1 Conversion and Electrodeposited Coatings:
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
A Total Concept JAMES I. MAURER and ROBERT M . LACY The Parker Co., Oxy Metal Finishing Corp., Occidental Petroleum Corp., P. O. Box 201, Detroit, Mich. 48220
In the electrodeposition
of paint, part of the substrate be-
comes an integral part of the deposited film and can influence the coating properties.
This paper covers the effect
on paint quality of the cleaning of the metal surface, formation of the conversion coating, post treatment, deionized water rinsing, and dryoff conditions.
The system is evalu-
ated for salt spray and humidity resistance, adhesion, filiform
corrosion,
detergent
resistance,
paint film. For maximum selectivity conversion dryoff
coating,
a reactive
post
and
uniformity
of
of paint, the proper treatment, and
oven should be used. By carefully
the
matching the
paint formulation with the conversion coating, quality finishes can result, even if post treatment and the dryoff oven are eliminated.
Electrodeposited paints require a more uni-
form and complete coating than conventionally
deposited
paints.
T t is a c c e p t e d p r a c t i c e to c l e a n a n d to treat m e t a l surfaces to p r o d u c e o n t h e m a c o n v e r s i o n c o a t i n g before a p p l y i n g i n d u s t r i a l p a i n t (1,2).
finishes
C o n v e r s i o n coatings as a base for p a i n t h a v e b e e n p r o v e d v a l u a b l e
d u r i n g m a n y years o f field use, w h i c h h a v e s h o w n that t h e y p r o v i d e a s i m p l e , e c o n o m i c a l means o f s u b s t a n t i a l l y i n c r e a s i n g the o v e r a l l q u a l i t y of p a i n t e d p r o d u c t s . P r o p e r m e t a l p r e p a r a t i o n , i n c l u d i n g the f o r m a t i o n o f a surface c o n v e r s i o n c o a t i n g p r i o r to p a i n t i n g , c o n t r i b u t e s to p a i n t e d p r o d u c t d u r a bility by: ( 1 ) d e c r e a s i n g the s p r e a d o f c o r r o s i o n o f the substrate m e t a l at areas w h e r e the p a i n t film is b r o k e n , a n d i n this w a y m a t e r i a l l y r e d u c i n g the 7
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
8
ELECTRODEPOSITION
OF
COATINGS
loss of p a i n t that w o u l d o r d i n a r i l y l i f t a n d p e e l a w a y as a result of the a c t i o n of the a l k a l i n e c o r r o s i o n p r o d u c t s . ( 2 ) p r e v e n t i n g or d e c r e a s i n g o n z i n c surfaces the r e a c t i o n of the z i n c m e t a l w i t h the p a i n t b y v i r t u e of the f a c t that the c o n v e r s i o n c o a t i n g is a n o n - m e t a l l i c , n o n - r e a c t i v e s e p a r a t i n g layer.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
( 3 ) c o n t r o l l i n g the a c t i o n of m o i s t u r e w h i c h permeates the p a i n t film to a s u b s t a n t i a l degree. T h i s eliminates or m i n i m i z e s b l i s t e r i n g u n d e r h i g h h u m i d i t y c o n d i t i o n s , thus c o n t r i b u t i n g to p a i n t film i n t e g r i t y . ( 4 ) i m p r o v i n g the m e c h a n i c a l p a i n t a d h e s i o n b y i n c r e a s i n g the sur face area, a n d / o r p r o v i d i n g a c a p i l l a r y b e d ( 3 ) into w h i c h the o r g a n i c finish c a n penetrate. C o n v e r s i o n coatings
are p r o d u c e d b y the c h e m i c a l r e a c t i o n of a
c o a t i n g s o l u t i o n w i t h the m e t a l surface.
I n most cases, c o m p o n e n t s
of
the m e t a l surface react w i t h components of the c o a t i n g s o l u t i o n to p r o d u c e a t i g h t l y adherent, w a t e r - i n s o l u b l e i n o r g a n i c c o a t i n g o n the m e t a l . T h e m e t a l surface is thus r e n d e r e d n o n - m e t a l l i c . C l e a n i n g a n d c o n v e r s i o n c o a t i n g c a n b e c o m b i n e d into one Processes of this t y p e are g e n e r a l l y r e f e r r e d to as cleaner-coaters. greater
flexibility
step. Much
i n operation and usually higher quality can be
t a i n e d , h o w e v e r , b y s e p a r a t i n g the c l e a n i n g a n d the
ob
conversion-coating
step a n d b y post t r e a t i n g the c o n v e r s i o n c o a t i n g to f u r t h e r e n h a n c e its a b i l i t y to h o l d p a i n t a n d m i n i m i z e corrosive attack of the m e t a l surface. A t y p i c a l p r o c e s s i n g sequence b e f o r e c o n v e n t i o n a l p a i n t a p p l i c a t i o n t o d a y w o u l d consist of: ( 1 ) C l e a n i n g the m e t a l , 6 0 - 9 0 seconds (2)
W a t e r rinse, 30 seconds
(3)
T r e a t m e n t to o b t a i n a c o n v e r s i o n c o a t i n g , 60 seconds
( 4 ) W a t e r rinse, 30 seconds ( 5 ) Post treatment or final rinse, 30 seconds (6)
Dryoff i n oven
T h e t w o b a s i c m e t h o d s of t r e a t i n g m e t a l surfaces are b y the i m m e r sion process a n d b y the s p r a y process (4, 5 ) .
T h e i m m e r s i o n process is
the o l d e r a n d the s i m p l e r a n d consists of d i p p i n g the p r o d u c t to
be
treated i n tanks c o n t a i n i n g the treatment s o l u t i o n . M o s t h i g h p r o d u c t i o n treatments of p r e f o r m e d m e t a l parts t o d a y , h o w e v e r use the b y the s p r a y process.
chemicals
T h e s p r a y process, i n this case, is not the a p p l i c a
t i o n of the s o l u t i o n u s i n g finely d i s p e r s e d particles, as is the case of the a p p l i c a t i o n of paints b y spray, b u t rather b y flooding the p r e f o r m e d parts b y i m p i n g i n g the s o l u t i o n onto the m e t a l surface t h r o u g h n o z z l e s that h a v e r e l a t i v e l y h i g h v o l u m e c a p a c i t y a n d w h i c h are d e s i g n e d to p r o d u c e a m i n i m u m b r e a k u p of s o l u t i o n . T h e s o l u t i o n d r a i n i n g f r o m the parts runs b a c k to a reservoir tank a n d is constantly r e c i r c u l a t e d onto the w o r k a n d c o n t i n u a l l y reused. C o n v e r s i o n coatings c a n b e p r o d u c e d b y b r u s h i n g or w i p i n g a t r e a t i n g s o l u t i o n o n the m e t a l surface.
Portable, heated spray
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
1.
MAURER
A N D LACY
9
Conversion and Electrodeposited Coatings
e q u i p m e n t or steam g e n e r a t i n g e q u i p m e n t c a n b e successfully u s e d to a p p l y c o n v e r s i o n coatings outdoors or w h e r e spray or i m m e r s i o n e q u i p m e n t is u n a v a i l a b l e . N o r m a l l y these latter methods are u s e d f o r l i m i t e d p r o d u c t i o n o r f o r l a r g e o r h e a v y items. O n e large use of p a i n t e d m e t a l is the p a i n t e d c o i l - p o s t f o r m e d a p p r o a c h to the p r o d u c t i o n of items s u c h as roof d e c k i n g , b u i l d i n g s i d i n g Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
a n d t r i m , a n d m a n y other a p p l i c a t i o n s w h e r e the p r o d u c t c a n b e f o r m e d after p a i n t i n g . Since the m e t a l is flat a n d i n c o i l f o r m , i t c a n b e p u l l e d t h r o u g h a s t r i p l i n e w h e r e e a c h o f t h e p r o c e s s i n g stages are separated b y squeegee rolls. T h i s process features v e r y short treatment times a n d v e r y h i g h l i n e speeds (6).
B o t h i m m e r s i o n a n d s p r a y processes are used.
A New Dimension U n t i l the i n t r o d u c t i o n of electrocoating (7, 8, 9 ) , the m e t h o d of a p p l i c a t i o n of the p a i n t film h a d l i t t l e i f a n y b e a r i n g o n the q u a l i t y of the finished
system. W i t h the i n t r o d u c t i o n of t h e e l e c t r o d e p o s i t e d p a i n t
film,
h o w e v e r , i t is necessary to t h i n k n o l o n g e r i n terms of a p a i n t a p p l i e d o n a substrate b u t rather a p a i n t film f o r m e d o n a substrate, w i t h components of the substrate b e c o m i n g a n i n t e g r a l part of the p a i n t film (10, 11, 12, 13,14,15). finish
W i t h e l e c t r o d e p o s i t e d p a i n t i n g i t is the i n t e r p l a y of t h e t o t a l
system that must b e c o n s i d e r e d to ensure
quality a n d economy.
o p t i m u m balance
of
T h i s p a p e r deals w i t h the role p l a y e d b y c o n
v e r s i o n coatings i n t h e t o t a l
finishing
system.
Current Practice V a r i o u s c o n v e r s i o n c o a t i n g processes are u s e d i n i n d u s t r y t o d a y . T h e t y p e u s e d depends o n t h e t y p e of m e t a l , the c o m b i n a t i o n of metals processed, a n d the q u a l i t y r e q u i r e m e n t s o f a g i v e n o p e r a t i o n .
