7
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
Effects of Reaction Conditions on the Aqueous Thermochemical Conversion of Biomass to Oil P. M . MOLTON, R. K. MILLER, J. A. RUSSELL, and J. M . DONOVAN Batelle Pacific Northwest, P.O. Box 999, Richland, WA 99352
Thermochemical liquefaction of biomass is basically a simple process whereby it is heated with alkali under pressure at temperatures up to 400°C. This simple procedure converts the biomass to a mixture of gas (2-10%), char (5-40%). and oil (up to 40%), on a weight basis. It is one of several methods available for conversion of biomass to potential liquid fuels, the others being direct heating of dry matter (destructive distillation, pyrolysis) (1), fermentation (or anaerobic digestion) (2), and gasification (partial oxidation) (3) followed by liquefaction to methanol. There are variants on all of these processes. The most interesting variant on the basic thermochemical liquefaction process involves the addition of an overpressure of carbon monoxide and hydrogen to the reaction, which is also performed in a non-aqueous solvent (anthracene oil or recycled product oil). Yields of oil up to 70% of the weight of the Douglas fir wood feedstock have been reported in an investigation by Elliott (4-8), Elliott and Walkup (9) and Elliott and Giacoletto (10). This process variant (also known as the Albany, PERC, or CO-Steam Process) is described in more detail in the Results and Discussion section. The t h e r m o c h e m i c a l l i q u e f a c t i o n process a n d its variants are of interest because t h e y appear t o have several a d v a n t a g e s over t h e o t h e r m e t h o d s . T he y d o n o t require p r e l i m i n a r y d r y i n g o f t h e f e e d s t o c k ; t h e y operate at a
0O97-6156/81/0144-0137$06.50/0 © 1981 American Chemical Society
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
138
BIOMASS AS A NONFOSSIL F U E L
SOURCE
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
relatively l o w t e m p e r a t u r e ; a n d t h e y c o n v e r t all of t h e biomass. leaving o n l y a relatively small u n u s a b l e residue w h i c h is as little as 5% of t h e feedstock. In a d d i t i o n , t h e c r u d e l i q u i d p r o d u c t separates s p o n t a n e o u s l y f r o m t h e a q u e o u s phase after t h e reaction. Historically, t h e a q u e o u s d e g r a d a t i o n of b i o m a s s in t h e f o r m of n e w s p r i n t or c o t t o n w a s e x a m i n e d by Berl a n d S c h m i d t (11-13) a n d Berl. S c h m i d t , a n d Koch (14). a n d by others w h o w e r e p r i m a r i l y interested in t h e m e c h a n i s m of g e o l o g i c a l f o r m a t i o n of coal f r o m plant material (e.g.. 15). T h e alkaline reaction of cellulose w a s f u r t h e r i n v e s t i g a t e d by a series of a u t h o r s , n o t a b l y S a m u e l s o n (16-28) a n d H e i n e m a n n (29). T h e reactions of cellulose at t e m p e r a t u r e s u p t o 180°C have long been of interest in t h e paper p u l p i n g i n d u s t r y . A l t h o u g h c o n d i t i o n s in p u l p i n g have s o m e relevance t o t h e c o n v e r s i o n of cellulose t o o i l . as d i s c u s s e d in m o r e detail later, t h e y are generally m i l d e r (since d i s s o l u t i o n of t h e cellulose is d e f i n i t e l y not required). O t h e r c h e m i c a l s are also a d d e d , s u c h as s o d i u m sulfide in Kraft p u l p i n g , a n d no a t t e m p t is m a d e t o e x c l u d e o x y g e n f r o m t h e reaction. T h e d e v e l o p m e n t of t h e r m o c h e m i c a l l i q u e f a c t i o n t e c h n i q u e s f o r c o n v e r s i o n of b i o m a s s t o oil has been r e v i e w e d by M o l t o n a n d D e m m i t t (30). T h e effect of alkali o n cellulose has been r e v i e w e d by Richards (31) a n d M e l l e r (32). In 1 9 2 4 . W a t e r m a n a n d K o r t l a n d t (33) o b s e r v e d t h a t s e m i c o k e o b t a i n e d f r o m lignite w a s liquefied m o r e rapidly if t h e r e w a s an overpressure of h y d r o g e n a n d / o r c a r b o n m o n o x i d e . Fischer a n d S c h r a d e r (34) o b s e r v e d t h a t s o d i u m f o r m a t e in large a m o u n t s f a c i l i t a t e d t h e l i q u e f a c t i o n of various materials i n c l u d i n g peat a n d cellulose at 4 0 0 ° C . T h e effect of f o r m a t e or c a r b o n m o n o x i d e o n t h e rate of b i o m a s s l i q u e f a c t i o n w a s r e p o r t e d in 1 9 6 0 by A p p e l l , W e n d e r , a n d Miller (35) w o r k i n g at t h e Bureau of M i n e s in P i t t s b u r g h . In a series of p u b l i c a t i o n s (36-40). these a n d o t h e r w o r k e r s at t h e Bureau of M i n e s s h o w e d a d e f i n i t e effect of c a r b o n m o n o x i d e o n t h e alkaline l i q u e f a c t i o n of biomass. A s a result of t h e Bureau of M i n e s w o r k , a pilot p l a n t w a s c o n s t r u c t e d at A l b a n y , O r e g o n . This w a s d e s i g n e d t o liquefy b i o m a s s as a slurry in r e c y c l e d p r o d u c t oil in t h e presence of 5% a q u e o u s s o d i u m c a r b o n a t e at 2 9 0 - 3 7 0 ° C . T h e residence t i m e w a s e s t i m a t e d at 2 0 m i n t o 1 hr in a stirred t a n k reactor. Initially, w o o d f l o u r w a s used as t h e b i o m a s s source, after h a m m e r - m i l l i n g a n d p r e - d r y i n g . T h e p i l o t p l a n t s t a r t e d o p e r a t i o n in 1 9 7 7 . a l t h o u g h s i g n i f i c a n t a m o u n t s of oil p r o d u c t w e r e not o b t a i n e d u n t i l several m o n t h s later. O p e r a t i o n of t h e pilot plant has been d o g g e d by p r o b l e m s of p l u g g i n g and c o r r o s i o n of pipes a n d m e c h a n i c a l difficulties.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
7.
MOLTON ET A L .
