Chapter 8
Dynamic Melt Rheology of Polyethylene—Ionomer Blends
Downloaded via TUFTS UNIV on July 1, 2018 at 00:07:38 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Gary R. Fairley and Robert E. Prud'homme Centre de Recherche en Sciences et Ingénierie des Macromolécules, Chemistry Department, Laval University, Québec G1K 7P4, Canada
The addition of a copolymer has been shown to be a method of improving the mechanical properties of polyethylene/polyamide blends. One copolymer which has had particular success i s poly(ethylene-comethacrylic acid) (EMA) where the acid groups are partially neutralized by metal ions (EMA-salt). Dynamic melt rheology studies were carried out on PE/EMA and PE/EMA-salt in order to better understand the role of EMA-salt as a compatibilizer in the PE/EMA/PA system. The time-temperature super position principle was applicable in all cases for G' . Also, G' super master curves were constructed for blends of PE/EMA and PE/EMA-salt when the EMA and EMA-salt are derived from the same parent polymer. Superposition of G" was possible for a l l blends containing EMA in the free acid form, but not for those in the salt form, with the extent of deviation from superposability being a function of EMA-salt concentration. P o l y ( e t h y l e n e - c o - m e t h a c r y l i c a c i d ) (EMA), where t h e a c i d groups a r e p a r t i a l l y on f u l l y n e u t r a l i z e d (EMA-salt) by m e t a l i o n s , a r e i n t e r e s t i n g m a t e r i a l s because o f t h e i r unique p r o p e r t i e s as homopolymers (1-2) and t h e i r a b i l i t y t o c o m p a t i b i l i z e c e r t a i n i n c o m p a t i b l e b l e n d s (3-14). EMA-salts a r e l i g h t weight t r a n s p a r e n t m a t e r i a l s p o s s e s s i n g low t e m p e r a t u r e impact and f l e x toughness, good a b r a s i o n and solvent r e s i s t a n c e (1-2). EMA (5) and EMA-salts (15) have been used i n b i n a r y b l e n d s i n o r d e r t o i n c r e a s e t h e impact s t r e n g t h and t e n s i l e s t r e n g t h o f polyamides (PA). EMA and E M A - s a l t s have a l s o r e c e n t l y been used t o improve t h e toughness of poly(ethylene terephthalate) while m a i n t a i n i n g l o w p e r m e a b i l i t y t o hydrocarbons and o t h e r o r g a n i c solvents (16). 0097-6156/89/0395~0211$06.00A) ο 1989 American Chemical Society
Utracki and Weiss; Multiphase Polymers: Blends and Ionomers ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
212
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
EMA and E M A - s a l t s can a l s o be used t o improve t h e m e c h a n i c a l p r o p e r t i e s o f i n c o m p a t i b l e b l e n d s (3-14) . The r o l e o f t h e EMA o r EMA-salt i n t h e s e systems i s not f u l l y u n d e r s t o o d . In a recent p u b l i c a t i o n , we have s t u d i e d t h e p o l y e t h y l e n e / E M A - s a l t / P A system by l o o k i n g a t t h e two b i n a r y systems from which i t i s made: PE/EMAs a l t and EMA-salt/PA (17) . C o n c e r n i n g t h e EMA-salt/PA system, i t has been s u g g e s t e d t h a t an a m i d a t i o n r e a c t i o n can o c c u r between t h e NH t e r m i n a l groups o f t h e PA and t h e COOH groups o f t h e EMA, i n a d d i t i o n t o p o s s i b l e hydrogen b o n d i n g (5) . However, v e r y l i t t l e work has been c a r r i e d out i n o r d e r t o d e t e c t i n