3 Discovery of Drugs from Microbiological Sources LLOYD H. CONOVER
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
Pfizer Medical Research Laboratories, Groton, Conn. 06340
Demonstration
of the safety and therapeutic
cillin
with
coupled
mycin,
and
the
streptothricin
antibiotic
discovery
prototypes
of virtually
now
important
discovery
cal sources dropped (notably
proved biological discovery cillins
sharply
properties
eries in the future.
increased
and detection
new im
A
landmark
techniques,
peni
understand
chemical
for antibiotic activity
of
having
of semisynthetic
antibiotic
of previously
1959,
microbiologi
by increased
important
of the
antibiotics After
synthesis
sharply.
mechanisms,
Examination
types of biological
cant new
Guided
will provide
genera of microorganisms new culturing
discovered. partial
era
this period,
and tetracyclines)
was the first preparation
ing of action and resistance
diverse
while
β-lactams
actino-
of antibacterial
were
of peni
halcyon
useful new drugs from
by Sheehan (1958).
of new congeners
the
During
all families
in medicine
value
of tyrothricin,
initiated
(1940-1959).
of medically
antibiotics
discoveries
synthesis discov
little
studied
elaboration,
use of
and testing for more
will also provide
signifi
discoveries.
' " p h e m y c e l i a of the f u n g u s Calviceps •*· r y e w a s u s e d f o r centuries
purpurea
w h i c h infects
b y the practitioners
flowering
of E u r o p e a n f o l k
m e d i c i n e . A b o o k p u b l i s h e d i n 1582 r e c o r d e d the use of sclerotia f r o m Secale cornutum
to c o n t r o l p o s t p a r t u m h e m o r r h a g e .
I n 1918 S t o l l crys
t a l l i z e d the a l k a l o i d ergotamine, s m a l l doses of w h i c h e l i c i t e d r a p i d a n d l o n g l a s t i n g uterine contractions. T h e m e d i c i n a l use of materials of m i c r o b i o l o g i c a l o r i g i n is thus v e r y o l d . I n contrast, significant use of the pres e n t l y most i m p o r t a n t d r u g s of m i c r o b i o l o g i c a l o r i g i n — t h e a n t i b i o t i c s — extends b a c k a scant 30 years. 33
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
34
DRUG
DISCOVERY
It seems at first glance that w i t h the i s o l a t i o n of t y r o t h r i c i n b y D u b o s (I),
a c t i n o m y c i n , s t r e p t o t h r i c i n , a n d s t r e p t o m y c i n b y W a k s m a n et
(2, 3, 4) a n d p e n i c i l l i n b y F l o r e y , C h a i n et al. (5),
al.
the era of a n t i b i o t i c
discoveries was f u l l y l a u n c h e d w i t h l i t t l e scientific p r e c e d e n t save F l e m ing's n o w c e l e b r a t e d c h a n c e o b s e r v a t i o n (6).
I n r e a l i t y these w e r e the
c u l m i n a t i n g discoveries that t r a n s f o r m e d i n v e s t i g a t i o n of m i c r o b i a l ant a g o n i s m a n d a n t i b i o t i c substances f r o m a n obscure e r r a t i c a l l y p u r s u e d a c a d e m i c e n d e a v o r to a h i g h l y o r g a n i z e d a p p l i e d science.
The discovery
of antibiotics w i d e l y u s e f u l i n m e d i c i n e w a s i n fact presaged b y m a n y
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
p r e g n a n t observations.
F a s c i n a t i n g r e v i e w s of these early
Table I. Substance or Preparation
findings
Some Early Observations of Antimicrobial
Microbial
Organism( Inhibited Killed
Source
s) or
fungus of roasted green corn
bacteria
fungus
bacteria
M o l d y bread L i q u i d culture Mycophenolic acid (crystalline)
Penicillia Pénicillium species Pénicillium brevicompactum
bacteria bacteria
L i q u i d culture K o j i c acid
Pénicillium Aspergillus
glaucum oryzae
M y c e l i a l extract Penicillic acid (crystalline)
Aspergillus
fumigatus
f o w l plague bacteria, fungi Mycobacterium tuberculosis
Pénicillium
puberulum
Escherichia
A g a r culture m e d i u m
actinomycete
Bacillus Bacillus
A g a r culture m e d i u m
actinomycete
bacteria
Sparassol (crystalline)
Sparassis
fungi
L i q u i d culture medium
actinomycetes
Gliotoxin
Trichoderma
lignorum
fungi
A c t i n o m y c e t i n (protein precipitate)
Streptomyces
albus
bacteria
"Cuxum" Muscus ex huniano
have
cranio
Bacillus
ramosa
anthracis
coli mycoides vulgatus
gram-positive, gramnegative b a c t e r i a
" T h e work of W e l s c h w i t h a c t i n o m y c e t i n was tions of G r a t i a .
a c o n t i n u a t i o n of the
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
investiga-
3.
Microbiological
CONOVER
35
Sources
b e e n w r i t t e n b y W a k s m a n ( 7 ) a n d the O x f o r d g r o u p ( 8 ) .
A representa-
tive selection of these observations is s u m m a r i z e d i n T a b l e s I a n d II. T h e f o l l o w i n g are w o r t h y of s p e c i a l m e n t i o n :
(1)
use of m o l d s to
c o m b a t s u p e r f i c i a l infections was a p a r t of E u r o p e a n a n d M a y a n f o l k medicine; (2)
G r a t i a a n d D a t h ( 1 9 2 6 ) consciously u n d e r t o o k t o isolate
a c t i n o m y c e t e a n d f u n g a l cultures that p r o d u c e d substances
antagonistic
to b a c t e r i a ; their sources w e r e m u d , tap water, a n d air; ( 3 ) L o u i s Pasteur w a s one of the first to r e c o r d ( 1 8 7 7 ) the p h e n o m e n o n of m i c r o b i a l antagonism;
(4)
the b a s i c m e t h o d o l o g y n o w u s e d to detect
antibiotics
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
b o t h i n l i q u i d a n d s o l i d g r o w t h m e d i a was e v o l v e d b y a n u m b e r of early
A c t i v i t y Produced by Fungi, Molds, and Actinomycetes Therapeutic or Other Application
Discoverer or Recorder of Antimicrobial Action
Year
infections of s k i n a n d intestines
M a y a n Indians
wounds
J. Parkinson
1640
wounds —
E u r o p e a n peasants, etc. Tyndall
— 1876
—
Gosio
1896
—
Tartakovski
1904
—
Saito
1907
Vaudremer
1913
—
Alsberg & Black
1913
—
Grieg-Smith
1917
—
Lieske
1921
—
Falck
1923
immunization with b a c t e r i a l lysates
Gratia & Dath
1926
p l a n t fungus infections
Weindling & Emerson
1936
immunization with b a c t e r i a l lysates
Welsch"
1937
h u m a n tuberculosis
Pre-Columbian period
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
36
DRUG
Table II.
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
Substance or Preparation
Microbial
Source
DISCOVERY
Some E a r l y Observations of
Organism (s) Inhibited or Killed
L i q u i d culture
aerobic b a c t e r i a
Bacillus
L i q u i d culture medium
bacteria
bacteria
G e l a t i n culture medium
Staphylococci
Bacillus
G e l a t i n culture medium (containing diffusable secret o r y products)
Bacillus
Staphylococcus
G e l a t i n or a g a r c u l ture m e d i u m (zones of i n h i b i tion)
cocci
Bacillus
"Pyocyanase" precipitate)
Pseudomonas aeruginosa
bacteria
Agar and liquid culture m e d i u m (cont a i n i n g diffusable inhibitory m a terial)
Micrococcus tetragenus
Bacillus anthracis Staphylococcus aureus
Agar and liquid culture media
bacteria
bacteria
L i q u i d culture medium
Bacillus
L i q u i d culture medium
Bacilli
(crude
L i q u i d and agar culture medium
fluorescens
subtilis
mesentericus
bacteria
L i q u i d culture medium
Bacillus
anthracis
aureus
anthracis
bacteria Mycobacterium tuberculosis
Bacillus
" S e n t o c y m " (bact e r i a l lysates)
anthracis
Proteus, Meningococcus, Cory neb acterium diphtheriae
bacteria scaber
Bacillus Vibrio
anthracis, cholerae
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
CONOVER
Microbiological
37
Sources
Antimicrobial A c t i v i t y Produced by Bacteria
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
Therapeutic or Other Application
Discoverer or Recorder of Antimicrobial Action
Year
Pasteur & Joubert
1877
Soyka
1885
Babes
1885
Garré
1887
Doehle
1889
human meningitis, diphther i a , g r i p p e , l o c a l infections (commercially produced 1901-1935)
Emmerich & Low
1899
(not therapeutic i n a n i m a l s )
Lode
1903
Frost
1904
Nicolle
1907
guinea p i g tuberculosis
Rappin
1912
human upper respiratory i n fections (local a p p l i c a t i o n )
Pringsheim
1920
human dysentary, typhoid fever, u r i n a r y t r a c t infections
Much Rosenthal
1925 1926
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
38
DRUG
DISCOVERY
Table
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
Substance or Preparation
Microbial
Source
Organism (s) Inhibited or Killed
Pyocyanine (crystalline)
Pseudomonas aeruginosa
bacteria
Prodigiosin
Serratia
trypanosomes, fungi
Hemopyocyanine (crystalline)
Pseudomonas aeruginosa
bacteria, fungi
Iodinin
Chromobacterium iodinum
bacteria
marcescens
II.
investigators, a m o n g w h o m F r o s t ( 1 9 0 4 ) was n o t a b l e ; ( 5 )
"Pyocyanase"
m u s t be c o n s i d e r e d the first c o m m e r c i a l a n t i b i o t i c p r o d u c t ; it w a s p r o d u c e d i n G e r m a n y b e t w e e n 1901 a n d 1935, a n d w h e n p r o p e r l y p r e p a r e d , it h a d a t h e r a p e u t i c effect against b a c t e r i a l infections i n m a n a n d animals. I n retrospect, it seems that the d i s c o v e r y a n d b r o a d a p p l i c a t i o n of a n t i b i o t i c s i n m e d i c i n e w a s o v e r d u e w h e n it c a m e to pass. I n the p r e c e d i n g decades scientists p r i m a r i l y interested i n c o n t r o l l i n g infectious diseases w e r e engrossed i n the i m m u n o l o g i c a l a p p r o a c h , h a d b e e n d i s i l l u s i o n e d w i t h chemotherapy
b y the f a i l u r e of disinfectants
to c o n t r o l
systemic
infections a n d finally w e r e e n c o u r a g e d b y the success of the s u l f o n a m i d e s to seek a d d i t i o n a l synthetic
antimetabolites.
The Golden Era" of Antibacterial Microbial Metabolite Discoveries, 1940-1959 tf
O n e of the r e m a r k a b l e aspects of the era that f o l l o w e d the d i s c o v eries of D u b o s , F l o r e y , C h a i n , a n d W a k s m a n w a s the r a p i d i t y w i t h w h i c h m a j o r drugs w e r e d i s c o v e r e d a n d p u t to p r a c t i c a l use.
The long induc-
t i o n p e r i o d w h i c h p r e c e d e d e x p l o i t a t i o n of m i c r o b i a l sources of a n t i b a c t e r i a l d r u g s p e r m i t t e d this e x p l o i t a t i o n to be r a p i d , once b e g u n . B y 1940, b a s i c k n o w l e d g e a n d e x p e r i m e n t a l t e c h n i q u e s w e r e i n h a n d w h i c h permitted: (1)
f a c i l e c o l l e c t i o n , i s o l a t i o n , a n d g r o w t h of cultures of f u n g i ,
m o l d s , b a c t e r i a , a n d actinomycetes; fication,
( 2 ) detection, b i o l o g i c a l assay, p u r i -
isolation, a n d structure p r o o f of c o m p l e x , unstable
having antimicrobial activity; (3)
e v a l u a t i o n of the
metabolites
chemotherapeutic
efficacy a n d safety of a n t i b a c t e r i a l drugs i n l a b o r a t o r y animals a n d m a n ; ( 4 ) a r t i f i c i a l m u t a t i o n of a n t i b i o t i c - p r o d u c i n g m i c r o o r g a n i s m s w i t h select i o n of mutants h a v i n g i m p r o v e d p r o d u c t i v i t y ; a n d ( 5 )
d e v e l o p m e n t of
i n d u s t r i a l - s c a l e s u b m e r g e d , aerated fermentations, a n d of r e c o v e r y p r o c -
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
CONOVER
Microbiological
39
Sources
Continued
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
Therapeutic or Other Application
Discoverer or Recorder of Antimicrobial Action
Year
h u m a n d i p h t h e r i a carriers (upper r e s p i r a t o r y disinfection)
Hettche
1932 (isolated i n 1860)
t r y p a n o s o m i a s i s of m i c e
Masera, Fischl
1934-1935
Kramer
1935 ( p o s s i b l y i s o l a t e d i n 1863)
Mcllwain
1941
esses f o r t h e a n t i b i o t i c s p r o d u c e d thereby.
T h e requisite knowledge,
methods, a n d techniques were d r a w n f r o m mycology, bacteriology, plant, a n d s o i l m i c r o b i o l o g y , m i c r o b i a l genetics, c h r o m a t o g r a p h y , e x p e r i m e n t a l chemotherapy, chemical engineering, a n d industrial fermentation
tech-
nology. A c o i n c i d e n c e of k e y t e c h n i c a l d e v e l o p m e n t s a n d external influences a c c e l e r a t e d d e v e l o p m e n t s i n t h e field, once its potentialities w e r e r e c o g nized.
T h u s , t h e d e v e l o p m e n t of p r a c t i c a l m a n u f a c t u r i n g processes f o r
the n e w a n t i b i o t i c s d i s c o v e r e d after 1944 w a s g r e a t l y f a c i l i t a t e d b y t h e existence of t h e b a s i c t e c h n o l o g y p e r f e c t e d i n t h e w a r t i m e " c r a s h " effort d e v o t e d to p e n i c i l l i n p r o d u c t i o n . T h e d i s c o v e r y of p a p e r c h r o m a t o g r a p h y i n 1944 w a s e x c e p t i o n a l l y t i m e l y ( 9 ) .
This technique, b y providing a
s i m p l e a n d sensitive a n a l y t i c a l m e t h o d f o r associating a specific c h e m i c a l entity w i t h in vitro
a n t i m i c r o b i a l a c t i v i t y , m a d e possible t h e s c r e e n i n g
of large n u m b e r s of m i c r o b i a l cultures f o r s m a l l concentrations of n e w , active entities. T h e years b e t w e e n 1940 a n d 1959 h a v e b e e n justly c a l l e d t h e g o l d e n era of a n t i b i o t i c d i s c o v e r y . D u r i n g this p e r i o d e v e r y i m p o r t a n t class of a n t i b a c t e r i a l a n t i b i o t i c n o w k n o w n w a s r e c o g n i z e d ( T a b l e I I I ). I n d e e d , m a n y specific drugs ( e.g., b e n z y l p e n i c i l l i n , s t r e p t o m y c i n , o x y t e t r a c y c l i n e , chloramphenicol, neomycin, a n d erythromycin) w h i c h presently occupy major places i n t h e r a p e u t i c p r a c t i c e w e r e d i s c o v e r e d d u r i n g that p e r i o d .
The Decline in Antibacterial Microbial Metabolite Discoveries, 1960-1970 Since 1959 r e l a t i v e l y f e w n e w l y d i s c o v e r e d m i c r o b i a l metabolites h a v e r e a c h e d g e n e r a l use i n h u m a n or v e t e r i n a r y m e d i c i n e ( T a b l e I V ) ; most of t h e major discoveries ( t h e penicillinase-resistant p e n i c i l l i n s , t h e
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
40
DRUG
Table III.
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
Year of First Literature Report
1939 1940 1943 1944 1947 1948 1950 1953 1955 1956
DISCOVERY
Year of Discovery of Structural Classes of Antibacterial Antibiotics
Cfass c y c l i c peptide penicillin steroid aminoglycoside chloramphenicol tetracycline macrolide virginiamycin lincomycin cycloserine novobiocin cephalosporin
First Generally Useful Member
First Discovered Member tyrothricin p e n i c i l l i n F , G , etc, helvolic acid streptomycin chloramphenicol chlortetracycline picromycin streptogramin celesticetin cycloserine novobiocin cephalosporin C 6
Polymyxin penicillin G f u s i d i c a c i d (1962)° streptomycin chloramphenicol chlortetracycline e r y t h r o m y c i n (1952) v i r g i n i a m y c i n (1955) l i n c o m y c i n (1962) cycloserine" novobiocin" cephalothin, c e p h a l o r i d i n e (1962) vancomycin" r i f a m y c i n S V (1961) 0
c
1957 α b c
vancomycin ansamacrolide
vancomycin streptovaricins
c
Only useful member to date. PA-114 was the first member to be recognized as a synergistic mixture (119). Semisynthetic.
broad-spectrum
penicillins, doxycycline, the new
cephalosporins,
and
r i f a m p i c i n ) h a v e b e e n m a d e b y c h e m i c a l m o d i f i c a t i o n o f existing a n t i biotics. T h i s shift w i t h t i m e i n the source of major discoveries is s h o w n g r a p h i c a l l y i n F i g u r e 1. T h e relationships of l i n c o m y c i n (10,
11,12,13),
f u s i d i c a c i d (14, 15, 16, 17, 18, 19, 20, 21), g e n t a m i c i n (22, 23, 24, 25), a n d c a p r e o m y c i n (26, 27, 28, 29) ( w h i c h w e r e d i s c o v e r e d after 1959) t o t h e i r s t r u c t u r a l antecedents are s h o w n i n F i g u r e 2. C l e a r l y , the felicitous c o m b i n a t i o n o f t e c h n i c a l factors w h i c h f a c i l i t a t e d the i n i t i a l burst of m i c r o b i a l m e t a b o l i t e d r u g discoveries n o longer operates w i t h the same effect. T h i s has l e d to a j u d g m e n t o n the p a r t of some that n o i m p o r t a n t n e w a n t i b a c t e r i a l drugs or d r u g classes w i l l b e d e r i v e d d i r e c t l y f r o m m i c r o b i o l o g i c a l sources i n the f u t u r e . T h e v a l i d i t y o f this j u d g m e n t o b v i o u s l y w i l l not b e k n o w n u n t i l a n u m b e r o f years h a v e passed.
T h o s e presently s e e k i n g t o d i s c o v e r su
p e r i o r n e w a n t i b a c t e r i a l drugs must, h o w e v e r , m a k e a n assessment b a s e d u p o n available evidence.
