31
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 4, 2015 | http://pubs.acs.org Publication Date: August 1, 1983 | doi: 10.1021/bk-1983-0230.ch031
Effect of Mineral Species on Oil Shale Char Combustion RALPH P. CAVALIERI and WILLIAM J. THOMSON Washington State University, Department of Chemical Engineering, Pullman, WA 99164-2710
Six oil-shale samples with differing mineral compositions were retorted identically and the resulting char was subjected to combustion kinetic studies using TGA techniques. Elemental compositions were obtained using x-ray fluorescence. On shales with high concentrations of carbonates, mineral changes were effected by allowing partial decarbonation and/or s i l i c a t i o n to take place prior to the combustion studies. Combustion results are compared in terms of simple kinetic expressions and are discussed in the context of the mineral species present during initial combustion. Intrinsic rate constants were found to vary from one shale to another by a factor of ten. Catalytic activity was attributed to alkaline earth oxides formed by mineral carbonate decomposition of nahcolite and calcite. I n order t o i n c r e a s e t h e energy e f f i c i e n c y o f aboveground o i l s h a l e processes, t h e carbonaceous r e s i d u e (char) r e m a i n i n g on r e t o r t e d o i l s h a l e ( s p e n t s h a l e ) w i l l e i t h e r be c o m b u s t e d U , 2 ) o r g a s i f i e d (3)· A l t h o u g h t h e r e i s no g r e a t d i f f i c u l t y i n c o m b u s t i n g t h e c h a r , i t i s i m p o r t a n t t h a t c o m b u s t i o n be c a r r i e d o u t i n a c o n t r o l l e d f a s h i o n . F a i l u r e t o do s o c a n r e s u l t i n h i g h t e m p e r a t u r e s (> 900 K) a n d t h e d e c o m p o s i t i o n o f m i n e r a l carbonates. These d e c o m p o s i t i o n r e a c t i o n s a r e n o t o n l y e n d o t h e r m i c (4) b u t some o f t h e p r o d u c t s have t h e p o t e n t i a l t o c a u s e e n v i r o n m e n t a l d i s p o s a l p r o b l e m s (5). C o n t r o l o f o i l s h a l e c h a r c o m b u s t i o n i s more e a s i l y managed i f t h e r e i s a k n o w l e d g e o f how t h e r a t e o f c o m b u s t i o n d e p e n d s o n O2 c o n c e n t r a t i o n a n d t e m p e r a t u r e . T h i s m o t i v a t i o n l e d t o an e a r l i e r s t u d y (6) o f t h e c o m b u s t i o n k i n e t i c s o f spent s h a l e f r o m t h e P a r a c h u t e C r e e k Member i n w e s t e r n C o l o r a d o . That study
0097-6156/83/0230-0543$06.00/0 © 1983 A m e r i c a n C h e m i c a l S o c i e t y
In Geochemistry and Chemistry of Oil Shales; Miknis, F., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 4, 2015 | http://pubs.acs.org Publication Date: August 1, 1983 | doi: 10.1021/bk-1983-0230.ch031
544
GEOCHEMISTRY AND CHEMISTRY OF OIL SHALES
p r o v i d e d e v i d e n c e t h a t one o r more o f t h e m i n e r a l s p e c i e s present i n t h e s h a l e acted as an o x i d a t i o n catalyst. C o n s e q u e n t l y i t was d e c i d e d t o f o l l o w up o n t h a t i n v e s t i g a t i o n by e x a m i n i n g t h e c o m b u s t i o n a c t i v i t y o f o t h e r o i l s h a l e s ; s p e c i f i c a l l y , those w i t h d i f f e r i n g e l e m e n t a l and/or m i n e r a l compositions. Six o i l s h a l e samples were s e l e c t e d f o r e v a l u a t i o n and comparison: one f r o m t h e P a r a c h u t e C r e e k Member (PCM), one f r o m a d e e p c o r e s a m p l e i n t h e C-a t r a c t ( C - a ) , t w o f r o m t h e s a l i n e zone i n w e s t e r n C o l o r a d o (S-A & S-B), one f r o m t h e G e o k i n e t i c s s i t e i n e a s t e r n U t a h (GEOK) a n d one s a m p l e o f A n t r i m s h a l e f r o m M i c h i g a n (ANT). Experimental The e x p e r i m e n t a l t h e r m o g r a v i m e t r i c a n a l y s i s (TGA) e q u i p m e n t was e s s e n t i a l l y i d e n t i c a l t o t h a t d e s c r i b e d b y T h o m p s o n a n d T h o m s o n (_7). H o w e v e r , i n t h i s s t u d y a l a r g e r r e a c t o r w a s emp l o y e d ( 1 0 cm d i a m e t e r v s . 