tetrahedron (1971) 1351. 59. Narasimhan, N. S., Bhide, Β. H . , Chem. Ind. (London) (1969) 621. 60. Narasimhan, N. S., Bhide, Β. H . , Tetrahedron Lett. (1968) 4159. 61. Narasimhan, N. S., Bhide, Β. H . , Chem. Comm. (1970) 1552. 62. Narasimhan, N. S., Bhide, Β. H . , Tetrahedron (1971) 6171. 63. House, H . O., Hanners, W. E., Racah, E . J.,J.Org. Chem. (1972) 37, 985. 64. House, H . O., Hudson, C B., Racah, E . J., J. Org. Chem. (1972) 37, 989. 65. Lombardino, J. G., J. Org. Chem. (1971) 36, 1843. 66. Slocum, D. W., Engelmann, T. R., Jennings, C. Α., Aust. J. Chem. (1968) 21, 2319. 67. Roberts, J. D., Curtin, D. Y., J. Amer. Chem. Soc. (1946) 68, 1658. 68. Slocum, D. W., Book, G., Jennings, C. Α., Tetrahedron Lett. (1970) 3443. 69. Booth, D. J., Rockett, B. W., J. Chem. Soc. C (1968) 656. 70. Benkeser, R. Α., Fitzgerald, W. P., Melzer, M . S., J. Org. Chem. (1961) 26, 2596. 71. Slocum, D. W., Koonsvitsky, B. P., Ernst, C. R., J. Organometal. Chem. (1972) 38, 125. 72. Slocum, D. W., Achermann, W., Teymouri, E . , unpublished results. 73. Gronowitz, S., Ark. Kemi. (1958) 12, 239. 74. Gronowitz, S., Ark. Kemi. (I960) 16, 363. 75. Gronowitz, S., Ark. Kemi. (1958) 13, 269. 76. Gronowitz, S., Eriksson, B., Ark. Kemi. (1963) 21, 335. 77. Gronowitz, S., Ark. Kemi. (1954) 7, 361. RECEIVED March 13, 1973.
In Polyamine-Chelated Alkali Metal Compounds; Langer, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.