A n y r a t i o n a l attempt t o m a k e this assessment
b r i n g s t o m i n d a c o m p l e x o f s u b s i d i a r y questions—e.g., c a n the causes f o r the decrease i n m i c r o b i a l m e t a b o l i t e
d r u g discoveries d e p i c t e d i n
F i g u r e 2 b e i d e n t i f i e d ? D o these suggest possibilities f o r i n c r e a s i n g the d i s c o v e r y rate? T h e s e a n d other questions c o n c e r n i n g the f u t u r e course a n d nature o f d r u g discoveries f r o m m i c r o b i o l o g i c a l sources w e r e i n c o r -
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
Microbiological
CONOVER
Table I V . Year of First Literature Report
41
Sources
T i m i n g and Source of Significant Antibacterial Antibiotic Discoveries 1939-1969
From Structural
Modification
From Structural Modification by Bio- or Chemical Synthesis
tyrothricin [tyrocidin, gramicidin] penicillin, actinomycins" streptomycin bacitracin
1939
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
α
1940 1944 1945 1946 1947 1948 1949 1950 1951 1952 1958 1954 1955
6
dihydrostreptomycin chloramphenicol, polymyxins chlortetracycline neomycin oxytetracycline viomycin erythromycin leucomycins oleandomycin spiramycin, virginiamycin/ cycloserine, cephalo sporin C novobiocin, vancomycin, mikamycins" kanamycins, 6-demethyltetracycline
phenoxymethylpenicillin
chloramphenicol tetracycline
c
palmitate
a
1956 1957 1958
rifamycins, paromomycin, tylosin
1959
triacetyloleandomycin proprionylerythromycin, pyrrolidinomethyltetracycline phenethicillin, propicillin
d
1960 1961 1962
lincomycin, fusidic acid
1963 1965
gentamicin,
capreomycin rifamide, dicloxacillin, cephaloglycine cephalexin, r i f a m p i c i n , carbenicillin clindamycin
1967 1968 1970
methicillin ampicillin, nafcillin, oxacillin, methacycline, r i f a m y c i n S V cephalothin, cephaloridine, doxycycline, cloxacillin, lysinomethyltetracycline, phenbenicillin
e
Historically important ; not used or not now important as an antibacterial drug. Report on therapeutic efficacy of crude penicillin. "Produced by "biosynthetic" methods; not utilized until 1953. Used primarily or exclusively in animals. Newer discoveries whose utility has not yet been established have been omitted.
a
b
d e
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
42
DRUG
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
Legend
1939-1944
^
Microbial Metabolites
^
Chemically or Biochemically Modified Microbial Metabolites
1945-1949
1950-1954
1955-1959
1960-1964
DISCOVERY
1965-1969
Period Figure 1.
Timing and source of significant antibacterial discoveries, 1939-1969
antibiotic
p o r a t e d into a q u e s t i o n n a i r e sent t o some 120 scientists i n i n d u s t r i a l , a c a d e m i c , a n d g o v e r n m e n t laboratories; c o m p l e t e d questionnaires w e r e r e c e i v e d f r o m 70 i n d i v i d u a l s . r e s p o n s i b l e b o t h f o r past
T h e p a n e l o f respondents i n c l u d e s m e n
a n t i b i o t i c discoveries a n d f o r p r e s e n t - d a y
m i c r o b i a l m e t a b o l i t e a n d a n t i b a c t e r i a l d r u g research.
T h e questionnaire
sought t o o b t a i n t h e same g l o b a l j u d g m e n t s , synthesis of v i e w s , a n d d e f i n i t i o n o f p r o b l e m s a n d o p p o r t u n i t i e s that w o u l d h a v e e m e r g e d h a d first-hand
discussions b e e n possible w i t h a l l o f t h e respondents.
Much
of the r e m a i n d e r o f this p a p e r is d e v o t e d t o a s u m m a r y a n d i n t e r p r e t a t i o n of t h e responses t o t h e q u e s t i o n n a i r e . T h e first section of the q u e s t i o n n a i r e p r o b e d t h e causes for t h e d r o p i n t h e d i s c o v e r y rate o f u s e f u l n e w a n t i b a c t e r i a l m i c r o b i a l metabolites, t h e n sought j u d g m e n t s as t o w h e t h e r , a n d i f so h o w , this t r e n d c o u l d b e reversed. F i n a l l y i t asked the respondents t o rate the potentialities o f five d i s c o v e r y approaches f o r p r o v i d i n g u s e f u l n e w a n t i b a c t e r i a l d r u g s over the next d e c a d e .
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
Microbiological
CONOVER
43
Sources
The N a t u r e and Causes of the Decline in Discovery Rate of A n t i bacterial Microbial Metabolites.
T h e p a n e l does not s u p p o r t the h y
pothesis that v i r t u a l l y a l l of the p o t e n t i a l l y u s e f u l s t r u c t u r a l classes of a n t i b a c t e r i a l a n t i b i o t i c s h a v e b e e n d i s c o v e r e d . T h e t h r u s t of the m a j o r i t y opinion (83%
a g r e e m e n t ) is that the search f o r a n t i b a c t e r i a l m i c r o b i a l
metabolites, massive a n d p r o l o n g e d as it has b e e n , has n o t d r a w n u p o n the t o t a l reservoir of a n t i b i o t i c - p r o d u c i n g organisms a n d t h e i r s e c o n d a r y m e t a b o l i t e s ; the same sector of the t o t a l m i c r o b i a l p o p u l a t i o n has b e e n repeatedly sampled a n d examined for antibiotic elaboration b y techniques w h i c h h a v e c h a n g e d l i t t l e i n 30 years. P o t e n t i a l l y v a l u a b l e n e w a n t i b i o t i c s Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
h a v e b e e n m i s s e d because the p r o d u c i n g o r g a n i s m w a s not i s o l a t e d , d i d not g r o w , or d i d n o t p r o d u c e a sufficient q u a n t i t y of a n t i b i o t i c to b e d e t e c t e d u n d e r the c o n d i t i o n s e m p l o y e d . that changes
S o m e respondents
reported
i n m e d i a a n d f e r m e n t a t i o n c o n d i t i o n s o n the one h a n d
a n d / o r a p p l i c a t i o n of n e w , m o r e sensitive d e t e c t i o n m e t h o d s o n the other h a v e b e e n r e s p o n s i b l e for discoveries i n t h e i r o w n laboratories.
The
c o m p o s i t i o n or t e m p e r a t u r e of the c u l t u r e m e d i u m or t h e d u r a t i o n of the f e r m e n t a t i o n m a y d e t e r m i n e w h e t h e r a n a n t i b i o t i c is d e t e c t e d or, i n some cases, w h a t a n t i b i o t i c is detected.
Antibiotics produced in minor
amounts, e s p e c i a l l y i n the presence of other easily d e t e c t e d a n t i b i o t i c s , h a v e u n d o u b t e d l y b e e n o v e r l o o k e d i n the past.
( C o n v e r s e l y , some s u c h
a n t i b i o t i c s o w e t h e i r d i s c o v e r y to the f a c t that t h e y w e r e present i n broths w h i c h w e r e b e i n g i n v e s t i g a t e d i n t e n s i v e l y because of other c o m ponents present.
C e p h a l o s p o r i n C , f o r e x a m p l e , is so w e a k l y active that
h a d it not b e e n a c c o m p a n i e d b y p e n i c i l l i n Ν a n d c e p h a l o s p o r i n P , i t m i g h t easily h a v e b e e n o v e r l o o k e d . ) T h e r e are genera a n d species of a n t i b i o t i c - p r o d u c i n g m i c r o o r g a n i s m s that, r e l a t i v e l y s p e a k i n g , h a v e b e e n n e g l e c t e d f o r the past 20 years. F r o m a b o u t 1950 o n w a r d , Streptomyces
species o b t a i n e d f r o m s o i l h a v e re
c e i v e d b y f a r the greatest s t u d y ( 3 0 ) .
I n the e a r l y years, there w a s g o o d
reason f o r t h i s : t h e y c o u l d b e o b t a i n e d easily i n s e e m i n g l y endless v a riety, a n d they w e r e a r i c h source of n e w a n t i b i o t i c s . years k n o w n metabolites of Streptomyces edly.
The
discoveries
of
In more
phosphonomycin, negamycin,
actinonin, showdomycin, and kasugamycin ( F i g u r e 3) respondents
as e v i d e n c e that
recent
h a v e b e e n r e d i s c o v e r e d repeat
e v e n so, Streptomyces
sparsomycin,
were cited by species
are
still
c a p a b l e of p r o v i d i n g a n t i b a c t e r i a l a n t i b i o t i c s of n o v e l structure. T h e m a j o r i t y of respondents
(69%)
f e e l that the spectacular
suc
cesses a c h i e v e d b y c h e m i c a l m o d i f i c a t i o n of existing a n t i b i o t i c s i n the late 1950's a n d e a r l y 1960's c a u s e d a shift of research effort a w a y f r o m s o i l s a m p l e screening a n d that this w a s i n p a r t r e s p o n s i b l e for the smaller n u m b e r of significant f e r m e n t a t i o n - a n t i b i o t i c discoveries.
A substantial
m i n o r i t y ( 2 3 % ) h o l d , h o w e v e r , that i n absolute terms the effort a p p l i e d
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
44
DRUG
DISCOVERY
to d i s c o v e r y o f m i c r o b i a l metabolites has not d e c r e a s e d ; o n l y t h e p r o p o r t i o n of the t o t a l d i s c o v e r y effort so a p p l i e d has decreased
as
the
s e m i s y n t h e t i c efforts h a v e g r o w n q u i t e large. P u b l i s h e d statistics w h i c h reflect the l e v e l of f e r m e n t a t i o n - a n t i b i o t i c d i s c o v e r y effort o v e r t h e years d o suggest that there has b e e n n o r e a l c u r t a i l m e n t of this a c t i v i t y . B e r d y a n d M a g y a r ' s t a b u l a t i o n (30)
of a n t i b i o t i c discoveries ( T a b l e V ) shows
a n absolute increase i n the n u m b e r of n e w a n t i b i o t i c s r e p o r t e d over e a c h successive (31)
five-year
p e r i o d f r o m 1940 t h r o u g h 1965.
P e r l m a n s analysis
of y e a r - b y - y e a r totals ( 1 9 4 0 - 1 9 6 8 ) shows a steady increase
until
1961, t h e n a l e v e l i n g off at a rate w e l l a b o v e the average for t h e p r e v i o u s Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
t w o decades.
Lincomycin
CH -CH -CH
Celesticetin
H
2
2
3
Figure 2.
3-ketoA*
Cephalosporin P,
oc-OH
Fusidic Acid
oc-OH
Rehtionship
CH
CH
R Helvolic Acid
H 3
3
CHe-CHg-O-C.^
R,
R
2
*3
^tf-OAc
=0
Η
ac-OAc
/-OH
Η
Η
Η
oc-OH
of significant antibacterial microbial metabochemistry shown for the
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
CONOVER
Microbiological
45
Sources
T h e s e statistics p o i n t u p a f a c t that m a y not b e g e n e r a l l y a p p r e c i a t e d : w h i l e the d i s c o v e r y rate for a n t i b a c t e r i a l m i c r o b i a l metabolites r e a c h i n g g e n e r a l use i n h u m a n or v e t e r i n a r y m e d i c i n e has i n d e e d d r o p p e d s h a r p l y , the t o t a l n u m b e r of a n t i b i o t i c s d i s c o v e r e d a n n u a l l y has not decreased. U n q u e s t i o n a b l y , m a n y of the n e w a n t i b i o t i c s i s o l a t e d i n the p e r i o d 1960-1969 w o u l d h a v e c o n s t i t u t e d significant discoveries i n the 1940's w h e n a n t i b i o t i c s w e r e filling a v i r t u a l c h e m o t h e r a p e u t i c v a c u u m . S t a n d ards f o r m e d i c a l a n d c o m m e r c i a l a c c e p t a n c e h a v e r i s e n c o n t i n u o u s l y as h a v e r e q u i r e m e n t s f o r r e g u l a t o r y a p p r o v a l of n e w a n t i b i o t i c s . I n the past d e c a d e these influences p r o p e r l y d i s c o u r a g e d the d e v e l o p m e n t a n d c o m Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
m e r c i a l i z a t i o n of n e w a n t i b i o t i c s not possessing significant
advantages
OH
Kanamycin A
Genfomicins
R
C,
CH
C,a
Viomycin
3
H
CH
3
H
2
CH
antecedents.
The
C
Viomycidine
Ri
3
H
Capreomycidine
Capreomycin
lite discoveries 1959-1970, to structural gentamicins is tentative ( 1 4 0 ) .
stereo-
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
46
DRUG
DISCOVERY
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
H
Figure 3.
Sporsomycin
Phosphonomycin
Actinonin
Negamycin
Recent antibacterial
antibiotic
discoveries of novel structure
over existing drugs. O n e c a n b e q u i t e sure, h o w e v e r , that some n e w a n t i biotics h a v e b e e n rejected w i t h o u t benefit of the extensive c o m p a r i s o n s w i t h existing d r u g s that w o u l d h a v e r e v e a l e d u n i q u e superiorities.
A
great i n v e s t m e n t i n t i m e a n d resources is u s u a l l y r e q u i r e d to o b t a i n the quantities of a p u r i f i e d n e w l y d i s c o v e r e d a n t i b i o t i c n e e d e d f o r a d e f i n i t i v e assessment. W h i l e i n most cases this investment proves fruitless, v a l u a b l e properties c a n o n l y be d i s c o v e r e d i f t h e y are tested f o r . Table V .
Cumulative Totals of N e w Antibiotics from Three Major Sources 1940-1965
Schizomycetes Year
Actinomycetales
1940 1945 1950 1955 1960 1965 a
6 14 82 363 812 1266 Fungi
imperjecti,
Eubacteriales 14 26 100 141 187 222
~, Other Classes of Fungi
Totals
19 52 143 220 282 374
39 92 325 724 1281 1862
a
b a s i d i o m y c e t e s , ascomycetes,
phycomycetes.
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
bive-Year Increase 53 233 399 557 581
Library American Chemical Society 3.
CONOVER
Microbiological
47
Sources
Proposals Designed to Increase the Discovery Rate of Antibacterial Microbial Metabolites. T h e q u e s t i o n n n a i r e c i t e d five specific approaches that h a v e b e e n a d v o c a t e d as means o f i n c r e a s i n g t h e rate at w h i c h d i s coveries o f significant n e w a n t i b a c t e r i a l a n t i b i o t i c s a r e m a d e . T h e p a n e l was a s k e d to evaluate t h e v a l i d i t y of e a c h a p p r o a c h separately, t h e n to r a n k these five approaches
" i n o r d e r of t h e i r p r a c t i c a l p o t e n t i a l i t y f o r
i n c r e a s i n g t h e rate o f d i s c o v e r y . . . over t h e next d e c a d e . " lists these approaches a n d s u m m a r i z e s the responses.
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
Table V I .
Table V I
T h e t w o approaches
Ranking of Approaches to Increased Antibacterial Microbial Metabolite Discovery 1970—1979 Approach
Rank
a
Percent Approach
Judging Fruitful
b
A p p l i c a t i o n of n e w techniques f o r c o l l e c t i n g , s t o r i n g , a n d processing soil samples, f o r isolating and growing potential antibioticp r o d u c i n g m i c r o o r g a n i s m s , a n d for detect i n g new a n t i b i o t i c s
1
67
E x a m i n a t i o n of genera of m i c r o o r g a n i s m s t h a t have received r e l a t i v e l y l i t t l e a t t e n t i o n thus f a r i n the search for a n t i b i o t i c s
2
58
E x a m i n a t i o n of m a r i n e m i c r o o r g a n i s m s
3
53
E x a m i n a t i o n of t e r r e s t r i a l m i c r o o r g a n i s m s t h a t grow under u n u s u a l or extreme e n v i ronmental conditions
3
42
E x a m i n a t i o n of m i c r o o r g a n i s m s t h a t grow i n the presence of pathogens
4
33
The over-all rank was derived from individual rankings by use of a weighted scoring system. Respondents were asked whether a given discovery approach could be expected to be fruitful for the discovery of useful new antibacterial antibiotics in the next decade. α
b
g i v e n strongest s u p p o r t ( a p p l i c a t i o n of n e w techniques a n d e x a m i n a t i o n of n e g l e c t e d genera of m i c r o o r g a n i s m s ) w e r e forecast b y t h e analysis of the causes o f t h e h i s t o r i c a l d e c l i n e i n d i s c o v e r y fate.
M a r i n e microor
ganisms are not expected to p r o v i d e a c o r n u c o p i a of n e w a n t i b i o t i c s ; they constitute o n e category of little s t u d i e d organisms w h i c h
deserves
s t u d y b u t w h i c h m a y pose s p e c i a l p r o b l e m s i n terms of c o l l e c t i o n , iso l a t i o n , a n d g r o w t h . T h e q u e s t i o n n a i r e r e c o n f i r m e d the g e n e r a l l y a c c e p t e d c o n c l u s i o n that antibiotics d o n o t p l a y a n e c o l o g i c a l role, a n d thus there is n o reason to expect a h i g h e r p r o p o r t i o n of a n t i b i o t i c p r o d u c e r s i n a n e n v i r o n m e n t w h e r e pathogens a b o u n d . I s h o u l d l i k e to consider i n some d e t a i l t h e basis f o r t h e expectation that s t r u c t u r a l l y n o v e l antibiotics w i l l b e d i s c o v e r e d i f efforts are c o n -
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
48
DRUG
c e n t r a t e d u p o n species
w i t h i n "neglected" genera
DISCOVERY
of m i c r o o r g a n i s m s .
F i r s t , this e x p e c t a t i o n is s u p p o r t e d b y past e x p e r i e n c e ; s e c o n d l y , i t rests u p o n the p r o p o s i t i o n that t h e structures of m i c r o b i a l s e c o n d a r y m e t a b o lites are a n expression of t h e genetic i n d i v i d u a l i t y of t h e e l a b o r a t i n g species.
T o t h e extent that c l a s s i c a l t a x o n o m y reflects t h e m a g n i t u d e
of genetic difference b e t w e e n m i c r o o r g a n i s m s , t a x o n o m i c a l l y w i d e l y separ a t e d organisms s h o u l d elaborate a n t i b i o t i c s w h i c h d i f f e r w i d e l y i n struct u r e w h i l e c l o s e l y r e l a t e d organisms m a y p r o d u c e t h e same o r closely related antibiotics. F i g u r e 4 shows i n s i m p l i f i e d f o r m t h e t a x o n o m i c locations of m i -
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
c r o b i a l classes, orders, a n d f a m i l i e s w h i c h p r o d u c e t h e k n o w n s t r u c t u r a l classes of u s e f u l a n t i b a c t e r i a l a n t i b i o t i c s .