T h e fol
l o w i n g s u m m a r i z e s the t y p e of c o n v e r s i o n coatings a v a i l a b l e : Steel: ( 1 ) I r o n p h o s p h a t e — a m i x t u r e of i r o n p h o s p h a t e a n d i r o n o x i d e ; c o n s i d e r e d to b e a m o r p h o u s . C o a t i n g w e i g h t s i n t h e range of 15 to 90 m g / s q ft. ( 2 ) Z i n c p h o s p h a t e — g r e y , c r y s t a l l i n e , essentially a m i x t u r e of z i n c a n d i r o n phosphates. C o a t i n g w e i g h t s i n t h e range of 100 to 600 m g / s q ft. ( 3 ) M o l y b d a t e / p h o s p h a t e — a m i x t u r e of i r o n p h o s p h a t e a n d m o l y b d a t e w i t h i r o n oxides; c o n s i d e r e d to b e a m o r p h o u s . C o a t i n g w e i g h t s i n t h e range o f 15 to 50 m g / s q f t . Z i n c Surfaces:
( H o t D i p p e d G a l v a n i z e d a n d E l e c t r o g a l v a n i z e d Steel)
( 1 ) Z i n c p h o s p h a t e — e s s e n t i a l l y z i n c p h o s p h a t e w i t h traces of n i c k e l ; grey, c r y s t a l l i n e . C o a t i n g w e i g h t range of 100 to 350 m g / s q ft.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
10
ELECTRODEPOSITION
O F
COATINGS
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
( 2 ) Molybdate/phosphate—a mixture of zinc molybdate a n d phos phates; b l u i s h - g o l d e n i n c o l o r ; a m o r p h o u s . Aluminum: ( 1 ) Z i n c phosphate—a mixture of zinc a n d a l u m i n u m phosphates; c r y s t a l l i n e , g r e y i n color. C o a t i n g w e i g h t range o f 150 to 500 m g / s q f t . (2) Molybdate/phosphate—a mixture of a l u m i n u m molybdate a n d p h o s p h a t e ; g o l d e n - b l u e i n color. (3) C h r o m i c oxide—oxides of a l u m i n u m w i t h chromic compounds; colorless to g o l d e n ; c o n s i d e r e d to b e a m o r p h o u s . C o a t i n g w e i g h t range of 10 to 50 m g / s q ft. I n terms o f t o t a l m e t a l surface area treated, c o l d r o l l e d steel i s cer t a i n l y t h e most i m p o r t a n t m e t a l p a i n t e d b y e l e c t r o d e p o s i t i o n .
W e there
f o r e c o n s i d e r t w o o f t h e m o s t w i d e l y u s e d c o n v e r s i o n coatings f o r this m e t a l — t h e z i n c p h o s p h a t e a n d t h e i r o n p h o s p h a t e c o n v e r s i o n coatings.
A New Look at the Old Z i n c p h o s p h a t e coatings are, to t h e n a k e d eye, l i g h t grey, s c r a t c h a b l e coatings, w i t h a n o b v i o u s , fine c r y s t a l structure.
Under a light micro
scope, w e c a n see a definite c r y s t a l l i n e structure, b u t i t is d i f f i c u l t t o o b t a i n a r e a l l y g o o d v i e w o f t h e c o a t i n g because t h e z i n c
phosphate
crystals are translucent to l i g h t , a n d they a p p e a r r e l a t i v e l y coarse o n a m i c r o l e v e l . T h i s translucent p r o p e r t y , c o m b i n e d w i t h t h e s h a l l o w d e p t h of focus of a l i g h t m i c r o s c o p e gave the p h o t o g r a p h s i l l u s t r a t e d i n F i g u r e 1.
Figure 1. SAE 1010 cold rolled steel sur face coated with a zinc phosphate conver sion coating using a spray, nitrite-accelerated process. 200 X using a light microscope.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
1.
M A U R E R A N D LACY
Conversion and Electrodeposited Coatings
11
Figure 2. Same SAE as in Figure 1 but viewed at 200 X with a scanning electron microscope W i t h t h e a d v e n t o f t h e s c a n n i n g e l e c t r o n m i c r o s c o p e (17), w h i c h fea tures, a m o n g other things, a greater d e p t h o f focus a n d because t h e coat ings are essentially o p a q u e to t h e e l e c t r o n b e a m , c o n v e r s i o n coatings c a n n o w b e seen i n greater d e t a i l . F i g u r e 2 shows t h e same c o a t i n g as i n F i g u r e 1 b u t v i e w e d u s i n g a s c a n n i n g electron m i c r o s c o p e .
H i g h e r magnification viewing w i t h the
s c a n n i n g e l e c t r o n m i c r o s c o p e reveals f u r t h e r details o f a p h o s p h a t e c o n v e r s i o n c o a t i n g o n steel. F i g u r e 3 shows a t y p i c a l z i n c p h o s p h a t e c o a t i n g as w o u l d b e a p p l i e d to steel o r z i n c at a m a g n i f i c a t i o n o f 2000 χ . F i g u r e 4 shows a c a l c i u m m o d i f i e d , z i n c p h o s p h a t e process o n steel at 2000 χ . F i g u r e 5 shows a n i r o n p h o s p h a t e c o a t i n g , w h i c h has heretofore b e e n g e n e r a l l y c o n s i d e r e d a m o r p h o u s , at a m a g n i f i c a t i o n of 10,000 X . C o n v e r s i o n c o a t i n g a r e n o n - m e t a l l i c a n d are g e n e r a l l y as n o n - c o n d u c t i v e (18, 19). be
described
Since t h e e l e c t r o d e p o s i t e d p a i n t film c a n
a p p l i e d o n l y to a c o n d u c t i v e surface,
h o w c a n the conventional
c o n v e r s i o n coatings serve as a base f o r e l e c t r o d e p o s i t e d coatings? T h e a n s w e r is that w h i l e c o n v e r s i o n coatings are essentially n o n - c o n d u c t i v e , t h e y are d i s c o n t i n u o u s , a n d t h e e l e c t r o d e p o s i t i o n of p a i n t films begins i n the pores o f the c o n v e r s i o n c o a t i n g
(14,15,16).
A t y p i c a l processing sequence f o r t r e a t i n g metals b e f o r e t i o n a l p a i n t i n g consists of six stages.
conven
F o r electrodeposited paints, the
f o l l o w i n g sequence is u s e d :
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
12
ELECTRODEPOSITION
O F
COATINGS
( 1 ) C l e a n i n g the m e t a l ( 2 ) W a t e r rinse ( 3 ) T r e a t m e n t to o b t a i n a c o n v e r s i o n c o a t i n g ( 4 ) W a t e r rinse ( 5 ) Post treatment o r final rinse ( 6 ) D e i o n i z e d w a t e r rinse, 1 0 - 1 5 seconds
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
( 7 ) Dryoff i n oven E a c h step is d i s c u s s e d b e l o w . A t y p i c a l spray p h o s p h a t i z i n g u n i t is s h o w n i n F i g u r e 6.
Figure 3. SAE cold rolled steel treated with a spray nitrite-accelerated, zinc phos phate process modified by nickel and flu oride
Cleaners T h e first step i n f o r m i n g a c o n v e r s i o n c o a t i n g is attack of t h e m e t a l surface b y the c o a t i n g s o l u t i o n . T o o b t a i n a u n i f o r m i n i t i a l attack, a n d thus a u n i f o r m final c o n v e r s i o n c o a t i n g , a l l u n w a n t e d soils m u s t b e r e m o v e d f r o m the surface of the m e t a l . A l m o s t a l l m e t a l u s e d i n i n d u s t r y is c o a t e d w i t h a t h i n film of o i l b y the p r o d u c e r to protect i t d u r i n g s h i p p i n g a n d storage.
T o i d e n t i f y various grades of m e t a l , most m i l l s a p p l y
a p r i n t e d i d e n t i f i c a t i o n o n their m e t a l sheets o r coils, u s u a l l y g i v i n g t h e i r t r a d e n a m e a n d t y p e of m e t a l . M o r e o v e r , d u r i n g a n n e a l i n g a n d c o l d r o l l i n g , s m u t - l i k e soils are f o r m e d , w h i c h consist of mixtures of p a r t i a l l y b u r n t r o l l i n g oils, finely d i v i d e d m e t a l particles, a n d oxides of t h e m e t a l .
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
1.
MAURER A N D L A C Y
Conversion and Electrodeposited Coatings
13
Figure 4. SAE 1010 cold rolled steel treated with a spray zinc phosphate process, calcium modified, ferrous ion present. 200 X using a scanning electron microscope. T o f a b r i c a t e m e t a l into t h e d e s i r e d shape, i t is often necessary t o a p p l y pressing o r d r a w i n g l u b r i c a n t s .
T h e s e a r e u s e f u l because they
adhere
t e n a c i o u s l y to t h e m e t a l , r e d u c e f r i c t i o n a n d w e a r b e t w e e n t h e d i e a n d the m e t a l , a n d thus e l i m i n a t e s c o r i n g , s c r a t c h i n g , a n d g a l l i n g .
Figure 5. SAE 1010 cold rolled steel treated with a chlorate accelerated, spray, iron phosphate process. 10,000 X using a scanning electron microscope.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
During
14
ELECTRODEPOSITION
O F
COATINGS
storage a n d d u r i n g their journeys t h r o u g h f a b r i c a t i o n plants t h e m e t a l parts p i c k u p shop d i r t , c h a l k , w a x , a n d i n k w h i c h are i n s p e c t i o n aids o r identification markings.
T h e s e soils o n t h e m e t a l surface c a n seriously
affect the subsequent m e t a l processing steps a n d m u s t b e r e m o v e d . T h e cleaners f o r m u l a t e d a n d selected m u s t b e able to r e m o v e t h e v a r i o u s soils d e s c r i b e d above, a n d after t h e w a t e r rinse stage t h e y m u s t
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
p r o d u c e a surface that is c o n d u c i v e to t h e c o n v e r s i o n c o a t i n g
process.
ELEVATION
L^-OAMPER
ttiitiitt
jiliiiih
7X
îtttttm
jUiiiiij
ttttttttt — ^ ttrttr
ttttttti!
iiiiiiiii
juiiiii|
V LONGITUDINAL
SECTION
A«
|> t6A 4 6 44i0| » «» ° «"» «j ' -7 REMOVABLE SCREENS'
I OVERFLOW
CUTTER PLAN
S C H E D U L E ZONE PARCO*CLEANE R WATER RINSE PARCO CLEANER WATER RINSE
BONDER 1 T E ®
TREATMENT
WATER RINSE PARCOLENE® TREATMENT OEIONIZED WATER RINSE F R E S H DEIONIZED RINSE
TIME CYCLE
45 S E C
45 SEC 45 SEC 45 SEC
OPERATING T E M P . »F N U M B E R 150-180 150-180 150-180 130 - 1 8 0
6 0 SEC
130-180
30 SEC 3 0 SEC
NO HEAT NO HEAT
15 S E C
NO HEAT
1 3 5 1 3 5
1 35 1 35 105 • 12 105 84 48 24
NOZZLES TYPE PRESS 15 PSI H 3/8 U15070 H 3/8 U15070 15 P S I H 3/8 U15070 15 PSI H 3/8 U15070 15 PSI 3/8 BSS 50-50.1 IOPSI IOPSI 3/8KSS 30 IOPSI H 3/8 U15070 IOPSI 3/8 KS S 30 IOPSI 3/8KSS30 I/8KSS 10
IOPSI
" F I R S T SET OF SPRAYS IN THE BONDERITE
Figure 6.
