surements, has now been successfully employed, increasing the resolution from 500 to 3900 (24). This is readily added to existing systems. While changes in the instrument configuration continue to increase the capabilities of 252 Cf-PDMS, the rest of the system—the electronics—is also in a good position for continued im provement, particularly because it is being supported by new products from the electronics industry. All of the electronics used in 252 Cf-PDMS are modular and commercially available. When a new module with improved specifications is incorporated, the per formance of 252 Cf-PDMS is enhanced. Finally, the rich supply of talented students in an academic environment yearning to program a new acquisition or analysis feature on a dedicated lab oratory computer means more power to the existing system without adding one additional flange. This, in fact, is how our computer became such a val ued partner in our experiments.
language. C. J. McNeal has a special understanding of what it takes to per suade large molecules to become gasphase molecular ions. Cristina Materon has contributed her considerable artistic abilities in preparing the fig ures. And finally, the financial sup port of the National Institutes of Health (GM-26096), the National Science Foundation (CHE-8206030), and the Robert A. Welch Foundation (Grant No. A258) is gratefully ac knowledged.
Acknowledgment The author is particularly indebted to two talented computer program mers, Tracy Bickford and Randall A. Martin, who were responsible for de veloping the basic software system de scribed here, and to Bojan Turko, who has an unusual ability to convert the element of time into precise electronic
References (1) Jungclas, H.; Macfarlane, R. D.; Fares, Y. Radiochim. Acta 1971,16,141. (2) Torgerson, D. F.; Skowronski, R. P.; Macfarlane, R. D. Biochem. Biophys. Res. Commun. 1974, 60, 616. (3) Macfarlane, R. D.; Torgerson, D. F. Science 1976,191, 920. (4) Kasai, H.; Nakanishi, K.; Macfarlane, R. D.; Torgerson, D. F.; Ohashi, Z.; McCloskey, J.; Gross, H. J.; Nishimura, S. J. Am. Chem. Soc. 1976, 98, 5044. (5) Macfarlane, R. D. In "Biomedical Aplocations of Mass Spectrometry", First upplementary Volume; Waller, G. R.; Dermer, O. C, Eds.; John Wiley and Sons, Inc.: New York, 1980; Chapter 38, p. 1209. (6) Macfarlane, R. D.; Uemura, D.; Ueda, K.; Hirata, Y. J. Am. Chem. Soc. 1980, 102, 875. (7) Macfarlane, R. D. In "Proceedings of the 9th Materials Research Symposium,' National Bureau of Standards Special Publication 519; National Bureau of Standards: Gaithersburg, Md., 1979; p. 673.
Dual Piston
Low Cost
pump^ provides high flow rates wi low pulsation
At $725 the best value in LC pumps
HPLJC
e
Model AA-100-S
Model E-120-S
Π Dual-piston HPLC pump D 0.2 t o 10.0 m L / m i n @ 5000 psi D Two channels can be run inde pendently or in parallel for lower pulsation
Π Single-piston pump widely used in post-column derivitization D 0.5 to 5.0 m L / m i n @ 1000 psi Π Compact
Eldex
Eldex Laboratories, Inc. 3551 Haven Avenue MenloPark. CA 94025 (415) 364-8159
CIRCLE 53 ON READER SERVICE CARD
Eldex
Eldex L a b o r a t o r i e s , Inc. 3551 Haven Avenue Menlo Park, CA 94025 (415) 364-8159
CIRCLE 53 ON READER SERVICE CARD
1264 A · ANALYTICAL CHEMISTRY, VOL. 55, NO. 12, OCTOBER 1983
(8) McNeal, C. J.; Macfarlane, R. D. J. Am. Chem. Soc. 1981,103, 1609. (9) Hâkansson, P.; Kamensky, I.; Sundqvist, B.; Fohlman, J.; Peterson, P.; McNeal, C. J.; Macfarlane, R. D. J. Am. Chem. Soc. 1982,104, 2948. (10) Kamensky, I.; Hâkansson, P.; Kjellberg, J.; Sunqvist, B.; Fohlman, J.; Peterson, P. FEBS Lett. 1983,155, 113. (11) Bohr, N. Kgl. Dan. Selsk. Mat. Fys. Medd. 1948,24(19)1. (12) Biersack, J. P.; Fink, D.; Mertens, P. J. Nucl. Mater. 1974,53, 194. (13) Fleischer, R. L.; Price, P. B.; Walker, R. M. "Nuclear Tracks in Solids"; University of California Press: Berkeley, Calif., 1975; p. 23. (14) Turko, B.; Macfarlane, R. D.; McNeal, C. J. Int. J. Mass Spectrom. Ion Phys., in press. (15) Sundqvist, B.; Hâkansson, P.; Kamensky, I.; Kjelberg, J. In "Proceedings of the Second Workshop in Ion Formation from Organic Solids"; Munster, September 1982; Benninghoven, Α., Ed.; Spring er: Berlin, 1983; p. 52. (16) Furstenau, N.; Knippenberg, W.; Krueger, F. R.; Weiss, G.; Wien, K. Z. Naturforsch. Teil A 1977, 32A, 711. (17) Torgerson, D. F.; Macfarlane, R. D.; Spiegel, L. S. In Atom. Masses Fundam. Constants 1976,5,199. (18) Barber, M.; Bordoli, R. S.; Sedgwick, R. D.; Tyler, A. M. J. Chem. Soc. Chem. Commun. 1981,325. (19) Aberth, W.; Straub, K. M.; Burlingame, A. L. Anal. Chem. 1982,54, 2029. (20) Wilkins, C. L.; Gross, M. L. Anal. Chem. 1981,53, 1661 A. (21) Aberth, W. Biomed. Mass Spectrom. 1980, 7, 367. (22) Danigel, H.; Jungclas, H.; Schmidt, L. Int. J. Mass Spectrom. Ion Phys., in press. (23) Chait, B. T.; Field, F. H. Int. J. Mass Spectrom. Ion Phys. 1981,41,17. (24) Boesl, U.; Neusser, H. J.; Weinkauf, R.; Schlag, E. W. J. Phys. Chem. 1982, 86, 4857.
R. D. Macfarlane received a BA in chemistry from the University of Buffalo in 1954 and a PhD in nuclear chemistry from Carnegie Institute of Technology in 1959. He spent three years as a postdoctoral fellow at the Lawrence Berkeley Laboratory, Uni versity of California, and served five years on the chemistry faculty of McMaster University, Hamilton, On tario, Canada. He joined the chemis try faculty at Texas A&M in 1967 as full professor carrying out nuclear chemistry research at the Cyclotron Institute. His interests are in the de velopment of mass spectrometry for large biomolecules, using technology derived from nuclear science.