139
Oil from Biomass
A t t h e t i m e of pilot plant c o m p l e t i o n , o n l y t h e original Bureau of M i n e s w o r k w a s available for e s t i m a t i o n of process parameters. This w o r k w a s used in t h e d e s i g n o f t h e A l b a n y pilot plant. T h u s , t h e original c o n d i t i o n s f o r o p e r a t i n g t h e pilot plant w e r e a s s u m e d , w i t h n o g u a r a n t e e t h a t t h e y w e r e o p t i m u m c o n d i t i o n s . Since pilot plant s t a r t u p , laboratory i n v e s t i g a t i o n s have been p e r f o r m e d in s u p p o r t of t h e pilot plant (4-10). a n d have i n c l u d e d w o r k o n process o p t i m i z a t i o n .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
For s o m e years w e have been w o r k i n g o n t h e d e t e r m i n a t i o n o f t h e c h e m i s t r y i n v o l v e d in biomass l i q u e f a c t i o n , u s i n g pure cellulose (Solka-floc) as o u r initial m o d e l (41-43). W e believe t h a t a c o m p a r i s o n of o u r results u s i n g pure cellulose in an a q u e o u s s y s t e m , w i t h results o b t a i n e d in a closer s i m u l a t i o n of t h e A l b a n y pilot plant c o n d i t o n s . is useful in p r e d i c t i n g s o m e o f t h e c o m p l e x c h e m i s t r y o c c u r r i n g in t h e pilot plant. A m o r e d i r e c t c o m p a r i s o n u s i n g w o o d substrate
a n d recycle oil is d i f f i c u l t
d u e t o t h e great
complexity and
v a r i a b i l i t y in t h e s y s t e m . In t h i s paper, w e report t h e results of s o m e of o u r e x p e r i m e n t s o n t h e v a r i a t i o n o f reaction p a r a m e t e r s a n d p r o d u c t f o r m a t i o n f r o m pure cellulose in an a q u e o u s s y s t e m closely related t o t h e A l b a n y pilot plant c o n d i t o n s . MATERIALS AND METHODS T h r o u g h o u t this w o r k w e used pure cellulose (Solka-floc; B r o w n Co., NJ) as our m o d e l biomass source because of its h i g h purity. Use of n e w s p r i n t or w o o d w o u l d have m a d e o u r results d i f f i c u l t t o r e p r o d u c e d u e t o t h e h e t e r o g e n i t y of s u c h materials. T h e effect o f t h e l i g n i n c o m p o n e n t o f w o o d on t h i s l i q u e f a c t i o n process is b e i n g i n v e s t i g a t e d in a separate series of e x p e r i m e n t s . T h e Solka-floc t h a t w e o b t a i n e d w a s o f 9 5 . 8 % p u r i t y , a n d c o n t a i n e d w a t e r (3.9%), ash (0.3-0.5%) a n d n i t r o g e n (0.004-0.0034%). Solkafloc o f t h e g r a d e used b y us c o n t a i n s over 9 0 % alpha-cellulose, is greater t h a n 5 0 % crystalline, a n d consists o f a 3:1 m i x t u r e of fibers w i t h degree of p o l y m e r i z a t i o n (DP) o f 6 0 0 a n d 1 1 0 0 . The average DP is therefore a b o u t 7 5 0 , c o m p a r i n g w i t h Douglas f i r cellulose o f DP a b o u t 8 0 0 . T h e degree o f c r y s t a l l i n i t y (44) a n d t h e DP v a l u e (45.46) have b o t h been s h o w n t o exert h i g h l y s i g n i f i c a n t effects o n t h e rate o f d e g r a d a t i o n of cellulose. A n h y d r o u s s o d i u m c a r b o n a t e (Fisher c e r t i f i e d ACS grade) w a s of m i n i m u m 9 9 % p u r i t y . A l l w a t e r w a s d i s t i l l e d , a n d all solvents w e r e o f a n a l y t i c a l reagent grade. E x p e r i m e n t s t o d e t e r m i n e t h e effect o f c a r b o n m o n o x i d e o n oil p r o d u c t yield w e r e p e r f o r m e d in 2.5 a n d 10 g a l l o n a u t o c l a v e s ; e x p e r i m e n t a l c o n d i t i o n s are s h o w n in Table I. Cellulose, s o d i u m c a r b o n a t e , a n d w a t e r w e r e m i x e d in a 3 0 % cellulose slurry, a n d t h e slurry w a s p o u r e d into t h e a u t o c l a v e , w h i c h w a s
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
140
BIOMASS AS A NONFOSSIL F U E L
SOURCE
t h e n sealed a n d f l u s h e d w i t h pure n i t r o g e n for 5 m i n t o e x c l u d e o x y g e n . T h e a u t o c l a v e w a s t h e n raised t o t h e c o r r e c t t e m p e r a t u r e (heating t i m e 2.5 hr), m a i n t a i n e d at t h i s t e m p e r a t u r e for 2 0 t o 6 0 m i n . a n d c o o l e d (cooling t i m e 3.5 hr). T h e c a r b o n m o n o x i d e , w h e r e a d d e d , w a s a d d e d after t h e n i t r o g e n f l u s h , at 2 5 0 or 5 0 0 psig initial pressure. A f t e r c o o l i n g , t h e gas w a s v e n t e d a n d t h e a u t o c l a v e o p e n e d . T h e a q u e o u s phase w a s separated a n d t h e oil residue a n d c h a r p o u r e d off a n d d r i e d . T h e p r o d u c t oil of c h i e f interest in t h e s e e x p e r i m e n t s w a s o b t a i n e d by a 3-day S o x h l e t e x t r a c t i o n of t h e tar plus c h a r f r a c t i o n , u s i n g a c e t o n e as t h e e x t r a c t i n g solvent. A f t e r r e m o v a l of t h e a c e t o n e u n d e r r e d u c e d pressure, t h e oil y i e l d w a s d e t e r m i n e d o n a w e i g h t basis. T o d e t e r m i n e t h e e f f e c t s of alkali c o n c e n t r a t i o n , final reaction t e m p e r a t u r e , a n d reaction t i m e o n t h e kinetics of t h e o i l - f o r m i n g reactions, a d i f f e r e n t p r o c e d u r e had t o be used. For t h e s e e x p e r i m e n t s , s m a l l reactors w e r e used, of a p p r o x i m a t e l y 7 m l t o t a l v o l u m e . A f t e r m i x i n g t h e cellulose w i t h w a t e r a n d alkali, i n s e r t i n g t h e m i x t u r e i n t o t h e b o m b a n d f l u s h i n g w i t h n i t r o g e n , t h e reactors w e r e i m m e r s e d in a sand b a t h already at t h e c o r r e c t t e m p e r a t u r e . Heating time was thus reduced to 5 min, and cooling time to 7 min, a p r o c e d u r e w h i c h m i n i m i z e d t h e reactions o c c u r r i n g d u r i n g t h e h e a t i n g a n d c o o l i n g periods. H o w e v e r , because of t h e s m a l l a m o u n t s of m a t e r i a l in these reactors, a p r o d u c t y i e l d c o u l d n o t be o b t a i n e d . Instead, t h e o i l - f o r m i n g reactions w e r e m o n i t o r e d by gas c h r o m a t o g r a p h y o n a Perkin-Elmer 9 0 0 i n s t r u m e n t . T h e n u m b e r a n d d i s t r i b u t i o n of volatile p r o d u c t s w e r e used as an index of t h e degree of reaction. Further i d e n t i f i c a t i o n of p r o d u c t s w a s p e r f o r m e d o n a H e w l e t t Packard 5 9 9 2 G C / M S i n s t r u m e n t . A series of e x p e r i m e n t s w a s p e r f o r m e d w i t h t h e s m a l l reactors, based u p o n statistical e x p e r i m e n t a l d e s i g n t e c h n i q u e s . A B o x - B e h n k e n d e s i g n w a s used, w i t h t h e e x p e r i m e n t a l p a r a m e t e r s s h o w n in Tables II t o IV for d e t e r m i n a t i o n of t h e effects of reaction t i m e , t e m p e r a t u r e , a n d alkali c o n c e n t r a t i o n . A f t e r r e a c t i o n , t h e a q u e o u s a n d oil phases w e r e separated a n d e x a m i n e d separately. In t h e s e e x p e r i m e n t s , for p u r p o s e s of c o m p a r i s o n of p r o d u c t d i s t r i b u t i o n as a f u n c t i o n of t h e variable e x p e r i m e n t a l parameter, t h e GC t r a c e of t h e u n t r e a t e d a q u e o u s phase w a s used. Further w o r k is b e i n g p e r f o r m e d t o i d e n t i f y t h e o r g a n i c c o m p o n e n t s of t h e p r o d u c t oils a n d a q u e o u s phases t o d e t e r m i n e t h e r e a c t i o n m e c h a n i s m s i n v o l v e d in oil f o r m a t i o n . A q u e o u s phase c o m p o n e n t s w e r e f o u n d t o be similar in c o m p o s i t i o n t o m o s t oil c o m p o n e n t s , b u t are better resolved o n t h e GC. There is a possibility t h a t higher m o l e c u l a r w e i g h t oil c o m p o n e n t s m a y c h a n g e i n d e p e n d e n t l y of l o w e r m o l e c u l a r w e i g h t c o m p o n e n t s , b u t w e have no w a y of t e s t i n g t h i s as t h e s e p a r a t i o n a n d i d e n t i f i c a t i o n of h i g h m o l e c u l a r w e i g h t materials in s u c h a c o m p l e x m i x t u r e are b e y o n d o u r c u r r e n t a n a l y t i c a l capabilitites.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
MOLTON ET A L .
Oil from Biomass
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
Table 1. EFFECT OF CARBON MONOXIDE ON CELLULOSE LIQUEFACTION • Pressure Alkali Cone. (psig) (N) 0 0.3 0 0.3 0 0.3 250 0.3 250 0.3 250 0.3 0 0.6 0 0.6 0 0.6 0 0.6 0 0.6 0 0.6 250 0.6 250 0.6 250 0.6 500 0.6 0 1.18 0 1.18 250 1.18 500 1.18 500 1.18 0 1.79 250 1.79 500 1.79 0 2.37 0 2.37 500 2.38
Final Temp. Time at Temp. (min) (°C) 20 318 350 20 407 60 20 293 300 60 60 332 317 20 337 30 304 60 60 337 60 360 60 385 299 20 20 318 60 359 20 268 307 20 324 20 20 321 20 268 307 20 20 275 20 268 20 275 20 291 20 343 20 270
Yield(%) 31 22 23 14 28 33 31 26 29 29 26 21 34 34 28 26 19 27 33 31 27 18 24 23 4 11 15
* Based on original weight of cellulose added.
Table II. CONDITIONS U8ED FOR ΒΟΧ-ΒΕΗΝΚΕΝ STUDIES OF CELLULOSE LIQUEFACTION, 250-290°C
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Temp. (°C) 270 270 270 250 290 290 290 270 250 250 250 290 270 270 270
Time (hr) 1.0 3.5 6.0 3.5 1.0 3.5 6.0 3.5 1.0 3.5 6.0 3.5 1.0 3.5 6.0
[Na C( (N) 0.6 0.3 0.0 0.0 0.3 0.0 0.3 0.3 0.3 0.6 0.3 0.6 0.0 0.3 0.6 2
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
142
BIOMASS AS A N O N F O S S I L F U E L
SOURCE
T a b l e I I I . C O N D I T I O N S U S E D FOR N O N B O X - B E H N K E N KINETIC STUDIES OF CELLULOSE L I Q U E F A C T I O N , 1 5 0 - 2 3 0 ° Temp.
