Anal. Chem. 1082, 5 4 , 121 R-125R (520) Vellnov, 0.; Budevskil, 0. J . Electroanal. Chem. Interfacial Electrochem. 1979, 103, 347-62. (521) Venkatesan, Mi; Gopalakrlshnan, V.; Ramanujam, A.; Nadkarni, M. N. India, A . E . C . , Bhabha At. Res. Cent. 1979, B.A.R.C.-1004, 12 pp; Chem. Abstr. 1980,92, 190717. (522) Verbeek, A. E.; Matthiaij, J. M. J. Eur. Pat. Appl. . . 23,230 04 Feb 1981; Chem. Abstr. 1981,94, i67183. (523) Verma, B. C.; Butail, $1. Zh. Anal. Khim. 1979,3 4 , 1419-21; Chem. Abstr. 1979,9 1 , 2218361. (524) Verma, B. C.; Kumar, S. J . Indian Chem. SOC. 1979,56, 1032-4. (525) Verma, B. C.; Kumar, S.; Atwai, B. S. Zh. Anal. Khim. 1980, 35, 386-8; Chem. Abstr. 1980,9 3 , 38454. (526) Verma, B. C.; Sood, IR. K. J . Indian Chem. SOC. 1979, 56, 636-7. (527) Verma, B. C.; Sood, f3. K. Talanta 1979,2 6 , 906-7. (528) Verma, K. K.;Ahmed, J. Ann. Chlm. 1981, 7 7 , 201-3. (529) Verstakov, E. S.;Yastremskii, P. S.;Kessier, Yu. M.; Goncharov, V. V.; Kokovln, V. V. Zh. Strukt. Khlm. 1980, 21, 91-5; Chem. Abstr. 1981,9 4 , 91329. (530) Veveris, A.; Spince, B. USSR Patent 721 753; 15 Mar 80; Chem. Abstr. 1980,9 3 , 18651. (531) Vishnu, M.; Vidya, S. Carbohydr. Res. 1981,8 9 , 55-83. (532) Viasova, E. G.; Avdenva, E. N. Tr.-Mosk. Khim.-Tekhnol. Inst. im. D . I . Mendeleeva 1979, 104, 51-4; Chem. Abstr. 1980, 9 3 , 160644. (533) Voikrnann. D. GIT fochz. Lab. 1981, 25%375-6, 379-80; Chem. Abstr. 1981,9 5 , 86352. (534) Vollmer. P. J.; Lee, J., Alexander, T. G. J . Assoc. Off. Anal. Chem. 1980,63,1191-4. (535) Vorob'ev, A. F.; Monaenkova, A. S.; Konopleva, G. E. Jzv. Vyssh. Uchebn. Zaved, Khim. Khim. Tekhnol. 1980,23, 702-5; Chem. Abstr. 1980,9 3 , 156616. (536) Vorob'ev, A. F.; Peireiygin, B. 0.; Byval'tsev, Yu. A. Tr.-Mosk. Kh1m.-Tekhnol. Inst. im. D . I . Mendeleeva 1980, 111, 3-21; Chem. Abstr. 1981,9 4 , 215448. (537) Walker. E. A. IARC Publ. 1979, 2 9 , 75-8, 101-25; Chem. Abstr. 1980,93, 160681. '
(538) Wang, T.-M. f e n Usi Hua Hsueh 1980,8 , 98; Chem. Abstr. 1981,9 4 , 57631. (539) Wang, W.-T.; Tiu, H.-T.; Wang, W.; Wel, M. f e n Hsi Hua Hsueh 1980, 6, 129-32; Chem. Abstr. 1981,9 4 , 40946. (540) Wang, W.-T.; Wu, H A . fen Hsi Hua Hsueh 1980,8 , 80-5;Chem. Abstr. 1981,9 4 , 40945. (541) Wartel, M.; Soughriet, A.; Fischer, J. C. Anal. Chim. Acta 1979, 710, 211-17; Chem. Abstr. 1979,91, 217747. (542) Webster, B. C. Annu. Rep. Prog. Chem., Sect. C 1980. 76, 287-313. (543) Wells, C. F. J . Chem. SOC., Faraday Trans. 11981, 7 7 , 1515-27. (544) Wiese, G.; Mannaa, A. fresenius' Z . Anal. Chem. 1979, 299, 257-60. (545) Wrona, P. K. J . Electroanal. Chem. Interfacial Electrochem. 1980, 106, 153-67. (546) Yamaya, K. Anal. Chim. Acta 1979, 170, 233-43. (547) YathiraJan, H. S.; Mahadevappa, D. S.; Rangaswamy Talanta 1980, 27, 52-4. (548) Yoshida, S.;Odn, K.; Hirose, S. Chem. Pharm. Bull. 1981, 2 9 , 1682-9. (549) Yoshida, S.;Oda, K.; Hirose, S. Bunseki Kagaku 1981, 30, 443-7; Chem. Abstr. 1981,95, 108152. (550) Yoshlmura, C.; Miyamoto, K. BunsekiKagaku 1980,2 9 , 40-3; Chem. Abstr. 1980,92. 190650. (551) Yoshimura, C.; Miyamoto, M. Bunseki Kagaku 1980, 2 9 , 829-33; Chem. Abstr. 1981,$4, 113807. (552) Yoshimura, C.; Miyamoto, M. Bunseki Kagaku 1981, 3 0 , 286-,90; Chem. -. .-. .. . .Abstr. .-- .. . 1981. . - ., 95. . - , 54370 .- . . . (553) Yoshlmori, T.; Kato, N.; Suglyama, M.; Ebizuka, M.; Fukuoka, S.; Takaai. Y. Trans. Iron Steel Inst. JDn. 1980. 2 0 . 862-5: Chem. Abstr. -r 9 4 , 95236. (554) Yu, S.; Ross, P.; Tobias, C. Report LBL-10069, 1979;Chem. Abstr. 1980,9 3 , 140001. (555) Zoltainematoicsy, E.;Szaboneakos, 2. Acta Pharm. Hung. 1981,5 7 , 204-7; Chem. Abstr. 1981,9 5 , 175880.