ZONE
Details of
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
1.
MAURER
Conversion and Electrodeposited Coatings
AND LACY
15
T h i s means that the cleaners must also c o n d i t i o n or treat the surface of the m e t a l to r e n d e r it r e c e p t i v e to the c o n v e r s i o n c o a t i n g step. W e there fore speak i n i n d u s t r y of c l e a n i n g a n d c o n d i t i o n i n g the surfaces. C l e a n i n g has a l w a y s been i m p o r t a n t i n p r e p a r i n g m e t a l for p a i n t i n g .
With
the
i n t r o d u c t i o n of e l e c t r o d e p o s i t e d paints, h o w e v e r , the necessity of o b t a i n i n g u n i f o r m c o n v e r s i o n coatings has b e c o m e e v e n m o r e i m p o r t a n t .
With
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
c o n v e n t i o n a l paints, a reasonable degree of u n i f o r m i t y m u s t b e m a i n -
SECTION
A-A
FRESH DEIONIZEO RINSE
Λ
FRESH WATER RINSE
~~^LcEILING DRIP SHIELD CARRY
]jfT
ο mI β ·I
Ι^,οο.οοο,ιο
!
l«.....H
ι
i
*lo
lf>
TO DRY OFF ,
1Li
J1....I «
y
DEIONIZER UNIT
PUMPS G Ρ Μ / Ε A HEAD PRESS G PM
5.0 3.0 3.5 3.0 3.0 1.0
f
bdOOO
SETTLING TANK
4.3 4.3 4.3 4.3
,
45 45 45 45
FT FT FT FT
35 FT
35FT 35FT 35FT
60 0 60 0 60 0 600 600 375 250 225
SOL. TANK CAP. G A L S , 18 0 0 18 0 18 0 180 180
0 0 0 0
1000 750 750
Η Ρ 10
MOTORS R Ρ M 17 5 0
10 10 10 10
17 5 0 17 5 0 1750 1750
7 1/2
1750 1750 1750
3 3
BTU/HR
NET
2.1 0 0 , 0 0 0
1,800,00 0 1.800 . 0 0 0 1,800,00 0 1 ,800,000
spray phosphatizing unit
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
16
ELECTRODEPOSITION
t a i n e d t o p r e v e n t d i f f e r e n t i a l gloss of the p a i n t
film.
OF
COATINGS
T h i s p r o b l e m is
a p p a r e n t w h e n a one-coat p a i n t system is a p p l i e d over a m e t a l
part
h a v i n g w i d e l y v a r y i n g c r y s t a l l i n e forms of the c o n v e r s i o n c o a t i n g .
This
p r o b l e m has not, h o w e v e r , b e e n v e r y serious i n the i n d u s t r y , a n d coatings h a v i n g v i s u a l differences i n r e g a r d to streak-like discolorations or pat terns of different c o l o r e d c o n v e r s i o n coatings are satisfactorily p a i n t e d
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
w i t h o u t a n y sacrifice i n a p p e a r a n c e or q u a l i t y . T h e differences, v i s u a l l y apparent, i n m a n y c o n v e r s i o n c o a t i n g lines w h e n the c l e a n i n g is m a r g i n a l or w e a k reflects different size crystals a n d w i t h e l e c t r o d e p o s i t e d
paints
h a v e b e e n f o u n d to reflect differences i n a p p a r e n t c o n d u c t i v i t y of t h e surface.
Generally speaking, w i t h a zinc phosphate
c o a t i n g , the
finer
the c r y s t a l structure, the less the porosity i n the c o a t i n g . C o n v e r s e l y , the larger the c r y s t a l structure, the h i g h e r the porosity. T h e difference i n the surface c o n d u c t i v i t y c a u s e d b y differences i n p o r o s i t y means that a p a i n t film
is a p p l i e d b y e l e c t r o d e p o s i t i o n at a different rate over one t y p e of
c o a t i n g structure t h a n another; this c a n result i n v i s u a l differences c a n b e u n d e s i r a b l e , p a r t i c u l a r l y w i t h one-coat p a i n t systems.
that
It is thus
i n c r e a s i n g l y i m p o r t a n t that the cleaner f o r m u l a t i o n s be c a r e f u l l y c o n s i d e r e d w i t h respect to the s o i l r e m o v a l a n d their a b i l i t y to c o n d i t i o n the surface to o b t a i n a u n i f o r m c o n v e r s i o n c o a t i n g . W i t h c a l c i u m m o d i f i e d , z i n c p h o s p h a t e processes, a u n i f o r m , h a r d , dense, u s e f u l c o a t i n g c a n b e o b t a i n e d after strong a l k a l i cleaners.
With
m a n y other processes, p a r t i c u l a r l y those u s e f u l for t r e a t i n g m i x e d p r o d u c t i o n of z i n c a n d steel or z i n c , steel, a n d a l u m i n u m , i t is necessary to use a surface a c t i v a t i n g c o m p o u n d b a s e d o n t i t a n i u m p h o s p h a t e
(20).
Since the t i t a n i u m p h o s p h a t e activator is not stable i n h i g h l y a l k a l i n e solutions, it is necessary i n some operations to c l e a n i n t w o stages, sepa r a t e d b y a w a t e r rinse.
I n the first stage s p e c i a l l y f o r m u l a t e d , strong
cleaners are u s e d to r e m o v e the b u l k of the soil f r o m the surface. r e l a t i v e l y c l e a n surface
is treated i n a m i l d e r cleaner
The
containing
the
a c t i v a t i n g agent, w h i c h i n t u r n p r o d u c e s a surface h i g h l y c a p a b l e accepting a u n i f o r m conversion coating.
of
A n o t h e r w a y of h a n d l i n g this
s i t u a t i o n w h e n the e q u i p m e n t is l i m i t e d to a single c l e a n i n g stage is to use a r e l a t i v e l y strong cleaner i n the first stage a n d t h e n inject c o n t i n u o u s l y into the w a t e r rinse, a s l u r r y of the t i t a n i u m p h o s p h a t e a c t i v a t i n g compound. Since i n d u s t r y has b e c o m e c r i t i c a l a b o u t the u n i f o r m i t y of the c o n v e r s i o n c o a t i n g , the synthetic surfactant systems u s e d i n the a l k a l i cleaner h a v e a strong b e a r i n g o n the r e c e p t i v i t y of the surface to the c o n v e r s i o n c o a t i n g s o l u t i o n , a n d a n u m b e r of cleaners h a v e b e e n f o r m u l a t e d that h a v e r e s u l t e d i n i m p r o v e d u n i f o r m i t y i n the c o n v e r s i o n c o a t i n g . I n electrocoating,
there is a strong t e n d e n c y for the i n i t i a l p a i n t
d e p o s i t e d to m i g r a t e to the outermost s k i n of the finished surface.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
With
1.
Conversion and Electrodeposited Coatings
MAURER AND LACY
17
this m i g r a t i o n , inerts, s m u t - l i k e soils, c h a l k m a r k i n g s , m i l l i d e n t i f i c a t i o n inks, etc., t e n d to s h o w u p o n the finished surface.
I n t h e case of p r i m e r s ,
this l i f t i n g effect m a y n o t b e significant. H o w e v e r , w i t h one-coat systems, p a r t i c u l a r l y l i g h t colors, this c a n result i n i r r e g u l a r color patterns or i n readable
markings.
N o r m a l c l e a n i n g techniques
m a y not adequately
r e m o v e a l l these s m u t - l i k e soils, a n d i t is sometimes necessary to resort Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
to m e c h a n i c a l effort ( 21 ) s u c h as h a n d w i p i n g , m e c h a n i c a l b r u s h i n g , o r s p e c i a l solvent t o u c h u p s . F o r h o t r o l l e d steel, z i n c , a l u m i n u m , or steel that has c o r r o d e d , c o n v e n t i o n a l a l k a l i n e cleaners r a r e l y d o a satisfactory job.
I n t h e case of steel, i t m a y b e necessary to r e m o v e the scale a n d
rust b y c o n v e n t i o n a l a c i d p i c k l i n g .
W i t h a l u m i n u m , d e o x i d i z i n g steps
s u c h as n i t r i c a c i d or c h r o m a t e - f l u o r i d e treatment m a y b e necessary to r e m o v e t h e oxides. T h e best s o l u t i o n to corrosion is its p r e v e n t i o n . T h e r e f o r e , i m p r o v e d i n - p l a n t storage is strongly r e c o m m e n d e d .
W i t h conventional paint prac
tices, i t is p o s s i b l e to cover u p a v a r i e t y of defects; this is n o t t h e case with
electrocoating.
A l m o s t a l l of t h e cleaners u s e d p r i o r to c o n v e r s i o n coatings are a l k a l i n e . T h e f o r m u l a t i o n s v a r y w i d e l y , a n d most are p r o p r i e t a r y . T h e f o r m u l a t i o n b e l o w is t y p i c a l of a h e a v y d u t y a l k a l i c l e a n e r : 10 to 2 0 % s o d i u m carbonate 15 to 2 5 % t e t r a s o d i u m p y r o p h o s p h a t e 50 to 7 0 % s o d i u m metasilicate 2 to 8 % n o n - i o n i c , l o w f o a m i n g , surfactant system A cleaner s u c h as this w o u l d b e u s e d at concentrations f r o m 0.5 to 2 ounces p e r g a l l o n at 6 6 ° - 7 7 °
C (150°-170°
F ) f o r 1 to IV2 m i n u t e s
b y spray a p p l i c a t i o n . W h e n p r o c e s s i n g a l u m i n u m , i t is sometimes
desir
able to use cleaners f o r m u l a t e d p r i m a r i l y of s o d i u m h y d r o x i d e to e t c h the surface of the m e t a l .
F o r a l u m i n u m extrusions or stampings
that
h a v e b e e n scratched or a b r a d e d b y the f o r m i n g o p e r a t i o n , the e t c h i n g t y p e a l u m i n u m cleaners w i l l t e n d to s m o o t h o u t a n d g e n e r a l l y i m p r o v e the a p p e a r a n c e of t h e part. W h a t e v e r c h e m i c a l f o r m u l a t i o n is u s e d , u n i f o r m , c o m p l e t e c l e a n i n g is necessary since the nature of the c l e a n i n g has a strong b e a r i n g o n t h e c o n v e r s i o n c o a t i n g step.
Water Rinses G e n e r a l l y , t h e c h e m i c a l s i n t h e cleaner, c o n v e r s i o n c o a t i n g , a n d post treatment
stages of a p h o s p h a t i z i n g u n i t are n o t c o m p a t i b l e .