Time
[Na C0 ]
(C°)
(min)
(N)
1
210
2
210 170 170 150 150 190 190 230 230
45 60 60
0.3 0.3 0.3 0.3 0.3 0.3 0.3
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
Run
3 4 5 6 7 8 9 10 11
45 45 60 45 60
15 16 17
15 30 60 45 30
210 210 170 170 150 150
18 19 20
3
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
15 30
190 190 230 230
12 13 14
2
15 15 30 30 15
0.3 0.3
T a b l e I V . C O N D I T I O N S U S E D FOR F I G U R E S O F G C T R A C E S OF CELLULOSE LIQUEFACTION PRODUCTS Temp.
Time
[Na C0 ]
Figure
(°C)
(hr)
(N)
1 a 1 b 1 c 2a 2b 2c 3a
270 270 270 150 210 290
1.0 3.5 6.0 1.0 1.0 1.0
270 270 270 270
3.5 3.5 6.0 6.0
0.6 0.3 0.6 0.3 0.3 0.3 0.07 0.03 0.6 0.0
3b 4a 4b
2
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
3
7.
MOLTON ET AL.
143
Oil from Biomass
RESULTS A N D DISCUSSION Effect of Carbon M o n o x i d e T h e results o f 2 7 a u t o c l a v e e x p e r i m e n t s w i t h cellulose are s h o w n in Table I. Oil yields range f r o m 4 % t o 3 4 % of t h e original w e i g h t of cellulose a d d e d , w i t h n o clear p a t t e r n e m e r g i n g . In part t h i s m a y be due t o t h e m a s k i n g effect of t h e h e a t i n g a n d c o o l i n g t i m e s f o r t h e autoclaves. Based o n pure cellulose, t h e t h e o r e t i c a l yield of a h y d r o c a r b o n oil ( C H i o ) % Y weight; with 8% o x y g e n , as is c h a r a c t e r i s t i c o f t h e A l b a n y pilot plant p r o d u c t , t h i s is increased t o 55%. Hence, o u r h i g h e s t oil yield is 3 4 / 5 5 X 100, or 6 2 % of t h e o r e t i c a l . L i g n i n a n d h e m i c e l l u l o s e are of m o r e variable c o m p o s i t i o n , b u t t h e t h e o r e t i c a l yields o f oil c o n t a i n i n g 8 % o x y g e n are a b o u t 7 5 % a n d 5 0 % respectively. Based o n t h i s d a t a , a c r u d e e s t i m a t e o f t h e t h e o r e t i c a l oil yield f r o m w o o d c o n t a i n i n g 5 0 % cellulose, 2 5 % l i g n i n , a n d 2 5 % h e m i c e l l u l o s e is 6 0 % . Elliott a n d W a l k u p (9) have presented data for t h e A l b a n y m o d e l s y s t e m s h o w i n g oil yield t o be a f u n c t i o n of c a r b o n m o n o x i d e overpressure in t h e range of 2 5 0 - 1 5 0 0 psig initial pressure, w i t h a m a x i m u m oil yield of 7 0 % . This indicates t h a t a t h e o r e t i c a l oil yield can be a c h i e v e d at h i g h CO overpressure, w i t h t h e possibility of s o m e i n c o r p o r a t i o n o f CO i n t o t h e p r o d u c t a l t h o u g h one e x p e r i m e n t carried o u t w i t h C O d i d not result in C i n c o r p o r a t i o n into t h e oil p r o d u c t . i s
5
1
b
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
6
1 4
1 4
Elliott (7) has reported s o m e e x p e r i m e n t s using w o o d flour, l i g n i n , a n d cellulose w i t h o u t a n y a d d i t i o n of CO. A t 3 5 0 ° C final t e m p e r a t u r e f o r 1 hr, w i t h 1 8 % s u b s t r a t e slurry, t h e oil yields w e r e 3 9 , 2 3 , a n d 3 0 % respectively. T h e result w i t h cellulose is in a g r e e m e n t w i t h our d a t a . T h e effect of c a r b o n m o n o x i d e a d d i t i o n t o a n a q u e o u s s y s t e m w i t h a 3 0 % cellulose slurry w a s t o increase oil yield b y o n l y 3 - 4 % in o u r e x p e r i m e n t s , u p t o 5 0 0 psig initial CO pressure. This is also in a g r e e m e n t w i t h Elliott's data. T h e C O - e n h a n c e m e n t effect o n oil yield is t h u s barely n o t i c e a b l e w i t h cellulose at CO pressures b e l o w 5 0 0 psig. The o n l y o t h e r n o t i c e a b l e effect o f v a r i a t i o n of t h e e x p e r i m e n t a l parameters s h o w n (Table I) is a n e g a t i v e effect of h i g h alkali c o n c e n t r a t i o n o n oil y i e l d , w h e n t h e s o d i u m c a r b o n a t e c o n c e n t r a t i o n is raised t o 2.37 Ν (12.6%) at 2 7 0 3 4 3 ° C . This is c o u n t e r t o Elliott a n d Giacoletto's results (10). T h e effect of alkali o n cellulose c h a i n peeling a n d cleavage w a s f o u n d t o be d i r e c t l y p r o p o r t i o n a l t o alkali c o n c e n t r a t i o n at l o w e r t e m p e r a t u r e s (185°C) (47). Since h i g h alkali c o n c e n t r a t i o n s favor t h e h y d r i d e - transfer m e d i a t e d Cannizzaro reaction t o yield acid salts a n d alcohols f r o m a l d e h y d e s and some ketones, w e s u g g e s t t h a t perhaps t h e l o w e r oil yield m a y be d u e t o removal of c a r b o n y l i n t e r m e d i a t e s f r o m t h e reaction.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
144
BIOMASS AS A NONFOSSIL F U E L
SOURCE
Because of t h e m a s k i n g effect of l o n g h e a t i n g a n d c o o l i n g t i m e s in large a u t o c l a v e s ( 2 . 5 , 1 0 gallon), w e c o n t i n u e d o u r e x p e r i m e n t s in small reactors of 7 m l t o t a l v o l u m e . This p e r m i t t e d us t o a c h i e v e short h e a t i n g a n d c o o l i n g t i m e s , b u t because of t h e small a m o u n t of reactants. p r e v e n t e d us f r o m assessing oil yields. Since w e are c u r r e n t l y interested in reaction c h e m i s t r y , t h i s w a s not c o n s i d e r e d an o v e r r i d i n g d i s a d v a n t a g e . W e w e r e able
to
e s t i m a t e t h e degree of cellulose c o n v e r s i o n f r o m t h e gas c h r o m a t o g r a p h traces of t h e p r o d u c t s , as s h o w n b e l o w , b u t t h e s e d o n o t represent a Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
q u a n t i t a t i v e yield e s t i m a t e . Effect of Reaction Time Figure I s h o w s t h e GC traces o b t a i n e d f r o m d i r e c t i n j e c t i o n of λμί q u a n t i t i e s of t h e a q u e o u s phases f r o m t h r e e e x p e r i m e n t s . W e c h o s e t o use t h e a q u e o u s phases because t h e y c o n t a i n l o w e r m o l e c u l a r w e i g h t materials t h a n t h e oils, a n d h e n c e p r e s u m a b l y p r o d u c t s f o r m e d earlier in t h e oil g e n e r a t i o n reaction s e q u e n c e , a n d because t h e a q u e o u s phases g i v e cleaner GC traces t h a n t h e oils, w h i c h are very d i f f i c u l t t o resolve.Only m i n o r differences are n o t i c e a b l e b e t w e e n t h e traces f r o m r e a c t i o n s carried o u t for 1,3.5. a n d 6 hr at a c o n s t a n t t e m p e r a t u r e of 2 7 0 ° C . T h i s t e m p e r a t u r e is m u c h l o w e r t h a n t h e t e m p e r a t u r e n o r m a l l y used in w o o d l i q u e f a c t i o n (370°). y e t m o s t of t h e cellulose w a s dissolved. T h e yield of c h a r or insoluble residue w a s generally less t h a n 2 0 % of t h e w e i g h t of cellulose a d d e d . Effect of Reaction Temperature T h e GC traces f r o m t h r e e e x p e r i m e n t s r u n at t e m p e r a t u r e s of 150. 2 1 0 . a n d 2 9 0 ° C a n d c o n s t a n t t i m e (1 hr). alkali c o n c e n t r a t i o n of (0.30 N), a n d w i t h o u t c a r b o n m o n o x i d e , are s h o w n in Figure II. A t t h e t w o l o w e r t e m p e r a t u r e s t h e m o s t noticeable feature is a pair of large peaks close t o t h e i n j e c t i o n point. One of these has been i d e n t i f i e d as a c e t o n e . T h e q u a n t i t y of a c e t o n e is less at t h e higher t e m p e r a t u r e 2 9 0 ° C . w h i c h i n c i d e n t a l l y is t h e l o w e s t o p e r a t i n g t e m p e r a t u r e at A l b a n y . T h e r e m a i n d e r of t h e peaks are p r o d u c t s d e r i v e d in part f r o m c o n d e n s a t i o n of a c e t o n e u n d e r alkaline c o n d i t i o n s (Aldol c o n d e n s a tion), a n d increase in a m o u n t w i t h increasing t e m p e r a t u r e , a l t h o u g h t h e d i s t r i b u t i o n remains relatively c o n s t a n t . T h e c o n c l u s i o n s t o be r e a c h e d f r o m these e x p e r i m e n t s are clear: Acetone is an early major product from cellulose, is produced at a much lower temperature than generally assumed (150°C and above), and then condenses to other products in a series of reactions which are constant over the range 150-290°C T h e nature of these reactions is still b e i n g e l u c i d a t e d , a l t h o u g h it appears t h a t a c e t o n e is o n l y one of at least t h r e e major small m o l e c u l e i n t e r m e d i a t e s leading t o t h e f o r m a t i o n of oil, t h e others b e i n g acrolein a n d a c e t o i n . A t t h e l o w e r reaction
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Figure 1. Effect of reaction time
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
146
BIOMASS AS A N O N F OSSIL F U E L
2a
150°C
Figure 2.