lhl,
Electron Spin Resonance John R. Wasson Kings Mountain Specialties, Inc., P.O. Box 1173, Kings Mountain, North Carolina 28086
This review covers the published literature from July 1979 to July 1981 although a few citations of other work are also included. The volume of literature to be covered in so short a space has led to considerations and limitations discussed in our previous efforts (1,2 ) .
BOOK8 AND REVIEWS The books (3--14)on ESR during the last few years serve to emphasize the growing number of biological applications as well as the utility of Apin label and spin probe techniques in polymer chemistry. Reviews are cited in Table I; for convenience, the references for Table I are collected separately in the bibliography.
APPARATUS AND SPECTRAL ANALYSIS An ESR cavity for performing measurements on easily oxidized materials in the molten state has been described (15). A simple flow cell for quantitative measurements on aqueous solutions has been detailed (16) as has a novel stopped-flow apparatus for biological applications (17) and a simple two electrode cell for low-temperaturemeasurements (18). A quick access sample system fair low-temperature ESR/ENDOR at K-band has been reported (19) as has a coaxial microwave cavity for improved serisitivity with lossy solvents (20). Modulation broadening and instrumental distortions in line shapes have been practically evaluated (21). A general expression for the intensity operator for the computation of the intensity of ESR lines has been derived (22) which is valid at all temperatures and for all orientations of the static and rf magnetic fields. The single crystal first-derivative peakto-peak line widths of anisotropic magnetic resonance lines in non-single-crystal sub!atances can be determined accurately 0003-2700/82/0354-121R$06.00/0
from the second-derivative powder spectra (23). A moment method for determining isotropic g values from ESR spectra has been reported (24). The interpretation of an ESR spectrum can sometimes be aided by calculating a significance plot which may be calculated from a digitized ESR spectrum in the same way that a power spectrum may be calculated from a time series (25). The ESR spectra of d1 ions in glasses can be computer simulated taking into account the distributions of the components of the g tensor resulting from the structural disorder (26). A method has been reported (27) for calculating absorption functions and line shapes of 6S5/2ions in axial and cubic fields and another (28) for calculation of principal values and directions of tensors in the spin Hamiltonian. An improved analysis of g values of low-spin iron(II1) heme complexes has been presented (29). A computer program for sirnulation of spectra. of randomly oriented samples has been developed (30) which has some advantages over similar programs that are available. Feynman's theorem has been employed with a least-squares fitting procedure to develop a method for quick and accurate computation of resonant magnetic field values correspnding to various orientations of the external magnetic field in any chosen plane in an ESR experiment (31). A powerful method for computing slow motional ESR (and NMR) spectra has been developed by using the Lanczos algorithm modified to tridiagonalize complex symmetric matrices (32). A method has been developed for the determination of the orientational distribution function of partially ordered systems from the ESR line shape that is an alternative to the usual one of the expansion in the Wigner rotational matrices (33). The influence of the molecular reorientation model on the computed saturation tranfer ESR line shapes has been evaluated (34). Applications of the 0 1982 American Chemical Society
121 R
ELECTRON SPIN RESONANCE
Table I. Reviews topic ESR theoretical aspects ESR-experimental aspects stochastic theory of spin relaxation generalized spin-Hamiltonian and low symmetry effects hyperfine, superhyperfine, and fine structures line shapes signal area measurements saturation transfer spectroscopy ENDOR and ELDOR change distributions in molecular systems solvated electron structure in glassy matrices matrix solution studies radiation produced free radicals high-spin molecules triplets and biradicals photoexcited triplet state in photosynthetic bacteria photogenerated transient radicals mechanism of carbonization physical organic chemistry fast reaction kinetics organic radicals-kinetics and mechanisms kinetics and mechanism in organic chemistry radicals and ions in solution organic radicals in solids CIDEP studies by flash photolysis ESR electron spin polarization irradiated-solids of biological significanceESR/ENDOR special techniques for the preparation of samples for low temperature EPR spectroscopy biological structure and function-electron spin-echo spectroscopy biological and medical studies hematological research assays and immunologic applications lipid-protein interactions protein structure and conformations aqueous radiation chemistry of protein and nucleic acid constituents rotational motions of muscle proteinssaturationtransfer ESR membranes membrane potentials paramagnetic probes in membrane enzymes hemoproteins porphyrin n cations and anions porphyrin excited states metalloporphyrins molybdenum-containing enzymes pulsed studies of metalloproteins iron proteins metalloproteins fiber science macromolecules at the solid-liquid interface polymer fracture probe techniques-polymers polymer motion at or near an interfacespin label studies
