(1603)Yakovleva, I. M., Mater. Gor. Nauch. Konf. Molodykh Uch.-Med., 1st 1967 (Pub. 1969), 494-9. (1604)Yalcindag, Orhan N.,J. Pharm. Belg. 1971,26(3),337-40. (1605) Yamada, Mutsuo; Fujimoto, Masatoshi, Bull. Chem. SOC.Jap. 1971, 44(1),294. Hiraoka, (1606) Yamamoto, Daisei; Yoyoko, Bunseki Kagaku 1969, 18(8) 1019-2 1. (1607)Yamamoto, Daisei; Uno, Hiroko, J.Chromatogr. 1970,51(2),348-9. (1608)Yamane, Yasuhiro; Miyazaki, Motoichi; Iwase, Hiroshi; Takeuchi, Terue, Eisei Kagaku 1970, 16(5), 254-7. (1609)Yamazoe, Yoshitaka, Eiyo To Shokuryo 1970,23(9),618-24. (1610)Yano, Mitsuo; Nagasawa, Shigeharu; Suzuki, Tomoji, J. Biochem. (Tokyo)1971,69(3),471-81. (1611)Yasuda, Kenji, J. Chromatogr. 1971,60(1), 144-9. (1612)Yasuda, Kenji, Bunseki Kagaku 19n,20(7),796-800. (1613)Yasuda, Stanley K., J. Chromatogr. 1970,50(3),453-7. (1614)Yatsimirskii, K. B.; Tikhonova, L. P.; Varshal, G. M.;Sychkova, V. A., Proc. Anal. Chem. Conf., 3rd 1970, 1, 191-7.
(1615)Yau, Wallace W. C.; Malone, Creighton P.; Suchan, C. H. L., Separ. Sci. 1970,5(3), 259-71. (1616) Yoneda, Hayami; Muto, Masayuki; Baba, Tetsuo; Miura, Takoa, Bull. Chem. SOC.Jap. 1971, 44(3), 68992. (1617)Yoshida, Hiroyuki; Yonezawa, Chushiro; Gunji, Katsubumi, Bunseki Kagaku 1970,19,818-23. (1618)Yoshinaga, Koichi; Shimomura, Michio, J. Biochem. (Tokyo) 1971, 69(2),425-7. (1619)Young, Donald S., Amer. J. Clin. Pathol. 1970,53(5)(Pt.2), 803-10. (1620) Yoza, Norimasa, Bunseki Kagaku 1971,20(4),505-14. (1621)Yoza, Norimasa; Ogata, Takayuki, Ohashi, Shigeru, J. Chromatogr. 1970, 52(2),329-38. (1622)Zadrozinska, Jadwiga, Rocz. Panstw. Zakl. Hig. 1970,21(4),345-53. (1623)Zaima, Tadataka; Mitsuhashi, Keiryo; Ashara, Teruzo, Kogyo Kagaku Zasshi 1971,74(5),1036-77. (1624)Zeman, A.; Wirotama, I . P. G., Fresenzus’ Z. Anal. Chem. 1969, 247 (3-4),155-8. (1625) Zhdanov, S. P.; Koromal’di, E. V.; Vinogradova, R. G.; Ganetsku,
M. B.; Golvnko, 0. M.; Zhil’tsova, N. E.; Belen’kii, B. G.; Vilenchik, L. Z.; Nefedov. P. P.. J. Chromatoor. 1970. 53( l), 77-53. ’ (1626)Zimak, Jan; Zero, Marta, Rocz. Panstw. Zakl. Hig. 1970,21(1),29-34. (1627) Zinbo, Mikis; Parsons, Jack L., J. Chromatogr. 1971,55(1),,55-64. (1628)Ziporin, 2. Z.; Waring, P. P., Methods Enzymol. 1970, 18(Pt. A), 8690. (1629)Ziska, P., J. Chromatogr. 1970, 48(3). 544-6. (1630)‘Ziska, P., J . Chromatogr. 1970, 53(2), 385-6. (1631)Ziska, P., J. Chromatogr. 1971, 60(1),139-40. (1632)Zivanov-Stakic, Dobrilla; Mladenovic, Milos, Arh. F a m . 1970, 20(4), 251-3. (1633) Zobolotnyi, K. F.; Metelitsa, V. K.; Nepoklonov, A. A., Veterinariya (MOSCOW) 1971,48(5), 103-4. (1634)Zoch, Erwin, J. Chromatogr. 1970, 48(3), 558-9. (1635)Zuercher, H.; Pataki, Gyorgy; Borko, J.; Frei, R. W., J . Chromatogr. 1969,43(4),457-62. (1636)Zycinski, Dariusz, Roc. Panstw. Zakl. Hig. 1971,22(2), 189-94.
Electroanalvsis and Coulometric Analvsis Donald G. Davis, Deparfment o f Chemistry, Louisiana Stafe University in New Orleans, New Orleans, la. 70722
T
HIS REVIEW COVERS the literature appearing during 1970 and through part of December 1971. A few papers published before 1970 have been included which have not previously appeared in this series. A few others are mentioned because of the importance as are a few outside the confines of the title because of their basic interest to workers in the fields of controlled potential electrolysis or coulometry.