Effect of temperature
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
SOURCE
7.
MOLTON ET A L .
Oil from Biomass
147
t e m p e r a t u r e s 150°C a n d 2 0 0 ° C . very little cellulose w a s dissolved (it w a s merely b r o w n e d ) . T h e volatile p r o d u c t s o b s e r v e d a c c o u n t for an e s t i m a t e d 2 3% o f t h e t o t a l c a r b o n in t h e reactor.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
Effect of Alkali Concentration A level o f 5% s o d i u m c a r b o n a t e based o n o r g a n i c feed material is used at A l b a n y . T h e a q u e o u s s t r e a m is a d d e d t o t h e reaction m i x t u r e as 2 0 w t % c a r b o n a t e i n w a t e r . Because t h e A l b a n y s y s t e m is m a i n l y n o n - a q u e o u s , t h e a c t i v i t y o f t h e s o d i u m c a r b o n a t e is u n k n o w n . A t t h e o p e r a t i n g t e m p e r a t u r e of t h e A l b a n y reactor, t h e a m o u n t o f l i q u i d w a t e r r e m a i n i n g has n o t been d e t e r m i n e d ; t h e s o d i u m c a r b o n a t e m a y be dispersed in t h e oil vehicle. Some w a t e r is p r o d u c e d d u r i n g t h e l i q u e f a c t i o n process, a n d s o m e acidic materials w h i c h w i l l react w i t h c a r b o n a t e are p r o d u c e d , so t h e c h e m i c a l f o r m a n d a c t i v i t y o f t h e c a t a l y s t is d i f f i c u l t t o d e t e r m i n e i n t h e A l b a n y process. O u r reactions w e r e all carried o u t in t h e a q u e o u s s y s t e m , so t h e s o d i u m c a r b o n a t e is readily available f o r reaction at t h e a d d e d c o n c e n t r a t i o n , rather t h a n at s o m e u n d e t e r m i n e d l o w e r c o n c e n t r a t i o n . In t w o e x p e r i m e n t s s h o w n in Figure III, s o d i u m c a r b o n a t e c o n c e n t r a t i o n s o f 0.07 a n d 0.30 Ν resulted in r o u g h l y t h e same total volatile o r g a n i c material c o n c e n t r a t i o n in t h e a q u e o u s phase o f t h e p r o d u c t . There are s o m e differences in relative p r o d u c t c o n c e n t r a t i o n s , b u t t h e overall GC traces are very similar. A c t u a l i d e n t i t y o f each c o m p o n e n t w i l l be c o n f i r m e d b y G C / M S b u t is irrelevant here. In Figure IV, a GC t r a c e at an alkali c o n c e n t r a t i o n o f 0.60 Ν b u t w i t h a reaction t i m e o f 6 hr gave a very similar p r o d u c t d i s t r i b u t i o n t o t h a t o b s e r v e d after 3.5 hr (Figure III). H o w e v e r , a zero alkali c o n c e n t r a t i o n (Figure IVa) resulted in o n l y traces o f p r o d u c t u n d e r t h e same c o n d i t i o n s . T h e c o n c l u s i o n s f r o m t h i s series o f e x p e r i m e n t s are also clear: Alkali c o n c e n t r a t i o n has little effect o n t h e l i q u e f a c t i o n reaction over t h e range 0.07 t o 0.6 N. T h e reaction proceeds t o t h e same p r o d u c t s at c o n c e n t r a t i o n s as l o w as 0.07 N. T h e presence o f s o m e alkali is necessary f o r t h e reaction t o p r o c e e d , even t h o u g h in all o f o u r e x p e r i m e n t s , t h e p H at t h e c o n c l u s i o n o f t h e e x p e r i m e n t d r o p p e d t o t h e acid side (5-6 on average). Results o b t a i n e d b y Lai a n d Sarkanen (47) s h o w e d t h a t t h e rate o f cellulose d e g r a d a t i o n is d i r e c t l y p r o p o r t i o n a l t o t h e alkali c o n c e n t r a t i o n . Elliott a n d G i a c o l e t t o U 0 ) have also e x a m i n e d t h e effect o f s o d i u m c a r b o n a t e c o n c e n t r a t i o n in t h e oil-based l i q u e f a c t i o n s y s t e m a n d have s h o w n n o c h a n g e i n alkali effect over t h e range o f 6 - 1 8 % a d d i t i o n b y w e i g h t . They e s t i m a t e t h a t a c o n c e n t r a t i o n o f 3 % m a y be p r a c t i c a b l e before a n adverse effect o n l i q u e f a c t i o n is o b s e r v e d , w h i l e o u r l o w e s t value o f 0.07 Ν (0.37%) is a l m o s t 10x l o w e r t h a n t h i s in t h e c e l l u l o s e / w a t e r s y s t e m .
Menem Chemlol Society Library
16ft ft. N. w. Klass;1155 Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical WetMagtot, 0. C. Society: 20038Washington, DC, 1981.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
B I O M A S S AS A N O N F O S S I L
3i
FUEL
3.5 HR / 0.30AUCALI
Figure 3.
4a
6HR
Effect of alkali (3.5 h)
0 ALKALI
Figure 4.
Effect of zero and 0.6Ή alkali
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
SOURCE
7.
MOLTON
ET AL.