N o n e of t h e u s e f u l s t r u c t u r a l
classes o r i g i n a l l y d i s c o v e r e d as p r o d u c t s of S c h i z o m y c e t e s has b e e n isol a t e d f r o m a species o f t h e Fungi imperfecta; r e p o r t (32)
that a Streptomyces
there is b u t one p r e l i m i n a r y
species has b e e n i s o l a t e d w h i c h p r o d u c e s
p e n i c i l l i n N , o t h e r w i s e k n o w n e x c l u s i v e l y as a p r o d u c t of Fungi perfecti.
im-
E v e n e l a b o r a t i o n of t h e same a n t i b i o t i c b y organisms b e l o n g i n g
to different orders of t h e same class is rare. t h e s i z e d b y several Streptomyces
C y c l o s e r i n e w h i c h is s y n -
species a n d b y Pseudomonas
fluorescens
constitutes one of the f e w k n o w n examples.
(33)
T h e most c o m m o n
finding
closely r e l a t e d substances
is t h e e l a b o r a t i o n of t h e same o r v e r y
b y different strains of the same
Division
species or
I FUNGI I
Class
FUNGI IMPERFECT!!
Order
MONILIALES
I I
Family
1 M0NIL1ACEÂÊ]
Classes of Useful Antibacterial Antibiotics
Penicillin Cephalosporin-C Steroid
I SCHIZOMYCETES I
ι
1
IACTINOMYCETALESI
I EUBACTERIALESl
I STREPTOMYCETACEAEl
| BACILLACEAÎ]
Aminoglycoside Chloramphenicol Tetracycline Macrolide
Polymyxin * Cycloserine
Ansa macrolide
Lincomycin * Cycloserine Novobiocin
Figure 4. Taxonomic location of microbial orders and families producing useful antibacterial antibiotics. Other classes of fungi known to produce antibiotics are basidiomycetes, ascomycetes, and phycomycetes. For simplicity, the older classification of Schizomycetes as a class of fungi has been used. Schizomycetes and blue-green algae are generally now placed in a kingdom distinct from that of fungi. This classification in no way alters the argument that Fungi imperfecti and schizomycetes, being very widely separated taxonomically, may be expected to produce structurally distinct secondary metabolites.
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
Microbiological
CONOVER
49
Sources
different species of the same genus. Species b e l o n g i n g to different genera of the same f a m i l y m a y p r o d u c e the same a n t i b i o t i c , b u t i n notable i n stances they p r o d u c e s t r u c t u r a l l y d i s t i n c t i v e analogs. this p o i n t w i t h the ^-lactams macrolides.
P e n i c i l l i n Ν is e l a b o r a t e d
a n d a Paecilomyces
sporium,
a n d some of the
a n d Trichophyton
F i g u r e 5 illustrates
aminoglycosides
b y several species of
species ( a n d p e r h a p s b y some
and
CephaloAspergillus
s p e c i e s — a l l m e m b e r s of the M o n i l i a c e a e f a m i l y ). T h e
other " n a t u r a l " p e n i c i l l i n s are o n l y p r o d u c e d b y Penicillia
w h i l e cephalo
s p o r i n C , a s t r u c t u r a l relative of p e n i c i l l i n N , has not b e e n f o u n d as a m e t a b o l i t e of a Pénicillium.
( P e n i c i l l i n Ν a n d c e p h a l o s p o r i n C h a v e also
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
b e e n isolated f r o m the species Emericellopsis class A s c o m y c e t e s . Cephalosporium,
Since these organisms
w h i c h falls i n the
terricola
are the p e r f e c t stage of
the t a x o n o m i c separation is not c o n s i d e r e d
a
pertinent
to the present discussion.) Family
IM0NIL1ACEAË1
Genus |PENICILLIUM| |CEPHALOSPORIUM| |PAECILOMYCES| |ASPERGILLUS] |TRICHOPHYTON] Penicillins ( F, Dihdro F, G) Κ,Μ,Χ etc.
Penicillin Ν Cephalosporin - C
Family
Penicillin Ν
"Penicillin"
Penicillin like substance
ISTREPTOMYCETACEAE1
Genus
iSTREPTOMYCËSl
|MICROMONOSPORA|
Kanamycin A Erythromycin
Figure 5.
Gentamicins ( C, , C, , C ) Megalomicin A a
t
Taxonomic location of genera-producing related β-lactam, glycoside, and macrolide antibiotics
amino
A m o n g the a m i n o g l y c o s i d e s , the g e n t a m i c i n C f a m i l y has thus far o n l y been
obtained
f r o m Micromonospora
e l a b o r a t e d o n l y b y Streptomyces b y a Micromonospora
w h i l e the k a n a m y c i n s
species. M e g a l o m i c i n A (34)
are
produced
species represents a n o v e l a n a l o g of e r y t h r o m y c i n
C , a p r o d u c t of Streptomyces
species ( F i g u r e 6 ).
A d e t a i l e d c o n s i d e r a t i o n of the n e g l e c t e d genera is b e y o n d the scope of this discussion. (35)
T h i s subject has r e c e i v e d attention f r o m W a k s m a n
a n d other authors.
It does a p p e a r that s t r u c t u r a l l y n o v e l congeners
of a g i v e n a n t i b i o t i c m a y b e f o u n d b y e x a m i n i n g organisms f a l l i n g i n a genus closely r e l a t e d to that of the k n o w n p r o d u c e r . T h i s w o u l d suggest e x a m i n a t i o n of genera of S t r e p t o m y c e t a c e a e other t h a n a n d of M o n i l i a c e a e other t h a n Pénicillium.
Streptomyces,
T h e fact that t h r o u g h
m o r e antibiotics h a d b e e n r e p o r t e d f r o m the Fungi
imperfecti,
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1955
basidio-
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
50
DRUG
R
=
H
DISCOVERY
Erythromycin C
Megalomycin A
Figure 6. mycetes, ascomycetes,
Erythromycin
and megalomycin A
a n d p h y c o m y c e t e s t h a n f r o m the s c h i z o m y c e t e
o r d e r actinomycetales, suggests that classes o f f u n g i other t h a n s c h i z o mycetes s h o u l d b e e x a m i n e d m o r e t h o r o u g h l y (see T a b l e V a n d F i g u r e 7).
Just as a l l d r u g research is b e c o m i n g m o r e difficult a n d t i m e c o n -
s u m i n g , some o f t h e n e g l e c t e d genera w i l l p r o v e m o r e difficult t o collect, isolate, a n d g r o w t h a n t h e Streptomyces,
a n d t h e p r o p o r t i o n of active
cultures they p r o v i d e m a y b e l o w e r . T h e c h a n c e that their s e c o n d a r y metabolites, once d e t e c t e d , w i l l b e n e w s h o u l d b e greater, h o w e v e r .
Evaluation of Proposed Approaches to Antibacterial Drug Discovery, 1970-1980 It is germane to c o n s i d e r not o n l y means b y w h i c h discoveries of u s e f u l a n t i b a c t e r i a l m i c r o b i a l metabolites
m i g h t b e i n c r e a s e d i n the
f u t u r e b u t also to w e i g h t h e r e l a t i v e potentialities o f a l l a p p r o a c h e s t o antibacterial drug discovery. w o u l d b e greater elsewhere.
P e r h a p s the r e w a r d f o r effort e x p e n d e d T h e q u e s t i o n n a i r e r e q u e s t e d a r a n k i n g of
the f o l l o w i n g five approaches i n terms of their " p r a c t i c a l p o t e n t i a l i t y f o r p r o v i d i n g u s e f u l n e w a n t i b a c t e r i a l drugs over t h e next d e c a d e " : ( 1 ) isol a t i o n o f n e w m i c r o b i a l metabolites; ( 2 ) p r e p a r a t i o n o f s t r u c t u r a l analogs of existing u s e f u l a n t i b i o t i c s b y c h e m i c a l or other means; ( 3 ) p r e p a r a t i o n
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
CONOVER
Microbiological
51
Sources
of s t r u c t u r a l analogs of existing toxic or p o o r l y efficacious a n t i b i o t i c s b y c h e m i c a l or other means; ( 4 ) e m p i r i c a l screening of o r g a n i c c o m p o u n d s u n r e l a t e d to existing a n t i b i o t i c s ; ( 5 ) d i r e c t e d synthesis of o r g a n i c c o m p o u n d s b a s e d u p o n a b i o c h e m i c a l rationale. T h e successes a c h i e v e d i n the past d e c a d e w i t h c h e m i c a l l y m o d i f i e d p e n i c i l l i n s , tetracyclines,
and lincomycin, undoubtedly influenced
the
j u d g m e n t of the p a n e l that p r e p a r a t i o n of s t r u c t u r a l analogs of u s e f u l a n t i b i o t i c s b y c h e m i c a l or other means s h o u l d b e r a n k e d as one of the two
most p r o m i s i n g d i s c o v e r y approaches for the next decade.
Before
p r o c e e d i n g f u r t h e r w i t h the e v a l u a t i o n m a d e b y the respondents of the Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
five approaches
(Table
V I I ) , some aspects of the h i s t o r y a n d
nature
of the s t r u c t u r a l m o d i f i c a t i o n a p p r o a c h are e x a m i n e d .
Division
Class
FUNGI
Fungi Imperfecti
Bosidiomycetes
Ascomycetes Phycomycetes| SchizomycetesI
Order
Actinomycetqles|
Genus
| Streptomyces |
Figure 7.
Cfosses of fungi
Structural Modification of Antibiotics.
HISTORICAL
REVIEW.
Writ-
i n g i n 1945, W a k s m a n ( 7 ) set f o r t h i n p r o p h e t i c terms the r o l e that the m e d i c i n a l chemist was to p l a y i n the a n t i b i o t i c
field.
. . . the d i s c o v e r y of n e w c h e m i c a l agents possessing a n t i b a c t e r i a l or a n t i f u n g a l properties offers the chemist m a n y n e w m o d e l s to d r a w u p o n f o r v a r i e d types of syntheses. A l t h o u g h o n l y v e r y f e w a n t i b i o t i c agents h a v e so f a r b e e n isolated, a n d e v e n f e w e r c r y s t a l l i z e d , it is a l r e a d y w e l l established that w e are d e a l i n g here w i t h a great v a r i e t y of c h e m i c a l c o m p o u n d s . . . . M a n y a chemist is a w a i t i n g the s o l u t i o n of the p r o b l e m of the c h e m i c a l n a t u r e of p e n i c i l l i n b e f o r e b e g i n n i n g n e w syntheses. D o u b t l e s s most of the c o m p o u n d s that p r o v e to b e u s e f u l as c h e m o t h e r a p e u t i c agents w i l l sooner or later b e s y n t h e s i z e d . T h e c o n t r i b u t i o n of the bacteriologist m a y be a l l b u t forgotten i n the l i g h t of f o r t h c o m i n g c h e m i c a l d e v e l o p m e n t s , b u t e v e n the bacteriologist w i l l b e g r a t e f u l f o r n e w tools to h e l p c o m b a t d i s e a s e - p r o d u c i n g agents. . . . It is fitting that W a k s m a n ' s o w n d i s c o v e r y , s t r e p t o m y c i n , p r o v i d e d the v e h i c l e for m a k i n g the first u s e f u l semisynthetic a n t i b i o t i c — d i h y d r o s t r e p t o m y c i n (36,
37).
It is interesting that d i h y d r o s t r e p t o m y c i n w a s
s u b e q u e n t l y f o u n d as a m i c r o b i a l m e t a b o l i t e
(38).
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
52
DRUG
The
DISCOVERY
massive w a r t i m e B r i t i s h - A m e r i c a n i n v e s t i g a t i o n of p e n i c i l l i n
c h e m i s t r y i n c l u d e d attempts t o
. . m o d i f y penicillin chemically i n the
hope o f obtaining n e w compounds w h i c h might differ qualitatively or q u a n t i t a t i v e l y i n their b i o l o g i c a l a c t i v i t y , s t a b i l i t y o r rate of e x c r e t i o n . . . there w a s a l w a y s t h e h o p e that a c h e m i c a l m o d i f i c a t i o n of t h e m o l e c u l e m i g h t so alter t h e specificity of t h e d r u g as to greatly b r o a d e n its field of a p p l i c a t i o n " (39).
T h e thiazolidine carboxyl of benzylpenicillin a n d
the a c t i v a t e d o r t h o positions o f p - h y d r o x y b e n z y l p e n i c i l l i n ( F i g u r e
8)
p r o v e d amenable to chemical modification, b u t no n e w penicillins superior i n chemical stability o r chemotherapeutic
action were identified
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
i n this w o r k . M o s t of t h e c h e m i c a l reactions of p e n i c i l l i n s o b s e r v e d i n e a r l y studies d e s t r o y e d or r e d u c e d b i o l o g i c a l a c t i v i t y .
R - C - N - T
/?-Hydroxybenzy I penicillin (X)
Benzylpenicillin ( G)
Figure
8.
Early substrates for chemical fication of penicillins
modi-
F r o m t h e p o i n t of v i e w of i m p o r t a n c e a n d c h e m i c a l f e a s i b i l i t y , c h l o r amphenicol modification.
(Figure
9)
presented
a n excellent
subject f o r s t r u c t u r a l
I t w a s t h e first t r u l y b r o a d - s p e c t r u m a n t i b i o t i c isolated,
a n d its structure a n d t o t a l synthesis w e r e b o t h r e p o r t e d t w o years after the d i s c o v e r y w a s a n n o u n c e d (40, 41, 42).
T h e synthesis o f c h l o r a m -
p h e n i c o l analogs p r o v e d to b e one of t h e great d i s a p p o i n t m e n t s of early c h e m i c a l research i n t h e a n t i b i o t i c
field.
H u n d r e d s o f analogs w e r e s y n -
t h e s i z e d , b u t n o n e w a s f o u n d s u p e r i o r to t h e p a r e n t d r u g i n terms either of a n t i m i c r o b i a l a c t i v i t y or t h e r a p e u t i c i n d e x (43).
T h e palmitate a n d
h e m i s u c c i n a t e esters h a v e p r o v i d e d s u p e r i o r dosage f o r m s f o r o r a l a n d p a r e n t e r a l use. O n e synthetic a n a l o g , t h i a m p h e n i c o l (44)
has a c h i e v e d
l i m i t e d use i n h u m a n a n d v e t e r i n a r y m e d i c i n e . B e c a u s e e a r l y experience
w i t h the penicillins, streptomycin, a n d
c h l o r a m p h e n i c o l d i d n o t f u l f i l l W a k s m a n ' s o p t i m i s t i c p r e d i c t i o n , there f o l l o w e d a p e r i o d of s k e p t i c i s m r e g a r d i n g t h e p o t e n t i a l v a l u e of c h e m i c a l modification of antibacterial
substances d e r i v e d f r o m m i c r o b i o l o g i c a l
sources; i t w a s a r g u e d i n some quarters that a n t i b i o t i c s represented t h e
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
Microbiological
CONOVER
53
Sources
I
H n H H ^ C ^ N — C —C—Cl
I
h
CH OR Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
2
R= - H
Chloramphenicol
R= - C - ( C H ) , - C H 2
4
Chloramphenicol Palmitate
3
9
fl h R= - C - C H - C H - C - 0 2
2
Figure 9.
m
Na
Chloramphenicol Hemisuccinate
Chemical modification of
chloramphenicol
c u l m i n a t i o n of a n e v o l u t i o n a r y process d e s i g n e d to g i v e the e l a b o r a t i n g o r g a n i s m the o p t i m u m c h e m i c a l w e a p o n i n the c o m p e t i t i o n f o r s u r v i v a l . R o b i n s o n expressed this s k e p t i c i s m (45)
w h e n he w r o t e i n
1953:
. . i n d e e d one of the d i s a p p o i n t m e n t s i n a n t i b i o t i c w o r k is that it seems i m p o s s i b l e to m o d i f y the m o l e c u l e w i t h o u t r e d u c i n g or e l i m i n a t i n g its antimicrobial activity . .
T h e discoveries e a r l y i n the 1950's of tetra-
c y c l i n e a n d p h e n o x y m e t h y l p e n i c i l l i n established b e y o n d d o u b t , h o w e v e r , that m o d i f i c a t i o n of a n t i b i o t i c s b y c h e m i c a l or b i o s y n t h e t i c means c o u l d y i e l d superior drugs. SEMISYNTHETIC
(46, 47, 48)
TETRACYCLINES.
T e t r a c y c l i n e ( F i g u r e 10, T a b l e
w a s the first major s e m i s y n t h e t i c a n t i b i o t i c d i s c o v e r e d .
IV) This
p r o d u c t w a s d i s c o v e r e d i n d e p e n d e n t l y i n m y l a b o r a t o r y a n d that
of
B o o t h e at L e d e r l e after the structures of o x y t e t r a c y c l i n e a n d c h l o r t e t r a c y c l i n e h a d b e e n d e t e r m i n e d b y the P f i z e r g r o u p i n c o l l a b o r a t i o n w i t h W o o d w a r d (49, 50, 51,52). of c h l o r t e t r a c y c l i n e .
It w a s f o r m e d b y the c a t a l y t i c h y d r o g e n o l y s i s
T e t r a c y c l i n e w a s f o u n d to b e a p o t e n t
broad-spec-
t r u m a n t i b i o t i c w h i c h w a s m o r e stable a n d better tolerated t h a n its fermentation-produced progenitor.
I n a f e w years i t almost
displaced chlortetracycline f r o m m e d i c a l practice.
completely
Interestingly, as h a p -
p e n e d i n the case of d i h y d r o s t r e p t o m y c i n , t e t r a c y c l i n e w a s f o u n d as a m i c r o b i a l m e t a b o l i t e after its c h e m i c a l synthesis h a d b e e n a c c o m p l i s h e d (53).
F u r t h e r selective transformations of t e t r a c y c l i n e a n t i b i o t i c s a f f o r d -
i n g u s e f u l n e w d r u g s w e r e s l o w i n c o m i n g . It was to b e 10 years b e f o r e
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
54
DRUG
CI
CH
OH
3
CH
CH
^CH,
5
DISCOVERY
CH
3
CH
3
3
OH
Catalyst OH
~
H
,
•
Chlortetracycline CH
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
OH Hz
B
, 6 « I ,
Tetracycline CHs
S
N
c
r
R
X 2
"3 .CH N ^
3
HP
Catalyst
Oxytetracycline
R, - CH ,
R - OH
Tetracycline
R, - CH ,
R
6-DémethyItetracycline
3
3
R/ =
Figure 10.
6-Deoxy tetracyclines
2
2
H , R
2
C0NH
=H =H
Tetracycline
and
6-deoxytetracyclines
Stephens, v o n W i t t e n a u , B l a c k w o o d , a n d c o - w o r k e r s o f P f i z e r r e p o r t e d the discoveries o f m e t h a c y c l i n e a n d d o x y c y c l i n e (54, 55). W o o d w a r d has c h a r a c t e r i z e d t h e m o l e c u l e o f o x y t e t r a c y c l i n e as a " d i a b o l i c a l c o n c a t e n a t i o n of r e a c t i v e g r o u p i n g s " ( 5 6 ) .