BOOKS AND REVIEW ARTICLES
The series “Electroanalytical Chemistry” edited by A. J. Bard continues to contribute to the field in general. Of particular interest are chapters on thin layer coulometry (73), the application of controlled potential electrolysis to the study of electrode reactions (14), and a fundamental treatment of metal deposition (71). A complete catalog of the electrochemistry of inorganic and organic substances in non-aqueous solvent (119) should be of great use. The series “Modern Aspects of Electrochemistry” also continues to appear. A recent chapter on the mechanism of charge transfer between metal electrode and ions (122) may be of benefit to various workers. Reviews covering electrogravimetry (SO), electroanalysis (76), constant current coulometry (76),
coulometry (113, 14O), coulometric analysis of oil products (132), and the electroanalysis of the platinum metals and gold (67)have appeared. RECENT TRENDS
‘The trend in electroanalysis is clearly away from electrogravimetry and to coulometric methods. Interest remains high in the use of controlled potential electrolysis in organic chemistry for fundamental studies and for synthesis. Much work has appeared recently in the area of continuous coulometric titrations. This includes work on gas chromatography detectors and elemental analyzers which involves the combustion of the sample and then sweeping the products into the electrochemical cell. Often but not always, the generation current is variable and a peak shaped current-time curve results. The area under this curve is equivalent to the coulombs used. The combustion method can also be used in a one-shot batch mode with either constant current or variable current. At times the distinction between these methods is difFicult. Considerable work on all types of instrumentation has been developed in the last two years. Noteworthy is the use of computers and digital electronics, micro-
analysis utilizing combustion, air pollution monitors, and solid state coulometers. Potential scanning coulometry has been examined (185) and a number of other variations of potential and current control reported. All of these will be considered under their applications. Of special interest is the announcement of gas phase coulometry (116) which essentially uses electron capture detectors to titrate various compounds with electrons. ELECTROSEPARATIONS AND ELECTROG RAVIMETRY
Although less work in this area than in the past has been reported, a number of studies and a few innovations are worthy of note. The determination of Ag in the presence of Bi, Cu, and Fe a t controlled potential has been studied both gravimetrically and coulometrically (188)-the standard deviation of the latter being significantly better. Application of very careful potential control to the determination of Cu, Ag, and Cd has been reported (107) as has radiographic studies on the deposition of Ag (200). Cd has been separated from Ni in ammonium tartrate solutions (193) and Co deposited from tripolyphosphate solution (130). Anodic depositions in-
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
*
79R
Table 1. Controlled Potential Coulometric Determinations Substance determined Method Determined simultaneous1 at DME at 0.0 V, Ag, Cd, In -0.63 V and -0.615 J u s . SCE in HC104 to which I- added after determ. of Cd to -mve In I complex Gra h t e electrode 0.1N HtS04 0.1N K&304and Cd, Cu, Ag ot%ers. Substohiometric co 0.5% EDTA 1% Ca(0Ac)t Co preoxidized to Co(II1) at 1.M V us. SCE pre-reduced +0.34 V and determined Co(II1) -P Co(I1) at -0.38 V Glassy carbon electrode Cr, Cu, Fe, U Rotating disk (Cu) electrode-D's can be evaluated cu 2M HC104, 1M NaCl predigestion Ir Platinum electrode preconcentration Hg Glassy carbon electrode 0.1M HClO4, preconcenHg tration Na, Li, K, Sr, Ba Double cell separated by Hg layer on cation exchange membrane. Metals deposited in layer and stripped into second cell Thm layer of solution at conducting glass electrode NP 1M H&OI 0 . 1 N HzSO~, 0 . 1 N KzSO~ Pt electrode, substoichioNil Ag, Cu metric Nor+0.95 V us. SCE 1M HOAc, 1M NaOAc, Pt electrode In fuel elements-ion exchange clean up Pu 0.03M HzSOI, disodium bathophenanthrolenePu sulfonate com lexes Fe after pre-reduction Rh, Ir 0 . 2 M HCI, Ir(If') + Ir(II1) 0.25 V us. SCE Rh(II1) -P Rh, - 0 . 2 0 V Hg cathode Ti(1V) + Ti(III), - 0 . 2 0 V us. SCE 9 M &SO4 Ti U C.P. electrolysis to potentiometric e.p. at U(IV), 0 . 2 M HCl Hg cathode (applies to %stage electrochemical reactions) U HaPO4, determination of metal oxygen ratio u , Pu Metal oxygen ratio in oxides U Pt electrode, U(V1) U(1V) u Pu Ceramic t pe materials dater Karl Fiscler, Excess I produced coulometrically and remainder determ. Organic substances Menadione (Vitamin K?) pPhenylenediamine 1M H2S04,Pt electrode 1.20 V us. SCE
+
+
+
-
+
clude that of iodide with radiochemical counting (149), PbOz (64), and MnO2 (176). A novel method for small amounts of metals (lO-gM) involved the concentration of the metals by electrodeposition on a platinum electrode and then redissolution in an ion exchange column (164), Ag, Zn, Cd, and especially Cu and Bi were investigated. The multiple deposition and stripping peaks of Ag on Au and Pt electrodes were studied under different electrode pretreatment conditions (174). Air pollutants such as SO2 and Clz were concentrated by controlled potential electrolysis at a mercury electrode and then determined by stripping (106). CONTROLLED POTENTIAL COULOMETRY
Controlled potential coulometric determinations are given in Table I. Controlled potential coulometry also continues to be used for the elucidations of reaction mechanisms where analytical determinations are not involved. A number of such papers are considered below. 80 R