A water-
rinse stage is therefore p l a c e d b e t w e e n e a c h stage to r e m o v e t h e u n r e a c t e d chemicals f r o m the m e t a l a n d thus m i n i m i z e d r a g - i n of c h e m i c a l s f r o m one stage to another. S i n c e this is p r i m a r i l y a d i l u t i o n process, s u c h concepts as t h e c o u n t e r f l o w of the rinse solutions, b r e a k i n g u p t h e rinse
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
18
ELECTRODEPOSITION
O F
COATINGS
stage i n t o t w o parts, a n d i n t r o d u c i n g the f r e s h w a t e r to t h e stage t h r o u g h nozzles at the exit of the w a t e r rinse stage are u s e d to i m p r o v e efficiency.
Conversion Coatings T h e pioneers
i n the d e v e l o p m e n t
o f electrodeposited
paints h a d
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
h o p e d that this r e v o l u t i o n a r y means of a p p l y i n g a p a i n t film w o u l d re q u i r e o n l y s u p e r f i c i a l l y degreased surfaces a n d w o u l d n o t r e q u i r e conver sion coatings f o r h i g h q u a l i t y m e t a l
finishing
A s more knowledge
(22).
a n d experience w e r e o b t a i n e d , h o w e v e r , it b e c a m e clear that p r o p e r m e t a l preparation was not only important, b u t i n many ways even more critical t h a n w i t h c o n v e n t i o n a l m e t h o d s of a p p l y i n g p a i n t . d o o r exposure resistance,
detergent
resistance,
N o t o n l y w e r e out
filiform
c o r r o s i o n resist
ance, salt f o g resistance, h u m i d i t y resistance, a n d p h y s i c a l tests i n f l u e n c e d b y the m e t a l p r e p a r a t i o n b u t also the a p p e a r a n c e b o t h u n i f o r m i t y a n d i n color.
of the p a i n t film i n
S t i l l another factor that is i n f l u e n c e d b y
the m e t a l treatment is w e t film a d h e s i o n , w h i c h is the a b i l i t y of the electt r o d e p o s i t e d film to resist the w a t e r r i n s i n g that i t is u s u a l l y g i v e n after the d e p o s i t i o n of t h e p a i n t film, p r i o r to c u r i n g . A l l of the c o m m e r c i a l l y u s e d electrocoating p a i n t systems a p p l y the p a i n t at the anode.
W h e n steel is p a i n t e d b y the a n o d i c
process, H , 0 , a n d F e +
process.
2
2 +
electrocoat
are f o r m e d at t h e a n o d e b y the e l e c t r o l y t i c
T h e conventional
conversion
coatings
are essentially n o n -
c o n d u c t i v e , a n d this means that the i n i t i a l d e p o s i t i o n of the p a i n t occurs i n the areas b e t w e e n the c r y s t a l structure
(14).
T h i s i m p l i e s a n inter
r e l a t i o n s h i p b e t w e e n the structure of t h e c o n v e r s i o n c o a t i n g , the p a i n t , a n d the a p p l i c a t i o n parameters of a g i v e n f o r m u l a t i o n . T h a t is, d e p e n d i n g u p o n the c o n d u c t i v i t y characteristics of a g i v e n p a i n t system, w e w i l l h a v e either h i g h e r or l o w e r c u r r e n t densities, w h i c h w i l l i n t u r n m a k e f o r greater or lesser quantities of h y d r o g e n , o x y g e n , a n d ferrous i r o n . a d d i t i o n to t h e o v e r a l l quantities of these materials
In
p r o d u c e d i n the
d e p o s i t i o n of a film, the rate at w h i c h they are p r o d u c e d c a n also h a v e a b e a r i n g o n the o v e r a l l results.
I n t u r n , the nature of the c o n v e r s i o n
c o a t i n g influences b o t h the rate a n d w a y the deposit occurs.
The migra
t i o n o f the m e t a l d i s s o l v e d at the anode also is i n f l u e n c e d b y t h e n a t u r e of the c o n v e r s i o n c o a t i n g . The
interplay between
t h e a n o d i c d i s s o l u t i o n w i t h the c o n c o m -
m i t a n t f o r m a t i o n of gases a n d m e t a l ions a n d the characteristics of the d e p o s i t e d p a i n t film also result i n a p o r t i o n of the c o n v e r s i o n c o a t i n g being eroded away a n d distributed i n the resulting
film.
This
means
that the p a i n t film is d e r i v e d n o t o n l y f r o m the r e s i n a n d p i g m e n t of the p a i n t f o r m u l a t i o n b u t also f r o m the d i s s o l v e d substrate a n d the conver sion c o a t i n g c o m p o n e n t s .
T h e extent o f the c o n v e r s i o n c o a t i n g
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
loss
1.
M A U R E R
19
Conversion and Electrodeposited Coatings
A N D LACY
d e p e n d s o n the nature of t h e c o a t i n g itself a n d o n a p a r t i c u l a r p a i n t formulation.
T h e u p p e r p a r t of T a b l e I illustrates t h e m a g n i t u d e
of
this loss. T h e l o w e r p a r t of T a b l e I shows t h e salt f o g c o r r o s i o n resistance of t h e finishing systems (see also F i g u r e 7 ) . O b v i o u s l y there are great differences
i n t h e a m o u n t of c o n v e r s i o n c o a t i n g loss b e t w e e n
various
p a i n t systems, a n d this loss is a f u n c t i o n o f t h e p a r t i c u l a r c o n v e r s i o n Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
c o a t i n g . A l s o e v i d e n t is t h e l a c k of c o r r e l a t i o n b e t w e e n c o a t i n g loss a n d c o r r o s i o n resistance.
T h i s specific i n t e r d e p e n d e n c e
between
the con
v e r s i o n c o a t i n g a n d a specific electropaint f o r m u l a t i o n is o n e of t h e inter esting characteristics of t h e e l e c t r o d e p o s i t e d p a i n t i n g process. A c c o r d i n g to M a y a n d S m i t h (10), Table I.
t h e c o n v e r s i o n c o a t i n g r e m o v e d d u r i n g electro-
Coating Loss and Corrosion Resistance
Conversion Coating
Initial Average Coaling Weight Prior to Painting mg/sq ft
A" Β C D Ε F
308 198 256 65 155· 129
Percent Conversion Coating Loss Electropaint Numbers
10 43 44 14 75 79
δ% Salt Fog Corrosion Resistance *, « AA p a i n t „creepage 0A face r u s t i n g 2 Β 0 p a i n t creepage face r u s t i n g 1 C 0 p a i n t creepage 2 face r u s t i n g D 0-1 p a i n t creepage face r u s t i n g 1 Ε p a i n t creepage 0.5-1 1 face r u s t i n g F p a i n t creepage 0-1.5 2 face r u s t i n g
5 0.6 4 0 10 1
5 5 7 0 11 12
6 30 11 3 21 12
11 16 6 1.5 18 18
1.5-2.5 2 1-1 2 1-1 1 78% Ρ 7 1-2 7s 3 1.5-2.5 6
2-3.5 2 1.5-2 1 0-1 1 87% Ρ 3 1.5-2 3 1.52.5 2
1-1 3 1-1 3 1-1 3 1.5-3.5 2 1-1 3 1-1 3
0-1.5 7 1-1 6 1-1 4 95% Ρ 7 1-1 7 1-1 7
b
α
Legend: A—zinc phosphate process, nitrite accelerated. Β—zinc phosphate process, calcium modified. C—zinc phosphate process, nickel and fluoride modified, nitrite ac celerated. D—iron phosphate process, chlorate accelerated. Ε—zinc phosphate process, chlorate accelerated. F—zinc phosphate process, coating weights controlled by using a di basic, dihydroxy acid, nickel and fluoride modified, nitrite accelerated.
336 hours exposure to 5% salt spray (ASTM B117-64), average two panels, paint creepage is the loss of paint from a scribe in 1/16 inch increments or percent. Face rusting is a spot type corrosion of the painted surface; a rating of 1 is perfect; 8 is 100% rusing. See Figure 7 for examples of salt spray failure. 6
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
20
ELECTRODEPOSITION
OF
COATINGS
d e p o s i t i o n is u n i f o r m l y d i s t r i b u t e d t h r o u g h o u t the cross-section p a i n t film. C h e e v e r a n d W o j t k o o w i a k ( 1 5 )
of
the
also f o u n d that the z i n c f r o m
the z i n c p h o s p h a t e c o a t i n g w a s d i s t r i b u t e d u n i f o r m l y o n a m a c r o scale t h r o u g h o u t the p r i m e r that t h e y s t u d i e d . I n contrast to the above, w o r k b y S i m p s o n ( 3 ) , u s i n g a n electron p r o b e m i c r o a n a l y s i s t e c h n i q u e , c l u d e d that there was no major d i f f u s i o n or m i x i n g of the
con
conversion
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
c o a t i n g i n the p a r t i c u l a r p r i m e r film he s t u d i e d b u t that the r e m o v e d z i n c phosphate
c o a t i n g r e m a i n e d near the p r i m e r - m e t a l interface.
Simpson
p r o d u c e d a z i n c p h o s p h a t e c o a t i n g o n S A E 1010 c o l d r o l l e d steel, u s i n g the c o n v e r s i o n c o a t i n g process C ( T a b l e I ), a p p l y i n g a p r i m e r b y electro d e p o s i t i o n a n d c u r i n g at 1 9 7 ° C ( 3 9 5 ° F ) for 25 m i n u t e s . S m a l l strips of the s a m p l e w e r e then m o u n t e d i n a s o l u t i o n of p o l y methacrylate,
w h i c h , after h a r d e n i n g , was p o l i s h e d to expose a cross-
section of the p a i n t a l u m i n a i n water.
film/steel
substrate. T h e final p o l i s h was a 1 - m i c r o n
F o l l o w i n g the p o l i s h i n g , the specimens w e r e c a r e f u l l y
w a s h e d , p r i o r to v a c u u m d e p o s i t i o n of c a r b o n , w h i c h was u s e d to d i s s i -
Figure 7.
Example of salt spray test results (see Table I)
Left: salt fog creepage for 4-inch wide test panel; creepage 2-4. Right: "face rusting" with "5" rating.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
1.
M A U R E R A N D LACY
Figure 8.
Conversion and Electrodeposited Coatings
21
Optical photomicrograph of section of painted steel
p a t e electric charges d u r i n g the p r o b e o p e r a t i o n .