t e r a c t i o n s i n t h e PE/EMA-salt system. I n our p r e v i o u s s t u d y ( 1 7 ) , PE/EMA-salt b l e n d s were shown t o be c o m p a t i b l e (not i n t h e thermodynamic sense) f o r a g i v e n m i x i n g t e c h n i q u e and p a r a m e t e r s . I t was a l s o p o i n t e d out t h a t t h e r e i s s e p a r a t e c r y s t a l l i z a t i o n o f PE and EMA-salt i n PE/EMA-salt b l e n d s , w i t h o u t any p e r t u r b a t i o n o f t h e c r y s t a l s t r u c t u r e o r degree o f c r y s t a l l i n i t y o f t h e o t h e r component. Since the i n t e r a c t i o n s leading t o the c o m p a t i b i l i z a t i o n of the mechanical p r o p e r t i e s i n PE/EMA-salt b l e n d s do not o c c u r i n t h e c r y s t a l l i n e phase, t h e y must be p r e s e n t i n t h e amorphous phase. Thus, i t i s t h e o b j e c t o f t h e p r e s e n t s t u d y t o i n v e s t i g a t e t h e dynamic m e l t p r o p e r t i e s o f PE/EMA and PE/EMA-salt b l e n d s i n o r d e r t o b e t t e r u n d e r s t a n d t h e morphology o f t h e s e systems, as w e l l as t o shed some l i g h t on t h e e x i s t e n c e o f i o n i c domains i n PE/EMA and PE/EMA-salt b l e n d s . 2
EXPERIMENTAL Materials The LDPE's were o b t a i n e d from Monsanto (LDPE-M8011) and Dow Chemical (LDPE-493c); the poly(ethylene-co-methacrylic a c i d ) ) ( N u c r e l - 1 2 1 4 ) and ionomers ( S u r l y n - 8 6 6 0 and S u r l y n - 9 9 5 0 ) were g r a c i o u s l y p r o v i d e d by t h e Dupont C h e m i c a l Company. Surlyn-9950 was refluxed in p-xylene at 130°C for a p p r o x i m a t e l y 1 h, a f t e r which t h e polymer g e l was p l a c e d i n a s o l u t i o n o f 2:1 (v/v) 2N H C l / t e t r a h y d r o f u r a n (THF). The m i x t u r e was r e f l u x e d f o r 24 h w i t h v i g o r o u s s t i r r i n g i n o r d e r t o c o n v e r t a l l t h e n e u t r a l i z e d a c i d groups t o t h e i r f r e e a c i d form. T h i s EMAZn-0 sample was t h e n r e f l u x e d i n a 1:2(v/v) s o l u t i o n o f s a t u r a t e d z i n c s u l f a t e / T H F w i t h v i g o r o u s s t i r r i n g f o r a p e r i o d o f 5 days t o o b t a i n an EMA-Zn s a l t c o n t a i n i n g more s a l t t h a n t h e o r i g i n a l EMAZn-20 sample. The p e r c e n t i o n i z a t i o n , which was v e r i f i e d by IR s p e c t r o s c o p y (18), was found t o be 40%. Some c h a r a c t e r i s t i c s o f t h e homopolymers and copolymers used i n t h i s s t u d y a r e shown i n T a b l e I : p e r c e n t a c i d c o n t e n t , p e r c e n t neutralization, number-average molecular weight (Μη), p o l y d i s p e r s i t y i n d e x (Mw/Mn) and t h e nomenclature used. A l l pure components and b l e n d s were p r e p a r e d by m i x i n g i n a M i n i Max molder, model CS-183 ( 1 9 ) . The m i x i n g o f a l l samples was c a r r i e d out a t 150°C f o r a p e r i o d o f 10 min. The samples were s u b s e q u e n t l y i n j e c t e d i n t o a c y l i n d r i c a l mold c a v i t y w i t h a d i a m e t e r o f 15.8 mm and a t h i c k n e s s o f 3.0 mm. A l l b l e n d s were p r e p a r e d w i t h t h e LDPE-493c sample, e x c e p t t h o s e w i t h EMA-Na and EMA which were p r e p a r e d w i t h t h e LDPEM8011 sample. r
r
Utracki and Weiss; Multiphase Polymers: Blends and Ionomers ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
r
8.