149
Oil from Biomass
A great deal o f w o r k has been d o n e o n t h e effect of a q u e o u s alkali o n cellulose, f r o m t h e v i e w p o i n t of t h e p u l p i n g i n d u s t r y (e.g.. 1 6 - 2 8 , 4 8 - 5 9 ) . T h e m i n o r o r g a n i c volatile p r o d u c t s o b s e r v e d here at similar t e m p e r a t u r e t o t h o s e used
in Kraft
pulping
(150-180°C)
eventually
lead t o colored
product
f o r m a t i o n , w h i c h is o f c o n c e r n t o t h e paper industry. T h e f o r m a t i o n o f a c e t o n e f r o m cellulose has long been k n o w n . Generally, m o s t interest has been s h o w n in t h e nature of t h e residual cellulose after alkali t r e a t m e n t , n o t in t h e nature o f t h e volatiles. From t h e v i e w p o i n t
of d e t e r m i n i n g t h e
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
c h e m i s t r y o f oil f o r m a t i o n f r o m cellulose, t h e i n t e r m e d i a t e volatile p r o d u c t s are a l l - i m p o r t a n t a n d t h e residual cellulose is of little interest. In o u r v i e w , t h e e c o n o m i c s o f t h e A l b a n y pilot plant c o u l d be i m p r o v e d s o m e w h a t b y using a l o w e r s o d i u m c a r b o n a t e c o n c e n t r a t i o n . This w o u l d also reduce t h e c h a n c e of alkali stress c o r r o s i o n . Oil C o m p o s i t i o n W e are c u r r e n t l y s t u d y i n g t h e v a r i a t i o n in oil p r o d u c t c o m p o s i t i o n a n d a q u e o u s phase o r g a n i c p r o d u c t c o m p o s i t i o n as a f u n c t i o n o f reaction t i m e , t e m p e r a t u r e , a n d alkali c o n c e n t r a t i o n . This w o r k is in its p r e l i m i n a r y stages, a n d should e v e n t u a l l y lead t o a d e t a i l e d u n d e r s t a n d i n g o f t h e c h e m i c a l reactions o c c u r r i n g d u r i n g l i q u e f a c t i o n . A t present, w e have i d e n t i f i e d 7 8 c o m p o n e n t s of t h e oils a n d a q u e o u s phases d e r i v e d f r o m l i q u e f a c t i o n of pure cellulose. These c o m p o u n d s are listed in Table V. They i n c l u d e a w i d e range of a l i p h a t i c a n d a r o m a t i c alcohols, p h e n o l s , h y d r o c a r b o n s , s u b s t i t u t e d furans, a n d a l i c y c l i c c o m p o u n d s . Their i n d i v i d u a l c o n c e n t r a t i o n s are n o r m a l l y less t h a n 1 % o f t h e t o t a l o r g a n i c c o n t e n t o f t h e p r o d u c t . The available e v i d e n c e s u p p o r t s a d e g r a d a t i o n o f cellulose t o a c e t o n e , acrolein, a n d a c e t o i n ( a m o n g o t h e r p r o d u c t s ) . These small m o l e c u l e s t h e n re-condense u n d e r t h e alkaline c o n d i t i o n s o f t h e reaction t o give t h e observed p r o d u c t s . A r o m a t i c h y d r o c a r b o n a n d p h e n o l f o r m a t i o n f r o m these m o l e c u l e s under these c o n d i t i o n s appears t o involve a variant o f t h e A l d o l c o n d e n s a t i o n . These c o n c l u s i o n s w e r e also reached b y Theander, Popoff, a n d c o - w o r k e r s a n d reported in a n earlier series of articles (60-66). O u r results s u p p o r t their conclusions and proposed mechanisms. For e x a m p l e , 1,4-addition o f t h e a c e t o n e c a r b a n i o n t o acrolein w o u l d be a facile reaction under t h e reaction c o n d i t i o n s used for cellulose l i q u e f a c t i o n (both o f these i n t e r m e d i a t e s are f o r m e d f r o m cellulose). T h e p r o d u c t , 5 k e t o h e x a n a l , c o u l d cyclize t o 3 - h y d r o x y c y c l o h e x a n o n e , w h i c h w o u l d t h e n d e h y d r a t e a n d d e h y d r o g e n a t e t o p h e n o l a n d related a r o m a t i c p r o d u c t s . This route t o an observed p r o d u c t (phenol) is still s p e c u l a t i v e , b u t w e have s h o w n t h e m o r e d i r e c t route t o p h e n o l f r o m c y c l o h e x a n o n e does not o c c u r u n d e r t h e
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
150
BIOMASS AS A NONFOSSIL F U E L
SOURCE
Table V. PRODUCTS IDENTIFIED FROM CELLULOSE LIQUEFACTION
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
OPEN CHAIN ALIPHATICS Aliphatic Hydrocarbons c i s - or t r a n s - 3 - h e x e n e 3-heptene 4-octyne 2,5.-dimethyl-2,4,-hexadiene 2.5.-dimethyl-traos-3-hexene octene decyne 2 . 6 . 1 0 . 1 4 - t e t r a m e t h y I-
Probability T* Τ
τΡ τ τ τ
Mol. Wt. 84 98 110 110 112 112 138
Ρ
296
Aliphatic Alcohols ethylene glycol
Ρ
3-methyl-1-butanol diethylene glycol
τΗ
62 88 106
(2- or 3-) m e t h y l - 2 . 4 , - p e t a n e d i o l diethylene glycol. monoethyl ether
Η
118
Η
134
2-(2-butoxyethoxy) ethanol
Η
162
Τ Ρ Ρ
98 100 114
τ τ
116 124
Ρ
126
τ
170
heptadecane
Aliphatic Ketones 4-methyl-pent-3-en-2-one 4-methyl-2-petanone 3-heptanone 4-hydroxy-4-methyl2-pentanone 3-octadienone 2-methyl-hepten3-one acrolein hydrate monotrifluoroacetate'''
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
7.
MOLTON ET A L .
151
Oil from Biomass
Table V. PRODUCTS IDENTIFIED FROM CELLULOSE LIQUEFACTION (continued) CYCLIC COMPOUNDS Cyclic Hydrocarbons 1-ethyl c y c l o h e x e n e
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
e t h y l - or d i m e t h y l - c y c l o h e x a n e methyl-n-propylcyclopentene methyl ethyl cyclohexane 1.5.5,6-tetramethyl1.3-cyclohexadiene (1.1)-. (1.2)-. ( 1 , 3 ) - d i m e t h y l i n d a n
Probability
Mol. W t .
Ρ Τ
110
τ τ
112 124 126
τΡ
136
τ
160
Ρ Ρ
86 100
Η Τ Ρ Η Η Τ Η
84 98 98 98 110 112 112
Η
112
Τ Τ Τ
124
τ
152
Ρ Ρ
86
Η
100
Τ Ρ
102
146
1.1-dimethyl-1.2.3.4tetrahydronaphthalene Cyclic Alcohols cyclopentanol cyclonhexanol Cyclic Ketones cyclopentanone 2-methyl cyclopentanone 3-methyl cyclopentanone cyclohexanone 2,5-dimethyl cyclopentanone 2,4-dimethyl cyclopentanone 2-ethylcyclopentanone 3-methylcyclopentanone c y c l o h e x e n e - 1-enyI m e t h y l ketone 4.4.5-trimethylcyclohex-2-enone 2-cyclopentyl-1 -cyclopentanone ethyl-2-methyl-cyclohex -1-enyI ketone Furans 8 - b u t y r o l a c t o n e (keto f o r m o f 2-hydroxy-4,5-dihydrofuran) 2,4-dimethyl furan 2,5-dimethyltetrahydrofuran 2-hydroxy-2-methyltetrahydrofuran 2.3.4-trimethyl furan ethyl methyl furan
τ
138 152
96
110 110
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
152
BIOMASS AS A NONFOSSIL
FUEL
SOURCE
Table V. PRODUCTS IDENTIFIED FROM CELLULOSE LIQUEFACTION (Continued)
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
Alkyl Benzenes
Probability
Mol. Wt.
propyl furan
Τ
110
2-iso-propyl furan 2.5-diethyl furan
Τ Τ
butyl furan
τΡ
110 124 124
2-methylbenzofuran pentyl furan heptyl furan
τ τ
132 138 166
AROMATICS ο-, p-. or m - x y l e n e e t h y l benzene 2-methyl styrene 1 - m e t h y l - 2 - e t h y l benzene 1 - m e t h y l - 3 - e t h y l benzene η - p r o p y l benzene o-allyl t o l u e n e 1 - m e t h y l - 2 - n - p r o p y l benzene c y c l o p e n t y l benzene 1 - m e t h y l - 4 - i s o b u t y l benzene 2-phenyl-3-methyl butane Phenol Derivatives phenol o-cresol m-cresol p-cresol 2-ethyl phenol
Η Η Ρ Η Η Η Τ Η Τ Ρ
τ Η Η Η Η Τ
106 106 118 120 120 120 132 134 146 148 148
o-methoxyphenol 2-phenoxyethanol 2 - h y d r o x y - 4 - m e t h y I-
Η Η
94 108 108 108 122 124 138
acetophenone η - p r o p y l cresol 4 - t - b u t y l (o- or m-) cresol
Ρ Τ Ρ
150 150 164
Ρ
112 162
POLYFUNCTIONALS 2-formyl-2.3-dihydro-pyran 2,5-dimethylterephthaldehyde
τ
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
7.
MOLTON
ET AL.