ref
topic
1 2, 3 4 5 6 7 8 9 10 11,12 13 14 15 16 17 18,19 20 21 22 23 24 25 26 27-29 30 31 32 33
polymer research succinate dehydrogenase liver components of the mitochondrial electron-transfer system gadolinium(111) complexes of phospholipase A, and prophospholipase A, glutamine synthetase spin trapping in biological systems spin trapping spin label studies spin labeling in enzymology polymer transitions-spin probe studies spin labels-prospects in macromolecular research spin-label and spin-probe studies of polyethylene polymeric solids and meltsspin label and spin probe studies membranesspin labels organic conductors bipyridylium( TCNQ), and related complexes inorganic and organometallic radicals clay minerals clay systems spin probes-organic-clay systems paramagnetic ions in zeolites transition metal ions lanthanide and actinide ions in solids tetrahedral transition metal oxyanions in solids low-symmetry effects g-factor of powders, transition metal ions group theory-transition metal ESR electronic structure of f-block compounds paramagnetic point and pair defects in oxide perovskites photo responses of pure and doped rutile transition metal ions in crystals with the fluorite structure transition metal ions and complexes in alkali halides vanadyl ion impurities in crystalline solids metals, alloys, compounds-rare earths localized moments in metals spin-glass dynamics amorphous silicon glasses metal colloids in ionic crystals ferroelectrics and phase transitions deep defects in 111-V semiconductors impurity centers in elemental semiconductors narrow-gap semiconductors intrinsic lattice defects in silicon spin effects in amorphous semiconductors hydrogen in amorphous semiconductors hydrogenic atoms in silicon dioxide solid electrolytes superionic conductors
34 35 36, 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51, 52 53 54 55, 56 57 58 59 60 61
electron spin-echo technique to determining the distance distribution function for radical ion pairs stabilized in solids has been reported (35).
ANALYTICAL APPLICATIONS The distinction between characterization procedures and analytical methods is frequently a matter of personal judgement. The utilization of ESR for routine analyses is a function of convenience, precision, accuracy, suitability and, of course, cost effectiveness. The high initial setup costs and the shortage of personnel who appreciate the power and limitations of ESR have prevented the more widespread industrial applications of this form of spectroscopy. There is a need for 122R
ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
ref 62 63 64 65 66 67 68 69, 70 71, 72 73 74 75 76 77 78 19 80 81, 82 83, 84 85 86 87, 88 89, 90 91-93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119, 120
down-to-earth instructional material and critical compedia of analytical methods to facilitate the more widespread utilization of ESR. A method has been described to measure the oxygen diffusion concentration product, Do[02],a t any locus that can be probed or labeled with nitroxide radicals (36) as has a technique suitable for measuring lo2in cancer phototherapy (37). Molybdoarsenic acid oxidizes phenothiazines to radical cations which subsequently form colored compounds useful for the spectrophotometric determination of phenothiazine drugs (38). Spin-probe techniques can be applied to the determination of glass transition temperatures of polymers and to estimations of apparent activation energies for which
ELECTRON S P I N RESONANCE
Jhn R. W v o n La p s l h l 0 1 K l w Mountain spadelaes. Inc. He was born in SI. Lads, Mo. and ncshred hille&calion elme University of Missourl-Columbia (B.S.. 1963: M.A.. 1968) and lllinals Insmute of TechnOW (Ph.D.. 1970). He ISlhe a m or c m m of m e than 100 re8BBrCh ppers. reviews, and technlcai BRICIBS. HIS pubWcaUms and imuests are in lhe areas 01 maglwnic resonance spectroscopy, mnsC lion metal and organometallic chemisby. catalysis, and benely materiais. ~e IS a member of me American Chemical Saclety, me Eiectrockmical k i e t y . AAAS. Chemical Society (London). phi LamWB Up311011, and slqma XI.
composition and phase transitions has been evaluated (63). ESR data for oxovanadium(1V) and new thiovanadium(1V) complexes have been compared (64) as have data for vanadium(1V) and niobium(1V) ditbiocarboxylates which are eight-coordinate (65). One-electron-reduced nickel(I1) macrocyclic ligand complexes that can contain Ni(1)- and/or Ni(II)-ligand radical species have been reported (66).Planar Cu(NCS)P (67) and Co(II)-Ni(II) and Cu(II-Ni(I1) exchange coupled pairs in bis(N,N-bis(2-(diethylamino)ethyl)((2bydroxyethy1)amino-O)dinickel(II) have been characterized (68).
me
ACKNOWLEDGMENT The author is grateful to Linda B. Thomas for preparational easistanCe and to R 0. Bach and J. M,Lithium corporation of America, for use of library facilities.