FAIRLEY & PRUD'HOMME
Rheology ofPolyethylene-1onomer Blends
Measurements Dynamic m e c h a n i c a l p r o p e r t i e s were measured on a Rheometrics System-4 rheometer w i t h p a r r a l l e l p l a t e geometry. The c y l i n d r i c a l samples were p l a c e d between t h e p a r r a l l e l p l a t e s and m e l t e d . The gap between t h e p l a t e s was s u b s e q u e n t l y reduced t o 1.2 mm and, a f t e r r e l a x a t i o n o f t h e sample, t h e a p p r o p r i a t e measurements c a r r i e d o u t . Dynamic m e c h a n i c a l p r o p e r t i e s o f a l l pure components a n d b l e n d s were measured a s a f u n c t i o n o f p e r c e n t s t r a i n and i n d i c a t e d a l i n e a r v i s c o e l a s t i c r e g i o n up t o a p p r o x i m a t e l y 30-35 p e r c e n t . T h e r e f o r e , a l l r h e o l o g i c a l e x p e r i m e n t s were conducted a t a s t r a i n r a t e o f 20 p e r c e n t . I n c a s e s where t h e r m a l d e g r a d a t i o n o c c u r r e d (as seen i n t i m e sweep), t h e h e a t i n g chamber was c o n t i n u o u s l y purged w i t h l i q u i d n i t r o g e n . Frequency sweeps, and i n some c a s e s f r e q u e n c y - t e m p e r a t u r e sweeps, were performed on a l l pure components and b l e n d s . RESULTS Homopolymers and Copolymers F i g u r e 1 shows t h e f r e q u e n c y dependence o f t h e a b s o l u t e v a l u e o f t h e complex v i s c o s i t y η * f o r EMA-Zn-0 and EMA-Zn-40 a s compared t o EMA-Zn-20. I t c a n be seen i n t h i s f i g u r e t h a t t h e z e r o s h e a r v i s c o s i t y T ] i s a s y m p t o t i c a l l y approached f o r a l l t h e EMA-salt and EMA samples. This result i s consistent with the observation o f E a r n e s t , Macknight e t a l . (18,20-21) who have shown t h a t t h e z e r o s h e a r v i s c o s i t y i s a s y m p t o t i c a l l y approached f o r EMA and i t s m e t h y l e s t e r ; however, i t i s n o t f o r i t s 70% n e u t r a l i z e d sodium s a l t , which i s n o t i n c o n s i s t e n t w i t h t h e f a c t t h a t t h e l a r g e s t s a l t c o n t e n t o f F i g . 1 i s 40%. F i g u r e 2 shows t h e master c u r v e o f G' and t h e pseudo-master c u r v e o f G f o r pure EMA-Zn-20, f o r a temperature range o f 120 t o 250°C, u s i n g a r e f e r e n c e temperature o f 150°C. As c a n be seen, t h e r e i s good s u p e r p o s i t i o n o f t h e G' d a t a onto a s i n g l e c u r v e . U s i n g t h e same s h i f t f a c t o r s a and r e f e r e n c e temperature a s used i n G', s u p e r p o s i t i o n o f G" was attempted. There i s a c l e a r breakdown o f t i m e - t e m p e r a t u r e s u p e r p o s i t i o n , p a r t i c u l a r l y a t h i g h frequencies. This thermorheological complexity i s c h a r a c t e r i s t i c o f E M A - s a l t s which e x h i b i t microphase s e p a r a t i o n o f i o n i c domains (18, 20-21). F o r t h e same r e f e r e n c e temperature a n d temperature range, t h e r m o r h e o l o g i c a l c o m p l e x i t y was a l s o d i s p l a y e d i n t h e EMA-Na a n d EMA-Zn-40 samples. I n c o n t r a s t , EMA shows good s u p e r p o s i t i o n o f b o t h G' and G o v e r a temperature range o f 120°C t o 250°C, u s i n g a r e f e r e n c e temperature o f 150°C a n d t h e same s h i f t f a c t o r s ( F i g u r e 3) . I d e n t i c a l r e s u l t s were o b t a i n e d f o r t h e s u p e r p o s a b i l i t y o f G' a n d G f o r EMA-Zn-0. Q
w
fc
n
M
Utracki and Weiss; Multiphase Polymers: Blends and Ionomers ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
213
214
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
T a b l e I : C h a r a c t e r i z a t i o n o f t h e Polymers Used
POLYMER
CODE
% ACID
EMA-Zn-0 EMA-Zn-20
ION
% ION
15 S u r l y n 9950
EMA-Zn-40
Mn(kg/mol) M /M w
n
16
2.9
15
Zn
20
16
2.9
15
Zn
40
16
2.9
Na
50
13
3.1
EMA-Na
S u r l y n 8660
9
EMA
N u c r e l 1214
12
18
3.9
LDPE
Dow 493c
0
139
6.0
LDPE
Monsanto 8011
0
4
11
,
,
-1
0
1
, 2
I 3
LOG ω (rad/s) F i g u r e 1. Complex v i s c o s i t y T|* v e r s u s a n g u l a r f r e q u e n c y ω f o r EMA-Zn-40, EMA-Zn-20 and EMA-Zn-0.