153
Oil front Biomass
The a b o v e c o m p o u n d s w e r e i d e n t i f i e d f r o m 18 samples. Eleven samples w e r e analyzed o n a H e w l e t t - P a c k a r d 5 9 8 0 G C / M S ; 3 samples o n a 50-ft. stainless steel L B 5 5 0 X c o l u m n p r o g r a m m e d f r o m 7 0 ° C t o 140°C at 4 7 m i n w i t h a 2 m i n initial h o l d ; a n d 8 samples o n a 3 0 - m glass capillary S P 2 1 0 0 c o l u m n p r o g r a m m e d f r o m 5 0 ° at 2 6 0 ° at 4 ° / m i n w i t h a 4 m i n initial h o l d . Six samples w e r e analyzed o n a H e w l e t t - P a c k a r d 5 9 9 2 G C / M S o n a 6-ft stainless steel Carbowax 2 0 m c o l u m n , using 3 programs: 5 0 ° / 2 min, 2 ° / m i n t o 1 9 0 ° ; 8 5 7 1 0 m i n . 8 7 m i n t o 1 1 5 ° ; a n d 1 1 5 7 5 m i n . 2 7 m i n t o 150°. A 7 t h s a m p l e analyzed o n t h i s i n s t r u m e n t w a s at 3 4 7 2 m i n , 2 7 m i n t o 1 3 5 ° o n a 6 - f t stainless steel O V - 1 7 c o l u m n .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
f
* Τ - Tentative (10-30%)
Ρ - Probable
Η - Highly Probable
(31-75%)
(75-99%)
+ Identified in a t r i f l u r o a c e t y l a t e d o i l sample.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
154
BIOMASS AS A NONFOSSIL F U E L
SOURCE
c o n d i t i o n s used for cellulose l i q u e f a c t i o n . Similar A l d o l - t y p e c o n d e n s a t i o n s c a n a c c o u n t for m a n y m o r e of t h e o b s e r v e d p r o d u c t s . Little else of relevance t o t h e present d i s c u s s i o n c a n be said at present r e g a r d i n g t h e m e c h a n i s m s of f o r m a t i o n of t h e s e p r o d u c t s .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
T h e n a t u r e of t h e p r o d u c t s a l l o w s us t o p r e d i c t t h a t t h e oil w i l l s l o w l y p o l y m e r i z e d u e t o r e a c t i o n b e t w e e n t h e p h e n o l s a n d f u r a n s . w i t h side reactions f r o m u n s a t u r a t e d h y d r o c a r b o n s . T h e oil w i l l also be rather corrosive because of t h e a c i d i c n a t u r e of t h e phenols. W e have o b s e r v e d b o t h of these in practice. Oil p r o d u c t s are stable o n l y if kept in a freezer, a n d syringes used for i n j e c t i o n of s a m p l e s i n t o t h e G C / M S i n s t r u m e n t c h a r a c t e r i s t i c a l l y seize. P l u g g i n g of pipes t o g e t h e r w i t h rather serious c o r r o s i o n p r o b l e m s have o c c u r r e d in p r a c t i c e at A l b a n y , a n d are c o n s i s t e n t w i t h o u r o b s e r v a t i o n s o n oil c o m p o s i t i o n . U n d e r these c i r c u m s t a n c e s , t o s u g g e s t d i r e c t use of t h e oil as a fuel in c o n v e n t i o n a l boiler e q u i p m e n t w i t h o u t p r e t r e a t m e n t is u n w i s e . Implications for Albany T h e e x p e r i m e n t a l w o r k r e p o r t e d here deals w i t h o p t i m u m r e a c t i o n c o n d i t i o n s for t h e l i q u e f a c t i o n of t h e m a j o r b i o m a s s c o m p o n e n t , cellulose, in an a q u e o u s s y s t e m . W h i l e l i g n i n in w o o d m a y c h a n g e t h e results q u a l i t a t i v e l y , w e d o n o t e x p e c t t h a t transfer of our c o n c l u s i o n s t o a w o o d - b a s e d s y s t e m w i l l i n v a l i d a t e these results. H o w e v e r , t h e r e are s o m e differences a n d o u r results s h o u l d be used as i n d i c a t o r s rather t h a n q u a n t i t a t i v e measures of p e r f o r m a n c e in o t h e r s y s t e m s . For i n s t a n c e , at A l b a n y , t h e reactor is a stirred t a n k , a n d c o n s e q u e n t l y s o m e of t h e oil has a longer residence t i m e , w h i l e s o m e proceeds t h r o u g h rapidly. This causes s o m e d i f f e r e n c e b e t w e e n results at A l b a n y a n d o u r e x p e r i m e n t s , w h i c h w e r e p e r f o r m e d in small autoclaves. Here w e s i m p l y a p p l y t h e results of o u r w o r k generally t o biomass l i q u e f a c t i o n s y s t e m s , w i t h A l b a n y as an e x a m p l e , w i t h o u t a t t e m p t i n g t o c l a i m a 1:1 c o r r e s p o n d e n c e . In a n y e v e n t , l a b o r a t o r y w o r k in s u p p o r t of t h e A l b a n y pilot p l a n t is p r o c e e d i n g separately at o u r l a b o r a t o r y (4-10), w h i l e t h e research r e p o r t e d here is basic in n a t u r e (41-43). In T a b l e V I , w e s h o w a c o m p a r i s o n b e t w e e n t h e r e a c t i o n c o n d i t i o n s used by us a n d t h o s e u s e d a t A l b a n y . Cellulose l i q u e f a c t i o n in a n a q u e o u s s y s t e m is i m p r o v e d o n l y s l i g h t l y by t h e a d d i t i o n of u p t o 5 0 0 psig of c a r b o n m o n o x i d e , w h i l e use of w o o d a n d larger a m o u n t s of c a r b o n m o n o x i d e results in i m p r o v e d oil yields. There are p r o b l e m s w i t h t h e use of an oil v e h i c l e at A l b a n y , s u c h as t h e c o n t i n u e d p o l y m e r i z a t i o n of t h e v e h i c l e w i t h repeated passes t h r o u g h t h e reactor. T h e o r i g i n a l i n t e n t in u s i n g recycle oil w a s t o r e d u c e reactor o p e r a t i n g pressure since w a t e r at 3 7 0 C generates a very h i g h pressure. A l s o , it w a s felt t h a t there c o u l d be s o m e h y d r o g e n d o n o r s o l v e n t e
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981. 2
Water
Water
290-370
150-407 2
2
2
2
3
3
3
Na C0 (5%)
2
3
Na C0 (5%)
2
Na C0 (5%)
Catalyst
CO.C0 . Na C0 N (0.37-12.6%)
2
CO:H 60:40
Heavy c y c l e C O : H oil 60:40
290-370
CO
Gas
Anthracene oil
Media
290-370
Temperature, (°C)
20-360
90
60
5-12
Residence T i m e , (min)
T a b l e V I . C O M P A R I S O N OF REACTION P A R A M E T E R S : B A T T E L L E - N W , A N D A L B A N Y , OR PILOT P L A N T
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
Feedstock
Cellulose (Solka-floc)
Acid-hydrolyzed D o u g l a s Fir
D o u g l a s Fir
D o u g l a s Fir
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
156
BIOMASS AS A NONFOSSEL F U E L
SOURCE
effect in using recycle oil. This effect does operate t o s o m e e x t e n t as s h o w n by Elliott a n d G i a c o l e t t o (10). A l l of t h e e x p e r i m e n t s o n t h e effect of CO overpressure a b o v e 5 0 0 psig have been p e r f o r m e d in an oil v e h i c l e ; if t h e s a m e y i e l d - i n c r e a s i n g effect c a n be s h o w n t o o c c u r in an a q u e o u s s o l v e n t t h e n m a n y of t h e v e h i c l e - a s s o c i a t e d p r o b l e m s at A l b a n y c o u l d be e l i m i n a t e d by u s i n g w a t e r as t h e vehicle. This w o u l d of course affect t h e e c o n o m i c s of t h e process, as t h e o p e r a t i n g pressure w o u l d increase, b u t t o s o m e e x t e n t t h i s w o u l d be alleviated by s i m p l i f i c a t i o n of t h e p r o d u c t separation step — w a t e r a n d oil separate s p o n t a n e o u s l y (leaving an oil p r o d u c t c o n t a i n i n g Ι Ο Ι 5% w a t e r ) , a n d t h e r e w o u l d be a l o w e r load o n t h e c e n t r i f u g e . Polymerization a n d c o r r o s i o n p r o b l e m s m i g h t still occur. T h e a q u e o u s s o l v e n t , c o n t a i n i n g s o m e of t h e w a t e r - s o l u b l e p r o d u c t s , c o u l d in p r i n c i p l e be r e c y c l e d t o p r o v i d e a d d i t i o n a l oil. T h e h y d r o g e n d o n o r s o l v e n t - e f f e c t s h o u l d still o p e r a t e w i t h an a q u e o u s v e h i c l e , since p r o d u c t oil w o u l d dissolve m o s t of t h e early reaction p r o d u c t s ; t h e s e b e i n g o r g a n i c in n a t u r e , w o u l d t e n d t o dissolve readily in oil already f o r m e d . H y d r o g é n a t i o n of i n t e r m e d i a t e p r o d u c t s w o u l d t h u s still be e x p e c t e d t o o c c u r , even t h o u g h w a t e r is a poor d o n o r solvent. Polymerization of t h e p r o d u c t oil d u r i n g r e p e a t e d r e c y c l i n g is n o t s u r p r i s i n g , since m a n y of t h e r e a c t i o n p r o d u c t s are reactive. Fu. Illig, a n d M e t l i n (67) o b s e r v e d t h i s p o l y m e r i z a t i o n p h e n o m e n o n d u r i n g an i n v e s t i g a t i o n i n t o oil d e r i v e d f r o m b o v i n e m a n u r e ; t h e y f o u n d t h a t t h e p o l y m e r i z a t i o n c o u l d be p r e v e n t e d by i n t e r m e d i a t e h y d r o g é n a t i o n of t h e initial p r o d u c t over a c o b a l t m o l y b d a t e catalyst. If recycle oil is f o u n d t o be an essential part of t h e A l b a n y process, s u c h an i n t e r m e d i a t e h y d r o g é n a t i o n c o u l d increase v e h i c l e stability. Regardless of t h e v e h i c l e used, it appears t h a t t h e alkali c o n c e n t r a t i o n used at A l b a n y is t o o h i g h . Our results w i t h cellulose i n d i c a t e t h a t a r e d u c t i o n of up t o 13x m a y be possible w i t h o u t i n t e r f e r i n g w i t h p r o d u c t composition (not yield), w h i l e Elliott a n d Giacoletto's results (10) i n d i c a t e t h a t a 2x r e d u c t i o n is possible w i t h o u t a f f e c t i n g oil yield from w o o d . It is d i f f i c u l t t o d e t e r m i n e an o p t i m u m t i m e or t e m p e r a t u r e for t h e l i q u e f a c t i o n process because reaction t i m e a n d t e m p e r a t u r e are i n t e r a c t i v e variables. Reaction t e m p e r a t u r e is t h e m o s t i m p o r t a n t f a c t o r a c c o r d i n g t o our research, in a g r e e m e n t w i t h w o r k r e p o r t e d by Corbett a n d Richards (68) in t e r m s of t h e a m o u n t of v o l a t i l e p r o d u c t s f o r m e d f r o m cellulose. Inclusion of l i g n i n a n d h e m i c e l l u l o s e in a w o o d s u b s t r a t e m a y alter t h e o p t i m u m t e m p e r a t u r e , b u t s h o u l d n o t alter t h e f a c t t h a t reaction t e m p e r a t u r e is c o n t r o l l i n g . H o w e v e r , oil yield itself m a y not be a suitable p a r a m e t e r for m e a s u r i n g t h e e f f i c i e n c y of t h e l i q u e f a c t i o n process. A h i g h yield of oil m a y
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
7.