F i g u r e 8 shows a n
o p t i c a l p h o t o m i c r o g r a p h of a t y p i c a l cross section at 800 X m a g n i f i c a t i o n . I n t h e e l e c t r o n p r o b e m i c r o a n a l y s i s , a 1 - m i c r o n d i a m e t e r b e a m of electrons w a s s c a n n e d across t h e surface; the resultant a n d characteristic x-rays w e r e m o n i t o r e d b y s t a n d a r d x-ray
fluorescence
techniques.
The
specimens w e r e thus s c a n n e d across the interface f r o m steel to the m o u n t i n g m e d i a , w i t h measurements iron, phosphorus, a n d zinc.
o f the characteristic x-ray intensities f o r
T w o typical intensities-distance
plots are
s h o w n i n F i g u r e s 9 a n d 10. F r o m the d a t a i n these figures, f o r c o n v e r s i o n c o a t i n g C , w i t h this p a r t i c u l a r p r i m e r , S i m p s o n c o n c l u d e d that there w a s n o major d i f f u s i o n or m i x i n g of the z i n c p h o s p h a t e c o a t i n g c a u s e d b y either t h e a n o d i c d i s s o l u t i o n o r t h e t u r b u l e n t m i x i n g that m i g h t h a v e o c c u r r e d d u r i n g t h e heat c u r i n g of the p a i n t . O u r w o r k i n this area, a l t h o u g h l i m i t e d , thus disagrees w i t h t h e conclusions of M a y / S m i t h a n d C h e e v e r / W o j t k o w i a k . P o s s i b l y some e l e c t r o d e p o s i t e d f o r m u l a t i o n s result i n m o r e u n i f o r m d i f f u s i o n o f the r e m o v e d c o n v e r s i o n coatings t h a n others.
Further work
needs to b e done. T h e q u a l i t y of i n d u s t r i a l l y p a i n t e d m e t a l is e v a l u a t e d i n different ways. place
O f course, t h e i d e a l w a y to evaluate the
finished
a
finishing
p r o d u c t i n its n o r m a l exposure
e x a m i n e i t over a lapse o f t i m e .
system is to
environment a n d
U n f o r t u n a t e l y , w h i l e this
approach
p r o v i d e s a l o n g range e v a l u a t i o n , i t is n o t a p r a c t i c a l means of q u a l i t y c o n t r o l o r a means of d e v e l o p i n g n e w p r o d u c t s f o r i n d u s t r i a l use. H e n c e ,
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
22
ELECTRODEPOSITION
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
paint film
I
O F COATINGS
steel
Figure 9. Electron probe scans across painted section. For Fe, scale X 1000 cpm; Zn and Ρ scale X 100 cpm. l a b o r a t o r y tests h a v e b e e n d e v i s e d t o a i d i n m o r e r a p i d e v a l u a t i o n f o r research a n d d e v e l o p m e n t a n d q u a l i t y c o n t r o l . A m o n g t h e tests w h i c h are i n f l u e n c e d b y c o n v e r s i o n coatings a r e t h e 5 % salt f o g test B-117),
a l k a l i n e detergent
reistance
test
(ASTM
(ASTM
D-2248), humidity
resistance test ( A S T M D - 2 2 4 7 , 1 0 0 % r e l a t i v e h u m i d i t y ) , a n d t h e fili f o r m c o r r o s i o n (24) resistance test.
I n a d d i t i o n , v a r i o u s p h y s i c a l tests
are u s e d to d e t e r m i n e the a d h e s i o n o f t h e o r g a n i c c o a t i n g system to t h e m e t a l , s u c h as k n i f e a d h e s i o n , d e f o r m a t i o n tests, t h e c o n i c a l m a n d r e l , a n d i m p a c t tests. W e must also consider b y v i s u a l i n s p e c t i o n the u n i f o r m i t y a n d a n y c o l o r changes that m i g h t h a v e resulted f r o m t h e c o n v e r s i o n coating o n the electrodeposited
film.
T o illustrate h o w c o n v e r s i o n coatings c a n a n d d o influence a n u m b e r o f these q u a l i t y aspects o f a finished part, w e present selected
data
c o v e r i n g e l e c t r o d e p o s i t e d films o n c o l d r o l l e d steel, g a l v a n i z e d steel, a n d a l u m i n u m . F i g u r e 11 ( t o p ) illustrates t h e degree o f difference that c a n b e o b t a i n e d i n salt f o g exposure b e t w e e n a c l e a n e d b u t u n c o a t e d c o l d r o l l e d steel surface vs. a steel surface treated to f o r m a z i n c p h o s p h a t e c o a t i n g . T h e u n t r e a t e d steel surface has almost c o m p l e t e l y lost t h e elec t r o d e p o s i t e d p r i m e r whereas t h e z i n c p h o s p h a t e treated c o l d r o l l e d steel surface has r e t a i n e d almost a l l o f the p r i m e r . T h e l o w e r r o w o f panels ( F i g u r e 11) shows salt s p r a y c o r r o s i o n resistance o f c o l d r o l l e d steel
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
1.
M A U R E R A N D L A C Y
23
Conversion and Electrodeposited Coatings
surfaces t r e a t e d w i t h either a n i r o n p h o s p h a t e ( r i g h t p a n e l ) o r a z i n c p h o s p h a t e ( l e f t p a n e l ) process.
M a n y p e o p l e h a v e t a u g h t that a n i r o n
p h o s p h a t e c o a t i n g is i n f e r i o r to a z i n c p h o s p h a t e c o a t i n g , b u t w i t h specific electropaints a n d t h e p r o p e r i r o n p h o s p h a t e process results c a n b e o b t a i n e d that are e q u i v a l e n t to t h e z i n c p h o s p h a t e process. T h e r e are m a n y p r o d u c t i o n lines i n o p e r a t i o n t o d a y u s i n g e l e c t r o d e p o s i t e d p a i n t s
that
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
p r e p a r e c o l d r o l l e d steel surfaces b y u s i n g a n i r o n p h o s p h a t e process. F i g u r e 12 illustrates t h e c o r r o s i o n resistance of a w h i t e
electro
d e p o s i t e d p a i n t o n a l u m i n u m . T h e test s p e c i m e n o n the left w a s c l e a n e d a n d e t c h e d whereas that o n t h e r i g h t w a s c l e a n e d , e t c h e d , a n d g i v e n a chromic oxide conversion coating.
A f t e r 7,000 hours i n 5 % salt s p r a y
there is essentially n o difference i n test results. T h e r e are a f e w p i n - p o i n t l i k e blisters o n t h e u n t r e a t e d a l u m i n u m , b u t f o r a l l p r a c t i c a l purposes t h e c l e a n e d o n l y a l u m i n u m surface b e h a v e d as w e l l as d i d t h e o n e w i t h t h e c o n v e r s i o n c o a t i n g . T h i s illustrates that w i t h m a n y alloys of a l u m i n u m there is n o n e e d f o r a c o n v e r s i o n c o a t i n g w h e n u s i n g e l e c t r o d e p o s i t e d paints. O n e e x p l a n a t i o n is that there is a n in situ a n o d i z i n g o f t h e a l u m i -
Figure 10. Electron probe scans across painted section. For Fe, scale X 1000 cpm; Zn and Ρ scale X 100 cpm.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
24
ELECTRODEPOSITION
O F
COATINGS
n u m d u r i n g t h e i n i t i a l phases o f e l e c t r o d e p o s i t i o n . W h a t e v e r t h e m e c h a n i s m , h o w e v e r , i n m o s t cases a c o n v e r s i o n c o a t i n g is n o t n e e d e d o n a l u m i n u m w h e n using electrodeposited paint
finishes.
A possible excep
t i o n w o u l d b e i n lines t r e a t i n g a m i x t u r e o f a l u m i n u m w i t h other m e t a l surfaces.
I f t h e other m e t a l surfaces, s u c h as c o l d r o l l e d steel o r h o t
d i p p e d g a l v a n i z e d steel, a r e t r e a t e d to p r o d u c e a c o n v e r s i o n c o a t i n g o n
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
t h e i r surfaces, t h e c o n d u c t i v i t y w i l l b e s i g n i f i c a n t l y different f r o m that of c l e a n e d a n d e t c h e d a l u m i n u m . I t m a y b e necessary, u n d e r these c i r c u m stances to u s e a c o n v e r s i o n c o a t i n g process that w i l l coat a l l three metals so that t h e a m o u n t o f e l e c t r o d e p o s i t e d film w i l l b e t h e same o n a l l three metals.
I f t h e c o n d u c t i v i t y is n o t t h e same, t h e p a i n t film o r its gloss
w i l l b e different. O n e i n s i d i o u s t y p e o f c o r r o s i o n that c a n o c c u r o n t h e surface o f p a i n t e d c o l d r o l l e d steel, i n relative h u m i d i t i e s f r o m 5 0 to 9 5 % , is a t h r e a d - l i k e c o r r o s i o n w h i c h has b e e n n a m e d
filiform
cororsion.
v e r s i o n coatings o n steel surfaces w i l l n o t stop
filiform
c o r r o s i o n , b u t as
Con
i l l u s t r a t e d i n F i g u r e 13 w i l l s u b s t a n t i a l l y decrease i t . T h e p a n e l o n t h e left w a s c l e a n e d a n d p a i n t e d ; t h e p a n e l o n t h e r i g h t w a s c l e a n e d , z i n c
Figure 11. Salt spray corrosion test. Top row: zinc phosphate coating vs. untreated steel; bottom row: zinc phosphate coating vs. iron phosphate coating on steel.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
1.
MAURER
AND LACY
Conversion and Electrodeposited Coatings
Figure 12. Untreated vs. treated aluminum after salt spray exposure
Figure 13. Filiform corrosion. Untreated vs. zinc phosphate coating on steel.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
25
26
ELECTRODEPOSITION
O F
COATINGS
p h o s p h a t e treated, a n d p a i n t e d . T h e test specimens s h o w n i n F i g u r e 14 w e r e exposed f o r 30 days i n a r e l a t i v e h u m i d i t y of 8 7 % after first activat i n g t h e test area b y e x p o s i n g t h e panels f o r 4 h o u r s i n a 5 % salt f o g chamber. O n e of t h e best c o n v e r s i o n c o a t i n g f o r steel, w h e r e detergent
resist
a n c e is of p r i m e c o n c e r n , is t h e c a l c i u m m o d i f i e d , z i n c p h o s p h a t e process. Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
N o r m a l l y a n i c k e l - f l u o r i d e m o d i f i e d , n i t r i t e accelerated
zinc phosphate
process is n o t as g o o d as a c a l c i u m m o d i f i e d , z i n c p h o s p h a t e w h e n c o m p a r e d i n the detergent
resistance test.
p o s i t e d p a i n t f o r m u l a t i o n s d e s i g n e d f o r detergent
process
W i t h the electrode resistance,
w e have
f o u n d t h e reverse to b e t r u e — t h e n i c k e l - f l u o r i d e , n i t r i t e accelerated z i n c p h o s p h a t e processes g i v e better detergent resistance t h a n d o t h e c a l c i u m m o d i f i e d , z i n c p h o s p h a t e coatings.