7.5 c m ) a n d t h e t w o t h e r m o c o u p l e s were p o s i t i o n e d d i f f e r e n t l y . I n t h i s c a s e one was p l a c e d 2 cm above t h e s h a l e a n d t h e o t h e r s o t h a t i t b a r e l y m i s s e d t o u c h i n g the s h a l e s a m p l e . The l a t t e r was used t o m o n i t o r t e m p e r a t u r e e x c u r s i o n s d u r i n g t h e i n i t i a l s t a g e o f c o m b u s t i o n . The t e m p e r a t u r e d i f f e r e n c e b e t w e e n t h e s u r f a c e o f t h e s h a l e a n d 2 cm a b o v e i t r a r e l y e x c e e d e d 10 K a n d t h e n o n l y f o r o n e t o t w o m i n u t e s . A l l o f t h e s h a l e samples were r e t o r t e d i n master batches a n d u n d e r i d e n t i c a l c o n d i t i o n s i n a 2.5 cm d i a m e t e r f i x e d b e d r e t o r t . A n i t r o g e n sweep g a s a t 100 s c c / m i n was e m p l o y e d a n d the t e m p e r a t u r e was e l e v a t e d a t a r a t e o f 5 K / m i n t o a maximum t e m p e r a t u r e o f 785 K a t w h i c h p o i n t i t was h e l d f o r 1 hour. T a b l e I shows the q u a n t i t y o f o i l c o l l e c t e d d u r i n g r e t o r t i n g , the percentage o f o r g a n i c carbon on t h e spent s h a l e and t h e p e r c e n t a g e o f some o f t h e more i m p o r t a n t e l e m e n t s ( o b t a i n e d b y x-ray fluorescence). Although there i s a wide v a r i a t i o n i n t h e o i l y i e l d s , we h a v e p r e v i o u s l y s h o w n ( 8 ) t h e r e t o b e n o e f f e c t on t h e c o m b u s t i o n a c t i v i t y o f s p e n t s h a l e . However, i t i s i n t e r e s t i n g t o n o t e t h a t t h e GEOK s p e n t s h a l e s a m p l e h a d n e a r l y t w i c e t h e o r g a n i c c a r b o n c o n t e n t o f t h e PCM s a m p l e e v e n t h o u g h the t w o h a d s i m i l a r o i l y i e l d s . C o m b u s t i o n t e s t s w e r e c a r r i e d o u t by h e a t i n g t h e s a m p l e t o the d e s i r e d t e m p e r a t u r e i n a h e l i u m a t m o s p h e r e a n d t h e n e x p o s i n g i t t o a p r e - s e l e c t e d 0 c o n c e n t r a t i o n by d i l u t i n g a i r w i t h h e l i u m . I n some c a s e s t h e s a m p l e s w e r e f i r s t s u b j e c t e d t o h i g h t e m p e r a t u r e s (800-1050 K) i n e i t h e r a h e l i u m o r C 0 a t m o s p h e r e i n o r d e r t o e f f e c t changes i n t h e m i n e r a l c o m p o s i t i o n s and t h e n cooled t o the desired combustion temperature. Combustion a c t i v i t i e s were e v a l u a t e d f o r 0 p a r t i a l p r e s s u r e s between 5 and 20 k P a a n d a t t e m p e r a t u r e s b e t w e e n 700 a n d 825 K. 2
2
2
In Geochemistry and Chemistry of Oil Shales; Miknis, F., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
In Geochemistry and Chemistry of Oil Shales; Miknis, F., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
STEAM
Figure 1. Schematic of thermogravimetric analysis equipment.
REACTOR/RETORT
LIQUID COLLECTION
CONDENSER
CAHN ELECTROBALANCE
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 4, 2015 | http://pubs.acs.org Publication Date: August 1, 1983 | doi: 10.1021/bk-1983-0230.ch031
TO G . C .
» TO VENT
1
5"
|
ft
O
on
o
H
o
r m 2 >
546
GEOCHEMISTRY AND CHEMISTRY OF OIL SHALES
Table I .