Electrode Mechanisms. Some of the fundamental studies which may be of interest to workers in controlled potential electrolysis included the application to potentiostatic methods of the transient impedance technique for the study of electrode kinetics (161), a coulometric method for the ESR determination of mixtures of electrochemically generated radicals (64), and a comparison of the potentiostatic method with other methods for the determination of electrode kinetics (146'). Controlled potential coulometry has been proposed for the study of amalgams such as Mn-Hg (110). If a single phase system exists, the process is governed by the dissolved amalgam to the electrode surface. If a solid phase is also present, the rate of dissolution depends on the rate of decomposition of the intermetallic compound. Controlled potential coulometry has also been applied to the electrochemistry of transition metals in acetonitrile (n and D values) (163),and to the formation of monolayers of copper on platinum electrodes (96). The Np(VI1)-Np(V1) couple has been studied in 1M NaOH
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
(996). The electrode found to be NpOP
reaction
was
+ e + He0 = Np0d2- + 20H-; Er = 0.582 V US. NHE
Likewise the mechanism of the reduction of polytungstates was considered (119) including association with cations and double layer effects. The electrochemistry of Te(1V) in alkaline solution was found to involve the formation of a filmof Te(0) on the way to the ultimate production of Te*- (78). The reduction of the U(V1)-EDTA complex has been shown to involve an ECE mechanism on the way to a stable U(1V)EDTA species (13). The electroactive species is UO,H(EDTA)-. The microcoulometric determination of n, D,and the number of H+'s involved in the electrode reaction at a DME has been discussed (91). Considerable use has been made of controlled potential coulometry in the area of organic chemistry. The oxidation of 1,3dimethyl-2-irnidazolidinethione a t Pt electrodes in aqueous solution occurs in three discrete steps resulting in the major product-l,3dimethylimidazolidinone (90). Extensive studies of the oxidation of anthracenes has been reported (166). Dimerization, hydroxylation, and acetoxylation were identified under appropriate conditions. The oxidation of ethylene glycol (911) and amine oxides (79) has been investigated. The controlled potential cyanomethoxylation of 2,5dimethylfuran has also been reported (218). Electrochemical reduction of a,B unsaturated ketones has been shown to involve reduction to the radical anion followed by dimerization (227). Highly strained hydrocarbons have been prepared by the reduction of appropriate multibromo-organics (171). The compound l13-indandione and analogs were prepared by controlled potential reduction on Hg (296). The mechanism and products of the reduction of phenol red (181) and purine-2,6 disulfonic acid (196)have been determined. The reduction of arylsulfonamides a t Hg in acetonitrile has been shown to involve a 2-electron process which produces an intermediate that undergoes scisson at the S-N bond (120). Further reactions may then occur. A microcoulometric method has been applied to the study of the reduction of p-nitroaniline (111). Fluorene in the presence of a proton donor has been shown to undergo an apparent 3-electron ECE process (80). The mechanism of the electrodimerization of diethyl fumarate in D M F has been elucidated (36). The reduction of aminoquinones and quinone thioethers has been studied by various electrochemical techniques including controlled potential electrolysis and also by ESR (74).
CONTROLLED CURRENT COULOMETRY-COULOMETRIC TITRATIONS
Standard Determinations. During the period covered by the review, most work on coulometric titrations was in the area of applications b u t some studies on new approaches, new titrants, new end point methods, etc. appeared. Differences in the kinetic behavior of two substances were used to determine both with a common coulometrically generated titrant (68). Small amounts of Pt were determined as HlPtCL, by constant current coulometry in 0.5M NaClOi at an etched Pt electrode (176). A coulometric galvanic pulse method has been applied to current efficiency measurements on the deposition of Ag, Cu, and Fe on Au (198). Vanadium metal electrodes have been used as anodes to generate various V species for coulometric titrations (98) and the generation of V(II1) and V(I1) from V(1V) has been found to proceed generally with less than 100~ocurrent efficiency (31). High precision coulometric titrations have been applied to the assay of primary standards (221, ,929) and have been used to investigate the feasibility of using single crystals of sodium chloride as a primary standard (924). Silver has been estimated in silver compounds to 0.1% accuracy (209). Potentiometric and volumetric methods for the analysis of Pu have been compared with coulometric methods and good agreement has been found (87). Adwnces in the detection of end points in coulometric titrations include the use of pressuremetric techniques (46), interferometry (206), and the differential potentiometric method for ultramicro analysis (7). General equations for the redox potential during coulometric titrations have been derived (216). New approaches to analysis by coulometric titration include the precipitation of strychnine with Reinecke's salt and determination of the excess (86), catalytic thermometric acid-base titrations in nonaqeuous solvents (803), and the solid state estimation of oxygen in copper oxide (210). A number of other coulometric titrations are listed in Table 11. Other Applications. Recently considerable application has been made of colorimetric titrations a t controlled current that involve the introduction of a gaseous sample into the cell. Frequently the sample is produced by combustion of the materials of interest in a gas stream. These methods can be categorized into those using discrete samples, continuous monitors, and those associated with gas chromatographs. Often these methods make use of automatic apparatus that
Table II.