MOLTON ET A L .
Oil from Biomass
157
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
be a c h i e v e d at t h e e x p e n s e o f a l o w heat c o n t e n t t h r o u g h i n c o r p o r a t i o n o f o x y g e n into t h e p r o d u c t . F u r t h e r m o r e , there m a y be o t h e r trade-off f a c t o r s t o be t a k e n into c o n s i d e r a t i o n , s u c h as t h e c h e m i c a l c o m p o s i t i o n a n d c o r r o s i v i t y of t h e p r o d u c t . M a x i m i z a t i o n of t h e heat c o n t e n t o f t h e p r o d u c t as a d u a l f u n c t i o n of t i m e of reaction a n d m a x i m u m t e m p e r a t u r e has n o t y e t been s t u d i e d b u t w o u l d be very useful. A c c o r d i n g t o o u r results w i t h cellulose, t h e p r i m a r y o i l - f o r m i n g reactions leading t o volatile c a r b o n y l c o m p o u n d s are c o m p l e t e at 2 3 0 ° C after 1 hr. w i t h s u b s e q u e n t reactions i n v o l v i n g i n t e r m e d i a t e s already f o r m e d a n d leading t o increased v i s c o s i t y a n d m o l e c u l a r w e i g h t . Earlier w o r k s h o w e d d i s s o l u t i o n of c o t t o n h y d r o cellulose in 0.5 hr at 100°C in 0.5 Ν alkali (68-71). a l t h o u g h t h e m o l e c u l a r w e i g h t o f t h e h y d r o c e l l u l o s e w a s n o t disclosed. This is m u c h l o w e r t h a n t h e 3 7 0 ° C c u r r e n t l y used at A l b a n y , a l t h o u g h l i q u e f a c t i o n o f t h e l i g n i n c o m p o n e n t of w o o d m a y w e l l require a m u c h higher t e m p e r a t u r e t h a n required f o r cellulose l i q u e f a c t i o n . Regarding t h e d e s i g n o f t h e process, w e feel t h a t a c o n t i n u o u s p l u g f l o w reactor is i n h e r e n t l y b e t t e r t h a n t h e stirred t a n k c u r r e n t l y in use. A p l u g f l o w reactor w o u l d also give greater c o n t r o l over t h e reaction parameters. W e also feel t h a t m o r e careful a t t e n t i o n s h o u l d be g i v e n t o t h e relationship b e t w e e n reaction p a r a m e t e r s a n d p r o d u c t y i e l d a n d q u a l i t y in f u t u r e d e s i g n o f biomass l i q u e f a c t i o n plants, since o u r w o r k , a n d t h a t o f Elliott (4-10) d e m o n s t r a t e s t h a t a n u m b e r o f e r r o n e o u s a s s u m p t i o n s w e r e m a d e in d e s i g n i n g t h e pilot plant at A l b a n y . SUMMARY The d i r e c t t h e r m o c h e m i c a l c o n v e r s i o n o f w o o d y biomass t o oil is o n e m e t h o d of p r o d u c i n g l i q u i d fuel. This m e t h o d is c u r r e n t l y b e i n g e x a m i n e d in a pilot plant at A l b a n y , O r e g o n . A t A l b a n y , w o o d is liquefied at a t e m p e r a t u r e of 2 9 0 - 3 7 0 ° C , a pressure of over 3 0 0 0 psig, a n d a residence t i m e of 2 0 - 9 0 m i n in t h e presence of a 6 0 : 4 0 m i x t u r e o f c a r b o n m o n o x i d e : h y d r o g e n , a n d a catalyst c o n s i s t i n g o f 5% s o d i u m c a r b o n a t e . In our w o r k o n t h e f u n d a m e n t a l c h e m i s t r y o f this l i q u e f a c t i o n t e c h n i q u e , laboratory studies using pure cellulose as a m o d e l c o m p o u n d s h o w e d t h a t l i q u e f a c t i o n o c c u r s rapidly at 3 0 0 ° C a n d b e l o w at a pressure o f 2 8 0 0 psig of s t e a m w i t h n o a d d e d gas. in less t h a n 1 hr. F u r t h e r m o r e , t h e effect of t h e s o d i u m c a r b o n a t e " c a t a l y s t " o n t h e early l i q u e f a c t i o n reactions is i n d e p e n d e n t o f its c o n c e n t r a t i o n t o a level of b e l o w 0.8%. Gas c h r o m a t o g r a p h i c a n d mass s p e c t r o m e t r i c e x a m i n a t i o n o f t h e p r o d u c t oil s h o w s its c o m p o s i t i o n t o be a l m o s t c o n s t a n t over t h e w h o l e range o f reaction c o n d i t i o n s used. A r e - e x a m i n a t i o n o f reactor d e s i g n o f f u t u r e biomass l i q u e f a c t i o n plants appears w a r r a n t e d in light of these results.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
158
BIOMASS AS A N O N F O S S L L
FUEL
SOURCE
ACKNOWLEDGEMENT W e g r a t e f u l l y a c k n o w l e d g e s u p p o r t for t h i s w o r k u n d e r c o n t r a c t n u m b e r EY7 6 - C - 0 6 - 1 8 3 0 f r o m t h e U.S. D e p a r t m e n t of Energy, D i v i s i o n of C h e m i c a l Sciences, Office of Basic Energy Sciences.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
REFERENCES
1.
Molton, P. M.; Demmitt, T. F. DOE Pacific Northwest Laboratory Report BNWL-2297, August 1977.
2.
Pohland, F. G. "Anaerobic Biological Treatment Processes," Adv. Chem. Series 105, American Chemical Society: Washington D.C., 1971.
3.
Mudge, L. K.; Rohrmann, C. A. "In Solid Wastes and Residues Conversion by Advanced Thermal Processes," ACS Symposium Series, 76; American Chemical Society: Washington, D.C., 1978; 126-141.
4.
Elliott, D. C. 4th Biomass Thermochemical Coordination Meeting, Battelle Memorial Institute, Columbus, Ohio, April 1978,; Battelle Pacific Northwest Laboratory: Richland, Wash., 1978; DOE Fuels from Biomass Program Report.
5.
Elliott, D. C. 6th Biomass Thermochemical Conversion Contractors Meeting Jan 1979; Battelle Pacific Northwest Laboratory: Richland, Wash. 1979; DOE Fuels from Biomass Program Report.
6.
Elliott, D. C. 7th Biomass Thermochemical Conversion Contractors Meeting Roanoke, VA., April 1979; Battelle Pacific Northwest Laboratory: Richland, Wash., 1979; DOE Fuels from Biomass Program Report.