C o m p o s i t i o n o f Spent Shale Wt
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 4, 2015 | http://pubs.acs.org Publication Date: August 1, 1983 | doi: 10.1021/bk-1983-0230.ch031
Sample G P T PCM C-a GEOK S-A S-B ANT
50 24 44 30 40 11
a
C
b
6.9 2.9 12.0 3.8 3.9 5.7
% Spent
Samples
Shale
Ca
Mg
Fe
Al
Na
10.2 12.3 15.2 8.4 1.0 0.7
3.4 3.5 4.3 3.6 1.0 1.2
2.8 2.5 3.1 3.1 5.6 5.4
5.0 4.3 4.8 6.3 10.9 8.3
2.6 2.0 2.3 2.8 0.4 0.4
K
Si
1.7 1.7 2.0 2.1 1.7 3.4
18.8 16.2 19.6 22.3 30.2 31.0
* Gallons per ton raw shale Organic carbon spent s h a l e
Analysis T h e u s e o f t h e r m o g r a v i m e t r i c a n a l y s i s (TGA) a p p a r a t u s t o o b t a i n k i n e t i c d a t a i n v o l v e s a s e r i e s o f t r a d e - o f f s . S i n c e we chose t o employ a u n i t which i s s i g n i f i c a n t l y l a r g e r than commercially a v a i l a b l e instruments ( i n order t o obtain accurate chromatographic data), i t was d i f f i c u l t t o a c h i e v e time i n v a r i a n t 0 c o n c e n t r a t i o n s f o r r u n s w i t h r e l a t i v e l y r a p i d comb u s t i o n r a t e s . The r e a c t o r c l o s e l y a p p r o x i m a t e d i d e a l backm i x i n g c o n d i t i o n s and consequently a dynamic m a t h e m a t i c a l model was u s e d t o d e s c r i b e t h e t i m e - v a r y i n g 0 c o n c e n t r a t i o n , t e m p e r a t u r e e x c u r s i o n s on t h e s h a l e s u r f a c e and t h e s i m u l t a n e o u s r e a c t i o n r a t e . K i n e t i c i n f o r m a t i o n was e x t r a c t e d f r o m t h e m o d e l by m a t c h i n g t h e c o m p u t a t i o n a l p r e d i c t i o n s t o t h e measured experimental data. B e c a u s e we u s e d r e l a t i v e l y l a r g e s h a l e l o a d i n g s ("1.5 g ) , we w e r e c a r e f u l t o s p r e a d t h e s h a l e o v e r t h e b a s k e t i n a r e l a t i v e l y t h i n l a y e r (-0.4 mm). Worst-case diffusional c a l c u l a t i o n s i n d i c a t e d t h a t d i f f u s i o n r e s i s t a n c e c o u l d be n e g l e c t e d a n d t h i s was v e r i f i e d when e x p e r i m e n t s w i t h h a l f l o a d i n g s g a v e t h e s a m e r e s u l t s a s t h o s e w i t h f u l l 1.5 g l o a d ings. A n o t h e r f a c t o r o f i m p o r t a n c e was t h e l i m i t a t i o n o f g a s s o l i d mass t r a n s f e r . A t t e m p t s w e r e made t o a v o i d t h i s p r o b l e m by u s i n g h i g h gas f l o w r a t e s . H o w e v e r , t h e maximum g a s f l o w r a t e s were d i c t a t e d by t h e s t a b i l i t y o f t h e t h e r m o g r a v i m e t r i c readings. I t was f o u n d t h a t t h i s f l o w r a t e was n o t s u f f i c i e n t t o e l i m i n a t e g a s - s o l i d mass t r a n s f e r r e s i s t a n c e f o r s h a l e s w i t h the h i g h e s t c o m b u s t i o n r a t e s . A g a i n , the m a t h e m a t i c a l model was u s e d i n t h e s e c a s e s t o c o m b i n e mass t r a n s f e r a n d k i n e t i c r a t e s i n order t o e x t r a c t the l a t t e r . To i l l u s t r a t e t h e s i t u a t i o n w h e r e g a s - s o l i d mass t r a n s f e r p l a y s a n i m p o r t a n t r o l e , F i g u r e 2 shows t h e c h a r c o m b u s t i o n d a t a 2
2
In Geochemistry and Chemistry of Oil Shales; Miknis, F., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Oil Shale Char
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 4, 2015 | http://pubs.acs.org Publication Date: August 1, 1983 | doi: 10.1021/bk-1983-0230.ch031
CAVALIERI AND THOMSON
2
6
Combustion
10
14
18
ADJUSTED TIME, MIN Figure 2. Mass transfer effects (GEOK,
PQ - 10 kPa). 2
American Chemical Society Library 1155 16th St., N.W. In Geochemistry and Chemistry of Oil Shales; Miknis, F., et al.; Washington, D.C. 20036
ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