Electrogenerated Titrants and Substances Determined by Coulometric Titration Substance determined Electrogenerated titrant Oxidants Amines Bromine Sulfur in organotin compounds 1-Aminoadamantane Br index (crude oil) Sodium Seconal and Sandoptal. Back titration of excess arsenite Arsenic in nonferrous metals Cysteine Bromine numbers-methylsilyl esters Cinnamic acid Bromine monochloride N-substituted phenothiazines (Bromine and Cerium (IV) manganese(II1) also used) N-substituted Dhenothiazines Uranium and iron Europium Chromium(V1) Thiosulfate and iron Manganese mixtures Manganese(II), cerium(III), vanadium(1V) Thiocvanate and mercaDtoacids Ammonia and several ofganic compounds Tin Iodine Sulfides Arsenic, thiosulfate, cyanide Maltose-enzymatic production of HtOt, formation 1 2 excess thiosulfate, titration 1 2 Iodine absorption number of carbon black Sulfur containing organics Lead tetracetate Various reducing agents Iron(I1) and indirect dichromate Manganese(II1) N-substituted phenothiazines Tin(I1) Mercury(1) and (11) Octacyanomolybdate(V) Cerous Reductants Chromium(I1) Titanium(1V) Iron(III), copper(I1) Hypochlorites and chlorates Iron (11) Chromium (submicrogram) . Arsenic Manganese (Ag(I1) oxidation) Isopropyl alcohol (excess dichromate) Vanadium(V) Dichromate and ceric Dichromate, permanganate] ceric Dichromate, permanganate, ceric, vanadate Precipitating and Complexing agents Nickel in semiconductors EDTA Oxalate, chloride, bromide, iodide Mercury(1) Barbiturates Mercury(I1) Generation from Ag,S membrane chloride in Silver (I) Dresence of Iron(II1) Merca tans Chlorise (trace quantities) Iodide-after combustion of organics Sulfhydryl reagents From silver compound for copper and lead From silver sulfide Sulfide, etc. Acids and bases Precise determ KH hthalate Bases Sulfuric and hydrochoric ' Weak acids in liquid ammonia Oil acidity Weak b a w in acetic acid Acids Amines in acetic acid
Iodide
Pyridines in acetonitrile Quinoline bases in acetonitrile Fused salts From AgI (Li, K)NOa copper, silver, mercury, and bismuth determined
generates a titrate at a rate proportional to the value of an indicator signal, rather than making use of a constant current. Table 111 lists a number of the discrete sample methods. Continuous methods of coulometric analysis have been developed for ozone
(9,dS) , H2S (66),phenol by bromination in waste waters (63), and sulfur dioxide in gas streams (10, 35, 138, 187). Galvanic analyzers have been used for oxygen monitoring in glove boxes (12) and for the determination of cumene hydroperoxide (96).
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
81 R
Table 111. Substance determined Carbon
Chlorine Hydrogen Nitrogen
Oxygen Sulfur
Water
Coulometric Titrations Using Gaseous Samples
Method and/or sample Trace method-COS from air after ashing sample In steel-ignition to COS C and H in oraanica Organics-p&e coulometry COzin limestone C and H in organics Carbon in titanium Carbon in titanium Titration of C1- after combustion of organics Titration of C1- after combustion of organics In organic compounds In organic com ounds In metals, hy&o en converted to ammonia and titrated w i k h obromite Wide variety of s a m p g Nanogram quantities Petroleum Traces in water At 1- pm level Pyro$sis of organics to yield Cot Pyrolysis and eventual conversion to water Ozone in air As SO,-in oil roducts Combustion-c&orine also determined In organic com ounds Traces in petroreum In steel On glass surfaces In plastics
controlled potential coulometry with an accuracy of 0.2% has been shown to speed up analyses considerably (192). Coulometers of the following types have been made; operational amplifiercontrolled chemical (19), redox-chemical (%13), low drift electronic (179), mercuric oxide (93), solid electrolyte (90), “E-cell” silver with digital read out (88), electrolytic (72), and cadmium cell (32). In general, electronic coulometers are probably most useful for electroanalytical studies but solid state coulometers appear to hold promise.
SUPPORT of the National Science Foundation (GP-19749) is gratefully acknowledged, LITERATURE CITED
(1) Agasyan, P. K., Basov, V. N., Kostromin, A. I., Zh. Anal. Khiwi., 25, 1933
(1970). (2) Agasyan, P.K.,Khamrakulov, T. K., Zavod. Lab., 35,644 (1969). (3) Agasyan, P. K.,Khamrakulov, T. K., Vestn. Mosk. Univ., Khim.. 11. 705 (1970). (4)Agasyan, P. K., Sirakanyan, M. A., Zh. Anal. Khim., 26,992 (1971). (5) Ibid., p 1404. ( 6 ) Akhmetov, A. A., Kostromin, A. I., Sb. Aspar. Rab., Kazan. Gos. Unav., \--
- I
I
.
Estestv. Nauki, Khim., Georgr., Geol..
Coulometric gas chromatography detectors have been applied to elemental organic analysis (38),the determination of traces of nitrogen oxides, sulfur dioxide, and ammonia in gases (104), and microamounts of sulfur containing compounds (191). New coulometric detectors for gas chromatography have been studied (180, 183) the former being a combination of a flame ionization and a coulometric detector. Cell design for the determination of water in a C, H, analyzer has been discussed (39). Analysis using null point pressuremetry with coulometric generation of hydrogen has been considered (46) as have the conditions for coulometric titrations in an electrolytic cell with reversible oxygen-containing electrodes separated by a solid electrolyte (97). APPARATUS
A number of advances in instrumentation have been reported in the last two years. These will be considered under the headings of “cells”, “coulometric titration apparatus,” and “potentiostats and coulometers.” There is indication that digital electronics will eventually surpass operational amplifier instruments although several new instruments of the latter type have been developed. Much of the instrumental work has been in the area of the development of specific instruments for specific problems. Cells. Rotated cells with both mercury (40) and platinum (42) electrodes have been designed for rapid (-6 min) controlled potential coulometry. A 82 R
cell with an electron exchange membrane has been proposed as a coulometer (214) and a coulometric oxygen cell for gas streams made (163), as well as one for various gases (216). A detector cell specifically for liquid chromatography (141) and thin-film electrolytic cells as coulometers (89) have been produced. Poisoning of the electrodes in the coulometric analysis of oxygen in blood has been avoided by use of an oxygen permeable membrane (69).