Indeed, the complexity a n d labil-
i t y o f t h e p a r e n t tetracyclines p r o v e d t o b e a great obstacle t o d r u g d i s c o v e r y . A t the outset the tetracyclines, l i k e a n u m b e r o f other a n t i b i o t i c classes (/^-lactams, m a c r o l i d e s , a m i n o g l y c o s i d e s ) , w e r e not a m e n a b l e to f a c i l e m o l e c u l a r m o d i f i c a t i o n f o r e x p l o r i n g r e l a t i o n s h i p s structure a n d b i o l o g i c a l properties.
between
T h e most r e a c t i v e f u n c t i o n a l i t i e s
p r o v e d , i n general, to b e r e q u i r e d f o r b i o l o g i c a l a c t i v i t y . I n t h e e n d , c o n t r o l o f the c h e m i s t r y o f the C 6 h y d r o x y l f u n c t i o n p r o v i d e d t h e k e y to n e w d r u g d i s c o v e r y . I n 1958, the P f i z e r g r o u p r e p o r t e d the successful h y d r o g e n o l y s i s o f the C 6 h y d r o x y l o f o x y t e t r a c y c l i n e , t e t r a c y c l i n e , a n d 6-demethyltetrac y c l i n e ( F i g u r e 10) (57). S i m i l a r w o r k w a s r e p o r t e d later b y M c C o r m i c k et al. of L e d e r l e (58). T h e r e a c t i o n p r o d u c t s w e r e o f interest i n that t h e y w e r e b i o l o g i c a l l y a c t i v e a n d also because t h e y w e r e stable t o t h e c o n d i t i o n s of e l e c t r o p h i l i c a r o m a t i c s u b s t i t u t i o n reactions.
It was n o w
p o s s i b l e t o p r e p a r e a large v a r i e t y o f D r i n g - s u b s t i t u t e d tetracyclines f o r b i o l o g i c a l s t u d y . F r o m s u c h studies c a m e the d i s c o v e r y of m i n o c y c l i n e b y M a r t e l l a n d B o o t h e o f L e d e r l e (59). T h i s c o m p o u n d is u n i q u e i n its in vivo efficacy against some infections c a u s e d b y tetracycline-resistant pathogens.
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2
3.
CONOVER
Microbiological
55
Sources
Insights w e r e sought at P f i z e r b y w h i c h m o l e c u l a r structure a n d shape, e l e c t r o n i c p r o p e r t i e s , a c i d strength, c h e l a t i n g a b i l i t y , a n d l i p o p h i l i c i t y m i g h t b e r e l a t e d to p o t e n c y o r r a n g e of a n t i b a c t e r i a l a c t i v i t y . T h e s e studies w e r e c o m p l i c a t e d b y t h e f a c t that large differences o b s e r v e d in vitro w e r e o f t e n r e d u c e d o r c o m p l e t e l y n u l l i f i e d in vivo.
Such observa-
tions f o c u s e d a t t e n t i o n u p o n t h e i n t e r p l a y o f s t r u c t u r a l a n d p h a r m a c o k i n e t i c p r o p e r t i e s o f tetracyclines.
CH ^CH 3
Oral Absorption Dogs 3
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
OH
~I00% OH
O
OH
0
6-Dl METHYL-6-DEOXYTETRACYCLINE
40% C0NH
2
C0NH
2
~
15%
15% OH
0
OH
Ô
C0NH
2
6-DEMETHYLCHLORTETRACYCLINE
9% C0NH
pH 4.0
Figure
11.
pH 5.5
2
pH 7.0 pHZ.O
Relationship of chloroform-water distribution constants and oral absorption in dogs for some tetracyclines
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
56
DRUG
DISCOVERY
Studies b y v o n W i t t e n a u a n d c o - w o r k e r s d e m o n s t r a t e d that f o r most t e t r a c y c l i n e a n t i b i o t i c s s t u d i e d , in vivo b e h a v i o r ( s u c h as
completeness
of o r a l a b s o r p t i o n , degree of s e r u m p r o t e i n - b i n d i n g , tissue affinity, rate of u r i n a r y excretion, a n d b i o l o g i c a l h a l f - l i f e ) i m p o r t a n t to d r u g efficacy c o u l d b e r e l a t e d to d r u g l i p o p h i l i c i t y as reflected b y c h l o r o f o r m - b u f f e r d i s t r i b u t i o n constants (60,
61, 62, 6 3 ) .
T h e principles w h i c h
emerged
b a s e d o n studies i n dogs p r o v e d a p p l i c a b l e i n m a n . F i g u r e 11 indicates the r e l a t i o n s h i p b e t w e e n o r a l a b s o r p t i o n i n dogs a n d chloroform—water d i s t r i b u t i o n constants f o r a g r o u p of tetracyclines. T h e 6-deoxytetracyclines p r o v i d e d a series i n w h i c h the b i o l o g i c a l Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
consequences of r e m o v i n g the 6 - h y d r o x y l g r o u p , of m o d u l a t i n g l i p o p h i l i c i t y , a n d of a l t e r i n g c o n f i g u r a t i o n at C 6 c o u l d b e s t u d i e d .
Studies
w i t h 6 - d e m e t h y l - 6 - d e o x y t e t r a c y c l i n e i n d i c a t e d that a l t h o u g h this a n a l o g retains essentially the same in vitro
s p e c t r u m as t e t r a c y c l i n e , is c h e m o -
t h e r a p e u t i c a l l y effective, is efficiently a b s o r b e d a n d affords a l o n g s e r u m h a l f - l i f e , its great tissue affinity is reflected i n i n c r e a s e d t o x i c i t y . W h i l e the in vitro p o t e n c y of this c o m p o u n d against g r a m - p o s i t i v e organisms is g e n e r a l l y e n h a n c e d c o m p a r e d w i t h its parent, c a t a l y t i c h y d r o g e n o l y s i s of o x y t e t r a c y c l i n e gives a 6-deoxy c o m p o u n d h a v i n g l o w e r in vitro
po
tency. T h e e x p l a n a t i o n f o r this a n o m a l y lies i n the f a c t that d u r i n g the h y d r o g e n o l y s i s of o x y t e t r a c y c l i n e i n v e r s i o n occurs at C 6 , p r e s u m a b l y b e c a u s e the a face of t h e m o l e c u l e is less h i n d e r e d ( F i g u r e 12 ).
Figure 12.
Formation of β-6-deoxyS-hydr
oxytetracycline
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
CONOVER
Microbiological
57
Sources
6 - D e o x y - 5 - h y d r o x y t e t r a c y c l i n e h a v i n g the n o r m a l α - m e t h y l c o n f i g u r a t i o n at C 6 h a d b e e n sought i n c h e m i c a l studies starting as e a r l y as 1952.
D i s c o v e r y a n d d e v e l o p m e n t of this c o m p o u n d ( w h i c h p r o v e d to
h a v e s o m e w h a t e n h a n c e d in vitro
a n t i b a c t e r i a l a c t i v i t y , l o w e r affinity
f o r c a l c i u m , a l o w e r effect o n the gastrointestinal flora, a n d near i d e a l p h a r m a c o k i n e t i c properties ) w a s m a d e possible b y the m a s t e r y of f u r t h e r n e w c h e m i s t r y at C 6 . I n the e n d , t w o stereoselective routes to the e l u s i v e c o m p o u n d w e r e d i s c o v e r e d (54,
55).
T h e k e y reactions are s h o w n i n
F i g u r e 13. N o t e that success i n the d i r e c t hydrogénation r o u t e r e q u i r e d r e v e r s a l of the u s u a l preference f o r c a t a l y t i c hydrogénation to o c c u r at
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
the least h i n d e r e d face of a m o l e c u l e .
oC- 6-Deoxy - 5- hydroxytetracycline ( Doxycycline )
Figure 13.
Stereoselective synthesis of
SEMISYNTHETIC
PENICILLINS.
a-6-deoxy-5-hydroxytetracycline
Just as the i n d e p e n d e n t lines of i n q u i r y
of D u b o s , W a k s m a n , a n d the O x f o r d g r o u p c o n v e r g e d to o p e n t h e a n t i b i o t i c era, the p e r i o d of s e m i s y n t h e t i c p e n i c i l l i n discoveries w a s i n i t i a t e d b y a s i m i l a r convergence.
A s a n o u t g r o w t h of the early o b s e r v a t i o n that
the c h e m i c a l n a t u r e of the p e n i c i l l i n s p r o d u c e d b y f e r m e n t a t i o n w a s i n fluenced
b y the c o m p o s i t i o n of the g r o w t h m e d i u m , the p r e p a r a t i o n of
"biosynthetic" penicillins was accomplished b y a d d i n g substituted p h e n y l acetic a c i d d e r i v a t i v e s ( a n d r e l a t e d structures)
to p e n i c i l l i n
fermenta-
tions. B y this m e t h o d B e h r e n s a n d c o - w o r k e r s at the E l i L i l l y C o . h a d b y 1948 p r e p a r e d some 30 p e n i c i l l i n s m o d i f i e d i n the a c y l m o i e t y
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
(64).
58
DRUG
DISCOVERY
I n p r i n c i p l e , o n l y the l i m i t a t i o n s i n substrate structure i m p o s e d b y the specificities of the e n z y m e or e n z y m e s i n v o l v e d i n the a c t i v a t i o n a n d c o u p l i n g reactions p r e v e n t e d this a n d other b i o s y n t h e t i c investigations f r o m a n t i c i p a t i n g the m a j o r discoveries m a d e a d e c a d e a n d m o r e later b y the s e m i s y n t h e t i c a p p r o a c h . A s it w a s , it a p p e a r e d i n i t i a l l y that the o n l y u s e f u l a d v a n t a g e possessed b y a b i o s y n t h e t i c p e n i c i l l i n was l o w e r allergenicity.
T h i s p r o p e r t y w h i c h was a t t r i b u t e d to p e n i c i l l i n 0 ( a l l y l m e r -
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
c a p t o m e t h y l p e n i c i l l i n ) ( F i g u r e 14) p r o v e d i l l u s o r y .
COMMON
NAME
CHEMICAL
NAME
R
PENICILLIN
ν
Phenoxymethylpenicillin
PENICILLIN
ο
AUylmercaptomethylpenicillin Figure 14.
Biosynthetic
C H O-CH 6
5
2
CH =CH-CH -S-CH 2
2
2
penicillins
I n 1954, h o w e v e r , B r a n d i a n d M a r g r e i t e r (65)
r e p o r t e d that b i o
synthetic p h e n o x y m e t h y l p e n i c i l l i n ( p e n i c i l l i n V ) w a s s u p e r i o r to b e n z y l p e n i c i l l i n i n terms of a c i d s t a b i l i t y . S i n c e this c o m p o u n d retains g o o d a c t i v i t y against
penicillin-sensitive gram-positive bacteria
penicillin
V
q u i c k l y g a i n e d a c c e p t a n c e as the o n l y r e l i a b l e p e n i c i l l i n for o r a l a d m i n istration. The
fledgling
B e e c h a m p e n i c i l l i n research t e a m w a s s t i m u l a t e d b y
the a d v e n t of p h e n o x y m e t h y l p e n i c i l l i n to seek a d d i t i o n a l s u p e r i o r p e n i c i l l i n s m o d i f i e d i n the a c y l m o i e t y (66).
T h e general approach envisioned
was the c o n v e r s i o n of one p e n i c i l l i n b e a r i n g a reactive f u n c t i o n a l i t y to a v a r i e t y of n e w m o d i f i e d p e n i c i l l i n s ; s p e c i f i c a l l y b i o s y n t h e t i c p - a m i n o b e n z y l p e n i c i l l i n w a s selected f o r m o d i f i c a t i o n via a c y l a t i o n of the a m i n e function (Figure
15).
D u r i n g the same p e r i o d , S h e e h a n was w o r k i n g t o w a r d a t o t a l s y n thesis of p e n i c i l l i n s . I n 1958, he a n n o u n c e d the synthesis of 6-aminopenicillanic acid (6-ΑΡΑ)
a n d its u t i l i t y for the p r e p a r a t i o n of
p e n i c i l l i n s b y a c y l a t i o n (67, 68).
new
( A l m o s t 10 years earlier, this substance
h a d b e e n p o s t u l a t e d to b e a n i n t e r m e d i a t e i n the biosynthesis of p e n i c i l l i n s (69, 70).
P r i o r Japanese literature also c o n t a i n e d clear suggestions
that it h a d b e e n f o r m e d b y e n z y m a t i c h y d r o l y s i s of b e n z y l p e n i c i l l i n ( 71 ) a n d i n fermentations c a r r i e d out i n the absence of side c h a i n precursors
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
CONOVER
Microbiological
Sources
0
C0 H
59
>-N—k
2
p - Aminobenzylpenicillin
0
2
Λ
^C0 H 2
Ν
'\
6-Aminopenicillanic Acid
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
Figure 15. (72,
73).
Preparation of semisynthetic
penicillins
T h e significance of these p r e g n a n t observations h a d
escaped
scientists engaged i n a n t i b i o t i c research at the t i m e . ) M e a n w h i l e , the B e e c h a m g r o u p d i s c o v e r e d 6 - A P A i n d e p e n d e n t l y i n the course of s t u d y i n g the biosynthesis of p - a m i n o b e n z y l p e n i c i l l i n . T h i s d i s c o v e r y also f o l l o w e d f r o m the o b s e r v a t i o n that i n p r e c u r s o r - s t a r v e d fermentations a m a t e r i a l w a s f o r m e d w h i c h c o n t a i n e d the ^ - l a c t a m f u n c t i o n b u t w h i c h w a s not b i o l o g i c a l l y active (74). t a t i o n m e t h o d p r o v i d e d the quantities of 6 - A P A .
first
The Beecham
p r a c t i c a l means
fermen
for o b t a i n i n g
large
A l t h o u g h it h a d p r e v i o u s l y b e e n a r g u e d b y some
that this structure w a s too l a b i l e to be isolable, once the existence of 6 - A P A was g e n e r a l l y r e c o g n i z e d , e n z y m a t i c m e t h o d s f o r its p r e p a r a t i o n w e r e q u i c k l y p e r f e c t e d i n a n u m b e r of laboratories ( 75, 76, 77, 78, 79 ). T h e d i s c o v e r y of 6 - a m i n o p e n i c i l l a n i c a c i d p r e s e n t e d the m e d i c i n a l chemist w i t h a n e x c e p t i o n a l o p p o r t u n i t y . It was n o w possible to v a r y the a c y l m o i e t y of p e n i c i l l i n s at w i l l to i d e n t i f y a n d elaborate those struc t u r a l a n d p h y s i c a l characteristics
w h i c h c o n t r o l l e d t h e r a p e u t i c a l l y rele
vant properties s u c h as a c i d s t a b i l i t y , o r a l a b s o r p t i o n , s e r u m p r o t e i n b i n d i n g , p e n i c i l l i n a s e resistance,
and gram-negative
activity.
Virtually
every n e w a c y l p e n i c i l l a n i c a c i d s y n t h e s i z e d r e t a i n e d some b i o l o g i c a l ac tivity.
A c i d stable h o m o l o g s of p h e n o x y m e t h y l p e n i c i l l i n w e r e the
first
of the semisynthetic p e n i c i l l i n s to b e r e p o r t e d a n d to r e a c h c l i n i c a l use ( F i g u r e 16)
(80).
It w a s later s h o w n that the a c i d s t a b i l i t y of p e n i c i l l i n s
c a n be c o r r e l a t e d w i t h the strength of the a c i d c o r r e s p o n d i n g to the a c y l moiety (81),
a
finding
consistent w i t h A b r a h a m ' s p o s t u l a t i o n that
the
electronic properties of the p h e n o x y substituent are r e s p o n s i b l e for the a c i d s t a b i l i t y of p h e n o x y m e t h y l p e n i c i l l i n
(82).
Since, i n general, o n l y m o n o s u b s t i t u t e d acetic a c i d d e r i v a t i v e s served as p e n i c i l l i n b i o s y n t h e t i c precursors, one of the p r i m e s t r u c t u r a l v a r i a tions m a d e feasible f o r the first t i m e b y p a r t i a l synthesis w a s that of d i a n d t r i s u b s t i t u t i o n at the «-position of the a c y l substituent.
A l l of the
semisynthetic p e n i c i l l i n s w h i c h h a v e b e c o m e i m p o r t a n t i n m e d i c a l p r a c tice are i n fact d i s u b s t i t u t e d at the c a r b o n a to the a m i d e c a r b o n y l . S u c h
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
60
DRUG
DISCOVERY
c o m p o u n d s p r o v i d e d i m p o r t a n t insights r e l a t i n g structure t o a n u m b e r of b i o l o g i c a l l y i m p o r t a n t properties.
A s the c h a i n l e n g t h o f α - a l k y l sub-
stituents o n p h e n o x y m e t h y l p e n i c i l l i n w a s increased, so w a s the efficiency of o r a l a b s o r p t i o n , the s e r u m h a l f - l i f e , a n d the d e g r e e o f s e r u m b i n d i n g . In
potency
vitro
toward penicillin-sensitive bacteria
was n o t altered
g r e a t l y i n the s i m p l e h o m o l o g s ; h o w e v e r , i t w a s o b s e r v e d that as the b u l k of t h e «-substituent
was i n c r e a s e d , this e n d o w e d t h e m o l e c u l e w i t h a
s m a l l b u t significant degree o f resistance t o d e s t r u c t i o n b y b e n z y l p e n i c i l l i n a s e — t h e e n z y m e r e s p o n s i b l e f o r t h e resistance o f m a n y
Staphylo
coccus aureus strains to b e n z y l p e n i c i l l i n . a - P h e n o x y i s o b u t y l p e n i c i l l i n was
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
a b l e t o protect m i c e against a n i n f e c t i o n c a u s e d b y a b e n z y l p e n i c i l l i n resistant S. aureus.
R
GENERIC
H-
PENICILLIN
CH 3
CH -CH 3
2
CH,
NAME V
CHEMICAL NAME
cx -Phenoxymethylpenicillin
PHENETHICILLIN
cx-Phenoxy ethyl penicillin
PROPICILLIN
oc - Phenoxypropylpenicillin
H_
_
Figure 16.
oc-Phenoxyisobutylpenicillin Acid-stable
penicillins
R e c o g n i t i o n that the o c c u r r e n c e o f i n c r e a s e d p e n i c i l l i n a s e resistance a c c o m p a n i e d i n c r e a s e d steric b u l k a b o u t the «-position p r o v i d e d a p o w e r f u l r a t i o n a l e f o r d i r e c t e d synthesis: insights g a i n e d f r o m studies o f steric h i n d r a n c e o f o r g a n i c reactions w e r e d i r e c t l y a p p l i c a b l e t o d r u g d e s i g n . T h e e n d result w a s a q u a l i t a t i v e c h a n g e i n efficacy s p e c t r u m c o m p a r e d w i t h b e n z y l p e n i c i l l i n (83).