GEOCHEMISTRY AND CHEMISTRY OF OIL SHALES
548
f o r t h e GEOK s a m p l e . N o t e t h a t t h e h i g h e r t e m p e r a t u r e d a t a do not f o l l o w a s t r a i g h t l i n e on a f i r s t o r d e r p l o t . The f a c t t h a t the l o w e s t t e m p e r a t u r e r u n d i d f o l l o w a s t r a i g h t l i n e and t h a t the l o w c o n v e r s i o n data are s i m i l a r a t a l l temperatures, i s a c l e a r i n d i c a t i o n o f mass t r a n s f e r p r o b l e m s . The d o w n w a r d t r e n d of t h e h i g h c o n v e r s i o n d a t a i s due t o t h e s h i f t i n g o f t h e c h a r r e a c t i o n o r d e r from z e r o (mass t r a n s f e r c o n t r o l l e d ) t o one (kinetic controlled). As shown i n o u r e a r l i e r work (6), assuming f i r s t order w i t h respect t o both 0 i char, the r a t e i s g i v e n by a n (
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 4, 2015 | http://pubs.acs.org Publication Date: August 1, 1983 | doi: 10.1021/bk-1983-0230.ch031
2
k P
Q
C° ( l - X ) k C° ( l - X ) c
where k i s t h e k i n e t i c r a t e c o n s t a n t , k i s the mass t r a n s f e r c o e f f i c i e n t , C ° i s t h e i n i t i a l c h a r c o n c e n t r a t i o n and X i s t h e f r a c t i o n char converted. T h u s a t l o w v a l u e s o f X, t h e r i g h t hand term i n t h e d e n o m i n a t o r i s d o m i n a n t and t h e r a t e i s z e r o order w i t h respect t o char. A t h i g h v a l u e s o f X, t h e d e n o m i n a t o r a p p r o a c h e s 1.0 and t h e r a t e becomes f i r s t o r d e r . The m a s s t r a n s f e r c o e f f i c i e n t w a s o b t a i n e d f r o m t h e l o w c o n v e r s i o n d a t a i n F i g u r e 2 and when i t was u s e d i n c o m b i n a t i o n w i t h t h e f i r s t o r d e r a s s u m p t i o n made above, e x c e l l e n t p r e d i c t i o n s o f t h e e x p e r i m e n t a l d a t a were o b t a i n e d f o r a l l t h e s h a l e samples i n c l u d i n g those which were k i n e t i c a l l y c o n t r o l l e d throughout. The m o d e l p r e d i c t i o n i s shown a l o n g w i t h t h e experimental data i n F i g u r e 2 f o r the high temperature run. m
c
Rate
Constants
As i n o u r e a r l i e r w o r k (6) t h e c o m b u s t i o n r e a c t i o n r a t e was f o u n d t o be f i r s t o r d e r w i t h r e s p e c t t o b o t h 0 and char content. Table I I l i s t s t h e apparent r a t e constants i n terms o f t h e p r e - e x p o n e n t i a l f a c t o r and t h e a c t i v a t i o n e n e r g y f o r a l l s i x s a m p l e s a s w e l l a s c o m p a r a t i v e v a l u e s a t 700 K. The S-A s a m p l e had t h e h i g h e s t a c t i v i t y and h a s h i g h c o n c e n t r a t i o n s o f t h e m i n e r a l s d a w s o n i t e and n a h c o l i t e . Although these m i n e r a l s w i l l have decomposed p r i o r t o c o m b u s t i o n , t h e d e c o m p o s i t i o n p r o d u c t s ( N a C 0 g , A l 0 g ) a r e p r e s e n t a n d , a s w i l l be shown, t h e r e i s s t r o n g evidence t o i n d i c a t e t h a t t h e sodium a c t s as a c a t a l y s t . I t i s also i n t e r e s t i n g that the a c t i v a t i o n energies a r e lowest f o r t h e t w o s h a l e s ( S - A a n d GEOK) w i t h t h e h i g h e s t r a t e c o n stants. I ti stempting to a t t r i b u t e this r e s u l t to c a t a l y t i c i n f l u e n c e s o f t h e m i n e r a l m a t t e r b u t , i n t h e c a s e o f t h e GEOK s a m p l e , t h e r e i s no s e p a r a t e e v i d e n c e t o s u g g e s t t h a t t h e m i n e r a l s p r e s e n t a t t h e s e l o w t e m p e r a t u r e s a r e , i n any way, catalytic. 2
2
2
In Geochemistry and Chemistry of Oil Shales; Miknis, F., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
31.
Oil Shale Char Combustion
CAVALIERI AND THOMSON
Table
II.