T is noncontroversial (39). T h e synthesis and applications o f a negatively charged water soluble spin trap, sodium 2sulfonatophenyl tert-butyl nitrone have been reported (40). Several review articles and books cited earlier demonstrate the multitudinous applications of spin probe and spin label techniques. I t is particularly noted that stable free radicals, e.g., nitroxides, can be employed in the determination of various metals (41). Free radicals a n be detected in oil shale, shale oil, and spent shale. In the raw oil shale there is a correlation between the spin density and the oil yield of the shale as estimated by Fischer assay (42). A combination of ESR and DSC technique can be employed to probe solid-liquid interactions, e.g., CU(H~O),~+ (43) and Cu-NH, complex adsorption from solution (44). A semiempirical formula has been derived to calculate the concentration of low-spin heme compounds that are highly anisotropic, i.e., 3 < g, < 4, and where only information on the g, absorption is available (45). Tungsten can be determined as a W(V)-thiocyanate complex (46). Cbromium(II1) can be determined in aqueous solution a t pH 1.5-2.5 with an analytical range of 2.0 X 106-2.0 X 10-1mol d n J (47). A method for the determination of titanium in the chlorination products of titanium-containing minerals bas been developed (48) by using the reduction of Ti(IV) to Ti(II1) with zinc in 6 N hydrochloric acid and solution aging to remove niobium(1V).
SELECTED PARAMAGNETIC MATERIALS Stable free radical formation has been observed (49) in the binary powders of silicates and general organic compounds. The use of ESR for dating of animal and human bones bas been proposed (50). ESR and ENDOR spectra of the radical anions of [2.2]paracyclophanes have been discussed (51). Calculated spin densities of the free radicals from ascorbic acid and a-hydroxytetronic acid have been compared with experiment (52). Boronitroxides with a covalent B-N bond have been prepared and characterized (53). Advantages of deuterium modification of nitroxide spin labels for biological studies have been evaluated (54). The distance between thiol groups located near the Ca2+-ATPase active site and Mn(II), substituting for Mg(I1) in the complex with A T P in the active site of the enzyme, has been studied (55)using the spin label 2,2,5,5tetramethyl-4i~~ce~idopyrroline. &orientational correlation times, T ,of T u dithiocarbamate spin probes have been determined (56). Acetylene and ethylene complexes of Cu and Ag atoms in rare gas matrices exhibit ESR spectra consistent with the ) ~ Ag(C2H4) , formation of Cu(CIHZ), (n= 1,3,C U ( C ~ H ~and r-complexes whereas an Ag-acetylene adduct having the vmyf structure was generated (57). The polymerization mechanism of acetylene has been probed (58). The observed resonance in polyacetylene arises from a neutral defect induced in the isomerization procerw, consistent with the soliton picture. ESR has been used to examine the electronic structure of IT and SbF,-doped polyacetylene (59). Treatment of poly@phenylene-trans-vinylenel oligomer with AsF, results in increased electrical conductivity. ESR characterization of the doped polymer yields results qualitatively analogous to those for polyacetylene and poly@-phenylene) (60). Undoped normal and deuterated polyacetylene have also been examined (61). An undergraduate experiment utilizing potassium azide has been developed (62). The use of Cr(II1) to probe glass