A n a l o g synthesis progressed t h r o u g h t r i s u b -
s t i t u t e d m e t h y l p e n i c i l l i n s , s u c h as t r i p h e n y l m e t h y l p e n i c i l l i n (84) to t h e d i s u b s t i t u t e d a r y l a n d h e t e r o a r y l p e n i c i l l i n s s u c h as m e t h i c i l l i n a n d oxa c i l l i n ( F i g u r e 1 7 ) ( 8 5 , 86).
M e t h i c i l l i n a n d the oxacillin family have
b e c o m e the mainstays o f the c l i n i c a l a r m a m e n t a r i u m u s e d against p e n i c i l l i n a s e - p r o d u c i n g S. aureus. S e v e r a l factors m u s t h a v e suggested t h e p r e p a r a t i o n o f a - a m i n o b e n z y l p e n i c i l l i n ( a m p i c i l l i n ) (87) to the B e e c h a m g r o u p .
I t w a s a-substi-
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
Microbiological
CONOVER
61
Sources
8
R
- C -
CH
3
,CeH R =
ÇeH C H -Ç6
Penicillinase Resistant
5
C H E
CH
6
3
OCH
Q -
C H6
3
6
Methicillin
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
H Ç H E
3
Penicillinase Sensitive
6
R = C H -C— E
6
6
5
0CH
H
CH
3
CH 0
3
• * - 0
3
Figure 17.
Steric hindrance and penicillinase
resistance
t u t e d , i t c o u l d b e e x p e c t e d t o b e a c i d stable, a n d e v i d e n c e w a s a l r e a d y i n h a n d that a m i n o s u b s t i t u t e d p e n i c i l l i n s ( p - a m i n o b e n z y l p e n i c i l l i n , p e n i c i l l i n N ) possessed
e n h a n c e d a c t i v i t y against
gram-negative
bacteria
( F i g u r e 1 8 ) . A m p i c i l l i n e x t e n d e d the range of c h e m o t h e r a p e u t i c efficacy of the p e n i c i l l i n s to m a n y of the g r a m - n e g a t i v e b a c t e r i a . T h i s q u a l i t a t i v e i m p r o v e m e n t i n in vivo p e r f o r m a n c e d e p e n d e d u p o n h i g h q u a n t i t a t i v e i m p r o v e m e n t over the w e a k in vitro
a c t i v i t y o f b e n z y l p e n i c i l l i n against
the same organisms. I t n o w appears that the p h y s i c a l p r o p e r t i e s of a m p i c i l l i n f a c i l i t a t e its passage r e l a t i v e to that o f b e n z y l p e n i c i l l i n , t h r o u g h
? H R-C-N-
ay I
Ν
CH
3
CH
3
k C0 H %
2
C0 H I R= N H - C H - ( C H ) -
Penicillin Ν
R= NHo
yP-Aminobenzylpenicillin
2 2
2
2
3
cx-Aminobenzylpenicillin
NH
( Ampicillin )
2
Figure
18.
Amino-substituted
penicillins
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
62
DRUG
t h e c e l l w a l l of Escherichia
DISCOVERY
coli, f o r b o t h are potent i n h i b i t o r s of the iso
l a t e d t r a n s p e p t i d a s e e n z y m e — w h i c h is a major site of p e n i c i l l i n a c t i o n (88). F u r t h e r studies of α - s u b s t i t u t e d b e n z y l p e n i c i l l i n s l e d to the i n d e p e n d e n t d i s c o v e r y b y P f i z e r a n d B e e c h a m chemists of c a r b e n i c i l l i n (a-carb o x y b e n z y l p e n i c i l l i n ) ( F i g u r e 19)
(89,
i n w h i c h the g r a m - n e g a t i v e
90),
s p e c t r u m is e x t e n d e d s t i l l f u r t h e r (to Pseudomonas
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
a m p i c i l l i n - i n s e n s i t i v e i n d o l e - p o s i t i v e Proteus
Figure 19.
a n d the
aeruginosa
species).
Carbenicillin
Structural Modification by Biosynthetic Methods. T h e structure of u s e f u l a n t i b i o t i c s c a n be a l t e r e d b y means other t h a n c h e m i c a l synthesis and transformation.
It has a l r e a d y b e e n p o i n t e d o u t that the first struc
t u r a l l y m o d i f i e d p e n i c i l l i n to a c h i e v e w i d e s p r e a d c l i n i c a l use w a s
the
b i o s y n t h e t i c p h e n o x y m e t h y l p e n i c i l l i n . A m a j o r i t y ( 6 7 % ) of the r e s p o n d ents b e l i e v e that m o d i f i c a t i o n of the structures of p r e s e n t l y u s e d a n t i biotics
a
fruitful
a p p r o a c h to d i s c o v e r y of n e w a n t i b a c t e r i a l a n t i b i o t i c s i n the
b y m a n i p u l a t i o n of
coming
decade.
biosynthetic
pathways
will
be
A m o n g the p o s s i b l e v a r i a t i o n s of this a p p r o a c h a r e :
simple
u t i l i z a t i o n of precursors b y a n t i b i o t i c - p r o d u c i n g m i c r o o r g a n i s m s (as i n the case of p h e n o x y m e t h y l p e n i c i l l i n ) , u t i l i z a t i o n of precursors b y m u tants h a v i n g specific m e t a b o l i c b l o c k s ( as i n the p r e p a r a t i o n of m o d i f i e d n e o m y c i n s b y Shier, R i n e h a r t , a n d G o t t l i e b )
use of i n h i b i t o r s of
(91),
specific e n z y m a t i c reactions ( as i n the f o r m a t i o n of 6 - d e m e t h y l c h l o r t e t r a c y c l i n e b y a c h l o r t e t r a c y c l i n e p r o d u c e r i n the presence of e t h i o n i n e )
(92),
use of v a r i o u s b i o l o g i c a l means of c o m b i n i n g genetic m a t e r i a l of different organisms at least one of w h i c h is a n a n t i b i o t i c p r o d u c e r (e.g., s y n c y t i c recombination, transformation, transduction a n d lysogenic a n d m u t a t i o n of a n t i b i o t i c p r o d u c e r s
(93),
6-demethylchlortetracycline
(94)
(as
conversion)
i n the p r e p a r a t i o n of
and rifamycin S V
(95).
I n p r i n c i p l e , b i o s y n t h e t i c m e t h o d s c a n p r o v i d e s t r u c t u r a l variants that are inaccessible or v e r y d i f f i c u l t l y accessible b y c h e m i c a l m e t h o d s ; o n the other h a n d , except w h e r e i n c o r p o r a t i o n of a w i d e v a r i e t y of p r e cursors is p o s s i b l e these m e t h o d s d o not n o w p r o v i d e a means f o r d i r e c t l y m a k i n g pre-selected changes i n structure.
E n z y m a t i c or m i c r o b i o l o g i c a l
t r a n s f o r m a t i o n of a n t i b i o t i c s is a r e l a t e d a p p r o a c h that i n p r i n c i p l e c a n bring
about
selective
a n d specific
s t r u c t u r a l changes.
Although
this
m e t h o d was u s e d w i t h success i n the s t e r o i d field, it has not yet p r o v i d e d
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
CONOVER
Microbiological
63
Sources
significant d r u g discoveries i n the a n t i b i o t i c
field.
It has r e c e i v e d r e l a -
t i v e l y l i t t l e attention. Structural Modification of Toxic or Poorly Efficacious Antibiotics. M o d i f i c a t i o n of toxic o r p o o r l y efficacious a n t i b i o t i c s does not q u i t e g a i n m a j o r i t y s u p p o r t of the p a n e l as a f r u i t f u l d i s c o v e r y a p p r o a c h f o r t h e next d e c a d e
(Table V I I ) .
T h e a u t h o r joins the m i n o r i t y ( — 4 0 % )
of
respondents o n this q u e s t i o n . If a d r u g fails to meet present d a y standards because of l o w in
vitro
p o t e n c y , m e t a b o l i c , or c h e m i c a l i n s t a b i l i t y , p o o r o r a l a b s o r p t i o n o r h i g h degree of s e r u m a n d tissue b i n d i n g , experience teaches that the prospects
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
f o r i m p r o v e m e n t via s t r u c t u r a l m o d i f i c a t i o n are g o o d — i f systematic struct u r a l m o d i f i c a t i o n w i t h r e t e n t i o n of b i o l o g i c a l a c t i v i t y is feasible.
The
clinically
and
established
semisynthetic
cephalosporins,
rifamycin SV
r i f a m p i c i n represent p r e c i s e l y this k i n d of i m p r o v e m e n t , w h i l e l a b o r a t o r y d a t a i n d i c a t e that i t has also b e e n a c h i e v e d i n the c o u m e r m y c i n series as w e l l (96,
97).
Table VII.
Ranking of Discovery Potential of Approaches to Antibacterial D r u g Discovery Approach
Rank"
Percent Approach
Judging Fruitful
P r e p a r a t i o n of s t r u c t u r a l analogs of u s e f u l a n t i b i o t i c s b y c h e m i c a l or other means
1
83
I s o l a t i o n of new m i c r o b i a l metabolites
1
92
P r e p a r a t i o n of s t r u c t u r a l analogs of toxic or p o o r l y efficacious a n t i b i o t i c s b y c h e m i c a l or other means
2
42
D i r e c t e d synthesis of organic c o m p o u n d s based u p o n a b i o c h e m i c a l r a t i o n a l e
3
h
E m p i r i c a l screening of organic compounds u n related to e x i s t i n g a n t i b i o t i c s
4
B
The over-all rank was derived from individual rankings by use of a weighted scoring system. Appropriate question was not asked; however, 65% of the respondents judged that the search for new microbial metabolites will represent a better approach to the discovery of antibacterial drugs having novel structure, mode of action, and range of efficacy. a
b
SEMISYNTHETIC CEPHALOSPORINS.
C b e c a m e k n o w n (98), analogs
O n c e the structure of c e p h a l o s p o r i n
attempts w e r e m a d e to find c h e m i c a l l y m o d i f i e d
h a v i n g superior biological properties.
This
was
successfully
a c h i e v e d w i t h the synthesis of c e p h a l o t h i n , c e p h a l o r i d i n e , c e p h a l o g l y cine, a n d cephalexin ( F i g u r e 2 0 ) .
I n the first t w o , in vitro p o t e n c y w a s
e n h a n c e d as m u c h as 10,000 f o l d ( 9 9 ) , i n the latter t w o o r a l a b s o r p t i o n
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
64
DRUG
Cephaloglycine
Cephalexin
Figure 20. was achieved
(100).
DISCOVERY
Semisynthetic
cephalosporins
T h e starting p o i n t f o r this research
was quite
different f r o m that f o r the semisynthetic p e n i c i l l i n s . T h e p a r e n t
com-
p o u n d w a s too w e a k l y active to m e r i t c l i n i c a l a p p l i c a t i o n a l t h o u g h q u a l i t a t i v e l y , its b i o l o g i c a l properties e l i c i t e d interest; i t w a s active both
g r a m - p o s i t i v e a n d gram-negative
bacteria
against
a n d w a s resistant
to
benzylpenicillinases. H e r e as w i t h the tetracyclines, t h e s o l u t i o n of d i f f i c u l t c h e m i c a l p r o b lems w a s a p r e r e q u i s i t e to successful n e w d r u g d i s c o v e r y .
A t first t h e
c o u n t e r p a r t of 6 - a m i n o p e n i c i l l a n i c a c i d c o u l d b e m a d e o n l y i n v e r y l o w y i e l d s b y c h e m i c a l h y d r o l y s i s . A p r a c t i c a l e n z y m a t i c h y d r o l y s i s of c e p h a l o s p o r i n C to 7 - a m i n o c e p h a l o s p o r a n i c
acid ( 7 - A C A ) was not found.
R . B . M o r i n a n d c o - w o r k e r s p r o v i d e d t h e elegant s o l u t i o n ( F i g u r e 2 1 ) (101),
w h i c h m a d e the p r e p a r a t i o n of 7 - A C A a n d semisynthetic c e p h a l o -
sporins possible o n a p r a c t i c a l scale.
T h e i m p e t u s to persevere i n this
C0 H 2
7- Aminocephalosporanic Acid ( 7ACA)
Figure 21.
7-Aminocephalosporanic
acid
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
Microbiological
CONOVER
65
Sources
e n d e a v o r was i n d u b i t a b l y p r o v i d e d b y the k n o w l e d g e that s u p e r i o r semi synthetic p e n i c i l l i n s h a d b e e n d e r i v e d f r o m 6 - A P A .
If c e p h a l o s p o r i n C
h a d b e e n the o n l y ^ - l a c t a m a n t i b i o t i c i s o l a t e d f r o m m i c r o b i a l sources, it is q u e s t i o n a b l e
w h e t h e r β-lactam a n t i b i o t i c s of either
s e m i s y n t h e t i c o r i g i n w o u l d b e i n c l i n i c a l use t o d a y . whether
there exist
neglected
antibiotics
m i c r o b i a l or
O n e m u s t n o w ask
w h i c h are
as
p r o m i s i n g as
c e p h a l o s p o r i n C as s t a r t i n g p o i n t s f o r s t r u c t u r a l m o d i f i c a t i o n a n d w h e t h e r , b y the c r i t e r i a n o w u s e d to evaluate n e w l y d i s c o v e r e d a n t i b i o t i c s , p o t e n t i a l v a l u e of a c e p h a l o s p o r i n C
(discovered i n isolation)
the
would
be r e c o g n i z e d .
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
SEMISYNTHETIC
RIFAMYCINS.
T h e degree a n d v a r i e t y of the i m p r o v e
ments that c a n be m a d e i n a n a n t i b i o t i c that has no c l i n i c a l u t i l i t y per are w e l l i l l u s t r a t e d b y the s e m i s y n t h e t i c r i f a m y c i n s ( F i g u r e 22) T h e m i c r o b i a l m e t a b o l i t e , r i f a m y c i n B , is u n s t a b l e i n aqueous
se
(102). solutions
exposed to o x y g e n a n d owes most, i f not a l l , of its a p p a r e n t a c t i v i t y to the c o r r e s p o n d i n g 1 , 4 - q u i n o n e , r i f a m y c i n S.
R e d u c t i o n of this q u i n o n e
C H , — C —
CH 0 3
R RIFAMYCIN
Β
-CH -C0 H
-H
RIFAMYCIN
SV
-H
-H
2
2
0 -CH -C-N:
RIFAMIDE
2
RIFAMPICIN
C2H5
-H
Figure 22.
The
2
-H Η Γ Λ -C*N-N N-CH
rifamycins
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3
66
DRUG
DISCOVERY
p r o v i d e d r i f a m y c i n S V , a p a r e n t e r a l d r u g w h i c h is c l i n i c a l l y u s e d p r i m a r i l y against g r a m - p o s i t i v e a n d b i l i a r y tract infections.
The biological
consequences of a w i d e v a r i e t y of a d d i t i o n a l s t r u c t u r a l changes w e r e s u r v e y e d , a n d active
structures
capable
of systematic
variation
were
identified. s h o w e d that,
generally
s p e a k i n g , i n c r e a s e d d r u g l i p o p h i l i c i t y is a c c o m p a n i e d b y a
Study
of
the
Ν,Ν-dialkylrifamycinamides
decreased
rate of b i l i a r y excretion,
increased
increased
biological half-life and
c h e m o t h e r a p e u t i c efficacy after o r a l a d m i n i s t r a t i o n , r e l a t i v e to p a r e n t e r a l . R i f a m i d e ( r i f a m y c i n Β Ν,Ν-diethylamide)
w h i c h has a c h i e v e d significant
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
c l i n i c a l use has a t h e r a p e u t i c i n d e x s u p e r i o r to that of r i f a m y c i n S V .
The
3-formylrifamycin S V hydrazones provided compounds exhibiting good o r a l a b s o r p t i o n , l o n g b i o l o g i c a l h a l f - l i f e , l o w b i l i a r y excretion rate, a n d excellent c h e m o t h e r a p e u t i c
e x p e r i m e n t a l infections.
tuberculosis member
a c t i o n vs. g r a m - p o s i t i v e a n d
of the
series,
represents
Mycobacterium
R i f a m p i c i n , w h i c h is the o p t i m u m an important new
a d d i t i o n to
the
c a n s p e l l the difference
be
a r m a m e n t a r i u m of a n t i t u b e r c u l a r drugs. T h a t s t r u c t u r a l v a r i a t i o n of congeners
t w e e n drugs of l i t t l e or no c l i n i c a l u t i l i t y a n d drugs of w i d e a p p l i c a b i l i t y c a n also be seen b y c o m p a r i n g the properties of v a r i o u s m e m b e r s of a n t i b i o t i c classes isolated solely f r o m m i c r o b i o l o g i c a l sources. of these cases are s u m m a r i z e d i n T a b l e T h e deoxystreptamine momycin),
Some
VIII.
a m i n o g l y c o s i d e antibiotics c a t e n u l i n
neomycin, kanamycin, and gentamicin
qualitatively
ototoxicity, n e p h r o t o x i c i t y , a n d a n t i b a c t e r i a l
a c t i v i t y ; the
h o w e v e r is u s e d o n l y f o r intestinal infections
(amoebic
first
and
(paro share named
bacterial),
the second is u s e d p r i m a r i l y for l o c a l a n d i n t e s t i n a l infections w h i l e k a n a m y c i n w h i c h combines lower nephro- a n d ototoxicity w i t h good activity Table VIII. Congeners of Antibacterial Antibiotics with Improved Biological Properties Antibiotic
Class
Inferior Member
Superior Congener
Improvement
polymyxins A , C,D catenulin (paro momycin neomycin kanamycin
polymyxins Β, Ε
safety
neomycin
efficacy
kanamycin gentamicin
safety
Macrolides
picromycin
safety, efficacy
Steroids
helvolic acid, c e p h a l o s p o r i n Pi
erythromycin, oleandomycin fusidic acid
Lincomycins
celesticetin
Polymyxins Aminoglycosides
lincomycin
s p e c t r u m , efficacy
efficacy safety
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
Microbiological
CONOVER
vs. E. coli, Proteus
67
Sources
sp. a n d S. aureus is a u s e f u l p a r e n t e r a l d r u g . I n t u r n ,
g e n t a m i c i n b y v i r t u e of increased p o t e n c y vs. g r a m - p o s i t i v e a n d g r a m negative
bacteria
(especially
Pseudomonas
aeruginosa),
has
i m p r o v e d t h e r a p e u t i c i n d e x a n d s p e c t r u m of in vivo efficacy with kanamycin.
both
an
compared
I n the c y c l i c p o l y p e p t i d e class, p o l y m y x i n s Β a n d
Ε
are s u b s t a n t i a l l y less n e p h r o t o x i c t h a n the congeners A , C , a n d D w h i c h are not u s e d c l i n i c a l l y . E r y t h r o m y c i n , l i n c o m y c i n a n d f u s i d i c a c i d f o l l o w e d congeners
that never r e a c h e d m e d i c a l use.