Kinetic
k = koEXPJzEJ
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 4, 2015 | http://pubs.acs.org Publication Date: August 1, 1983 | doi: 10.1021/bk-1983-0230.ch031
Sample PCM C-a GEOK S-A S-B ANT a
ko
x 10"
.025 18500. .00067 .0031 .224 1.28
7
549
Parameters (kPa-min)" E
1
a
97.07 147.9 54.85 50.04 88.16 93.72
k
(700K) .0140 .0168 .054 .0571 .0059 .013
kj/mol
Char c o m b u s t i o n k i n e t i c s have been p r e v i o u s l y r e p o r t e d f o r A n t r i m s h a l e by Rostam-Abadi and M i c k e l s o n (9). I n that study t h e a u t h o r s r e p o r t e d t h a t t h e r a t e was s e c o n d o r d e r w i t h r e s p e c t to t h e char r e m a i n i n g and t h a t t h e r e was n o t i c e a b l e c h e m i s o r p t i o n o f 02« A t t e m p t s t o f i t o u r d a t a f o r t h e A n t r i m s h a l e t o a second order r a t e e x p r e s s i o n were u n s u c c e s s f u l and, i n a l l cases, t h edata appeared t o f o l l o w f i r s t order kinetics. A l t h o u g h we d i d n o t h a v e t h e p r e c i s i o n t o m e a s u r e 0 c h e m i s o r p tion, t h i s phenomenon i s c o n s i s t e n t w i t h o u r p r e v i o u s o b s e r v a t i o n s (6^) o f c a t a l y t i c a c t i v i t y i n t h o s e shales c o n t a i n i n g decomposed m i n e r a l carbonates. That i s , t h e c a t a l y t i c a c t i v i t y o f CaO w a s a t t r i b u t e d t o i t s a b i l i t y t o c h e m i s o r b 02* A s w i l l b e d i s c u s s e d i n m o r e d e t a i l b e l o w , t h e A n t r i m s h a l e sample d i d n o t c o n t a i n such carbonates and no c a t a l y t i c b e h a v i o r was observed. However, t h e magnitude o f t h e r a t e c o n s t a n t s r e p o r t e d by R o s t a m - A b a d i and M i c k e l s o n (9) a r e v e r y s i m i l a r t o those measured here. F i n a l l y i t s h o u l d be p o i n t e d o u t t h a t t h e p r e - e x p o n e n t i a l f a c t o r l i s t e d i n T a b l e I I f o r t h e PCM s a m p l e , d i f f e r s f r o m t h e v a l u e we r e p o r t e d e a r l i e r (6^). F r o m o u r m e a s u r e m e n t s o f t h e a c t u a l shale temperature, we have d i s c o v e r e d t h a t t h e m e a s u r e d temperatures i n t h ee a r l i e r study were i ne r r o r . The v a l u e s l i s t e d i n T a b l e I I a r e now c o n s i s t e n t w i t h t h e r e p o r t e d m e a s u r e m e n t s o f Sohn and K i m ( 1 0 ) . 2
Mineral Catalysis A l t h o u g h a d e t a i l e d x-ray d i f f r a c t i o n a n a l y s i s was n o t c o n d u c t e d a s p a r t o f t h i s s t u d y , some i n s i g h t i n t o t h e c a r b o n a t e m i n e r a l b e h a v i o r o f t h e s h a l e s c a n be o b t a i n e d b y a l l o w i n g t h e s h a l e s t o decompose i n a n i n e r t e n v i r o n m e n t . F i g u r e 3 shows t h e mass l o s s f o r t h e s p e n t s h a l e s a s t h e t e m p e r a t u r e was r a i s e d l i n e a r l y a t 2.7 ° C / m i n i n a h e l i u m p u r g e s t r e a m . I n t h e GEOK s a m p l e , o n l y one l a r g e mass l o s s i s a p p a r e n t and t h i s o c c u r s a t
In Geochemistry and Chemistry of Oil Shales; Miknis, F., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 4, 2015 | http://pubs.acs.org Publication Date: August 1, 1983 | doi: 10.1021/bk-1983-0230.ch031
550
GEOCHEMISTRY AND CHEMISTRY OF OIL SHALES
— J
400
i
I
i
500
600
700
TEMPERATURE, «C Figure 3. Mass loss due to mineral decomposition. Conditions: helium purge, heating rate - 2.7 K/min).
In Geochemistry and Chemistry of Oil Shales; Miknis, F., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 4, 2015 | http://pubs.acs.org Publication Date: August 1, 1983 | doi: 10.1021/bk-1983-0230.ch031
31.