Utracki and Weiss; Multiphase Polymers: Blends and Ionomers ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
8.
FAIRLEY& PRUD'HOMME
-3
-2
Rheology ofPolyetkylene-Ionomer Blends
0
-1
1
2
-2
LOG a cj (rad/s) t
F i g u r e 2. G' master c u r v e a n d G pure EMA-Zn-20.
-3
-
2
-
1
w
1
0
pseudo-master
curve f o r
2
LOG α ω (rad/s) {
F i g u r e 3.
G' and G" master c u r v e s f o r pure EMA.
Utracki and Weiss; Multiphase Polymers: Blends and Ionomers ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
215
216
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
Blends The f o l l o w i n g f i v e b i n a r y systems were s t u d i e d : PE/EMA, PE/EMA-Na, PE/EMA-Zn-40, PE/EMA-Zn-20 and PE/EMA-Zn-0. These systems were i n v e s t i g a t e d f o r c o m p o s i t i o n s o f 20, 40, 60 and 80 p e r c e n t by weight PE o v e r a t e m p e r a t u r e range o f 120 t o 250°C M a s t e r c u r v e s o f G' were c o n s t r u c t e d f o r a l l c o m p o s i t i o n s o f t h e f i v e d i f f e r e n t b i n a r y systems u s i n g a r e f e r e n c e temperature o f 150°C A t y p i c a l r e s u l t o f a G' master c u r v e i s g i v e n i n F i g u r e 4, which i s a 40/60 b l e n d o f PE/EMA-Zn-20. As seen, s a t i s f a c t o r y s u p e r p o s i t i o n i s a t t a i n e d f o r G' i n t h e s e b l e n d s . U s i n g t h e same s h i f t f a c t o r s as f o r G', s u p e r p o s i t i o n was a t t e m p t e d f o r G". As can be seen, t h e r e i s a d e f i n i t e breakdown o f t h e t i m e - t e m p e r a t u r e superposition p r i n c i p l e at high frequencies ( F i g . 4). I d e n t i c a l r e s u l t s were o b t a i n e d f o r PE/EMA-Zn-40 and PE/EMA-Na b l e n d s . For t h e s e PE/EMA-salt systems, as t h e amount o f ionomer p r e s e n t i n t h e b l e n d d e c r e a s e s , t h e f r e q u e n c y range o v e r which s u p e r p o s i t i o n o f G i s p o s s i b l e i n c r e a s e s . As seen i n a d i f f e r e n t p e r s p e c t i v e , t h e d e c r e a s e i n G as a f u n c t i o n o f temperature a t h i g h f r e q u e n c i e s i s r e d u c e d upon t h e a d d i t i o n o f PE t o PE/EMA-salt b i n a r y systems. M a s t e r c u r v e s can be c o n s t r u c t e d f o r b o t h G' and G" o v e r a t e m p e r a t u r e range o f 120 t o 250°C, u s i n g a r e f e r e n c e temperature o f 150°C, f o r b o t h PE/EMA-Zn-0 and PE/EMA b i n a r y systems. A typical r e s u l t i s g i v e n i n F i g u r e 5, which shows master c u r v e s o f G' and G" f o r a 60/40 PE/EMA-Zn-0 b l e n d . To summarize t h e s e r e s u l t s , we f i n d s u p e r p o s a b i l i t y o f b o t h G' and G" f o r PE/EMA systems (EMA i n t h e f r e e a c i d form) and s u p e r p o s a b i l i t y o f G' but not o f G f o r PE/EMA-salt systems. F u r t h e r