Coulometric Titration Apparatus. The performance of a number of commercially available titrators and related instruments has been recently evaluated (77). A numer of designs for coulometric titrators and constant current supplies have been reported (11, 44, 82, 121, 168, 193). An automatic recording titrator was designed (131) and also a current pulse instrument (186). Apparatus specifically for electrically generated bromine (106) and for the determination of nitrogen in water have been reported (128). Potentiostats and Coulometers. A digital potentiostat (66) has been made and evaluated, as has a digitizing current sampling system (41) for various electrochemical studies including controlled potential electrolysis. Automatic connection for ohmic drop in potentiostatic systems has been considered (109) and a voltage booster for high resistance cells constructed (24). A solid state signal generator for use with controlled potential instruments has also been reported (142). A real time computer prediction of end points in
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
P. I., Kogan, D. Kh., Shumakovich, M. M., Gel’man, N. E., Zavod. Lab., 37.278 (1971). . . 129) Zbid.. D 353.. (30) BroGing, D. R., Electrometric Metho&, 120 (1969). (31) Brydon, G. A., Atkinson, G. F., Anal. Chim. Acta 51,425 (1970). (32 Carson, W. k., Jr. King, R. N., 3.S. Patent 3,538,396 (kov. 3, 1970). (33) Cedergren, . A., Johansson, G., Talanta, 18, 917 (1971). (34) Champion, C. E., Marineko, George, Taylor, J. K., Schmidt, W. E., ANAL. CHEM.,42,1210 (1970). (35) Chemin, Ya. M., Al’perin, V. Z., Vol’berg, N. Sh., Saifi, R. N., Automat. Khim. Proizvod., 66 (1969). (36) Childs, W. V., Maloy, J. T., Keszthelyi, C. P., Bard, A. J., J. Electrochem. SOC.,118, 874 (1971). (37) Chitnis, R. T., Laximinarayanan, T. S.,Naik, B. P., Praja athi, B. V., Singh, R. K., Vijayan, Jadhav, A. V., Joshin, J. K., Marathe, V. V., et al., Proc. Chem. Symp., lst, 2, 244 (1969). (38) Chumachenko, M. N., Khabarova, N. A., Levina, N. B., Alekseeva, N. N., Probl. Anal. Khim., 1, 29 (1970). (39) Chumachenko, M. N., Levina, N. B., Zzv. Akad. Nauk SSSR, Ser. Khim., 2438 (1970). (40) Clem, R. G., Jakob, Fredi, Anderberg, D. H., Ornealas, L. D., ANAL. CHEM.,43,1398 (1971). (41) Clem, R. G., Goldsworthh, W. W., ibid., p 918. (42) Clem, R. G., ibid., p 1853. (43) Cordova-Orellana, R., LucenaConde, F., Talanta, 18, 505 (1971). (44) Coulson, D. M., U.S. Patent 3,563,875 (Feb. 16, 1971). (45) Curran, D. J., Curley, J. E., ANAL. CHEM.,42,373 (1970). (46) Zbid., 43, 118 (1971). (47) Damyanov, N. Mitev, S., Dama anov, s., Agasyan, P. K., Zh. Anal. Jhim., 2 5 , 2247 (1970). (48) Davies, W., Gray, W., McLeod, K. C., Talanta, 17, 937 (1970). (49) Debal, E., Levy, R., Microchem. J., 16, 277 (1971). (50) De Kainlis, G., Chim. Anal., 53, 91 (1971). (51) De Kainlis, G., Amstutz, J. P., ibid., 51, 549 (1969). (52) Devay, Jozsef, Garai, Tibor, Hung. Sci. Znstrum., No. 19, 39 (1970). (53) Dmitriev, M. T., Al’perin, V. Z., Gig. Sanit., 36, 54 (1971). (54) Dohrmann, J. K., Gallusser, F., Ber. Bunsenges. Phys. Chem., 75, 432 (1971). (55) Drushel, H. V., Anal. Lett., 3, 353 (icnni ,- . -,. (56) Durham, R. W., Corriveau, V., At. Energy Can. Ltd. AECL-3554, 12 DD (19691. (5?j Ezerskaya, N. A,, Sovrem. Mefody Anal. Mater., 55 (1969). (58) Fabbro, L. A., Filachek, L. A., Iannacone, R. L., Moore, R. T., Joyce, R. J., Takahaski, Y., Riddle, M.E., ANAL.CHEM.,43. 1671 (1971). (59) Fletcher, K. S., 111, Mannison, R. F., ibid., 42,285 (1970). (60) Floret, Andre, Bull. SOC.Chim. Fr., 1109 (1971). (61) Fraisse,D., ibid., 4596 (1969). (62) Fraisse, D., Raveau, S., ibid., 1521 (28) Bresler,
%.,
1
11971 i.
(63)-St;afelda, Frantirek, Sb. Vys. Sk.
Chem.-Technol. Praze, Anal. Chem., 1970No. 6. 31. (64) Gancy, A. B., J. Electrochem. SOC., 2
-
116,1496 (1969). (65) Garber, W. F., Nagarro, J., Wada, F. F., J. Water Pollut. Contr. Fed., 42, R209 (1970).