CAVALIERI AND THOMSON
Oil Shale Char
Combustion
551
a b o u t 600 °C. T h i s i s a t t r i b u t e d t o d o l o m i t e / c a l c i t e d e c o m p o s i t i o n . T h e r e a r e t w o d i s t i n c t mass l o s s o c c u r r e n c e s w i t h t h e ANT s a m p l e ; one a t 500 °C a n d t h e o t h e r a t 625 °C. T h e s e a r e a t t r i buted t o c l a y m i n e r a l s which a r e t y p i c a l l y found i n devonian shale. The c o m p a r i s o n b e t w e e n §-A a n d S-B i s v e r y i n t e r e s t i n g s i n c e t h e r e a p p e a r s t o be much l e s s m i n e r a l d e c o m p o s i t i o n i n t h e S-B sample. T h e mass l o s s a t 480°C i n t h e S-A s a m p l e i s a t t r i b u t e d t o d a w s o n i t e d e c o m p o s i t i o n and t h e l o s s a t 620°C i s a t t r i buted t o c a l c i t e decomposition. T h e S-B s a m p l e i s l o w i n dawsonite w i t h i t s aluminum probably present i n s i l i c a t e s . A s c a n be s e e n f r o m t h e e l e m e n t a l C a m e a s u r e m e n t s l i s t e d i n T a b l e I , i t s h o u l d be l o w i n c a l c i t e a s w e l l . One o f t h e e x p e r i m e n t s w h i c h we c o n d u c t e d o n t h e PCM s a m p l e was t o t h e r m a l l y decompose t h e c a r b o n a t e m i n e r a l s ( d o l o m i t e a n d c a l c i t e ) t o t h e i r o x i d e s a t 900 K a c c o r d i n g t o r e a c t i o n s (1) a n d (2). CaMg ( C 0 ) 3
CaC0
3
^ C a O + MgO + 2 C 0
2
^
^
CaO + C 0
(1)
2
(2)
2
When t h e t e m p e r a t u r e w a s l o w e r e d t o 700 K and t h e s a m p l e e x p o s e d to 0 , t h e o b s e r v e d c o m b u s t i o n r a t e was t e n t i m e s h i g h e r t h a n when t h e c a r b o n a t e s were l e f t i n t a c t . By p r o c e s s o f e l i m i n a t i o n , t h e i n c r e a s e d a c t i v i t y was a t t r i b u t e d t o t h e p r e s e n c e o f CaO. I n o r d e r t o f u r t h e r i n v e s t i g a t e this phenomena, t h e same e x p e r i m e n t was c a r r i e d o u t w i t h t h e C-a a n d t h e ANT s a m p l e . T h e C-a s a m p l e w a s c h o s e n due t o t h e f a c t t h a t i t c o n t a i n e d more Ca t h a n char on a m o l a r b a s i s . On t h e o t h e r hand, t h e ANT s a m p l e had a v e r y l o w C a c o n t e n t . F i g u r e 4 shows t h e c o m p a r a t i v e r e s p o n s e s o f t h e r a w t h e r m o g r a v i m e t r i c r e a d i n g s when t h e decomposed s a m p l e s w e r e e x p o s e d t o 1 0 % 0 a t t i m e = 0. S i m i l a r b e h a v i o r w a s o b s e r v e d f o r t h e C - a and PCM s a m p l e s ; t h a t i s , t h e r a w w e i g h t i n c r e a s e d due t o t h e r e c a r b o n a t i o n o f CaO. 2
2
C + 0
C0
2
CaO + C 0
2
(3)
2
**CaC0
3
(4)
Since the combustion rate i s a t l e a s t as f a s t as the recarbonat i o n rate, the data i n F i g u r e 4 correspond t o a combustion r a t e i n c r e a s e o f about an o r d e r o f magnitude i n both samples. This a l s o l e a d s t o t h e c o n c l u s i o n t h a t t h e s o u r c e o f CaO d o e s n o t a p p e a r t o be i m p o r t a n t s i n c e m o s t o f i t i s p r o d u c e d from a n k e r i t i c d o l o m i t e i n t h e C-a s a m p l e a n d o v e r 3 0 % f r o m f r e e c a l c i t e i n t h e PCM sample. I t s h o u l d be p o i n t e d o u t t h a t t h e w e i g h t change i n PCM r e a c h e d a maximum w e i g h t a n d t h e n d e c r e a s e d d u e t o t h e t o t a l r e c a r b o n a t i o n o f t h e a v a i l a b l e CaO p r i o r t o
In Geochemistry and Chemistry of Oil Shales; Miknis, F., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 4, 2015 | http://pubs.acs.org Publication Date: August 1, 1983 | doi: 10.1021/bk-1983-0230.ch031
552
GEOCHEMISTRY AND CHEMISTRY OF OIL SHALES
TIME, min Figure 4. Oxidation after thermalpretreatment. Conditions: 700 K, PQ - kPa). 2
In Geochemistry and Chemistry of Oil Shales; Miknis, F., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 4, 2015 | http://pubs.acs.org Publication Date: August 1, 1983 | doi: 10.1021/bk-1983-0230.ch031
31.