LITERATURE CllED (11 Wasson. J. R.; Salinas. J. E. AMI. chan.1980. 52. 50R-53R. (21 WaSSan. J. R.: Conan. P J. Ibld. 1978. 5 0 , 92R-100R. (31 W. W. "TheWy and ApplCanam 01 EbcDon Sph Resonance": Wlby Y.* "rr* man (4) Chakravarty. A. S."Immduotion 10 mS Magnstlc Pw$+nles of sallds"; Wiley: New Yolk. 1980. (5) Shulman. R. 0.. Ed. "Bbk+A AppllcaaDns ot Magnetic Re-nce": Academic Ress: New Ywk. 1979. (8) Fraissard. J. P., Resing. H. A.. Eds. "Magnetic Re~onanceIn Coilold and Interface Sclence": Reldel: Boslon. MA. 1 9 8 0 NATO A&. Study Insl. series c. VOI. 61. (7) Woodward, A. E., Bovey. F. A.. Eds. "Potymer Charactedzalbn by ESR and NMR". American Chemlcal Soclely: Washington, Dc. 1960. (8) Bertini. I.; Draw. R. S. "ESR and NMR of Paramagnetic Species h B b kWCal and Related Systems": KIuwW BDSlon 1°C.: Hingham. MA. 1980. (9) Berliner. L. J.. Ed.. "Spin Labelling I 1 -Theay and Applications": Academic Press: New York. 1979. (10) C h a w T.: Kahn, A. H. "NBS Spedal PublicalM 260-59 SuIndard Reference Materhls: Electron Paramaglwnic Resonance Intensity Standard: SRM-2601: Descriptbn and Use": NBS: Washington. Dc. 1978. (11) Cohen. J. S.. Ed. "MagneticResonance in Biologl": Wiley: New Ywk. 1980 VOl. 1. (12) Boyer. R. F.. K e h t ! ~ S. . E.. Eds. "MMI Press Symposium series. V0l.l: Molecular Mollon in Polymers by ESR"; Herwood AcadeWc Publishers: New York. 1980. (13) Smidt. J.. Wiseman, W. H.. Ms."Fmcediw01 me Joint ISMARAW ERE Internatiomi confersnu, on Magnetlc ~e-nut. Dem. 1~80": Franklin institute -00: philadeiphb. PA 1981. (14) Clarke. R. H.. Ed. "Triplet Stale DDMR specbo3capy-Technlqus and Applications to Blaphyslcal Systems": Wiiey-Intarscience: New Ywk, 1982. (15) Evora. C. Rev. S d . I n s m . 1980, 51. 663-5. (16) Blyyx). W. G.; Peake. B. M. Ansf. CMm. A m 1081. 123. 339-40. (17) Kiimes. N.: Lassman. G.: E M . B. J . Mgn. R e m . 1980, 37.53-9. (18) 0hya-Nish)guchi. H. Bull. Chsm. SOC. Jpn. 1979. 52, 2064-8. (19) Nelson. W. H. J . Megn. Reson. 1980. 37. 205-7. (20) Allendceier. R. D.: Canol. J. 0.. Jr. J . Magn. Resm. 1980. 37, 497-50s. (21) Herring. F. 0.;Marshall. A. G.: millbs. P. S.;Roe, D. C. IM. 1980. 37.
._....""".
293-303. (22) Misra. S.K. J. fhp. C 1979, 12, 5 2 2 1 3 1 . (23) Lee. S. mp. Rev. B: condans. Maw 1991. 23,6 1 5 1 3 . (24) Hyde. J. S.: Pllbrow. J. R. J . M a p . R e m . 1980. 41. U7-57. (25) Brumby. S. Ibki. 1979. 35, 357-65. (26) Bais. J.: KWa. J.: Pwms. J. J . mys. C 1980. 13. L4374441. 1980. 39. 437-60. (27) Bekranlopsz. V.; CasbOTdb. J. J . MBgl. Re-. (28) Bulugglu, E.: Vera. A. Ibld. 1980. 41, 195-9. (29) Salo. M.; ohys. T. J . Chem. Php. 1079, 7 1 . 5378-9. (30)Daul C.; S ~ l a e p l e r C. . W.: Mohos. 0.: Ammeter. J.: a m p . E. mys. COmm"". 1981.21.365-95. (31) Misra. S. K.: VasiIopouIw. P. J . phys. C 1980, 13. 1083-92. (32) MOrO. 0.: Freed, J. H. J . mys. Chem. 1980. 84. 2837-40. (33) Friesrmr. R.: W I . J. A.: Sauer. K. J . chem. phys. 1979. 71.35S65. (34) Segre. U. J . Magn. R e m . 1980. 41, 432-9. (35) Drubs. S.A,: Raiishnrlng. A. M.: Tsvelkov. Yu. D. Chsm. mp. 1970,
M.
44.357-65.
(36) Subcrynski, W. K.; nyde. J. S. Blochem. Bkphys. Acts 1981. g*?, 283-91.
(37) Moan. J.: Wold. E. M~stus(London) 1979. 279, 450-1. (38) Ramappa. P. 0.: Gowda. H. S.: Nayat. A. N. A ~ m(London) f 1980. 105. 663-8. (39)Kumler. P. L.: Ewer. R. F. Mw. Mawomd. MMogr. 1978.4.225-47. (40) Janren. E. G.: Shetty, R. V. T e h W m Len. 1979. 3229-32. (41) Zoloto~.Yu. A.; FWnAhh. 0. M.: Nagy, V. Yu.; Volodarskil, L. 8.. AMI. chim. Acta 1980. 115. 1-23, (42) Sidwell. B. L.: Mckinney. L. E.: Bozeman. M. F.. el ai. Geoc(rwn. CQSm h l m . A m 1979. 43. 1337-42. (43) Basseni. V.; Burlamacchl. L.; Martlni. 0. J . Am. Chem. soc. 1979. 101. 5471-7. cui ~artini.G.; k m t i . v. J . mp. chan.1970, 83. 2511-15. (45) De Vrieb S.;Albracht S. P. J. Biochem. Bhphys. A& 1079. 546, 334-40. (48) K r i s h n a W . M. V. AMI. Chbm. Acta 1981. 124, 211-13. ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
-
123R
ELECTRON SPIN RESONANCE