7.
Elliott, D. C. 8th Biomass Energy Systems, Thermochemical Conversion Contractors Meeting, July-Aug 1979, Seattle, Wash; Battelle Pacific Northwest Laboratory: Richland, Wash., DOE Fuels from Biomass Program Report.
8.
Elliott, D. C. Canadian Chemical Engineering Conference, Sarnia, Ontario, Oct 1979. Bench-scale Research in Biomass Liquefaction by the CO Steam Process.
9.
Elliott, D. C.; Walkup, P. C. Bench-Scale Research in Thermochemical conversion of Biomass to Liquids in Support of the Albany, Oregon Experimental Facility, Coordination Meeting: Thermochemical Conversion Systems, Wright-Malta Corp., Ballston Spa N.Y., Oct 1977. Battelle Pacific Northwest Laboratory Richland Wash., 1977.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
7.
MOLTON ET A L .
Oil from Biomass
159
10.
Elliott D. C.; Giacoletto, G. M. Bench-Scale Research in Biomass Liquefaction in Support of the Albany, Oregon, Experiment Facility, 3rd. Annual Biomass Energy Systems Conference, Golden, Colo., June 1979.
11.
Berl, E.; Schmidt, A. Justus Liebig's Ann. Chem. 1928, 461, 192.
12.
Berl, E.; Schmidt, A. Justus Liebig's Ann. Chem. 1932, 493, 97.
13.
Berl, E.; Schmidt, A. Justus Liebig's Ann. Chem. 1932, 496, 283.
14.
Berl, E. Schmidt, Α.; Koch, Η. Z. Angew. Chem. 1930, 43, 1018.
15.
Bergius, F. Naturwiss. 1928, 16, 1.
16.
Franzon, O.; Samuelson, O. Svensk Papperstidn., 1957, 60, 872.
17.
Christofferson, D.; Samuelson, O Svensk Papperstidn. 1960, 63, 729.
18.
Alfredsson, B.; Gedda, L .; Samuelson, O. Svensk Papperstidn. 1961, 64, 694.
19.
Albertson, U.; Samuelson, O. Svensk Papperstidn. 1962, 65, 1001.
20.
Gunne, I.; Samuelson, O. Thede, L. Svensk Papperstidn. 1968, 71, 161.
21.
Samuelson, O.; Thede, L. Acta Chem. Scand. 1968, 22, 1913.
22.
Samuelson, O.; Stolpe, L. Svensk Papperstidn. 1969, 72, 662.
23.
Samuelson, O.; Stolpe, L. Svensk Papperstidn. 1971, 74, 545.
24.
Samuelson, O.; Sjoberg, L. Svensk Papperstidn. 1972, 75, 583.
25.
Samuelson, O.; Stolpe, L. Acta Chem. Scand. 1973, 27, 3061.
26.
Samuelson, O.; Stolpe, L. Svensk Papperstidn. 1974, 77, 16.
27.
Samuelson, O.; Stolpe, L. Svensk Papperstidn. 1974, 77, 513.
28.
Peterson, G.; Samuelson, O. Acta Chem. Scand. 1976, B30, 27.
29.
Heinemann, H. Pet. Refiner 1954, 33, 161.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
160
BIOMASS AS A NONFOSSIL FUEL SOURCE
30.
Molton, P. M.; Demmitt, T. F. Polym.-Plast. Technol. Eng. 1978, 11, 127.
31.
Richards, G. N. High Polym. 1971, 5, 1017.
32.
Meller, A. Holzforschung 1960, 14, 129.
33.
Waterman, H. I.; Kortlandt, F. Rec. Trav. Chim. 1924, 43, 691.
34.
Fishcher, F.; Schrader, H Brennstoff.-Chem. 1921, 2, 161.
35.
Appell, H. R.; Wender, I.; Miller, R. D. Chem. Ind. (London), 1960, 19, 703.
36.
Friedman, S.; Ginsberg, H.; Wender, I.; Yavorsky, P. Third Mineral Waste Utilization Symposium, IIT Research Institute, Chicago, March 14-16, 1972.
37.
Appell, H. R.; Wender, I.; Miller, R. D. Third Annual Northwest Regional Anti-Pollution Conference, University Rhode Island, July 21-23, 1970.
38.
Appell, H. R., et al. U.S. Bureau of Mines Rept. 7560, 1971.
39.
Wender, I.; Steffgen, F. W.; Yavorsky, P. M. "Recycling and Disposal of Solid Wastes," Yen, T. F., Ed., Ann Arbor Scientific: Ann Arbor, Mich., 1974; p 59.
40.
Appell, H. R.; Wender, I.; Miller, R. D. U. S. Bureau of Mines Technical Progress Report 25, 1970.
41.
Molton, P. M.; Miller, R. K.; Donovan, J. M.; Demmitt, T. F. Thermochemi cal Conversion of Biomass Residues Technical Seminar, sponsored by Solar Energy Research Institute, Golden, Colo., Nov 30 — Dec 1, 1977.
42.
Molton, P. M.; Demmitt, T. F.; Donovan, J. M.; Miller, R. K., Energy From Biomass and Wastes, symposium sponsored by the Institute of Gas Technology: Chicago, 1978, Aug 14-18, 1978.
43.
Molton, P. M.; Miller, R. K.; Donovan, J. M.; Demmitt, T. F. Carbohydr. Res., 1979, 77, 331.
44.
Basch, Α.; Lewin, M. J. Polymer Sci., Polymer Chem. Ed.; 1973, 11, 3071.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
7. MOLTON ET AL. Oil from Biomass 161
45.
Pacault, Α.; Sauret, G. Compt. Rend. Acad. Sci. 1958, 246, 608.
46.
Broido, Α.; Javier-Son, Α.; Quano, A. C.; Barrall II, E. M. J. Appl. Polymer Sci. 1973, 17, 3627.
47.
Lai, Y-Z.; Sarkanen, Κ. V. Cellul. Chem. Technol. 1967, 1, 517.
48.
Kleinert, T. N. Papier (Darmstadt) 1969, 23, 135.
49.
Kleinert, T. N. Papier (Darmstadt) 1970, 24, 73.
50.
Kleinert, T. N. Holzforschung 1975, 29, 134.
51.
Funasaka, W.; Yokokawa, C.; Kajiyama, S. Mem. Fac. Eng. Kyoto Univ. 1953, 15, 116.
52. Lai, Y-Z. Ph.D. Thesis, University of Washington, 1968. 53.
Lai, Y-Z. Carbohydr. Res. 1973, 28, 154.
54.
Machell, G.; Richards, G. N. Tappi 1958, 41, 12.
55.
Meller, A. Svensk Papperstidn. 1962, 65, 629.
56.
Shivaza, A. Ya.; Ivanov, V. I.; Lyalyushkin, A. Ya., Izv. Akad. Nauk Kirg. SSR 1973, 3; Chem. Abs. 1973, 79, 80512n.
57.
Sihtola, H.; Lamanen, L. Cellul. Chem. Technol. 1969, 3, 3.
58.
Sjostrom, E. Tappi 1977, 60, 54.
59.
Young, R. Α.; Sarkanen, Κ. V. Carbohydr. Res. 1977, 59, 193.
60.
Theander, O.; Popoff, T. J. Chem. Soc. D. 1970, 1576.
61.
Popoff, T.; Theander, O. Carbohydr. Res. 1972, 22, 135.
62.
Forsskahl, I., Popoff, T.; Theander, O. Carbohydr. Res. 1976, 48, 13.
63.
Popoff, T.; Theander, O. Acta Chem. Scand. 1976, B30, 397.
64.
Popoff, T.; Theander, O. Acta Chem. Scand. 1976, B30, 705.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
162
BIOMASS
AS
A
NONFOSSIL
FUEL
SOURCE
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on July 15, 2016 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch007
65. Olsson, K.; Pernemalm, P-A.; Popoff, T.; Theander, O. Acta Chem. Scand. 1977, B31, 469. 66.
Popoff, T.; Theander, O.; Westerlund, E. Acta Chem. Scand. 1978, B32, 1.
67.
Fu, Y. C.; Illig, E. G.; Metlin, S. J. Envir. Sci. Tech. 1974, 8, 737.
68.
Machell, G.; Richards, G. N. J. Chem. Soc. 1960, 1924.
69.
Machell, G.; Richards, G. N. J. Chem. Soc. 1960, 1932.
70.
Machell, G.; Richards, G. N. J. Chem. Soc. 1960,
1938.
71. O'Meara, D.; Richards, G. N. J. Chem. Soc. 1960, 1944. RECEIVED JUNE 18,
1980.
Klass; Biomass as a Nonfossil Fuel Source ACS Symposium Series; American Chemical Society: Washington, DC, 1981.