T h i s is i l l u s t r a t e d i n F i g u r e 14.
F i g u r e s 15 a n d 16 s h o w that i t is necessary to select a p a r t i c u l a r process w i t h i n a g i v e n class.
F i g u r e 15 shows t w o different z i n c phos
p h a t e processes f o r h o t d i p p e d g a l v a n i z e d steel surfaces; b o t h g i v e excel lent test results w i t h c o n v e n t i o n a l paints b u t s h o w a s u b s t a n t i a l difference i n salt s p r a y corrosion resistance w i t h t h e p a r t i c u l a r
electrodeposited
Figure 14. Detergent test results. Calcium modified zinc phosphate (shown on left) vs. nickel-fluoride modified zinc phosphate coat ings (shown on right).
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
1.
M A U R E R A N D LACY
Conversion and Electrodeposited Coatings
27
Figure 15. Salt spray resistance. Two types of zinc phosphate coatings on hot dip galvan ized steel.
paint formulation used.
T h e same t y p e of difference is i l l u s t r a t e d i n
F i g u r e 16 w h i c h compares t w o different z i n c p h o s p h a t e treatments o n c o l d r o l l e d steel.
A g a i n w e see a difference w i t h the e l e c t r o d e p o s i t e d
p a i n t f o r m u l a t i o n , whereas w i t h a c o n v e n t i o n a l p a i n t w e w o u l d e x p e c t to see little i f a n y difference b e t w e e n these t w o processes. T h e s e illustrations s h o w that i t is i m p o s s i b l e to m a k e g e n e r a l r e c o m m e n d a t i o n s as to the p r o p e r c o n v e r s i o n c o a t i n g process
to use f o r a
m e t a l surface w i t h o u t a s t u d y of the p a r t i c u l a r e l e c t r o d e p o s i t e d
paint
f o r m u l a t i o n that w i l l b e used.
Post Treatment, Deionized Water Rinse, and Dryoff s Conventional Paints. N o r m a l l y , c o n v e r s i o n coatings f o r c o n v e n t i o n a l paints are post treated w i t h a d i l u t e c h r o m a t e rinse a n d t h e n d r i e d . T h e c h r o m a t e post treatment c a n b e as s i m p l e as a 0 . 1 % c h r o m i c a c i d s o l u t i o n or as c o m p l e x as c o m b i n a t i o n s of c a l c i u m chromate, c a l c i u m phos phate, or c h r o m i c c h r o m a t e rinses w i t h c o n t r o l l e d p H ' s . T h e c h r o m a t e
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
28
ELECTRODEPOSITION
OF
COATINGS
rinses r e d u c e the t e n d e n c y of paints b l i s t e r u n d e r exposure to
high
h u m i d i t y c o n d i t i o n s a n d h e l p to i m p r o v e the c o r r o s i o n resistance resistance as m e a s u r e d b y the salt f o g test a n d o u t d o o r exposure. tunately, h o w e v e r , i n areas w h e r e the c h r o m a t e rinses a c c u m u l a t e as the b o t t o m edges of parts, crevices, a n d a r o u n d holes)
as
Unfor (such
a p o i n t is
r e a c h e d w h e r e the b l i s t e r i n g occurs, either i n spite of or because of too
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
h i g h a c o n c e n t r a t i o n of c h r o m a t e salts. T o e l i m i n a t e the p r o b l e m of salt a c c u m u l a t i o n , the p r o d u c t i o n items are r i n s e d w i t h a n essentially ion-free w a t e r
(deionized) water.
The
d e i o n i z e d w a t e r rinse washes off the c h r o m a t e a n d w a t e r salts, thus i n c r e a s i n g the h u m i d i t y resistance of the
finish.
H o w e v e r , until recently,
the c o r r o s i o n resistance w a s decreased b y this rinse.
T h e p r o b l e m of
decreased c o r r o s i o n resistance r e s u l t i n g f r o m the use of a final d e i o n i z e d w a t e r rinse w a s r e c e n t l y s o l v e d b y the i n t r o d u c t i o n of the c h r o m i c c h r o m a t e post treatment
( U . S . patents 3,222,226 a n d 3,279,958).
c h r o m i c - c h r o m a t e post treatment, o p e r a t e d as t a u g h t i n the
The
reference
patents, a l l o w s the r e m o v a l of the s o l u b l e salts f r o m the surface b y the d e i o n i z e d w a t e r rinse w i t h o u t d i m i n u t i o n of the c o r r o s i o n
resistance.
W i t h c o n v e n t i o n a l paints, l i t t l e i f a n y difference i n q u a l i t y is o b t a i n e d as a result of the t y p e of d r y i n g i n the range of r o o m t e m p e r a t u r e u p to a n o v e n t e m p e r a t u r e of 2 6 0 ° C , a n d f r o m 5 to 10 m i n u t e s . T h e essential r e q u i r e m e n t w i t h c o n v e n t i o n a l solvent-based systems is that the p a r t b e free of surface w a t e r before the finish is a p p l i e d . Electrodeposited Coatings.
Electrodeposited
finishes
b a s e d system that is sensitive to electrolyte content.
use a w a t e r -
S i n c e the electro-
paints are w a t e r based, there s h o u l d b e n o reason w h y the w a r e has to be d r y p r i o r to e n t r y i n t o the p a i n t . T h e o b v i o u s advantages of g o i n g i n w e t , w i t h the e l i m i n a t i o n of costly d r y o f f ovens, the cost of f u e l to operate the d r y o f f ovens, a n d the e l i m i n a t i o n of the floor space f o r b o t h the o v e n itself a n d the c o o l i n g area necessary to r e d u c e the t e m p e r a t u r e of the p a r t p r i o r to entry i n t o the p a i n t tank h a v e p r o m p t e d extensive s t u d y into the i n t e r r e l a t i o n s h i p a m o n g post treatment, dryoff, a n d the paint formulations. Since
electrodeposited
p a i n t systems
are
sensitive
to
electrolyte
content, it is almost a l w a y s necessary to rinse the c o n v e r s i o n coatings w i t h d e i o n i z e d w a t e r to decrease the electrolyte d r a g i n to the p a i n t tank to a p o i n t w h e r e it does n o t cause a n y l o n g t e r m p r o b l e m s . A t first, it was suggested that the c h r o m a t e salts f r o m the post treatments w e r e the biggest p r o b l e m to the p a i n t .
Since m a n y p r i m e r f o r m u l a t i o n s c o n t a i n
chromâtes, h o w e v e r , it is a p p a r e n t that chromâtes per se are not the p r i n c i p a l cause of p a i n t p r o b l e m s , except f o r t h e i r c o n t r i b u t i o n to the t o t a l electrolyte content of the p a i n t .
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
1.
MAURER A N D L ACY
Conversion and Electrodeposited Coatings
29
T h e exact a m o u n t of electrolyte that c a n b e safely c a r r i e d i n t o t h e e l e c t r o d e p o s i t i o n p a i n t tank w i l l d e p e n d u p o n t h e rate of t u r n o v e r of t h e p a i n t , t h e r e l a t i v e d r a g - o u t of the p a i n t , w h i c h is a f u n c t i o n of t h e p a r t shape a n d d r a i n t i m e , a n d the nature of t h e p a i n t f o r m u l a t i o n .
Close
c o o p e r a t i o n is necessary b e t w e e n t h e p a i n t s u p p l i e r a n d the operator of the p l a n t to ensure
adequate
deionized water rinsing i n commercial
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
practice. W e b e l i e v e t h e most efficient a p p r o a c h is to p r o v i d e a t h o r o u g h rinse b y a r e c i r c u l a t i n g d e i o n i z e d w a t e r zone, f o l l o w e d b y a fresh d e i o n i z e d w a t e r spray.
F i g u r e 6 shows a final d e i o n i z e d w a t e r stage as r e c o m -
Figure 16. Salt spray resistance. Two types of zinc phosphate coating on steel.
mended b y T h e Parker C o . , O x y M e t a l Finishing Corp.
Since t h e
effectiveness of the r i n s i n g step depends u p o n the q u a n t i t y a n d q u a l i t y of t h e w a t e r as w e l l as the effectiveness of s p r a y i n g i t to r e a c h a l l parts of t h e w o r k , i t is a d v i s a b l e to d e t e r m i n e the electrolyte content o f t h e w a t e r a c t u a l l y c a r r i e d into the p a i n t . T h e c o l l e c t i o n of the rinse d r i p p i n g s f r o m the w o r k a n d t h e continuous m e a s u r e m e n t of t h e i r c o n d u c t i v i t y b y a c a r r y o u t m o n i t o r (see F i g u r e 6 ) p r o v i d e a s i m p l e , effective means o f e n s u r i n g that a p r e d e t e r m i n e d m a x i m u m l e v e l of electrolyte i n p u t w i l l n o t b e exceeded.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
30
ELECTRODEPOSITION
OF
COATINGS
W h i l e the c o n d u c t i v i t y range of rinse d r i p p i n g s w i l l v a r y w i t h the p a i n t t u r n o v e r a n d t y p e of p a i n t , a u s e f u l p o i n t of d e p a r t u r e has b e e n to adjust the d e i o n i z e d w a t e r r i n s i n g s u c h that the d r i p p i n g s h a v e a m a x i mum and
c o n d u c t i v i t y (13)
of 60 m i c r o m h o s c m " . If w e a c c e p t this v a l u e 1
the n e e d for the d e i o n i z e d w a t e r rinse to ensure c o n t i n u e d h i g h
p e r f o r m a n c e f r o m the p a i n t , w e m i g h t ask i f a n y v a l u e is d e r i v e d f r o m a
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
post treatment w i t h a c h r o m a t e - c o n t a i n i n g s o l u t i o n w h e n a p p l y i n g elec trodeposited U.S.
finishes.