m o r e , t h e degree o f n o n - s u p e r p o s i b i l i t y o f G i n PE/EMA-salt systems i n c r e a s e s w i t h an i n c r e a s e i n ionomer c o n t e n t . These r e s u l t s i n d i c a t e t h a t t h e n o n - s u p e r p o s i b i l i t y o f G i n PE/EMA-salt systems i s due s o l e l y t o t h e p r e s e n c e o f i o n i c domains which o c c u r as a r e s u l t o f t h e n e u t r a l i z a t i o n o f t h e f r e e a c i d groups by m e t a l i o n s i n t h e pure EMA copolymer. However, t h e f a c t t h a t s u p e r p o s i t i o n a p p l i e s t o G' and G" does not n e c e s s a r i l y i m p l y t h a t t h e systems behave as s i n g l e phase systems s i n c e i t has been shown (22-23) t h a t two-phase b l e n d s can a c t as t h e r m o - r h e o l o g i c a l l y s i m p l e m a t e r i a l s f o r polymer b l e n d s c o n s i s t i n g o f polymers o f h i g h p o l y d i s p e r s i t y , a l t h o u g h we b e l i e v e t h a t t h i s i s a r e l a t i v e l y rare case. F o r p o l y m e r s , i t has been s u g g e s t e d t h a t t h e C o l e - C o l e r e p r e s e n t a t i o n o f t h e i m a g i n a r y p a r t (T] ) o f t h e complex v i s c o s i t y v e r s u s i t s r e a l p a r t (Τ]') shows c e r t a i n i m p o r t a n t d i f f e r e n c e s f o r homogeneous systems as compared t o heterogeneous systems (22-27). A c c o r d i n g t o t h i s p r o p o s a l , f o r homogeneous systems, a unique c i r c u l a r a r c i s g i v e n which passes t h r o u g h t h e o r i g i n whereas f o r a heterogeneous system, a s e r i e s o f i n t e r p e n e t r a t i n g a r c s i s g i v e n . F i g u r e 6 shows C o l e - C o l e p l o t s f o r pure EMA-Zn-20 a t 150°C and 180°C. U n f o r t u n a t e l y due t o t h e h i g h p o l y - d i s p e r s i t y o f t h e pure polymers s t u d i e d , t h e c i r c u l a r a r c p a s s i n g t h r o u g h t h e o r i g i n i s t o o f a r from t h e r e a l a x i s , not p e r m i t t i n g t h e u n e q u i v o c a l d e t e r m i n a t i o n o f t h e e x i s t e n c e o r absence o f more t h a n one c i r c u l a r arc. T h i s i s a c h a r a c t e r i s t i c o f a l l pure components s t u d i e d h e r e i n as w e l l as t h e i r b i n a r y b l e n d s . n
M
n
n
n
N
Utracki and Weiss; Multiphase Polymers: Blends and Ionomers ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
8.
FAIRLEY& PRUD'HOMME
Rheology ofPolyethyUne-Ionomer Blends
1 Y Ο SE
ο
...;·.·.'. 180 C %·%·'·· 210 C
ο iQ.
120 C " * * 150 * C
Ο
o-1 ο
ο H -1
-3
0
-2
1
-2
2
LOG a cj (rad/s) t
F i g u r e 4. G' master c u r v e and G" pseudo-master c u r v e f o r a 40/60 b l e n d o f PE/EMA-Zn-20.
1 h
SE
σ ι α.
ο
1
ο o-1 ο
-3
Ο
0ο ο
_l
• 1 0
L_
1
2
3
4
-2
LOG a cj (rad/s) t
F i g u r e 5. G' and G" master PE/EMA-Zn-0.