The
improvements
e m b o d i e d i n the later d i s c o v e r e d analogs are i n d i c a t e d i n T a b l e
VIII.
I n p r i n c i p l e , the same sorts of i m p r o v e m e n t s s h o u l d b e a c h i e v a b l e
by
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
c h e m i c a l m o d i f i c a t i o n of some p r e s e n t l y k n o w n b u t u n u s e d a n t i b i o t i c s . O n e o b v i o u s reservation s h o u l d b e p o i n t e d out; i m p r o v e m e n t of therapeutic
i n d e x of a n a n t i b i o t i c w i t h retention
of a c t i v i t y m a y
the be
i m p o s s i b l e w h e r e the m e c h a n i s m of t o x i c i t y is r e l a t e d to the m e c h a n i s m of a c t i o n . T h i s is true, f o r e x a m p l e , of the a c t i n o m y c i n s . Guiding Principles for Structural Modification of Existing A n t i biotics.
Some g e n e r a l p r i n c i p l e s emerge f r o m the f o r e g o i n g d i s c u s s i o n
of d r u g d i s c o v e r y via antibiotics
s t r u c t u r a l m o d i f i c a t i o n of e x i s t i n g
( p r e s e n t l y u s e f u l or
antibacterial
otherwise).
( 1 ) D r u g d i s c o v e r y u s u a l l y requires p r i o r mastery of the c h e m i s t r y of the p a r e n t a n t i b i o t i c s t r u c t u r e : reasonably f a c i l e m e t h o d s for m a k i n g selective a n d systematic s t r u c t u r a l m o d i f i c a t i o n s m u s t b e p e r f e c t e d . A versatile i n t e r m e d i a t e f r o m w h i c h a v a r i e t y of congeners m a y b e s y n t h e s i z e d is e x c e e d i n g l y u s e f u l i n this r e g a r d . ( 2 ) T h e testing of n e w congeners m u s t take i m a g i n a t i v e c o g n i z a n c e b o t h of the o b v i o u s shortcomings of the p r o t o t y p e d r u g a n d its thera p e u t i c a l l y m a r g i n a l b u t i n t r i n s i c a l l y d e s i r a b l e properties (e.g., the w e a k in vitro a c t i v i t y of b e n z y l p e n i c i l l i n vs. g r a m - n e g a t i v e s ) . Quantitative enhancement of s u c h properties c a n effect a q u a l i t a t i v e change i n the range of t h e r a p e u t i c efficacy. P o t e n t i a l l y i m p o r t a n t properties m a y be o v e r l o o k e d i n the absence of s u c h testing. ( 3 ) C h a n g e s i n t h e r a p e u t i c a l l y r e l e v a n t properties s u c h as resistance to c h e m i c a l or e n z y m a t i c i n a c t i v a t i o n , in vitro p o t e n c y , degree of s e r u m p r o t e i n b i n d i n g , rate of excretion, etc. c a n u s u a l l y be c o r r e l a t e d w i t h changes i n specific s t r u c t u r a l a n d / o r p h y s i c a l properties. S u c h c o r r e l a tions p r o v i d e the best g u i d a n c e p r e s e n t l y a v a i l a b l e to the m e d i c i n a l chemist for the d e s i g n of congeners i n w h i c h o p t i m i z a t i o n of a p a r t i c u l a r b i o l o g i c a l p r o p e r t y is sought. (4) S u b s t a n t i a l i m p r o v e m e n t of t h e r a p e u t i c i n d e x is often either b y e n h a n c e m e n t of t h e r a p e u t i c p o t e n c y , r e d u c t i o n of t o x i c i t y , or b o t h . If the m o l e c u l a r m e c h a n i s m s of t o x i c i t y a n d are the same the prospect f o r i m p r o v e m e n t i n t h e r a p e u t i c i n d e x A n u n d e r s t a n d i n g of these m e c h a n i s m s is thus i m p o r t a n t .
possible intrinsic activity is p o o r .
Isolation of N e w Microbial Metabolites. S u r p r i s i n g l y , this d i s c o v e r y a p p r o a c h is p l a c e d o n a p a r w i t h c h e m i c a l m o d i f i c a t i o n of u s e f u l a n t i biotics as the most p r o m i s i n g for the next d e c a d e ( T a b l e V I I ) .
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
T h i s is
68
DRUG
DISCOVERY
the j u d g m e n t o f t h e p a n e l despite t h e d i s p a r a t e records of t h e t w o a p proaches
o v e r t h e past d e c a d e
r e c o g n i t i o n that
improvements
(Figure 1).
This judgment implies a
i n b i o l o g i c a l properties
structural
via
modification of a given type of antibiotic d o have practical limits.
Micro-
b i a l m e t a b o l i s m is s t i l l v i e w e d as t h e best p o t e n t i a l source o f s t r u c t u r a l l y a n d m e c h a n i s t i c a l l y n o v e l a n t i b a c t e r i a l agents ( 6 5 %
agreement).
T h e r a t i o n a l bases f o r t h e e x p e c t a t i o n that e x a m i n a t i o n o f m i c r o b i a l fermentations
can provide important n e w antibacterial
antibiotic
dis-
coveries h a v e a l r e a d y b e e n e x p l o r e d . F o r some o f t h e respondents there is also a n element of f a i t h i n v o l v e d . W h a t is e x p e c t e d is n o t r e b i r t h of Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
the e r a of p r o l i f i c discoveries b u t t h e i s o l a t i o n a n d r e c o g n i t i o n i n t h e next d e c a d e
of a f e w s i g n i f i c a n t l y i m p r o v e d congeners
of a n t i b i o t i c s
a l r e a d y i n use, a f e w a n t i b i o t i c s b e l o n g i n g to n e w s t r u c t u r a l classes which
will
have
important
p r o t o t y p e structures
therapeutic
advantages,
and a few new
w o r t h y of chemical modification.
Synthesis of Organic Compounds Structurally Unrelated to A n t i biotics.
T h e m a j o r i t y of respondents
r a n k e d d i r e c t e d synthesis
based
u p o n a b i o c h e m i c a l r a t i o n a l e as a r e l a t i v e l y u n p r o m i s i n g d i s c o v e r y a p p r o a c h . I b e l i e v e , h o w e v e r , that t h e i n c r e a s i n g l y d e t a i l e d insights ( w h i c h h a v e c o m e i n large p a r t t h r o u g h t h e s t u d y of a n t i b i o t i c m e c h a n i s m s o f action) and
c o n c e r n i n g s u c h basic processes as b a c t e r i a l c e l l w a l l , p r o t e i n ,
n u c l e i c a c i d synthesis w i l l p r o v i d e g u i d a n c e f o r a n t i b i o t i c a n a l o g
d e s i g n that is d i s t i n c t f r o m a n d c o m p l e m e n t s that d e r i v e d s t r i c t l y f r o m structure-activity
correlations.
E m p i r i c a l screening
of o r g a n i c
p o u n d s w a s r a t e d t h e least p r o m i s i n g o f t h e five approaches
com-
considered.
N o approaches d i s t i n c t l y different f r o m those l i s t e d i n T a b l e V I I w e r e p r o p o s e d b y respondents.
Projection of Antibacterial Drug Discoveries, 1970—1980 A s a l o g i c a l s e q u e l to the r a n k i n g of t h e d i s c o v e r y p o t e n t i a l o f t h e five
approaches
to a n t i b i o t i c d r u g d i s c o v e r y l i s t e d i n T a b l e V I I , t h e
p a n e l w a s a s k e d to p r e d i c t i n w h a t d r u g categories discoveries of major, substantial, or m a r g i n a l i m p o r t a n c e w o u l d b e m a d e i n t h e next
decade.
G e n e r a l l y , t h e expectations s u m m a r i z e d i n T a b l e I X are consistent the p r e v i o u s l y discussed judgments o f a p p r o a c h .
with
T h u s 9 3 % of those
( a p p r o x i m a t e l y 60 persons) w i l l i n g t o assume t h e r o l e of oracle, expect that n e w drugs s t r u c t u r a l l y r e l a t e d to a n t i b a c t e r i a l a n t i b i o t i c s n o w i n use w i l l constitute discoveries of m a j o r o r s u b s t a n t i a l i m p o r t a n c e . r a n k i n g of specific classes is as f o l l o w s : ( 1 ) c e p h a l o s p o r i n s ,
The
(2) peni-
c i l l i n s , ( 3 ) arwamacrolides, a n d ( 4 ) a m i n o g l y c o s i d e s . A m a j o r i t y of t h e respondents
expect i m p o r t a n t discoveries to b e m a d e i n e a c h o f these
classes.
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
CONOVER
Microbiological
Table IX.
69
Sources
Predicted Importance of Antibacterial D r u g Discoveries 1970-1980"
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
Substantial or Major Discovery
No Significant Discovery
Marginal Discovery
P r e s e n t l y used a n t i b a c t e r i a l antibiotics cephalosporins penicillins ansamacrolides (rifamycins) aminoglycosides macrolides lincomycins tetracyclines polymyxins
93 68 61 54 52 44 35 29 10
5 20 18 32 29 40 43 34 20
2 12 21 14 19 16 22 37 70
P r e s e n t l y u n k n o w n class of m i c r o b i a l metabolites
80
7
13
A synthetic drug unrelated i n structure to e x i s t i n g a n t i b i o t i c s
49
16
35
P r e s e n t l y k n o w n t o x i c or m a r g i n a l l y effective class
39
34
27
a
Numbers represent percentage of respondents making designation. E i g h t y p e r c e n t of respondents p r e d i c t that p r e s e n t l y u n k n o w n classes
of m i c r o b i a l metabolites w i l l p r o v i d e discoveries of m a j o r or s u b s t a n t i a l importance, w h i l e only 3 9 %
expect
that a p r e s e n t l y k n o w n t o x i c or
m a r g i n a l l y effective class w i l l d o so.
F o r t y - n i n e percent expect t h a t a
synthetic d r u g u n r e l a t e d i n s t r u c t u r e to existing a n t i b i o t i c s w i l l constitute an important discovery.
T h i s p r e d i c t i o n is s o m e w h a t at v a r i a n c e w i t h
the j u d g m e n t ( a l r e a d y d i s c u s s e d ) that m o d i f i c a t i o n of toxic or m a r g i n a l l y effective
antibiotics
is s u p e r i o r as
a research
a p p r o a c h to e m p i r i c a l
s c r e e n i n g of o r g a n i c c o m p o u n d s a n d b i o c h e m i c a l l y b a s e d d i r e c t e d s y n thesis.
Microbial Metabolite Drugs of Diverse Application, 1939—1970 T o this p o i n t , t h e d i s c u s s i o n has b e e n c o n c e r n e d e x c l u s i v e l y w i t h antibacterial antibiotics.
H i s t o r i c a l l y , these w e r e the first to g a i n w i d e -
s p r e a d use, t h e y h a v e b e e n the m o s t s t u d i e d , a n d t h e y are the numerous.
most
G e n e r a l p r i n c i p l e s of d r u g d i s c o v e r y d e r i v e d f r o m a c o n -
s i d e r a t i o n of this class s h o u l d b e a p p l i c a b l e to other classes as w e l l . T h e selective t o x i c i t y of a n t i b i o t i c s is, of course, not c o n f i n e d to b a c t e r i a l pathogens.
S o m e of the earliest d i s c o v e r e d a n t i b i o t i c s possessed
other types of a c t i v i t y . T h u s g r i s e o f u l v i n ( 1 9 3 9 ) a n d n y s t a t i n ( 1 9 5 1 ) are a n t i f u n g a l agents, a n d the a c t i n o m y c i n s ( 1 9 4 0 ) are
antineoplastic
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
70
DRUG
as w e l l as a n t i b a c t e r i a l .
DISCOVERY
T h e a c t i o n of t h e b r o a d - s p e c t r u m a n t i b i o t i c s
( c h l o r a m p h e n i c o l a n d the tetracyclines ) extends t o some p r o t o z o a , m y c o p l a s m a , r i c k e t t s i a , spirochetes, lymphogranuloma type.
a n d t h e s o - c a l l e d l a r g e viruses o f t h e
A n t i b i o t i c s are presently t h e d o m i n a n t agents
u s e d f o r t h e r a p y of diseases c a u s e d b y f u n g i a n d a l l of t h e organisms just m e n t i o n e d save p r o t o z o a ; t h e y are b e c o m i n g a n i n c r e a s i n g l y i m p o r tant factor i n cancer c h e m o t h e r a p y .
I n the animal health
m y c i n (103)
are a n t h e l m i n t i c agents f o r s w i n e
a n d d e s t o m y c i n (J04)
field,
hygro-
a n d c h i c k e n s , a n d m o n e n s i c a c i d ( 1 0 5 ) is u n d e r d e v e l o p m e n t as a n a n t i p r o t o z o a l ( c o c c i d i o s t a t i c ) agent f o r use i n c h i c k e n s . Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
(106),
v i r g i n i a m y c i n (107),
t h e m i k a m y c i n s (108)
Moenomycin
a n d zeranol (109)
are b e i n g u s e d as a n i m a l g r o w t h p r o m o t a n t s . A s t h e d i s c o v e r y rate of c l i n i c a l l y a c c e p t e d a n t i b a c t e r i a l m i c r o b i a l metabolites has f a l l e n , that f o r m i c r o b i a l metabolites h a v i n g other types of u s e f u l b i o l o g i c a l a c t i v i t y has r e m a i n e d at a f a i r l y constant l e v e l ( T a b l e X).
E x a m i n a t i o n of t h e structures of t h e m i c r o b i a l metabolites
whose
p r i m a r y use is n o t as c h e m o t h e r a p e u t i c a n t i b a c t e r i a l agents shows that most d o n o t b e l o n g to a n y of t h e major s t r u c t u r a l classes of a n t i b a c t e r i a l a n t i b i o t i c s . F u r t h e r m o r e , representatives o f u s e f u l n e w classes h a v e b e e n d i s c o v e r e d w i t h i n the past d e c a d e .
N e w structures w i l l b e f o u n d w h e n
m i c r o b i a l fermentations are tested f o r n e w types of b i o l o g i c a l a c t i v i t y . Table X .
Metabolite
Microbial Metabolites with Useful Antifungal, Antiparasitic, or Antineoplastic A c t i v i t y Year of First Literature Report Biological Activity
Griseofulvin Fumagillin Nystatin Paromomycin Trichomycin Candicidin Sarkomycin Dactinomycin Amphotericin Β Mitomycin C Hygromycin Β Pimaricin Chromomycin A Hamycin Mithramycin Daunomycin Pyrrolnitrin Destomycin Bleomycin Monensic acid Adriamycin
3
antifungal antiprotozoal antifungal antiprotozoal antifungal/antiprotozoal antifungal antineoplastic antineoplastic antifungal antineoplastic anthelmintic antifungal antineoplastic antifungal antineoplastic antineoplastic antifungal anthelmintic antineoplastic antiprotozoal antineoplastic
1939 1949 1950 1952 1952 1953 1953 1954 1956 1957 1958 1958 1960 1960 1962 1964 1964 1965 1966 1968 1969
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
Microbiological
CONOVER
Clearly,
71
Sources
microbial metabolism should be
source of d r u g s f o r a v a r i e t y of uses.
considered a
potential
O n e q u e s t i o n t h a t arises i n this
c o n n e c t i o n concerns the r e l a t i v e f r e q u e n c y w i t h w h i c h different t y p e s of a c t i v i t y o c c u r .
A f e w authors h a v e a p p r o a c h e d this q u e s t i o n
by
a n a l y z i n g the types of b i o l o g i c a l a c t i v i t y r e p o r t e d f o r k n o w n a n t i b i o t i c s . D a t a a b s t r a c t e d f r o m K u r y l o w i c z (110)
a n d B e r d y a n d M a g y a r (30)
are
shown i n Table X I . Table X I .
Reported Incidence of Inhibitory Action of Known Antibiotics
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
Γ
IP
Gram-positive bacteria Gram-negative bacteria A c i d fast bacteria F u n g i a n d yeasts
37% 15% 16% 20%
Protozoa Viruses Tumors'
4% 3% 21%
α b c
Staphylococcus aureus Escherichia coli Mycobacterium sp. Candida albicans dermatophyta protozoa viruses tumors helminths
60.5% 29.2% 25% 25% 16% 11% 7% 4% 0.2%
W. Kurylowicz {109). J. Berdy and K. Magyar (80). Reported as cytostatic activity. T h e m a j o r i t y of the p a n e l believes, h o w e v e r , that the f r e q u e n c y w i t h
w h i c h a p a r t i c u l a r t y p e of b i o l o g i c a l a c t i v i t y has b e e n d i s c o v e r e d has b e e n d e t e r m i n e d to a n i m p o r t a n t extent b y the f r e q u e n c y w i t h w h i c h effective tests h a v e b e e n m a d e f o r s u c h a c t i v i t y ; ( 9 0 %
agreement).
In
t u r n , this f r e q u e n c y has b e e n d e t e r m i n e d l a r g e l y b y the a v a i l a b i l i t y of (1)
a h i g h c a p a c i t y r e p r o d u c i b l e test system s u i t a b l e f o r use w i t h fer
m e n t a t i o n broths a n d ( 2 )
r a p i d , sensitive m e t h o d s f o r d e t e c t i n g a n d
a s s a y i n g b i o l o g i c a l l y active m a t e r i a l s a n d thus f o r g u i d i n g p u r i f i c a t i o n and isolation ( 9 6 % been
tested
agreement).
I n g e n e r a l , m i c r o b i a l metabolites h a v e
narrowly for biological activity ( 8 4 %
agreement),
pre
s u m a b l y because specific laboratories h a v e c o n c e n t r a t e d o n specific types of a c t i v i t y w h i c h w e r e c o n s i d e r e d i m p o r t a n t a n d w h i c h c o u l d b e d e t e c t e d b y a v a i l a b l e in vitro
methods.
B e c a u s e of this, u s e f u l d r u g s h a v e u n
d o u b t e d l y b e e n m i s s e d . I d o n o t h i n k the p o s i t i o n of t h e p a n e l is that a l l types of b i o l o g i c a l a c t i v i t y o c c u r w i t h e q u a l f r e q u e n c y .