(66)Goldsworthy, W. W., Clem, R. G., ANAL.CHEM.,43,1718 (1971). (67) Gruendler, Peter, Holzapfel, Heina, Talanta, 17,246 (1970). (68) Zbid., 18,139 (1971). (69) Haddad, I. A., Ger. Ofen., 1,903,637 (Aug. 13, 1970). (70) Harrar, J. E., ANAL.CHEM.,43, 143 (1971). (7:) Harrison, J. A., Thirsk, H; R., in Electroanalytical Chemist A. J. Bard, Ed., Vol. 5, M a r c p Dekker, NewYork, N.Y., 1971, p. 68-147. (72) Hoberman, Max, l!eibowite, Marshall, U.S. Patent 3,512,049 (May 12, 1970). (73) Hubbard, A. T., Anson, F; C., in “Electroanalytical Chemistr A. J. Bard, Ed., Vol. 4, Marcep Dekker, New York, N.Y., 1970, pp 129-214. (74) (Huntington, J. L., Davis, D. G., J . Electrochem. Soc., 118, 57 (1971). (75) Ijsseling, F. P., Chem. Tech., 25, 657 (1970). (76) Zbid., 26, 297,325 (1971). (77) Jakob, Fredi, Clem, R. G., MPZ Appl. Notes, 6, 9 (1971). (78) Jamieson, R. A., Perone, S. P., J. Electroanal. Chem. Interfacial Electrochem., 23, 441 (1969).
(79) Janssen, R. W., Electrochem. Characteristics of Amine Oxides,” Dissertation. 70-10.075 (1969). (80) Jerorek,’ J. R., Mark, H. B., Jr., Anal. Lett., 3, 515 (1970). (81) Jolly, W. L., Boyle, E. A., ANAL. CHEM.;43, 514 (197i). (82) Junaner Instrument AB. Brit. Pat‘ ent, 1,212,890 (Nov. 18, 1970). (83) Kabanova,, 0. L., Zalogina, E. A., Zh. Anal. Khzm., 26, 714 (1971). (84) Zbid., p 826. (85) Kalinowski, K., Chem. Anal., 15, 277 (1970). (86) Kanamura, Kanichi, Kawada, Katsuro, Sankyo Kenkyusho Mempo, 22 62 (1970). (87) Karlsson, Ronald, Karrman, K. J., Talanta, 18, 459 (1971). (88) Kennedy, J. H., Adams, F., J. Chem. Educ., 47, 461 (1970). (89) Kennedy, J. H., Chen, Fred, J. Electrochem. SOC.,118, 1043 (1971). (90) Kennedy, J. H., Chen, Fred, Willis, John, J. Electrochem. SOC., 117, 263 (1970). (91) Killer, F. C. A., Petrochem., 23, 655 11970). (92) Killer, ’F. C. A., Underhill, K. E., Analyst, 95, 505 (1970). (93) King, R. N., Carson, W. N., Jr., US. Patent, 3,564,350 (Feb. 16, 1971). (94) Kirillova. T. V.. Kozlikov. V. D.. Fedotov, fl. S., Zh. Anal. Khim., 25; 1811 11970). (95) Kiysoumi, Mizutani, Narita, M., Tetsu To Hagne, 57, 623 (1971). (96) Kober, Roland, Chem. Anal. (Warsaw), 14,’1037 (1969). (97) Komarov, VI F.,’ Tret’yakov, Yu. D., Zh. Fiz. Khim., 45, 1740 (1971). (98) Kostromin, A. I., Agasyan, P. K., Basov, V. N., Zh. Anal. Khim, 25, 216 (1970). (99) Kostromin, A. I., Akhmetov, A. A., Zssled. Elktrokhim., Magnetokhim. Elektrokhim. Metod. Anal. No. 8, 221 (1969). (100) Ibid., D 187. (101) Kostromin, A. I., Akhmetov, A. A,, Mosolov, V. V., Zh. Anal. Khim., 25,
847 (1970). (102) Kostromin, A. I., Akhmetov, A. A., Orlova, L. N., ibid., p 195. (103) Kreshkov, A. P., Oganesyan, L. B., ibid.. 26. 614 (1971). . . (104) Krichmar, S. I., Stepanekno, V. E., Galan, T. M., ibid., p 1340. (105) Kropivnitskaya, R. A,, Lusararyan, K. S.,Prom. A m . , 11,26 (1969).
(106) Kuempel, J. R., Shults, W. D., Anal. Lett., 4, 107 (1971). (107) Jacquat, C. A., La Cava, A. I., Rev. Fac. Zng. Quim., Univ. Nac. Litoral, 37, 257 (1968). (108) Laedrech, W., Van de Craats, F., Gouverneur, Piet, Anal. Chim. Acta, 50, ’ 219 (1970). (109) Lamy, C., Malaterre, P., J. Eketroanal. Chem. Zntrrfacial Electrochem., 32, 137 (1971). (110) Lange, A. A,, Bukhman, S. P., Ekktrochimiya, 5, 1320 (1969); (111) Lanaa, Pietro, Todeschini, Fiorenaa, Atti Accad. Naz. Lincei, C1. Sci. Fis., Mat. Natur, Rend., 47, 549 (1969). (112) Launay, Jean P., Souchay, P., Boyer, M., Collect. Czech. Chem. Commun., 36, 740 (1971). (113) Lee, W. H., Electrometric Methods, 104 11969). (114) Lehmann, Rolf, Gruetzner, GerHard, Banyasz. Kohasz. Lapok, Kohuze., 103, 563 (1970). (115) Lingane, J. J., Anal. Chim. Acta, 50, 1 (1970). (116) Lovelock, J. E., Maggo, R. J., Adlard, E. R., ANAL.CHEM.,43, 1962 (1971). (117) Magno, Franco, Cursi Semin. Chim., No. 9, 42 (1968). (118) Magno, Franco, Peruzzo, Valerio, Anal. Chim. Acta, 50, 491 (1970). (119) Mann, C. K., Barnes, K. K., in ‘‘Electrochemical , P c t i o n in Nonaqueous Systems, Marcel Dekker, New York, N.Y., 1970. (120) Mann, C. K., Cottrell, P. T., J. Amer. Cham. SOC.,93, 3579 (1971). (121) Martin, John, Ger. Offen. 