(47) Bryson, W. G.; Hubbard, D. P.; Peake, 8. M. Ibid. 1980, 776, 353-7. (48) Solozhenkln, P. M.; Sidorenko, G. G.; Larin, G. M.; Shaluklna, L. M.; Glukhov, I . A. Z h . Anal. Khlm. 1979, 3 4 , 808-11. (49) Kashiwagi, H.; Enomoto. S. Chem. fharm. Bull. 1980, 28, 3716-18. (50) Ikeya, M.; Mlkl, T. Sclence 1980, 207, 977-9. (51) Fuerderer, P.; Gerson, F.; et ai. Helv. Chim. Acta 1979, 62, 2569-76. (52) Thomson, C. J. Mol. Struct. 1980, 6 7 , 133-40. (53) Crozet, M. P.; Tordo, P. J . Am. Chem. SOC. 1980, 102, 5696-7. (54) Beth, A. H.; Perkins, R. C., Jr., et al. Chem. fhys. Left. 1980, 69, 24-8. (55) Maksina, A. G.; Azizova, 0. A.; Artemova, L. G.; Vladimorov, Yu. A.; Kokorin, A. I . Dokl. Akad. Nauk SSSR 1979, 247, 982-5;Chem. Abstr. 1979, 91, 170754~. (56) Herring, F. G.; Phillips, P. S. J. Mol. Struct. 1980, 61, 29-32. (57) Kasai, P. H.; McLeod, D., Jr.; Watanabe, T. J. Am. Chem. SOC. 1980,
702,179-90. (58) Chien, J. C. W.; Karasz. F. E.; et al. J . folym. Scl., folym. Lett. Ed. 1980, 78, 47-52. (59) Bernier, P.; Rolland, M.; et al. J. fhys. Lett. (Orsay Fr.) 1979, 4 0 ,
297-30 I. (60) Wnek, G. E.; Chien, J. C. W.; Karasz, F. E.; Lillya, C. P. Polymer 1979, 20, 1441-3. (61) Schwoerer, M.; Lauterbach, U.; mueller, W.; Wegner, G. Chem. fhys. Lett. 1980, 69, 359-61. (62) Willis, J. S.Am. J . f h y s . 1980, 48, 732-6. (63) Abdrakhmanov, R. S.,J. Mol. Struct. 1980, 80, 357-62. (64) Callahan, K. P.; Durand, P. J. Inorg. Chem. 1980, 79, 3211-17. (65) Attanaslo, D.; Bellitto, C.; Flamini, A. Ibld. 1980, 19, 3419-24. (66) Gagne, R. R.; Ingle, D. M. Ibid. 1981, 20, 420-5. (67) Vijaya, S.;Manoharan, P. T. &id. 1981, 20, 1304-6. (68) Banci, L.; Benclni, L; Del, A.; Gatteschi, D. Ibid. 1981, 20, 393-8.
(43) Seldel, J. C. Appl. Spectrosc. 1980, 3 4 , 280-8. (44) Bell, J. E. "Spectrosc. Biochem."; Bell, J. E., Ed.; CRC: Boca Raton, FL, 1981,Vol. 2. pp 137-145. (45)Cafisco, D. W.; Hubbell, W. L. Annu. Rev. Biophys. Bloeng. 1981, 10, 2 37-44.
(48) Grlsham, C. M. J. Blochem. Blophys. Methods 1980, 3 , 39-59. (47)Palmer, G. "Porphyrins"; Dolphin, D., Ed.; Academic: New York, 1979; Vol. 4 (Part B), pp 313-353. (48) Fajer, J.; Davis, M. S. "Prophyrins"; Dolphin, D., Ed.; Academic Press: New York; 1979;Vol. 4 (Part B), pp 197-256. (49) Van Der Waals, J. H.; Van Doop, W. G.; Schaafsma, T. J. Ibid. 257-3 12. (50) Lin, W. C. Ibid. 355-77. (51) Barber, J. J.; Salerno, J. C. "Molybdenum Molybdenum-containing Enzymes"; Coughlan, M. P., Ed.; Pergamon: Oxford, 1980,pp 543-568. (52) Bray, R. C. Biol. Magn. Reson. 1980, 2 , 45-84. (53) Mims, W. 9.; Pelsach, J. Biol. Appl. Magn. Reson. 1979, 221-69. (54) Smith, T. D.; Pllbrow, J. R. Blol. Magn. Reson. 1980, 2 , 85-108. (55) Palmer, G. Adv. Inorg. Blochem. 1980, 2 , 153-82. (56) Blackburn, N. J. Electron Spin Reson. 1981, 6 , 295-318. (57) Maybeck, A.; Maybeck, J. App. Fibre Sci. 1978, 1 , 505-56. (58) Robb, I. D. NATOAdv. Study Inst. Ser., Ser. C 1980, 67, 331-44. (59) Nagamura, T. Methods Exp. fhys. 1980, 76, 185-231. (60) Kumler, P. L. Methods Exp. fhys. 1980, 16, 442-79. (61) Miller, W. G.; Rudolf, W. T.; et al. MMI Press. Symp. Ser. 1980, 1 , 145,65. (62) Roanby, B. MMI Pres. Symp. Ser. 1980, 1 , 1-14. (63) Ohnishi, T.; King, T. E. Methods Enzymol. 1978, 5 3 , 483-95. (64) Swartz, H. W.; Gutierrez, P.; Reichling, B. "Biochem. Mech. Liver Inj."; Slater, T. F., Ed.; Academic Press: London, 1978;pp 293-317. (65) Beinert, H. Methods Enzymol. 1978, 54, 133-50. (66) Reed, G. H.; Hershberg, R. D.; DeHaas, G. H. "NMR Biochem Symp. 1978";Opella, S.J., Lu, P., Eds.; Dekker: New York, 1979;pp 357-368. (67) Villafranca, J. J. Dev. Biochem. 1980, 70, 17030. (68) Janzen, E. G. Free Radlcals Blol. 1980, 4 , 115-54. Pryor, W. A., Ed.; Academlc: New York.