Indeed, the
p u b l i s h e d studies (e.g., those of A v r a a m o v a et al. a n d of B u r k h o l d e r ) i n w h i c h large n u m b e r s of isolates h a v e b e e n tested f o r different types of a c t i v i t y i n d i c a t e o t h e r w i s e (111,
112).
U n t i l , however, large numbers
of isolates are tested i n v a r i o u s m e d i a b y e q u a l l y sensitive d e t e c t i o n m e t h o d s f o r a v a r i e t y of b i o l o g i c a l activities, n o accurate estimate of the intrinsic frequencies
can be
made.
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
72
DRUG
DISCOVERY
The Future Role of Microbial Metabolites in Drug Research T h e p a n e l a g r e e d ( 8 1 % ) that i n t h e next d e c a d e m i c r o b i a l m e t a b o lites w i l l c o n t i n u e to p r o v i d e significant discoveries n o t o n l y i n areas of h u m a n m e d i c i n e a n d a n i m a l h e a l t h i n w h i c h d r u g s of m i c r o b i o l o g i c a l o r i g i n h a v e b e e n p r o m i n e n t i n the past 30 years b u t also i n n e w fields. T a b l e X I I tabulates the j u d g m e n t s of t h e p a n e l c o n c e r n i n g t h e i m p o r t a n c e that s e c o n d a r y m i c r o b i a l metabolites w i l l h a v e a m o n g n e w d r u g discoveries i n m a j o r fields of c h e m o t h e r a p y a n d i n t h e r e a l m of p h y s i o l o g i c a l l y a c t i v e d r u g s . T h e panel's o v e r v i e w of t h e r o l e w h i c h m i c r o b i a l
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
metabolites w i l l p l a y i n t h e n e w d r u g discoveries of t h e next d e c a d e i s : among antibacterial a n d antifungal drugs, a continuing major role; among antiprotozoal a n d animal g r o w t h stimulating drugs, a n increasingly i m portant role; among antineoplastic, antiviral a n d anthelmintic drugs, a significant b u t n o t major role.
M o s t i n t e r e s t i n g is the v i e w of 4 6 % of
t h e respondents that m i c r o b i a l metabolites w i l l b e a m o n g t h e s u b s t a n t i a l or most i m p o r t a n t discoveries of d r u g s h a v i n g p h y s i o l o g i c a l actions. W h e n the t i m e p e r i o d c o n s i d e r e d is 20 years, this percentage 74%
rises to
a n d exceeds that f o r a n t i n e o p l a s t i c a n d a n t i v i r a l d r u g s . ( A l t h o u g h
this subject is b e y o n d t h e scope of this p a p e r , i t is e x p e c t e d that m i c r o b i a l metabolites w i l l also p r o v i d e n e w h e r b i c i d e s , insecticides, f u n g i c i d e s , a n d p l a n t g r o w t h regulators i n the f u t u r e . ) W h a t is t h e basis f o r t h e v i e w that m i c r o b i a l m e t a b o l i t e d r u g s w i l l l e a p t h e b o u n d s of i n f e c t i o u s disease a n d cancer c h e m o t h e r a p y to w h i c h t h e y s e e m i n g l y h a v e b e e n c o n f i n e d since 1940? Just as i t w a s clear p r i o r to 1940 that m i c r o o r g a n i s m s p r o d u c e a v a r i e t y of a n t i b a c t e r i a l a n d a n t i Table XII. Predicted Importance of Microbial Metabolite Discoveries 1970-1980 by D r u g Category
Drug
Category
Antibacterial Antiprotozoal Antifungal Antiviral Antineoplastic A n i m a l growth stimulant Anthelmintic Drugs having physiological actions"
Among Most Important Discoveries
Among Substantial Discoveries
Among Minor Discoveries
Not Among Significant Discoveries
39 14 20 31 27
61 54 54 18 18
0 12 16 13 16
0 20 10 38 39
22 10
55 35
7 20
16 35
22
24
3
51
"For example, drugs acting on the central nervous system, cardiovascular system, respiratory system, diabetes, rheumatoid arthritis, etc.
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
Microbiological
CONOVER
73
Sources
f u n g a l substances, t o d a y it is clear that m i c r o o r g a n i s m s p r o d u c e a v a r i e t y of metabolites ( i n a d d i t i o n to v i t a m i n s a n d ergot a l k a l o i d s ) w h i c h affect o r h a v e the p o t e n t i a l to affect p h y s i o l o g i c a l processes i n m a n a n d a n i mals.
( T h i s subject has r e c e n t l y b e e n r e v i e w e d b y P e r l m a n a n d P e r u z -
z o t t i (113).)
T h e examples c i t e d i n T a b l e X I I I demonstrate this p o i n t .
T h e s i t u a t i o n is, of course, not strictly p a r a l l e l to that of 1940 b e c a u s e p h y s i o l o g i c a l l y active substances d i s c o v e r e d t o d a y w i l l not enter a thera p e u t i c v a c u u m as d i d n e w a n t i b a c t e r i a l d r u g s 30 years ago.
Chemical
m o d i f i c a t i o n of n e w l e a d structures m a y b e r e q u i r e d b e f o r e n e w d r u g s
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
actually
emerge.
Table XIII.
Microbial Metabolites having Demonstrated or Potential Physiological A c t i v i t y Type of Biological
Compound Fusaric acid Colisan Monorden Muscarine Slaframine Serotonin Psilocybin and Psilocin HO-2135 Nigrifactin Zeranol Mycophenolic acid EJrgosterol Leupeptins
Pepstatin Chymostatin Desferrioxamine-B
Activity
hypotensive, dopamine-βhydroxylase inhibition antispasmodic sedative parasympathomimetic parasympathomimetic biogenic a m i n e hallucinogenic serotonin a n t a g o n i s m antihistaminic, hypotensive estrogenic, a n a b o l i c immunosuppressive pro-vitamin D plasmin and t r y p s i n proteolysis inhibition, thrombokinase inhibition pepsin i n h i b i t i o n chymotrypsin inhibition t h e r a p e u t i c for bronze diabetes, hemochromatosis, a n d acute i r o n p o i s o n i n g (via i r o n chelation)
Reference (120) (121) (122-4) (125) (126,127) (128,129) (128,130) (131) (132) (109) (133) (184)
(135) (136,137) (138)
(139)
Japanese w o r k e r s are at the f o r e f r o n t i n the search f o r p h y s i o l o g i c a l l y active m i c r o b i a l metabolies.
T h e i r d e t e c t i o n m e t h o d s are w o r t h y
of n o t e for l a c k of satisfactory testing m e t h o d s has l o n g h a m p e r e d this search.
U m e z a w a a n d his c o - w o r k e r s u s e d in vitro
enzyme inhibition
tests to detect f u s a r i c a c i d , p e p s t a t i n , c h y m o s t a t i n , a n d the l e u p e p t i n s . N i g r i f a c t i n w a s d i s c o v e r e d b y T e r a s h i m a a n d c o - w o r k e r s b y seeking i n experimental
fermentations,
materials
h a v i n g the
chemical
properties
of a l k a l o i d s . F u r t h e r examples of the o c c u r r e n c e of u s e f u l or p o t e n t i a l l y u s e f u l p h y s i o l o g i c a l a c t i v i t y a m o n g m i c r o b i a l metabolites
are e m e r g i n g f r o m
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
74
DRUG
DISCOVERY
observations of s e c o n d a r y b i o l o g i c a l properties of antibiotics. T h u s , some of the a n t i f u n g a l p o l y e n e m a c r o l i d e s ( c a n d i c i d i n , a m p h o t e r i c i n B , filipin ) have
been
r e p o r t e d to r e d u c e
g l a n d v o l u m e i n dogs (114,
115).
a n t i - i n f l a m m a t o r y a c t i v i t y (116,
s e r u m cholesterol
levels
and
prostate
G r i s e o f u l v i n has b e e n r e p o r t e d to have 117,
118)
and mithramycin, in addition
to its b e n e f i c i a l effect u p o n testicular t u m o r s , is a n t i h y p e r c a l c e m i c .
It is
interesting that the p o l y e n e m a c r o l i d e s deplete cholesterol, m i t h r a m y c i n depletes c a l c i u m , a n d d e s f e r r i o x a m i n e Β ( T a b l e X I I I ) depletes i r o n , i n v i e w of the fact that these m i c r o b i a l metabolites
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
the same materials in
f o r m complexes
with
vitro.
Conclusion F o r the foreseeable f u t u r e , i m p o r t a n t n e w d r u g discoveries w i l l be d e r i v e d f r o m p r o d u c t s of m i c r o b i a l m e t a b o l i s m .
If the f u l l potentialities
of this d i s c o v e r y source are to be r e a l i z e d , d i s c o v e r y processes w i l l h a v e to be r e f i n e d a n d b r o a d e n e d i n scope. and
T h e s e are some of the
o p p o r t u n i t i e s that I see for the d e c a d e
challenges
ahead:
( 1 ) T h e standards for acceptance of n e w a n t i b a c t e r i a l drugs are n o w e x c e e d i n g l y h i g h a n d w i l l b e c o m e e v e n m o r e d e m a n d i n g . T h e re m a i n i n g unsatisfied t h e r a p e u t i c needs constitute d i f f i c u l t targets for d r u g t h e r a p y . I n v i e w of this, r e l a t i v e l y f e w n e w l y d i s c o v e r e d m i c r o b i a l metabolites w i l l q u a l i f y per se for c o m m e r c i a l i z a t i o n a n d general c l i n i c a l a p p l i c a t i o n i n this field. P r e l i m i n a r y testing of n e w m i c r o b i a l metabolites s h o u l d t h e n i d e n t i f y b o t h p o t e n t i a l d r u g s a n d p r o t o t y p e structures w h o s e b i o l o g i c a l a n d c h e m i c a l properties justify s t r u c t u r a l m o d i f i c a t i o n d e s i g n e d to u p g r a d e b i o l o g i c a l p e r f o r m a n c e . T h e roster of p r e v i o u s l y d i s c o v e r e d , s t r u c t u r a l l y n o v e l b u t u n u s e d antibiotics s h o u l d be r e e x a m i n e d for sub stances of the latter t y p e . A p p l i c a t i o n of b i o c h e m i c a l tests for m e c h a n i s m a n d selectivity of a c t i o n s h o u l d h e l p d e t e r m i n e w h i c h prototypes h o l d the most p r o m i s e . ( 2 ) A n t i b i o t i c s p r o v i d e some of the best o p p o r t u n i t i e s for u n d e r standing d r u g action i n intimate detail. Research directed toward i m p r o v e m e n t of a t h e r a p e u t i c a l l y i m p o r t a n t p r o p e r t y of a n a n t i m i c r o b i a l agent s h o u l d seek an u n d e r s t a n d i n g of the c r i t i c a l d e t e r m i n a n t ( s ) of that p r o p e r t y . T h u s to increase in vitro p o t e n c y one m a y n e e d to increase resistance to e n z y m a t i c d e s t r u c t i o n , increase rate of p e n e t r a t i o n of the c e l l w a l l or m e m b r a n e , or increase i n t r i n s i c p o t e n c y at the m o l e c u l a r site of a c t i o n . W h e r e a n t i m i c r o b i a l d r u g a c t i o n c a n b e s t u d i e d at the m o l e c u l a r l e v e l , the o p p o r t u n i t y s h o u l d b e g r a s p e d to l e a r n as m u c h as possible a b o u t the effect of changes i n e l e c t r i c a l , g e o m e t r i c a l , a n d c h e m i c a l properties o n this a c t i o n . W i t h o u t a f u l l u n d e r s t a n d i n g of the n a t u r e of a n d r e q u i r e m e n t s f o r f r u i t f u l d r u g - r e c e p t o r interactions, n e i t h e r basic b i o c h e m i c a l studies nor x-ray v i s u a l i z a t i o n of receptors w i l l p r o v i d e the k e y to r a t i o n a l d e s i g n of drugs. ( 3 ) T h e systematic s t r u c t u r a l v a r i a t i o n n e e d e d f o r d r u g d i s c o v e r y studies w i l l often be i m p o s s i b l e w i t h o u t mastery of c o m p l e x c h e m i s t r y
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3.
CONOVER
Microbiological
75
Sources
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
a n d w i t h o u t the p e r f e c t i o n of s i m p l e a n d versatile synthetic m e t h o d s a p p l i c a b l e to i m p o r t a n t d r u g types. W e r e s u c h syntheses n o w a v a i l a b l e for β-lactams, m a c r o l i d e s , a n d a m i n o g l y c o s i d e s , they c o u l d p r o v i d e pres e n t l y inaccessible s t r u c t u r a l variants for b i o l o g i c a l s t u d y . T h i s is a c h a l l e n g e to w h i c h a c a d e m i c o r g a n i c chemists m i g h t w e l l r e s p o n d . ( 4 ) M i c r o o r g a n i s m s that are m o r e d i f f i c u l t to collect, isolate, a n d g r o w s h o u l d b e e x a m i n e d , i n c l u d i n g those that h a v e resisted a r t i f i c i a l c u l t i v a t i o n i n the past. E x a m i n a t i o n of e x p e r i m e n t a l m i c r o b i a l f e r m e n tations m u s t b e c o m e m o r e t h o r o u g h a n d i m a g i n a t i v e to detect m i n o r active components, substances f o r m e d o n l y u n d e r u n u s u a l c o n d i t i o n s , a n d substances h a v i n g diverse b i o l o g i c a l activities. M e d i a a n d c o n d i t i o n s that are o p t i m a l for f o r m a t i o n of a n a n t i b a c t e r i a l m e t a b o l i t e m a y w e l l not be o p t i m a l f o r f o r m a t i o n of substances h a v i n g other types of a c t i v i t y . Sensitive a n d specific in vitro tests i n d i c a t i v e of p o t e n t i a l p h y s i o l o g i c a l a c t i v i t y s h o u l d b e p e r f e c t e d a n d a p p l i e d as screening tools. N e w tech n o l o g y s u c h as h i g h pressure l i q u i d c h r o m a t o g r a p h y s h o u l d be a d a p t e d to the r a p i d i s o l a t i o n of r e l a t i v e l y p u r e c o m p o n e n t s f r o m m i c r o b i a l fer mentations thus f a c i l i t a t i n g the i s o l a t i o n a n d in vivo testing of p o t e n t i a l p h y s i o l o g i c a l l y active c o m p o n e n t s . C o u p l i n g of the most r a p i d a n d efficient separation a n d i d e n t i f i c a t i o n t e c h n i q u e s w i t h c o m p u t e r analysis of d a t a w i l l be r e q u i r e d . I n c o n c l u s i o n , a s i m p l e t r u t h bears r e p e t i t i o n w h i c h has b e e n a m p l y d e m o n s t r a t e d i n the d i s c o v e r y endeavors r e v i e w e d i n this p a p e r . w h o m a k e l a n d m a r k discoveries h a v e m i n d s r e c e p t i v e to the
Those
precedent-
b r e a k i n g significance o c c a s i o n a l l y c o n t a i n e d i n u n c o n v e n t i o n a l , obscure, a n o m a l o u s , or n e g l e c t e d
observations,
interpretations,
and
hypotheses.
T h e y b r e a k the i n t e l l e c t u a l b o n d s i m p o s e d o n most of us b y i m m e r s i o n i n i m m e d i a t e t e c h n i c a l p r o b l e m s a n d b y a c c e p t a n c e of c u r r e n t scientific r a t i o n a l i z a t i o n s , fashions, a n d d o g m a s . I n c o n s i d e r i n g the d e v e l o p m e n t s c i t e d here that h a v e a p p e a r e d so o b v i o u s after the fact (e.g., the r e c o g n i t i o n of u s e f u l a n t i b i o t i c s a n d the i s o l a t i o n a n d use of 6 - a m i n o p e n i c i l l a n i c a c i d ) , w h a t i m p o r t a n t
advances
n o w lie b e f o r e a l l of us, u n r e c o g n i z e d b u t easily attainable if o n l y w e c o u l d r e m o v e the scales f r o m o u r eyes?
F o r the present, I j o i n L o u i s
Pasteur i n his l a m e n t " M e s s i e u r s , c'est les m i c r o b e s q u i a u r o n t le d e r n i e r mot."
Acknowledgment T h e a u t h o r expresses his a p p r e c i a t i o n to a l l w h o so e n t h u s i a s t i c a l l y a n d p a i n s t a k i n g l y r e p l i e d to the questionnaire, to his colleagues, W a l t e r Celmer, F r a n k Sciavolino, John Routien, Kenneth Butler, and M a x M i l l e r for the ideas, i n f o r m a t i o n , a n d a d v i c e w h i c h t h e y generously c o n t r i b u t e d d u r i n g the p r e p a r a t i o n of this m a n u s c r i p t , a n d finally to B l a n c h e B r a l i c h , R a y m o n d Sumner,
a n d D a n i e l G i l l e n for their i n v a l u a b l e a i d i n the
c o m p i l a t i o n of q u e s t i o n n a i r e replies, v a l i d a t i o n of references, a n d p r e p a r a t i o n of tables a n d
figures.