1,931,438 (May 6, 1970). (122) Matthews, D. B., Bockris, J. O’M., in “Modern Aspects of Electrochemistry,” J. O’M. Bockris, Ed., Vol. 6, Academic Press, New York, N.Y., 1971, pp 242-328. (123) Mavrina, A. S., Bagdasarov, K. N., Kovalenko, P. N., Kaaarenko, L. V., Sovrem. Metody Khim. Tekhnol. Kontr. Proizvod., 80 (1968). (124) Mazzocchin, G. A., Bombi, G. G., Sacchetto, G. A., J. Electroanal. Chim. Interfacial Electrochem., 24, 31 (1970). (125) McAllister, D. C., Dryhurst, G., J. Electroanal. Chem., 32, 387 (1971). (126) McCracken, J. E., Guyon, J. C., Shults, W. D., Anal. Chim. Acta, 57, 151 (1971). (127) McNulty, J. A., Amer. Lab., 59 (1969). (128) McNulty, J. A., Moore, R. T., U.S. Patent 3,565,583 (Feb. 23, 1971). (129) Milos, K., Novak, K., Chem. Prum., 21, 27 (1971). (130) Mishra, I. B., Fresenius’ Z. Anal. Chem., 252, 378 (1970). (131) Miyake, Shingo, Bunseki Kagaku, 19, 1341 (1970). (132) Miyake, S., Yukagaku, 20, 125 (1971). (133) Miyake, Shingo, Suzuki, Kinichi, Bunseki Kagaku, 19, 1633 (1970). (134) Mladenovic, Sreten, Mitev, Stojan, Tehnika (Belgrade), 25, 1781 (1970). (135) Monforte, J. R., Purdy, W. C., Anal. Chim. Acta., 52. 25 (1970). (136) Zbid., p 433. (137) Moody, J . R., Purdy, W. C., Anal. Chim. Acta., 53, 239 (1971). (138) -Morozumi, T., Ohaski, H., Asahi Garasu Kogyo Gijutsa Shoreikai Kenkyu Hokoku, 16, 303 (1970).
(139) Muto, Giichi, Nozaki, Ken, Nozaka, Takashi. Bunsrki Kaoaku. 20, 180 (1971). (140) Muto, Giichi, Takata, Y., Kagaku N o Ryoiki, Zoken, 188 (1969). (141) Muto, Giichi, Takata, Joshinori, Hamano, Yoshimaaa, Ger. Offen. 2,024,008 (May 16, 1969). “
I
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
,
83 R
(142) Myers, R. L., Shah, Irving, Chem. Instrum., 2, 203 (1969). (143) Nakamura, Kanichi, Nishimura, Mssaaki, Mitsui, Tetsuo, Mzkrochem J . 15, 461 (1970). (144 .Nakamura, Kanichi, Ono, KikKawada, Katsuro, Sankyo K m k w Nempo 22, 54 (1970). (145) Nichu ovskii, G. F., Dobycnin, 8.L., Zh. h i k l , Khim, 44, 1386 (1971). (146) Niki, Katsumi, Denki Kugaku Oyobi Kog o Butsun' Kagaku, 37, 542 (1969). (147) ikolic, Kosta, Cupic, Z. V., fflas. Hem. D m . , Beograd, 33, 323 (1969). (148) Nikolic, Kosta, Cupic, Zonca, Tthnika (Belgrade), 24, 2051 (1969). (149) Nilason A. M., Holm en, Alf, Beronius, Per., Radwchem. %dzoanal. Leu., 5, 125 (1970). (150) Ogneva, A. K., Vekhov, V. A., Shapovalova 0. M. Varvinsska a L. G., Sb. Tr. $ses. Nauch.-Zssled. k e k t . Znst. Titana, 3, 270 (1969). (151) Ohnemueller, W., Solf, A., 2em.Kalk-Gips, 23, 200 (1970). (152) Oita, I. J., ANAL. CHEM.,43, 624 (1971). (153) Olver, J. W., U.S. Ckaringhouse Fed. Sci. Tech. Inform., AD, No. 716666, 8 p (1969). (1547 pa h a R. J., Gupta, H. K. L., Bolts, D. k,, Anal. Lett., 4, 277 (1971). (155) Palma, R. J., Pearson, K. H., Chemistry, 42, 28 (1969). (156) Parker, V. D., Acta. Chem. Scand., 24, 6, 2768, 2775, 3151, 3162, 3171 (1970). (157) Patriarche, G. J., Mikrochim. Acta., 950 (1970). 1158) Patriarche, G. J., Lingane, J. J., Anal. Chim. Acta, 49, 25 (1970). (159) Zbid., p 241. (160) Patnarche G. J., Lingane, J. J., Ann. Pharm. #r., 28, 511 (1970). (161) Pilla, A. A,, EZectrochsm. SOC.,117, 467 (1970). - -,(162) Plock, C. E., Vasques, J., Talanta, 16, 1490 (1969). (163) Pressey, D. C., Brit. Patent 1,214,848 (Dec. 2, 1970). (164) Pretorius. Victor. Hahn. H. H.. F;. Patent 1,'543,286 (Oct. 25; 1969). ' (165) Propst, R. C., ANAL. CHEM.,43, 994 (1971). (166) Puglisi, V. J., Bard, A. J., Anal. Lett. 3, 443 (1970). (167) kedd S. Jayarama, Krishnan, V. R., Zn$&n J . Chem., 8 , 626 (1970). (168) Rhodes, D. R., U.S. Patent 3,580,832 (Ma 25, 1971). (169) Rhodres, D. R., Hopkins, J. R., ANAL.CHEM.,43, 630 (1971). (170) Rhodes, .D. R., Hopkins, J. R., Guff J. C., abzd., p 556. (171) ifi, M. R., J . Org. C h a . , 36, 2017 (1971). (172) Rigdon, L. P., Harrar, J. E., ANAL. CHEM. 43, 747 (1971). (173) Saiaer. F.. Geldermann. H.. Kunst. st$e 60,668'(1970). (174) dandoz, D. P., Peekema, R. M., Freund, Harry, Morrison, C. F., Jr.,