LITERATURE FOR TABLE I
(1) Ingram, D. J. E. Exp. Magn. 1979, 1 , 287-335. (2) Hudson, A. Electron Spln Reson. 1979, 5 , 46-51. (3) Hudson, A. Electron Spin Reson. 1981, 6 , 24-31. (4) Vedrine, J. C. NATOAdv. Study Inst. Ser., Ser. C 1980, 63, 331-89. (5) Kubo, R. Hyperfine Interact. 1981, 8 . 731-8. (6) Roitsin, A. B. fhys. Status Solid: B 1981, 104, 11-35. (7) Meriaudeau, P.; Ben Taarlt, Y. NATO Adv. Study Inst. Ser., Ser. C 1980, 67, 51-65. (8) Poole, C. P.; Farach, H. A. Bull. Magn. Reson. 1980, 1 , 12-94. (9) Eaton, S.C.; Eaton, G. R. Bull Magn. Reson. 1980, 7 , 130-8. (10) Hyde, J. S.;Thomas, D. D. Annu. Rev. fhys. Chem. 1980, 3 1 , 293-317. (11) Moeblus, K. Electron Spln Reson. 1979, 5 , 52-65. (12) Moebius, K. Electron Spin Reson. 1981, 6 , 32-42. (13) Maruani, J. NATOAdv. Study Inst. Sef., Ser. B , 1980, 648, 633-92. (14) Kevan, L. Acc. Chem. Res., 1981, 14, 138-45. (15) Hauge, R. H.; Margrave, J. L. NBS Spec. fubl. ( U S . ) , 1979, 581-7, 495-509. (16) Sevilla, M. D. J. Chem. Educ. 198, 58, 106-10. (17) Van Zee, R. J.; Brown, C. M.; Zeringne, K. J.; Weltner, W., Jr. Acc. Chem. Res. 1980, 13, 237-42. (18) Hudson, A. Electron Spin Reson. 1979, 5 , 52-65. (19) Hudson, A. Electron Spin Reson. 1981, 6 , 43-9. (20) Thurnauer, M. C. Rev. Chem. Intermed. 1979, 3 , 197-230. (21) Griller. D. Magn. Reson. Rev. 1979, 5 , 1-23. (22) Lewis, 1. C.; Slnger, L. S. Chem. fhys. Carbon 1981, 77, 1-88. (23) Griller, D.; Ingld, K. U. Acc. Chem. Res. 1980, 73. 193-200. (24) Norman, R. 0.C. Pure Appl. Chem. 1979, 57, 1009-19. (25) Sealy, R. C. Electron Spin Resotl. 1981, 6 . 177-207. (26) Norman, R. 0.C., Chem. SOC.Rev. 1979, 6 , 1-27. (27) Naccache, C. NATO Adv. Study Inst. Ser., Ser. C 1980, 67, 1927. (28) Allendoerfer, R. D. Magn. Reason. Rev. 1980, 5 , 175-249. (29) Stevenson, G. R. Magn. Reson. Rev. 1980, 6 , 209-45. (30) Kemp. T. J. Electron Spln Reson. 1981, 6 , 206-32. (31) Here, P. J.; McLauchlan. K. A. Rev. Chem. Intermed. 1979, 3 , 89-105. (32) Adrian, F. A. Rev. Chem. Intermed. 1979, 3 , 3-43. (33) Hadley, J. H., Jr. Magn. Reson. Rev. 1980, 6 , 59-84. (34) Beinert, H.; OrmeJohnson, W. H.; Palmer, G. Methods fnzymol. 1978, 54, 1 1 1-32. (35) Norrls, J. R.; Thurnauer, M. C.; Bowman, M. K. Adv. Biol. Med. fhys. 1980, 77, 365-418. (36) Knowles, P. F.; Peake, B. M. Electron Spin Reson. 1979, 5 , 318-56. (37) Dodd, N. J. F. Electron Spln Reson. 1981, 6 , 319-37. (38) Foster, M. A. Br. J. Haematol. 1981, 47, 1-6. (39) Esser, A. F. Lab. Res. Methods Blol. Med. 1980, 4 , 213-33. (40) Barratt, M. D.; Badley, R. A. Blochem. Dis. 1979, 7 , 75-106. (41) Lee, A. G. Tech. Llfe Sci. (Sect)Blochem. 1978, 6777, 1-26. (42) Riesz, P.; Rustgi, S . Radlat. fhys. Chem. 1979, 13, 21-40.