curves
f o r a 60/40 b l e n d o f
Utracki and Weiss; Multiphase Polymers: Blends and Ionomers ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
217
218
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
Han (28-34) has found t h a t t h e temperature independence o f G' when p l o t t e d a g a i n s t G" t o be a u n i v e r s a l f e a t u r e o f a l l homogeneous v i s c o - e l a s t i c f l u i d s . T h i s a u t h o r has a l s o p o s t u l a t e d t h e g e n e r a l r u l e t h a t , f o r a m i s c i b l e b l e n d / t h e G'-G" p l o t i s invariant to changes i n blend concentration, while f o r heterogeneous b l e n d s such i n v a r i a n c e i s n o t observed. However, R o l a n d (35) has shown an example o f a m i s c i b l e b l e n d e x h i b i t i n g a v a r i a t i o n i n t h e G'-G" p l o t as a f u n c t i o n o f c o m p o s i t i o n , which i s a t v a r i a n c e w i t h t h e above-mentioned p r o p o s a l . I n t h i s s t u d y , G'-G p l o t s o f t h e pure polymers show a temperature i n v a r i a n c e f o r t h o s e polymers n o t c o n t a i n i n g m e t a l ions. F o r example, F i g u r e 7 shows G'-G p l o t s f o r pure EMA-Zn-20 at three d i f f e r e n t temperatures. As c a n be seen and as i s t h e case f o r EMA-Na and EMA-Zn-40 samples, t h e r e i s a d e v i a t i o n i n t h e G'G p l o t a t h i g h f r e q u e n c i e s as t h e temperature i s i n c r e a s e d . B i n a r y b l e n d s o f PE/EMA-Zn-0 and PE/EMA show no temperature dependence o f t h e G'-G p l o t s as a f u n c t i o n o f temperature. In the case o f b l e n d s o f PE/EMA-Zn-20, PE/EMA-Zn-40 and PE/EMA-Na, t h e r e i s an u p r i s e i n t h e G'-G" p l o t a t h i g h f r e q u e n c i e s . A typical r e s u l t i s g i v e n i n F i g u r e 8, which i s f o r a 60/40 PE/EMA-Zn-20 blend a t three d i f f e r e n t temperatures. I n b l e n d s o f PE/EMA-salt, t h e amount o f d e v i a t i o n i n G'-G p l o t s as a f u n c t i o n o f temperature i s reduced as t h e c o n c e n t r a t i o n o f PE i n t h e b l e n d i s i n c r e a s e d . The d e v i a t i o n o f G'-G as a f u n c t i o n o f temperature, i n b l e n d s c o n t a i n i n g EMA-salt, c a n be s i m p l y r e l a t e d t o t h e n o n - s u p e r b i l i t y o f G f o r pure E M A - s a l t s . S i n c e p l o t s o f G'-G a r e temperature dependent i n some o f t h e systems s t u d i e d , t h e i r c o m p o s i t i o n dependence was i n v e s t i g a t e d a t a constant temperature. As seen i n F i g u r e 9 f o r t h e PE/EMA-Zn-20 system, t h e r e i s a s t r o n g c o m p o s i t i o n dependence o f G'-G p l o t s as i s t h e case f o r a l l t h e systems s t u d i e d . Furthermore, t h e composition dependence becomes more i m p o r t a n t as t h e second component i n t h e b l e n d becomes more d i f f e r e n t t h a n pure PE (increase i n percent acid content and i n c r e a s e i n p e r c e n t neutralization) . I t i s w e l l known (36-39) t h a t i n a two phase polymer system where t h e r e i s a sharp i n t e r f a c e and no i n t e r a c t i o n s between t h e phases t h a t i n t e r l a y e r s l i p p a g e f r e q u e n t l y o c c u r s . This i n t e r l a y e r slippage gives r i s e t o a reduction i n blend v i s c o s i t y o r a n e g a t i v e d e v i a t i o n from a d d i t i v i t y i f t h e v i s c o s i t y i s p l o t t e d as a f u n c t i o n o f c o m p o s i t i o n a t a g i v e n temperature and frequency. F i g u r e 10 shows t h e a b s o l u t e v a l u e o f t h e complex v i s c o s i t y f o r t h e PE/EMA-Zn-20 system a t 150°C f o r 0.1, 1, 10, 100 and 500 Hz as a f u n c t i o n o f c o m p o s i t i o n . These r e s u l t s i n d i c a t e t h a t t h e complex v i s c o s i t y v a r i e s l i n e a r l y as a f u n c t i o n o f c o m p o s i t i o n . T h i s i s a t y p i c a l r e s u l t f o r PE/EMA and PE/EMA-salt b l e n d s , as t h e PE/EMA-Zn-O, PE/EMA, PE/EMA-Zn-40 and PE/EMA-Na show t h e same linear relationship between t h e complex viscosity and t h e c o m p o s i t i o n a t 150°C. The s c a t t e r o f t h e d a t a becomes more i m p o r t a n t a t l o w e r f r e q u e n c i e s because t h e p r e c i s i o n o f t h e s e values i s lower. F i g u r e 11 shows t h e a b s o l u t e v a l u e o f t h e complex v i s c o s i t y as a f u n c t i o n o f c o m p o s i t i o n f o r t h e PE/EMA-Zn-20 system a t 210°C a t 1, 10, 100, and 500 Hz. I n t h i s c a s e , t h e system shows p o s i t i v e d e v i a t i o n s from t h e a d d i t i v i t y r u l e ( s t r a i g h t l i n e ) . n
n
n
n
n
n
n
n
n
Utracki and Weiss; Multiphase Polymers: Blends and Ionomers ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
8.