CAVALIERI AND THOMSON
Oil Shale Char
553
Combustion
c o m p l e t e c o m b u s t i o n o f t h e c h a r . T h i s was n o t t h e c a s e f o r C-a w h i c h h a s m o r e CaO t h a n c h a r . I t i s a l s o i n t e r e s t i n g t o n o t e t h a t t h e ANT s a m p l e , w h i c h h a s m i n i m a l C a , d i d n o t e x p e r i e n c e a weight g a i n d u r i n g combustion. I n f a c t , t h e combustion r a t e was i d e n t i c a l t o t h a t o b s e r v e d f o r ANT s a m p l e s w h i c h h a d n o t b e e n thermally pretreated. These r e s u l t s tend t o s u p p o r t t h e h y p o t h e s i s o f CaO a s a c o m b u s t i o n c a t a l y s t . A d d i t i o n a l e x p e r i m e n t s were a l s o r u n i n o r d e r t o examine the e f f e c t s o f w a t e r s o l u b l e m i n e r a l s p e c i e s o n t h e c o m b u s t i o n rate. F i g u r e 5 shows f i r s t o r d e r p l o t s f o r one S-B a n d t w o S-A s a m p l e s . A s p o i n t e d o u t e a r l i e r , t h e S-A a n d S-B s a m p l e s a r e s i m i l a r except f o r high concentrations o f n a h c o l i t e and dawsonite i n t h e former andi t i s t h i s sample w h i c h had t h e highest combustion a c t i v i t y (Table I I ) . Since i t i s possible t o w a t e r l e a c h s o d i u m m i n e r a l s , t h e S-A s a m p l e w a s s u b j e c t e d t o w a t e r washing p r i o r t o combustion. A f t e r d r y i n g , t h e sample was combusted under i d e n t i c a l c o n d i t i o n s and, a sc a n be seen f r o m F i g u r e 5, t h e c o m b u s t i o n r a t e f o r t h e w a t e r w a s h e d S-A s a m p l e was i d e n t i c a l t o t h a t o b s e r v e d w i t h t h e S-B s a m p l e . I n ordert o d e t e r m i n e t h e e l e m e n t s removed d u r i n g t h e w a t e r leaching p r o c e s s , t h e wash-water was a n a l y z e d using atomic absorption. T a b l e I I I shows t h e r e s u l t s o f t h e s e a n a l y s e s f o r t h e S-A s a m p l e a s w e l l a s f o r t h e S-B a n d GEOK s a m p l e s . A s e x p e c t e d , t h e S-A l e a c h a t e was e x t r e m e l y h i g h i n Na. The f a c t t h a t n e i t h e r C a n o r F e w a s l e a c h e d f r o m t h e S-A s a m p l e a n d t h a t t h e GEOK s a m p l e showed no change i n c o m b u s t i o n r a t e d e s p i t e s i m i l a r K v a l u e s p o i n t s t o t h e p r o b a b l e r o l e o f Na a s a n o x i d a t i o n c a t a l y s t . T h i s i s n o t t o o s u r p r i s i n g s i n c e i t i s w e l l known t h a t t h e Group I-a and, t o a l e s s e r e x t e n t , Group I l - a e l e m e n t s a r e good g a s i f i c a t i o n c a t a l y s t s (11). Table I I I .
E l e m e n t a l A n a l y s i s o f Leachate Water
Concentrations SHALE S-A S-B GEOK
Na 21.7 0.15 0.93
mg/g S p e n t S h a l e K
Ca
Fe
0.24 0.05 0.23
0.0 0.49 1.90
0.0 0.0 0.0
An a t t e m p t w a s a l s o made t o f o r m s i l i c a t e s b y a l l o w i n g t h e mineral carbonates t o react w i t h the s i l i c a present i n the shale to see i f c o m b u s t i o n a c t i v i t y would drop. U n f o r t u n a t e l y i t was necessary t o m a i n t a i n a C 0 atmosphere during s i l i c a t i o n ( t o p r e v e n t t h e more f a v o r a b l e f o r m a t i o n o f CaO) w h i c h p e r m i t t e d t h e char t o undergo C 0 g a s i f i c a t i o n . 2
2
In Geochemistry and Chemistry of Oil Shales; Miknis, F., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 4, 2015 | http://pubs.acs.org Publication Date: August 1, 1983 | doi: 10.1021/bk-1983-0230.ch031
554
GEOCHEMISTRY AND CHEMISTRY OF OIL SHALES
I I
I 2
I 4
I 6
I 8
I 10
1 12
TIME, min Figure 5. Effect of sodium removal on char combustion. Conditions: 700 K, Po - 10 kPa). 2
In Geochemistry and Chemistry of Oil Shales; Miknis, F., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
31.