W i t h post treatments, other t h a n those c o v e r e d b y
patents 3,222,226 a n d 3,279,958 ( t h a t is, rinses not o p e r a t e d
t r i v a l e n t c h r o m i u m a n d w i t h p H ' s outside the range of 3.8 to 6 ), w e
with find
l i t t l e i f any q u a l i t y i m p r o v e m e n t results f r o m their use. T h e n e e d of or benefit d e r i v e d f r o m the post treatments c o v e r e d b y the subject patents are a f u n c t i o n of the p a i n t systems, the presence of or the l a c k of a dryoff step, a n d the t y p e of c o n v e r s i o n c o a t i n g over w h i c h they are u s e d . T h e c h r o m i c - c h r o m a t e rinses u s e d as taught u n d e r the subject patents w i l l hereafter b e t e r m e d reactive
post-treatments.
T h e degree of d r y i n g has l i t t l e , i f any, effect o n c o n v e n t i o n a l solventb a s e d p a i n t systems.
Figure 17.
W i t h e l e c t r o d e p o s i t e d paints the n a t u r e of the d r y -
Effect of chromate post treatment on salt spray results when painted wet
Test conditions reading from left to right: (1) steel, zinc phosphate, deionized water, painted wet; (2) steel, zinc phosphate, reactive chromate, deionized water, painted wet; (3) hot dipped galvanized steel, zinc phosphate, deionized water, painted wet; (4) hot dipped galvanized steel, zinc phosphate, reactive chromate, deionized water, painted wet
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
1.
M A U R E R A N D
Figure 18.
LACY
Conversion and Electrodeposited Coatings
31
Effect of chromâte post treatment on salt spray results when painted after oven drying
Test conditions reading from left to right: (1) steel, zinc phosphate, deionized water, oven dried; (2) steel, zinc phosphate, reactive chrornate, deionized water, oven dried; (3) hot dipped galvanized steel, zinc phosphate, deionized water, oven dried; (4) hot dipped galvanized steel, zinc phosphate, reactive chr ornate, deionized water, oven dried off c a n h a v e a significant effect o n the e n d q u a l i t y . T h e i n t e r p l a y of post treatment, dryoff o v e n , a n d p a i n t is most a p p a r e n t w i t h salt s p r a y corro sion resistance, w e t film a d h e s i o n , a n d whiteness of w h i t e , one-coat p a i n t s . I n general, a l l e l e c t r o d e p o s i t e d paints are i m p r o v e d b y r e a c t i v e post treatment a n d a d r y o f f o v e n .
T h e degree of i m p r o v e m e n t varies tre
m e n d o u s l y , h o w e v e r , w i t h the p a i n t f o r m u l a t i o n a n d the t y p e of c o n version coating. F i g u r e s 17, 18, 19, a n d 20 s h o w the salt s p r a y c o r r o s i o n resistance of a n u m b e r of electropaints as a f u n c t i o n of the post treatment a n d dryoff. T o i l l u s t r a t e the differences that c a n be o b t a i n e d , d a t a h a v e b e e n selected u s i n g z i n c p h o s p h a t e o n c o l d r o l l e d a n d h o t d i p p e d g a l v a n i z e d steels. F i g u r e 17 is a n e x a m p l e of the effect o n salt f o g c o r r o s i o n resistance u s i n g a z i n c p h o s p h a t e c o a t i n g w i t h a n d w i t h o u t a r e a c t i v e post treat m e n t w i t h a specific e l e c t r o p a i n t f o r m u a l t i o n . T h e t w o panels o n the left are c o l d r o l l e d steel; the t w o panels o n the r i g h t are h o t d i p p e d g a l v a n i z e d steel. W i t h the c o l d r o l l e d steel, there is essentially n o dif ference i n c o r r o s i o n resistance as a f u n c t i o n of post treatment, w h e r e a s w i t h the g a l v a n i z e d steel, there is a significant difference i n c o r r o s i o n
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
32
ELECTRODEPOSITION
O F COATINGS
resistance; t h e test s p e c i m e n w i t h o u t t h e r e a c t i v e post treatment is m u c h w e a k e r t h a n t h e test s p e c i m e n treated w i t h t h e r e a c t i v e
post-treatment.
I n contrast to t h e results i n F i g u r e 17, F i g u r e 18 shows a s i m i l a r test w i t h a different electropaint.
I n this case w e see n o difference i n t h e
c o r r o s i o n resistance o f t h e h o t d i p p e d g a l v a n i z e d steel w i t h o r w i t h o u t
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
a reactive post treatment w h i l e w e d o see a difference i n t h e c o r r o s i o n
Figure 19. Salt spray test results with given electropaint as function of heating of con version coating Left: steel, zinc phosphate, dried at 149°C (300°F) Right: steel, zinc phosphate, dried at 260°C (500°F) resistance o f t h e c o l d r o l l e d steel surfaces. that c a n o c c u r i n c o r r o s i o n resistance
F i g u r e 19 shows t h e changes
w h e n t h e c o n v e r s i o n c o a t i n g is
h e a t e d to d r i v e off three of t h e f o u r waters o f h y d r a t i o n . W i t h this p a r t i c u l a r electropaint, w e o b t a i n e d a n i m p r o v e m e n t e v e n at this r e l a t i v e l y h i g h d r y o f f c o n d i t i o n . F i g u r e 20 illustrates that the effect o f dryoff varies w i t h t h e c o n v e r s i o n c o a t i n g . H e r e , a l l f o u r panels h a v e b e e n c o a t e d w i t h the same e l e c t r o p a i n t e d finish; h o w e v e r , the u p p e r r o w o f panels has o n e t y p e o f z i n c p h o s p h a t e c o a t i n g o n i t , t h e l o w e r r o w a different z i n c phos-
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
1.
MAURER
A N D LACY
Conversion and Electrodeposited Coatings
33
p h a t e c o a t i n g . W e see l i t t l e d i f f e r e n c e b e t w e e n t h e c o r r o s i o n resistance w h e n t h e coatings a r e o v e n d r i e d p r i o r to t h e a p p l i c a t i o n o f t h e p a i n t film film
b u t a c o n s i d e r a b l e d i f f e r e n c e i n c o r r o s i o n resistance w h e n t h e p a i n t is a p p l i e d o n these w e t c o n v e r s i o n coatings. T h e reason f o r a c h a n g e i n t h e characteristics o f a n e l e c t r o d e p o s i t e d
p a i n t film b e c a u s e of h e a t i n g o f t h e c o n v e r s i o n c o a t i n g is n o t f u l l y u n d e r
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
stood.
O n e p o s s i b l e e x p l a n a t i o n appears to b e f o u n d i n a s t u d y o f t h e
d e h y d r a t i o n o f t h e z i n c p h o s p h a t e c o a t i n g as a f u n c t i o n o f t e m p e r a t u r e a n d t i m e . Z i n c p h o s p h a t e coatings h a v e as t h e i r p r i n c i p a l constituents two
minerals,
phosphophyllite ( Z n F e ( P 0 ) 2 2
( Z n ( P 0 ) 2 ' 4 H 0 ) (25). 3
4
2
4
' 4H 0) 2
a n d hopeite
A n extensive s t u d y o f t h e d e h y d r a t i o n of z i n c
Figure 20. Effect of dryoff. Top: one type of zinc phosphate coating; bottom: another type of zinc phosphate coating. Upper left: steel, zinc phosphate, reactive chro mate, deionized water rinse, painted wet Upper right: steel, zinc phosphate, reactive chro mate, deionized water rinse, oven dried at 149°C (300° F) prior to painting Lower left: steel, zinc phosphate, reactive chro mate, deionized water rinse, painted wet Lower right: steel, zinc phosphate, reactive chro mate, deionized water rinse, oven dried at 149°C (300° F) prior to painting
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
34
ELECTRODEPOSITION
O F
COATINGS
p h o s p h a t e c o n v e r s i o n coatings w a s c a r r i e d out i n o u r laboratories i n 1961. F i g u r e 21 shows t y p i c a l d a t a o b t a i n e d f r o m this s t u d y (26).
T h e process
of d e h y d r a t i o n is at least p a r t i a l l y reversible, a n d t h e u n p a i n t e d z i n c p h o s p h a t e c o n v e r s i o n coatings w i l l r e g a i n lost w a t e r f r o m the atmosphere. W h e t h e r zero, one, t w o , o r three m o l e c u l e s of w a t e r of c r y s t a l l i z a t i o n n e e d b e r e m o v e d f o r m a x i m u m c o r r o s i o n resistance w i l l d e p e n d u p o n a Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
g i v e n p a i n t a n d t h e p a r t i c u l a r t y p e of z i n c p h o s p h a t e c o n v e r s i o n c o a t i n g . I n general, r e m o v a l of t w o m o l e c u l e s of w a t e r of c r y s t a l l i z a t i o n , w h i c h w o u l d o c c u r i n m a n y s t a n d a r d d r y o f f ovens, is a d e q u a t e .
H o w e v e r , this
d e p e n d s o n t h e p a i n t a n d the c o n v e r s i o n c o a t i n g ; some paints i m p r o v e b y r e m o v a l of a t h i r d m o l e c u l e of w a t e r ; others g i v e satisfactory results when painted wet. 4
ο u ο ni W
ο
2
4
6
8
10
12
14
D r y i n g T i m e - Minutes
Figure 21.
Dryoff vs. water of crystallizationfossas function of temperature
In E u r o p e a n d i n J a p a n , because of i n c r e a s e d pressures to m i n i m i z e p o l l u t i o n , the t r e n d has b e e n to e l i m i n a t e the post-treatment p r e p a r i n g m e t a l p r i o r to e l e c t r o d e p o s i t e d paints.
step i n
T h i s has b e e n
done
because of t h e i r l a c k of d i s p o s a l facilities to h a n d l e c h r o m a t e c o n t a i n i n g wastes o r t h e i r disinterest i n p r o v i d i n g t h e m . I n b o t h E u r o p e a n d J a p a n , energy to p r o d u c e heat has a l w a y s b e e n at a p r e m i u m a n d therefore they h a v e b e e n a m o n g the first to e l i m i n a t e t h e d r y o f f o v e n step.
Under
p r o d u c t i o n operations,
nor a
u s i n g neither
a reactive
post-treatment
dryoff o v e n , t h e y h a v e e x p e r i e n c e d p o o r , w e t film a d h e s i o n . B y this w e m e a n a loss o f t h e p a i n t d u r i n g t h e w a t e r r i n s i n g of t h e electrodeposited p a i n t film p r i o r t o c u r i n g . T h i s loss of a d h e s i o n c a n b e q u i t e spotty o n a g i v e n p a r t a n d a p p a r e n t l y occurs c u r r e n t density.
g e n e r a l l y i n t h e areas of lowest
T h e p r o b l e m of p o o r , w e t film a d h e s i o n is d e f i n i t e l y
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
1.