Rheology ofPolyethylene-Ionomer Blends
FAIRLEY & PRUD'HOMME
600
^
400 L
σ α.
150 C
Ρ* 200
''180 C 500
1000
1500
2000
1
η (Ρα.s) F i g u r e 6. A Cole-Cole representation of the imaginary part as a f u n c t i o n o f i t s r e a l p a r t (Τ]' ) o f t h e complex v i s c o s i t y f o r p u r e EMA-Zn-20 a t 150 and 1 8 0 ° C .
ο 150deg • 180deg * 210deg
-1
F i g u r e 7. 210°C.
G' v s . G
0 LOG G" (ΚΡα) n
1
f o r p u r e EMA-Zn-20 a t 150, 180
Utracki and Weiss; Multiphase Polymers: Blends and Ionomers ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
and
219
220
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
ο
ο 180 C
Ο
1
5
0
C
ο
Λ&
Ql
Ô ο q
0
-1 LOG G" (kPa)
F i g u r e 8. G' v s . G" f o r a 60/40 PE/EMA-Zn-20 150, 180 and 210°C.
• ΡΕ •80/20 ^60/40 '40/60 '20/80 •s9950
Q-
sample a t
^ » »ο •
fi* Ο Ο
-1 LOG G" (ΚΡα)
F i g u r e 9. G' v s . G" f o r p u r e ΡΕ, pure EMA-Zn-20, and 80/20, 60/40, 40/60, 20/80 PE/EMA-Zn-20 b l e n d s .
Utracki and Weiss; Multiphase Polymers: Blends and Ionomers ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
8.
Rheology ofPolyethylene-Ionomer Blends
FAIRLEY& PRUD'HOMME
1E5
1Hz »
w
1E4
-
δ
-m
1Ηζ____, 10Hz
Q. 100Hz 1000f 500Hz
100
1
1
1
40 60 PERCENT PE
20
1 80
100
Figure 10. Complex v i s c o s i t y (η*) versus composition f o r PE/EMA-Zn-20 at 150 °C and 0.1/ l 10/ 100 and 500 Hz. f
1E4
40 60 PERCENT PE
100
Figure 11. Complex v i s c o s i t y (η*) versus composition f o r PE/EMA-Zn-20 at 210°C and l 10, 100 and 500 Hz. f
Utracki and Weiss; Multiphase Polymers: Blends and Ionomers ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
221
222
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
I n g e n e r a l , f o r PE/EMA o r PE/EMA-salt systems, a p l o t o f complex v i s c o s i t y as a f u n c t i o n o f c o m p o s i t i o n follows the a d d i t i v i t y r u l e o r shows p o s i t i v e d e v i a t i o n s from a d d i t i v i t y , depending on t h e temperature and f r e q u e n c y . Super-Master Curves E a r n e s t and MacKnight (18) have found t h a t super-master c u r v e s , o r composite-master c u r v e s , can be c o n s t r u c t e d f o r G' o f EMA, EMA-salt and EMA-ester, a l l d e r i v e d from t h e same p a r e n t polymer. In this work, we have studied three systems c o n t a i n i n g t h e same p o l y e t h y l e n e , b l e n d e d w i t h t h r e e d i f f e r e n t components d e r i v e d f r o m t h e same p a r e n t polymer. These systems a r e PE/EMA-Zn-0, PE/EMAZn-20 and PE/EMA-Zn-40. Not o n l y f o r t h e pure copolymers was i t found t h a t super-master c u r v e s c o u l d be c o n s t r u c t e d f o r G', b u t a l s o f o r a l l b l e n d s c o n t a i n i n g an i d e n t i c a l PE c o n t e n t . F i g u r e 12 shows t h e s e super-master c u r v e s as a f u n c t i o n o f c o m p o s i t i o n o f t h e blends; as c a n be seen, t h e r e i s q u i t e a r e g u l a r v a r i a t i o n o f G' v e r s u s f r e q u e n c y as a f u n c t i o n o f c o m p o s i t i o n . The v a l u e o f G', a t a g i v e n low f r e q u e n c y , i n c r e a s e s as t h e PE c o n t e n t i s i n c r e a s e d and t h e amount o f i n c r e a s e d i m i n i s h e s w i t h t h