Oil Shale Char
CAVALIERI AND THOMSON
C0
2
Combustion
555
+ C^2C0
As a r e s u l t t h e r e was n o t enough c h a r r e m a i n i n g combustion t e s t s .
(5) to
conduct
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 4, 2015 | http://pubs.acs.org Publication Date: August 1, 1983 | doi: 10.1021/bk-1983-0230.ch031
Conclusions On t h e b a s i s o f t h e s t u d i e s c o n d u c t e d h e r e , i t i s r e a d i l y apparent t h a t the presence o f m i n e r a l s c a n d r a s t i c a l l y a l t e r t h e r e a c t i v i t y o f t h e r e s i d u a l char on spent o i l s h a l e . More detailed quantitative studies o f them i n e r a l compositions a r e n e c e s s a r y i n o r d e r t o be a b l e t o a s s e s s t h e i r i m p o r t a n c e u n d e r t y p i c a l o i l s h a l e p r o c e s s i n g c o n d i t i o n s a n d w i l l be t h e s u b j e c t of f u t u r e m a n u s c r i p t s from t h i s l a b o r a t o r y . However, a t t h i s t i m e , t h e r e a r e s e v e r a l c o n c l u s i o n s w h i c h c a n be made. First, the combustion o f the char i n a l l s i x o f the s h a l e s f o l l o w e d f i r s t o r d e r k i n e t i c s w i t h r e s p e c t t o the oxygen p a r t i a l p r e s s u r e and t h e c h a r a v a i l a b l e . For thewestern shales this i s i n a g r e e m e n t w i t h p r e v i o u s w o r k s w h i c h s t u d i e d PCM a n d A n v i l P o i n t s s h a l e s , b u t i t does c o n f l i c t w i t h the r e s u l t s o f Rostam-Abadi and M i c k e l s o n (9) who r e p o r t e d s e c o n d o r d e r k i n e t i c s f o r A n t r i m shale. S e c o n d l y , we f o u n d t h a t CaO h a s a c a t a l y t i c e f f e c t o n c h a r c o m b u s t i o n , most l i k e l y due t o a c h e m i s o r p t i o n p r o c e s s . A n d f i n a l l y we f o u n d t h a t N a 0 , a s d e r i v e d f r o m t h e t h e r m a l d e c o m p o s i t i o n o f n a h c o l i t e , has a pronounced c a t a l y t i c e f f e c t on t h e c h a r c o m b u s t i o n r a t e o f s a l i n e zone s h a l e . 2
Acknowledgment T h i s w o r k w a s s u p p o r t e d b y t h e U. S. D e p a r t m e n t o f E n e r g y u n d e r C o n t r a c t No. DE-AM06-76RLO2221.
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8.
Hall, R. N. paper presented at National AIChE Meeting, Anaheim, CA., June 8, 1982. Griswold, C. and Duir, J. H., paper presented at National AIChE Meeting, Anaheim, CA., June 8, 1982. "Union Claims Boost in Shale-oil Technology", 1974, 24, 267. Campbell, J. H. Lawrence Livermore Laboratory, Rept. No. UCRL-52089 part 2, March 13, 1978. Mavis. J. D. and Rosain, R. M. paper presented at National AIChE Meeting, Detroit, MI., August 16-19, 1981. Soni, Y. and Thomson, W. J. I & EC Proc. Des. & Dev, 1979, 18, 661-7. Thompson L. G. and Thomson, W. J. in this SYMPOSIUM SERIES. Soni, Y. and Thomson, W. J. Proceedings of 11th Oil Shale Symposium, p. 364, April 1978.
In Geochemistry and Chemistry of Oil Shales; Miknis, F., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
556
GEOCHEMISTRY AND CHEMISTRY OF OIL SHALES
9. Rostam-Abadi, M. and Mickelson, R. W. paper presented at National AICHE Meeting, Anaheim, CA, June 7-10 1982. 10. Sohn, H. Y. and Kim, S. K. I & EC Proc. Des. & Dev, 1980, 19, 550-5. 11. Wen, W. Y. Catal. Rev.-Sci. Eng. 1980, 22, 1.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 4, 2015 | http://pubs.acs.org Publication Date: August 1, 1983 | doi: 10.1021/bk-1983-0230.ch031
RECEIVED April 18, 1983
In Geochemistry and Chemistry of Oil Shales; Miknis, F., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.