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
76
DRUG
DISCOVERY
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
Literature Cited (1) Dubos, R. J., Proc. Soc. Exp. Biol. Med. (1939) 40, 311. (2) Schatz, Α., Bugie, E., Waksman, S. Α., Proc. Soc. Exp. Biol. Med. (1944) 55, 66. (3) Waksman, S. Α., Woodruff, Η. B., Proc. Soc. Exp. Biol. Med. (1940) 45, 609. (4) Waksman, S. Α., Woodruff, H. B., Proc. Soc. Exp. Biol. Med. (1942) 49, 207. (5) Chain, E., Florey, H. W., Gardner, A. D., Heatley, N . G., Jennings, Μ. Α., Orr-Ewing, J., Sanders, A. G., Lancet (1940) 2, 226. (6) Fleming, Α., Brit.J.Exp. Pathol. (1929) 10, 226. (7) Waksman, S. Α., "Microbial Antagonisms and Antibiotic Substances," The Commonwealth Fund, New York, 1945. (8) Florey, H. W., Chain, E., Heatley, N . G., Jennings, Μ. Α., Abraham, E. P., Florey, M. E., "Antibiotics," Vol. I, Oxford University Press, London, New York, Toronto, 1949. (9) Consden, R. Α., Gordon, A. H., Martin, A. J. P., Biochem. J. (1944) 38, 224. (10) Boer, C. de, Dietz, Α., Wilkins, J. R., Lewis, C. N., Savage, G. M., Antibiot. Annu. (1955) 1954-55, 831. (11) Hoeksema, H., J. Amer. Chem. Soc. (1964) 86, 4224. (12) Hoeksema, H., Bannister, B., Birkenmeyer, R. D., Kagan, F., Magerlein, B. J., MacKellar, F. Α., Schroeder, W., Slomp, G., Herr, R. R.,J.Amer. Chem. Soc. (1964) 86, 4223. (13) Mason, D. J., Dietz, Α., Boer, C. de, Antimicrob. Ag. Chemother.—1962 (1963) 554. (14) Burton, H. S., Abraham, E. P., Biochem. J. (1951) 50, 168. (15) Chain, E., Florey, H. W., Jennings, Μ. Α., Williams, T. I., Brit. J. Exp. Pathol. (1943) 24, 108. (16) Godtfredsen, W. O., Daehne, W. Von, Vangedal, S., Marquet, Α., Arigoni, D., Malera, Α., Tetrahedron (1965) 21, 3505. (17) Godtfredsen, W. O., Jahnsen, S., Lorck, H., Roholt, K., Tybring, L., Nature (London) (1962) 193, 987. (18) Hallsall, T. J., Jones, Ε. H., Lowe, G., Newall, C. E., Chem. Commun. (1966) 68. (19) Iwasaki, S., Sair, M. I., Igarashi, H., Okuda, S., Chem. Commun. (1970) 1119. (20) Oxley, P., Chem. Commun. (1966) 729. (21) Waksman, S. Α., Horning, E. S., Spencer, Ε L., J. Bacteriol. (1943) 45, 233. (22) Cooper, D. J., Marigliano, H. M., Yudis, M. D., Traubel, T., J. Infec. Dis. (1969) 119, 342. (23) Ogawa, H., Ito, T., Kondo, S., Inoue, S., Ibid., Ser. A (1958) 11, 169. (24) Umezawa, H., Ueda, M., Maeda, K., Yagishita, K., Kondo, S., Okami, Y., Utahara, R., Osato, Y., Nitta, K., Takeuchi, T., J. Antibiot., Ser. A (1957) 10, 181. (25) Weinstein, M. J., Luedemann, G. M., Oden, E. M., Wagman, G. H., Antimicrob. Ag. Chemother—1963 (1964) 1. (26) Bycroft, B. W., Cameron, D., Croft, L. R., Johnson, A. W., Chem. Com mun. (1968) 1301. (27) Finlay, Α., Hobby, G. L., Hochstein, F. Α., Lees, T. M., Lenert, T. F., Means, J. Α., P'An, S. Y., Regna, P. P., Routien, J. B., Sobin, Β. Α., Tate, Κ. B., Kane, J. H., Amer. Rev. Tuberc. (1957) 63, 1. (28) Herr, Ε. B., Jr., Antimicrob. Ag. Chemother.—1962 (1963) 201. (29) Lechowske, L., Tetrahedron Letters (1969) 479. (30) Berdy, J., Magyar, K., Process Biochem. (1968) 3 (10), 45.
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
3.
CONOVER
Microbiological
Sources
77
(31) Perlman, D., "Antibiotics," p. 11, Rand McNally, Chicago, 1970. (32) Miller, I. M., Stapley, E. O., Chaiet, L., Bacteriol. Proc. (1962) 32. (33) Stapley, E. O., Miller, T. W., Jackson, M., Antimicrob. Ag. Chemother. —1968 (1969) 268. (34) Mallams, A. K., Jaret, R. S., Reimann, H., J. Amer. Chem. Soc. (1969) 91, 7506. (35) Waksman, S. Α., Advan. Appl. Microbiol. (1969) 11, 1. (36) Bartz, Q. R., Controulis, J., Crooks, Η. M. Jr., Rebstock, M. C., J. Amer. Chem. Soc. (1946) 68, 2163. (37) Peck, R. L., Hoffhine, C. E. Jr., Folkers, K., J. Amer. Chem. Soc. (1946) 68, 1390. (38) Tatsuoka, S., Kasuka, T., Miyake, Α., Inoue, M., Hitomi, H., Shiraishi, Y., Iwasaki, H., Imanishi, M., Pharm. Bull. (1957) 5, 343. (39) Coghill, R. D., Stodola, F. H., Wachtel, J. L., "The Chemistry of Peni cillin," Η. T. Clark, J. R. Johnson, R. Robinson, Eds., p. 680, Prince ton University Press, Princeton, 1949. (40) Controulis, J., Rebstock, M. C., Crooks, Η. M. Jr., J. Amer. Chem. Soc. (1949) 71, 2463. (41) Long, L. M., Troutman, H. D., J. Amer. Chem. Soc. (1949) 71, 2469, 2473. (42) Rebstock, M. C., Crooks, H. M. Jr., Controulis, J., Bartz, Q. R., J. Amer. Chem. Soc. (1949) 71, 2458. (43) Smadel, J. E., "Chloromycetin (chloramphenicol)," T. E. Woodward, C. L. Wisseman, Eds., p. xi, Medical Encyclopedia, Inc., New York, 1958. (44) Cutler, R. Α., Stenger, R. J., Suter, C. M., J. Amer. Chem. Soc. (1952) 74, 5475. (45) Robinson, F. Α., "Antibiotics," Pitman, New York, 1953. (46) Boothe, J. H., Morton, J. II, Petisi, J. P., Wilkinson, R. G., Williams, J. H., J. Amer. Chem. Soc. (1953) 75, 4621. (47) Conover, L. H., U.S. Patent 2,699,054 (Jan. 11, 1955). (48) Conover, L. H., Moreland, W. T., English, A. R., Stephens, C. R., Pilgrim, F. J., J. Amer. Chem. Soc. (1953) 75, 4622. (49) Hochstein, F. Α., Stephens, C. R., Conover, L. H., Regna, P. P., Pasternack, R., Brunings, K. J., Woodward, R. B., J. Amer. Chem. Soc. (1952) 74, 3708. (50) Hochstein, F. Α., Stephens, C. R., Conover, L. H., Regna, P. P., Pasternack, R., Gordon, P. N., Pilgrim, F. J., Brunings, K. J., Woodward, R. B., J. Amer. Chem. Soc. (1953) 75, 5455. (51) Stephens, C. R., Conover, L. H., Hochstein, F. Α., Regna, P. P., Pilgrim, F. J., Brunings, K. J., Woodward, R. B., J. Amer. Chem. Soc. (1952) 74, 4976. (52) Stephens, C. R., Conover, L. H., Pasternack, R., Hochstein, F. Α., Moreland, W. T., Regna, P. P., Pilgrim, F. J., Brunings, K. J., Woodward, R. B., J. Amer. Chem. Soc. (1954) 76, 3568. (53) Minieri, P. P., Firman, M. C., Mistretta, A. G., Abbey, Α., Bricker, C. E., Rigler, Ν. E., Sokol, H., Antibiot. Annu. (1955) 1953-54, 81. (54) Blackwood, R. K., Beereboom, J. J., Rennhard, Η. H., Schach von Wittenau, M., Stephens, C. R., J. Amer. Chem. Soc. (1963) 85, 3943. (55) Stephens, C. R., Beereboom, J. J., Rennhard, H. H., Gordon, P. N., Murai, Κ., Blackwood, R. K., Schach von Wittenau, M., J. Amer. Chem. Soc. (1963) 85, 2643. (56) Woodward, R. B., "Perspectives in Organic Chemistry," A. Todd, Ed., p. 160, Interscience, New York, 1956. (57) Stephens, C. R., Murai, Κ., Rennhard, Η. Η., Conover, L. H., Brunings, K. J., J. Amer. Chem. Soc. (1958) 80, 5324.
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
78
DRUG
DISCOVERY
(58) McCormick, J. R. D., Jensen, E. R., Miller, P. Α., Doerschuk, A. P., J. Amer. Chem. Soc. (1960) 82, 3381. (59) Martell, M. J. Jr., Boothe, J. H., J. Med. Chem. (1967) 10, 44. (60) Schach von Wittenau, M., Supplement to Chemotherapy (1968) 13, 41. (61) Schach von Wittenau, M., Delahunt, C. S., J. Pharmacol. Exp. Ther. (1966) 152, 164. (62) Schach von Wittenau, M., Yeary, R., J. Pharmacol. Exp. Ther. (1963) 140, 258. (63) Scriabine, Α., Schach von Wittenau, M., Yu, M., Furman, J., Chemotherapia (1964) 8, 85. (64) Behrens, Ο. K., Corse, J., Edwards, J. P., Garrison, L., Jones, R. G., Soper, R. F., Van Abeele, F. R., Whitehead, C. W., J. Biol. Chem. (1948) 175, 793. (65) Brandl, E., Margreiter, H., Oesterr. Chem. Ztg. (1954) 55, 11. (66) Stewart, G. T., "The Penicillin Group of Drugs," p. 21, Elsevier, New York, 1965. (67) Sheehan, J.C.,"Amino Acids and Peptides with Antimetabolic Activity," G. E. W. Wolstenhome, C. M. O'Connor, J. A. Churchill, Eds., p. 258, London, 1958. (68) Sheehan, J. C., Henery-Logan, K. R., J. Amer. Chem. Soc. (1959) 81, 5838. (69) Burger, Α., "Medicinal Chemistry," Vol. II, p. 880, Interscience, New York, 1951. (70) Hockenhull, D. J. D., Ramachandran, K., Walker, T. K., Arch. Biochem. (1969) 23, 160. (71) Sakaguchi, K., Murao, S., J. Agr. Chem. Soc. Jap. (1950) 23, 411. (72) Kato, K., J. Antibiot. Ser. A (1953) 6, 130, 184. (73) Kato, T., Kagaku (Tokyo) (1953) 23, 217. (74) Batchelor, F. R., Doyle, F. P., Nayler, J. H. C., Rolinson, G. Ν., Nature (London) (1959) 183, 257. (75) Batchelor, F. R., Chain, Ε. B., Richards, M., Rolinson, G. N.,Proc.Roy. Soc., Ser. Β (1961) 154, 522. (76) Claridge, C. Α., Gourevitch, Α., Lein, J., Nature (London) (1960) 187, 237. (77) Huang, H. T., English, A. R., Seto, T. R., Shull, G. M., Sobin, Β. Α., J. Amer. Chem. Soc. (1960) 82, 3790. (78) Kaufmann, W., Bauer, K., Naturwiss. (1960) 47, 474. (79) Rolinson, G. Ν., Batchelor, F. R., Butterworth, D., Cameron-Wood, J., Cole, M., Eustace, G. C., Hart, M. V., Richards, M., Chain, Ε. B., Nature (London) (1960) 187, 236. (80) Perron, Y. G., Minor, W. F., Holdrege, C. I., Gottstein, W. J., Godfrey, J. C., Crast, L. B., Babel, R. B., Cheney, L. C., J. Amer. Chem. Soc. (1960) 82, 3934. (81) Doyle, F. P., Nayler, J.) H. C., Smith, H., Stove, E. R., J. Chem. Soc. (London) (1961) 191, 1091. (82) Abraham, E. P., G. Microbiol. (1956) 2, 102. (83) Gourevitch, Α., Hunt, G. Α., Luttinger, J. R., Carmack, C.C.,Lein, J., Proc. Soc. Exp. Biol. Med. (1961) 107, 455. (84) Brain, E. G., Doyle, F. P., Hardy, K., Long, A. A. W., Mehta, M. D., Miller, D., Nayler, J. H. C., Soulal, M. J., Stove, E. R., Thomas, G. R., J. Chem. Soc. (London) (1962) 1445. (85) Doyle, F. P., Long, A. A. W., Nayler, J. H. C., Stove, E. R., Nature (London) (1961) 192, 1183. (86) Doyle, F. P., Nayler, J. H. C., Waddington, H. R. J., Hanson, J. C., Thomas, G. R., J. Chem. Soc. (London) (1963) 497. (87) Doyle, F. P., Fosker, G. R., Nayler, J. H. C., Smith, H., J. Chem. Soc. (London) (1962) 1440.
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
3.
CONOVER
Microbiological
Sources
79
(88) Izaki, K., Matsuhashi, M., Strominger, J. L., Proc. Nat. Acad. Sci. (U.S.) (1966) 55, 656. (89) Acred, P., Brown, D. M., Knudsen, E. T., Rolinson, G. N., Sutherland, R., Nature (London) (1967) 215, 25. (90) Hobbs, D. C., U.S. Patent 3,142,673 (July 28, 1964). (91) Shier, W. T., Rinehart, K. L. Jr., Gottlieb, D., Proc. Nat. Acad. Sci. (U.S.) (1969) 63, 198. (92) Hendlin, D., Dulaney, E. L., Drescher, D., Cook, T., Chaiet, L., Biochim. Biophys. Acta (1962) 58, 635. (93) Elander, R. P., "Fermentation Advances," D. Perlman, Ed., p. 89, Aca demic, New York, 1969. (94) McCormick, J. R. D., Sjolander, N. O., Hirsch, U., Jensen, E. R., Doerschuk, A. P., J. Amer. Chem. Soc. (1957) 79, 4561. (95) Lancini, G., Hengeller, C., J. Antibiot. (1969) 22, 637. (96) Keil, J. G., Hooper, I. R., Schreiber, R. H., Swanson, C. L., Godfrey, J. C., Antimicrob. Ag. Chemother.—1969 (1970) 200. (97) Price, K. E., Chisholm, D. R., Leitner, F., Misiek, M., Antimicrob. Ag. Chemother.—1969 (1970) 209. (98) Abraham, E. P., Newton, G. G. F., Biochem. J. (1961) 79, 377. (99) Chauvette, R. R., Flynn, Ε. H., Jackson, B. G., Lavagnino, E. R., Morin, R. B., Mueller, R. Α., Pioch, R. P., Roeske, R. W., Ryan, C. W., Spencer, J. L., Van Heyningen, E., Antimicrob. Ag. Chemother.— 1962 (1963) 687. (100) Wick, W. E., Appl. Microbiol. (1967) 15, 765. (101) Morin, R. B., Jackson, B. G., Flynn, Ε. H., Roeske, R. W., J. Amer. Chem. Soc. (1962) 84, 3400. (102) Sensi, P., Maggi, N., Furesz, S., Maffia, G., Antimicrob. Ag. Chemother. —1966 (1967) 699. (103) Mann, R. L., Bromer, W. W., J. Amer. Chem. Soc. (1958) 80, 2714. (104) Kondo, S., Sezaki, M., Koike, M., Shimura, M., Akita, E., Satoh, K., Hara, T., J. Antibiot. Ser. A (1965) 18, 38. (105) Shumard, R. F., Callender, M. E., Antimicrob. Ag. Chemother.—1967 (1968) 369. (106) Bauer, F., Dost, G., Antimicrob. Ag. Chemother—1965 (1966) 749. (107) Somer, P. de, Dijck, P. van, Antibiot. Chemother. (Washington, D. C.) (1955) 5, 632. (108) Arai, M., Nakamura, S., Sakagami, Y., Fukuhara, K., Yonehara, H., Jap. J. Med. Prog., Ser. A (1956) 9, 193. (109) Urry, W. H., Wehrmeister, H. L., Hodge, E. B., Hidy, P. H., Tetra hedron Letters (1966) 3109. (110) Kurylowicz, W., Rev. Immunol. (1960) 30, 253. (111) Avraamova, O., Gavrilina, G. X., Sveshnikova, M., Bull. Moscow Nat uralists, Ser. Biol. (1953) 58, 83. (112) Burkholder, P., J. Bacteriol. (1946) 52, 503. (113) Perlman, D., Peruzzotti, G. P., Advan. Appl. Microbiol. (1970) 12, 277. (114) Gordon, H. W., Schaffner, C. P., Proc. Nat. Acad. Sci. (U.S.) (1968) 60, 1201. (115) Schaffner, C. P., Gordon, H. W., Proc. Nat. Acad. Sci. (U.S.) (1968) 61, 36. (116) Cochrane, T., Tullet, Α., Brit. Med. J. (1959) 2, 286. (117) D'Arcy, P. F., Howard, E. M., Muggleton, P. W., Townsend, S. B., J. Pharm. Pharmacol. (1960) 12, 659. (118) Gentles, J. C., Nature (London) (1958) 182, 476. (119) Celmer, W. D., Sobin, Β. Α., Antibiot. Annu. 1955-1956 (1956) 437. (120) Hidaka, H., Nagatsu, T., Takeya, K., Takeuchi, T., Suda, H., Kojiri, K., Matsuzaki, M., Umezawa, H., J. Antibiot. (1969) 22, 228. (121) Leon, S. Α., Bergmann, F., Isr. J. Chem. (1965) 2, 325.
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by MONASH UNIV on October 2, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch003
80
DRUG
DISCOVERY
(122) Delmotte, P., Delmotte-Plaquée, J., Nature (London) (1953) 171, 344. (123) Mirrington, R. N., Ritchie, E., Shoppee, C. W., Taylor, W. C., Sternhell, S., Tetrahedron Letters (1964) 365. (124) McCapra, F., Scott, A. I., Delmotte, P., Delmotte-Plaquée, J., Bhacca, N. S., Tetrahedron Letters (1964) 869. (125) Bowden, K., Mogey, G. Α., J. Pharm.Pharmacol.(1958) 10, 145. (126) Aust, S. D., Broquist, H. P., Nature (London) (1965) 205, 204. (127) Rainey, D. P., Smalley, Ε. B., Crump, M. H., Strong, F. M., Nature (London) (1965) 205, 203. (128) Benedict, R. G., Brady, L. R., "Fermentation Advances," D. Perlman, Ed., p. 63, Academic, New York, 1969. (129) Tyler, V. E. Jr., Science (1958) 128, 718. (130) Hofmann, Α., Heim, R., Brack, Α., Kobel, H., Experimentia (1958) 14, 107. (131) Arai, T., Hayama, T., Jap. J. Med. Progr. (1962) 49, 813. (132) Kaneko, Y., Terashima, T., Kuroda, Y., Agr. Biol. Chem. (1968) 32, 783. (133) Mitsui, Α., Suzuki, S., J. Antibiot. (1969) 22, 358. (134) Oxford, A. E., Raistrick, H., Biochem. J. (1933) 27, 1176. (135) Aoyagi, T., Takeuchi, T., Matsuzaki, Α., Kawamura, K., Kondo, S., Hamada, M., Maeda, K., Umezawa, H., J. Antibiot. (1969) 22, 283. (136) Morishima, H., Takita, T., Aoyagi, T., Takeuchi, T., Umezawa, H., J. Antibiot. (1970) 23, 263. (137) Umezawa, H., Aoyagi, T., Morishima, H., Matsuzaki, M., Hamada, M., Takeuchi, T., J. Antibiot. (1970) 23, 259. (138) Umezawa, H., Aoyagi, T., Morishima, H., Kunimoto, S., Matsuzaki, M., Hamada, M., Takeuchi, T., J. Antibiot. (1970) 23, 425. (139) Moeschlin, S., Schnider, U., N. Engl. J. Med. (1963) 269, 57. (140) Rinehart, K. L. Jr., J. Infec. Dis. (1969) 119, 345. RECEIVED November 24, 1970.
In Drug Discovery; Bloom, B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.