e f r e q u e n c y u n t i l we have convergence o f a l l super-master c u r v e s a t h i g h f r e q u e n c i e s . I f we use EMA-Zn-0 or the corresponding PE/EMA-Zn-0 b l e n d as a r e f e r e n c e , we can d e f i n e a f r e q u e n c y s h i f t f a c t o r a ' as t h e f r e quency needed t o superpose pure EMA-Zn-20, o r pure EMA-Zn-40, o r t h e c o r r e s p o n d i n g b l e n d o f PE/EMA-Zn-20 o r PE/EMA-Zn-40, onto t h e corresponding reference curve. F i g u r e 13 shows t h e c o m p o s i t i o n dependence o f t h e a ' ' s f o r b o t h PE/EMA-Zn-40 and t h e PE/EMA-Zn20 system. As can be seen, t h e r e e x i s t s a l i n e a r r e l a t i o n s h i p between t h e f r e q u e n c y s h i f t f a c t o r a ' and t h e c o m p o s i t i o n o f t h e blend. These a ' ' s can be t r a n s l a t e d i n t o temperature s h i f t f a c t o r s ÀT's a c c o r d i n g t o t h e method o f Shohamy and E i s e n b e r g (40). These Δτ'β a r e g i v e n as a f u n c t i o n o f c o m p o s i t i o n i n F i g u r e 14. As can be seen, t h e r e e x i s t s a l i n e a r r e l a t i o n s h i p between t h e temperature s h i f t f a c t o r s and t h e c o m p o s i t i o n i n b o t h t h e PE/EMA-Zn-40 and PE/EMA-Zn-20 systems. T
T
T
T
DISCUSSION The n e u t r a l i z a t i o n o f t h e a c i d groups i n EMA i s known t o i n f l u e n c e t h e i r r h e o l o g i c a l and o t h e r p h y s i c a l p r o p e r t i e s (20). I t has been e s t a b l i s h e d (18) t h a t , f o r t h e p e r c e n t i o n c o n t e n t s o f t h e EMAs a l t s used i n t h i s s t u d y , i o n i c c l u s t e r s e x i s t g i v i n g r i s e t o i o n i c microdomains which remain i n t a c t w e l l above t h e c r y s t a l l i n e m e l t i n g temperature. These i o n i c microdomains have an average r a d i u s o f 810 nm and c o n t a i n a p p r o x i m a t e l y 70 i o n s surrounded by a s h e l l o f hydrocarbon chains (41). These i o n i c microdomains a c t as thermoreversible cross-links; an i n c r e a s e i n the percent n e u t r a l i z a t i o n r e s u l t s i n an i n c r e a s e i n t h e c o n c e n t r a t i o n o f t h e r m o r e v e r s i b l e c r o s s - l i n k s and a c o r r e s p o n d i n g i n c r e a s e i n t h e melt v i s c o s i t y . The s u p e r p o s a b i l i t y o f G' and t h e n o n - s u p e r p o s i b i l i t y o f G i n pure EMA-salts has been r e p o r t e d by E a r n e s t and MacKnight (18) f o r an EMA-salt above t h e s o - c a l l e d c r i t i c a l c l u s t e r c o n c e n t r a t i o n , n
Utracki and Weiss; Multiphase Polymers: Blends and Ionomers ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
8.
FAIRLEY & PRUD'HOMME
Rheology ofPolyethylene-Ionomer Blends
2
as w e l l as PE/EMA-Zn b l e n d s c o n t a i n i n g 20, 40, 60 and 80% PE
1.00 KEMA-Zn-40
0.75
Ο o
0.50
0.25
0.00 0
20
40 60 PERCENT LDPE
80
100
F i g u r e 13. L o g a£ a s a f u n c t i o n o f b l e n d c o m p o s i t i o n f o r PE/EMA-Zn-40, PE/EMA-Zn-20 and PE/EMA-Zn-0 systems.
Utracki and Weiss; Multiphase Polymers: Blends and Ionomers ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
223
224
MULTIPHASE POLYMERS: BLENDS AND IONOMERS
50