(203) Va'gand, V. J., G a l , F. F.,Brusin,
S. S. !/'alantu, 17, 415 (1970).
(204) Yajgand, V. J., Pastor, T. J.,
usk,
(208) V&e; J. C: Chabert, J. P., Anal. Chim. Ada, 48, 367 (1969). (209) Vija avalli, R., Rao, P. V. Vssudeva, d u a, H. V. K., BuU. A d . Pol. Sci. Cfim., 17, 359 (1969). (210) Vija avalli, R., Reo, P. V. Vasudeva, d u p a , H.V. K., J . EMroanal. Chem. Interfaciol Electrochem., 24, 201 (1870) \-".-,. (211) Viijh, A. K., Can. J . Chem., 48, 197 (1970). (212) Waterbury G. R., Nelson, G. B., Bergstrwr, k. S., Metz, C. F., U.S. At. Energy Comm. LA-4537, 19 pp (19717 \ - - . ). - I .
\ - -
\-_.
I
84R
0
,
~
(205) Vbjgand, V.' G. Pastor, T. J., Bjelica, L. J. Oh.Hem. Dncs., B e o m , 35, 345 (1976). (206) Vajpnd, V. J., Tokomvski, Todor, Jacr Rev., 15, 37 (1970). (207) Vanhon. G. W.. Page. J. A.. ANAL.
k
~
.,
Biehca. L.. Proc. Anal. Chem. Conf..
Sd. 2. '163 '(1970).
(195) "Stokely,' J. R.; Jr.,'Shults, W. D., ANAL.CHEM.,43, 603 (1971). (196) Svajgl, Oldrich, Bedrich, Holle, &pa Uhlic, 12, 245 (1970). (197) Talesek, Vladimir, Hala, Slavoj, Kuras Mecislav Eliasek, Jaroslav, Sb. bys, Sk, hem-Technol. Praze, Technol. Paliu, 16, 85 (1969). (198) Taube, K., Lorens, W. J., J . Electroanal. Chem. Interfacial Elatrochem., 25. 95 (1970). (199) Teret'ev, A. P., Bodarevska a, E. A., Kirillova, T. V., Potsepkma, N., Zh. Anal. Khim., 25, 2208 (1970). (200) Thyn, Jiri, Stvekk, Bohumil, Jad. Energ., 15, 379 (1969). (201) Tousek, Jaromir, Chem. Lisfy, 64, 425 (1970). (202) Vajgand, V. J., Pastor, T. J., Antonic, 0. M., G h . Htm. Drus., Bwgrad, 35, 337 (1970).
ANALYTICAL CHEMISTRY, VOL. 44, NO. 5, APRIL 1972
6.
(213) Weininger, J. L., J . Electfochem. SOC.,116, 1480 (1969). (214) Weininger, J. L., Carson, W. N., Jr., U.S.Patent 3.549.957 (Dec. 22. 1970). (215) Wijnne, H. J.' A., 'Phcrrm. 'Weekbl., 105., 1W7 (19701. (216) Wiseman, W. A., Brit. Patent 1,199,841 (July 22, 1970). (217) Wuelhg, Peter Jr., Fit;sgerald, E. A.. Jr.. Richtoi. H. H.. ANAL. CHEM.; 42,999 (i97oj. (218) Yoshida, K., Fueno, T., J . Org. Chem., 36, 1523 (1971). (219) Yoshimori, Takayoshi. Ishiwari, Syuiti; TaZunb, 17, 349 (l9bO). (220) Yoshimori, Taka osh; Ishiwari Shuiti; Watanabe, $oshio; Harada,, Takashi; Yamada, Shoji; Nippon Kinwklc Gakkaishi, 35, 808 (1971). (221) Yoshimori, Taka oshi; Matsubara, Ikuko; Bull. Chem. ioc. Jap., 43, 2800 (1970). (222) Yoshimori, Takayoshi; Matsubara, Ikuko; Hirosawa, Kenji; Tanaka, Tatsuhiko; Bunseki Kagaku, 19, 681 (1970). (223) Yoshimori, Takayoshi; Matsubara, Ikuko; Tanaka, Tatsuhiko; Yoshida, Kasuo; Tanaka, Kazuo; Tanabe, Toyokazu; Bull. Chem. SOC.Jap., 44, 734 (1971). (224) Yoshimori, Takayoshi; Tanaka, Tatsuhiko; Anal. Chim. Acta., 55, 185 (1971). (225) Zacharova-Kalavaka, D., Zelensky, I., Perjessy, A., Collect. Czech. Chem. Commun., 36, 2716 (1971). (226) Zielen, A. J., Cohen, Donald, J . Phys. Chem., 74, 394 (1970). (227)Zimmer, J. P., Richards, J. A., Turner, J. C., Evans, D. H., ANAL. CHEM.,43, lo00 (1971). (228) Zinser, E. J., Page, J. A., ibid., 42, 787 (1970).