MAURER
A N D
LACY
35
Conversion and Electrodeposited Coatings
r e l a t e d to t h e p a i n t f o r m u l a t i o n a n d the a m o u n t of electrolyte F i g u r e 22 illustrates this p r o b l e m .
content.
H o w e v e r , w i t h e v e r y t h i n g else h e l d
constant, the p r o b l e m b e c o m e s m o r e p r e v a l e n t w h e n n e i t h e r a r e a c t i v e post treatment or a dryoff o v e n is used. I n most cases, t h e u s e of either the reactive post treatment or a dryoff o v e n w i l l s i g n i f i c a n t l y i m p r o v e o r
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
e l i m i n a t e the p r o b l e m .
Figure 22. Example of poor wet film adhesion W h i l e p o l l u t i o n pressures h a v e f o r c e d some to b e m o r e
concerned
w i t h p o l l u t i o n of t h e e n v i r o n m e n t t h a n w e h a v e been, w e are a w a k e n i n g to the p r o b l e m , a n d there is n o d o u b t that t h e most c o m p e t i t i v e
total
system u s i n g e l e c t r o d e p o s i t i o n w o u l d b e o n e that p r o d u c e s a c o n v e r s i o n coating,
that w h e n m a t c h e d
with
an electrodeposited
paint
a c c e p t a b l e q u a l i t y w i t h t h e e l i m i n a t i o n of t h e post-treatment
provides stage a n d
the d r y o f f stage. T h i s p a p e r is c o n c e r n e d
w i t h the effect of e l i m i n a t i n g t h e post-
t r e a t m e n t a n d the dryoff o v e n as i t relates to the c o n v e r s i o n system.
coating
T h e r e are other reasons to e l i m i n a t e t h e dryoff o v e n or to a v o i d
the e l i m i n a t i o n of the dryoff o v e n , b a s e d o n considerations s u c h as t h e presence o f t h e s o u n d d e a d e n e r bodies.
pads i n t h e case o f t h e a u t o m o t i v e
B y e l i m i n a t i n g the d r y o f f o v e n , t h e s o u n d d e a d e n i n g p a d s g o
i n t o the e l e c t r o d e p o s i t e d paints f u l l of w a t e r a n d therefore d o n o t p i c k u p a n y significant a m o u n t of p a i n t , thus r e d u c i n g o v e r a l l costs. I n some
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
36
ELECTRODEPOSITION
O F
COATINGS
cases, m o i s t u r e or w a t e r i n crevices m a y result i n a d i l u t i o n , i n l o c a l areas, of t h e e l e c t r o d e p o s i t e d
paints, r e s u l t i n g i n less t h a n d e s i r a b l e
coating
deposition. T h e e l e c t r o d e p o s i t e d one-coat w h i t e systems o v e r a l u m i n u m o r g a l v a n i z e d steel surfaces, i f p r o p e r l y c l e a n e d a n d treated, d o n o t present a serious p r o b l e m insofar as o b t a i n i n g a u n i f o r m w h i t e surface is c o n c e r n e d .
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
H o w e v e r , t h e e l e c t r o d e p o s i t i o n o f one-coat systems o n steel is another matter.
B e c a u s e o f t h e a n o d i c d i s s o l u t i o n o f t h e substrate, a d e g r e e o f
y e l l o w i n g o r t a n d i s c o l o r a t i o n o f t h e p a i n t film is o b t a i n e d f r o m t h e i r o n salts. E v e n w i t h the best c o n v e r s i o n coatings for steel, t h e r e is a t e n d e n c y to d i s c o l o r t h e p a i n t i f t h e r e a c t i o n post treatment a n d t h e d r y o f f o v e n are o m i t t e d . It appears that t h e p a s s i v i t y o b t a i n e d b y t h e reactive c h r o m a t e treatment goes a l o n g w a y to m i n i m i z e either t h e d i f f u s i o n o f t h e d i s s o l v e d i r o n t h r o u g h t h e p a i n t film o r its a b i l i t y to react w i t h t h e p a i n t components.
W h a t e v e r t h e m e c h a n i s m , w e h a v e f o u n d that t h e r e a c t i v e
post-treatments h e l p assure t h e p r o d u c t i o n o f a m o r e u n i f o r m a n d w h i t e , e l e c t r o d e p o s i t e d p a i n t systems.
Conclusions It is necessary to r e c o g n i z e the i n t e r d e p e n d e n c e o f t h e options a v a i l able i n m e t a l treatment maximum
flexibility
a n d electrodeposited
paint formulations. F o r
w i t h respect t o t h e selection
of electrodeposited
paints, the p r o p e r c o n v e r s i o n c o a t i n g , r e a c t i v e post treatment, a n d d r y o f f o v e n s h o u l d b e u s e d . B y m a t c h i n g the e l e c t r o d e p o s i t e d p a i n t f o r m u l a t i o n w i t h t h e c o n v e r s i o n c o a t i n g , q u a l i t y finishing c a n b e o b t a i n e d e v e n w i t h the
e l i m i n a t i o n o f t h e reactive
post
treatment
a n d the dryoff oven.
T i g h t e r c o n t r o l of t h e e l e c t r o d e p o s i t e d p a i n t a n d p a i n t i n g c o n d i t i o n s are r e q u i r e d w h e n these t w o steps are not u s e d . Present
m e t a l treatments result i n h i g h q u a l i t y
finishing
systems.
T h e m e t a l treatment i n d u s t r y cannot b e c o m p l a c e n t , h o w e v e r , because of t h e i n c r e a s e d awarness a n d c o n c e r n f o r e l i m i n a t i n g t h e p o l l u t i o n o f o u r e n v i r o n m e n t , i t is essential that m e t a l systems
treatment—electrodeposition
b e d e v e l o p e d that p r o v i d e q u a l i t y
finishes
without pollution.
D e v e l o p m e n t o f s u c h systems w i l l r e q u i r e the c o o p e r a t i o n a n d f u l l u n d e r s t a n d i n g o f a l l parties c o n c e r n e d — t h o s e
working i n metal
treatment,
p a i n t f o r m u l a t i o n , a n d e q u i p m e n t d e s i g n a n d finally t h e user h i m s e l f .
Literature Cited 1. "Metals Handbook," Vol. 2, 8th ed., p. 529-547, American Society For Metals. 2. Cavanagh, W., Gibson, R., "Phosphate Coating of Metal Surfaces For Industrial Use," Plating (June 1955).
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 9, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch001
I.
MAURER
AND
LACY
Conversion
and Electrodeposited
Coatings
37
3. Cheever, G . D . , "Wetting of Phosphate Interfaces by Polymer Liquids," "Interface Conversion For Polymer Coatings," Weiss, P., Cheever, G . D . , Eds., Elsevier, New York. 4. Maurer, J. I., "Preparation of Metal Surfaces for Organic Finishes," Ameri can Society of Tool and Manufacturing Engineers, paper FC68-652. 5. Maurer, J. I., "Surface Preparation for Organic Finishes," Ind. Finishing (April 1969). 6. Ellis, I. W . , Maurer, J. I., "Metal Preparation for The Coil Coating Indus try," J. Paint Technol. (July 1967) 39, 460-463. 7. Bogart, H . N., Burnside, G . L . , Brewer, G . E . F., "The Concept and De velopment of The Ford Electrocoating System," Society of Automotive Engineers, paper 988A. 8. Revelt, P. Α., Goodbye To Rust and Corrosion," Ward's Auto World (1970) 6 (2). 9. LeBras, L . R., "Electrodeposition—Theory and Mechanisms," J. Paint Tech nol. (Feb. 1966) 38, (493). 10. May, C. Α., Smith, G . , "Dissolution of The Anode During The Electro deposition of Surface Coatings," J. PaintTechnol.(Nov. 1968) 40 (526). 11. "Conversion Coatings Ready For Electropainting," Steel Magazine (Sept. 1966) 46, 47. 12. Maurer, J. I., Saad, Κ. I., "Pre-Cleaning Determines Electropaint Finishes," Canadian Paint Finishing (July 1967). 13. Saad, Κ. I., "How to Prepare Metal Surfaces for Electropainting," Product Finishing (May 1969) 46-55. 14. Hays, D . R., White, C. S., "Electrodeposition of Paint: Deposition Param eters," J. Paint Technol. (Aug. 1969) 41 (535). 15. Cheever, G . D . , Wojtkowiak, J. J., "Instrumental Studies of The Surfaces and Internal Composition of Paint Films," J. PaintTechnol.(July 1970) 42 (546). 16. Menzer, W . , "Chemische Oberflächenbehandlung von Metallen vor der Electrotauchlackierung," Internationale Tagung für Oberflächentechnik der Metalle, Hannover, May 5-8, 1968. 17. Kimoto, S., Russ, J. C., "The Characteristics and Application of The Scan ning Microscope," Mater. Res. Standards (Jan. 1969). 18. Maher, J. F., "Phosphate Coatings," Metal Finishing, 1970 Guidebook, pp. 594, 596. 19. Machu, W., "The Kinetics of The Formation of Phosphate Coatings," "Inter face Conversion For Polymer Coatings," Weiss, P., Cheever, G . D . , Eds., p. 130, Elsevier, New York. 20. U.S. Patents 2,310,239 and 2,874,081. 21. Adams, M., "Cleaning and Phosphating of Assembled Bodies," Society of Automotive Engineers, Paper 668A. 22. Ellinger, M . L . , "Electrophoretic Deposition of Paints in Further Fields of Metal Finishing," J. PaintTechnol.(March 1969) 41 (530). 23. Simpson, V . P., Hooker Chemical Research Center, Grand Island, Ν. Y., private communication. 24. Van Loo, M., Laiderman, D . D., Bruhn, R. R., "Filiform Corrosion," (Aug. 1953) 9 (8). 25. Laukonis, J. V., "The Role of Oxide Films in The Zinc Phosphating of Steel Surfaces," "Interface Conversion for Polymer Coatings," Weiss, P., Cheever, G . D., Eds., Elsevier, New York. 26. Maurer, J. I., Saad, Κ. I., "Study of Coatings Prior to Electrodeposition of Paint," Parker International Conference, Detroit, Mich., Oct. 1966. RECEIVED May 27,
1971.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.