124R
ANALYTICAL CHEMISTRY, VOL. 54, NO. 5, APRIL 1982
(69) Evans, C. A. AMrichlmica Acta 1979, 12, 23-9. (70) Rehorek, D. Z . Chem. 1980, 2 0 , 325-32. (71) Peake, B. M. flectron Spln Reson. 1979, 5 , 256-317. (72) Peake, B. M. Electron Spin Reson. 1981, 6 , 233-94. (73) Berliner, L. J. Methods Enzymol. 1978, 4 9 , 418-80. (74) Kumler, P. L. MMI Press Symp. Ser. 1980, 1 , 189-222. (75) Berliner, L. J. MMI Press Symp. Ser. 1980, 1 , 15-32. (76) Cameron, G. 0.MMI Press Symp. Ser. 1980, 7 , 55-79. (77)Tormula, P.; Weber, G.; Llndberg, J. J. MMI Press Symp. Ser. 1980, 1 , 81-114;Bullock, A. T. Ibid. 1980, 7 , 115-34. (78) Marsh, D. Mol. Biol. Blochem. Blophys. 1981, 37, 51,142. (79) Tomkiewicz, Y. NATO Adv. Study Inst. Ser., Ser. C . 1980, 56, 187-95. (80) Eley, D. D.; Ashwell. G. J.; Wallwork, S. C.; Willis, M. R.; Woodward, J. Ann. N . Y Acad. Sci. 1978,313, 417-41. (81) Symons, M. C. R. Electron Spln Reson. 1979, 5 , 134-66. (82) Symons, M. C. R. Electron Spln Reson. 1981, 6 , 40-95. (83) Hall, P. L. Clay Miner,. 1980, 75, 337-49. (84) Hall, P. L. Clay Mlner. 1980, 75, 321-35. (85)
Pinnavala, T. J. NATO Adv. Study Inst. Ser., Ser.
C 1980, 63,
391-421. (88) McBride, M. B. NATO Adv. Study Inst. Ser., Ser.
C. 1980, 63,
423-50. (87) Lunsford, J. H. NATOAdv. Study Inst. Ser., Ser. C 1980, 61, 67-78. (88) Atanasova, V. D.; Shvets, V. A.; Kazanskii, V. B. Usp.Khlm. 1981, 50, 385-405; 9 4 , Chem. Abstr. 1981, 181116b. (89) Porte, A. L. Electron Spln Reson. 1979, 5 , 76-133. (90) Porte, A. L. Electron Spln Reson. 1981, 6 , 50-95. (91) Buckmaster, H. A.; Delay, D. 9. Magn. Res. Rev. 1979, 5 , 25-68. (92)Buckmaster, H. A,; Delay, D. 8. Magn. Reson. Rev. 1980, 5 , 121-73. (93) Buckmaster, H. A,; Delay, D. B. Magn. Reson. Rev. 1980, 6 , 139-207. (94) Greenblatt, M. J. Chem. Educ. 1980, 57, 546-51. (95) Pllbrow, J. R.; Lowrey, M. R. Rep. f r o g . fhys. 1980, 43, 433-95. (96) Marlaudeau, P.; Ben Taarit, Y. NATO Adv. Study Inst. Ser., Ser. C 1980, 67, 51-65. (97)Hempel, J. C. NATO Adv. Study Inst. Ser., Ser. 6 , 7978 1979, 843,
493-536. (98) Edelstein, N. M. NATOAdv. Study Inst. Ser., Ser. C. 7978 1979, 44, 37-79. (99) Mueller, K. A. J. Phys. (Orsay, Fr.) 1981, 42, 551-7. (100) Goodenough, J. B. Adv. Chem. Ser. 1980, 168, 113-37. (101) Gehlhoff, W.; Ulricl, W. f h y s . Status SolldlB 1980, 702. 11-59. (102) Narayana, M.; Sivasankor, V. S.; Radhakrishna, S. fhys. Status Solidi B 1981, 105, 11-45. (103) Kohin, R. P. Magn. Reson. Rev. 1979, 5 , 75-99. (104) Barnes, R. G. "Handb. Phys. Chem. Rev. Earths"; Gschneider, K. A., Jr., Eyring, LeRoy, Eds.; North Holland; Amsterdam, 1979; Vol. 2, pp 387-505. (105) Orbach, R. J. Magn. Magn. Mater. 1980, 15-78, 706-13. (108) MacLaughlln, D. E. Hyperfine Interact. 1981, 8 , 749-56. (107) Biegelsen, D. K. Sol. Cells 1980, 2 , 421-30. (108) Griscom, D. L. J . Non-Cryst. Solids 1980, 4 0 , 211-72. (109) Hughes, A. E.; Jaln, S. C. Adv. fhys. 1979, 28, 717-828. (110) Ramani, K.; Srinivasan, R. J. Sci. Ind. Res. 1980, 3 9 , 546-54. (1 11) Kaufmann, U.; Schneider, J. Festkoerperproblerne 1980, 2 0 , 87-1 16. (112) Estle, T. L. Hyperflne Interact. 1981, 8 , 365-70. (113) Brazls, R. S.; Furdyna, J. K. fhys. Status Solldi, A 1979, 54, 11-27. (114)Watkins, G.D.; Troxeli, J. R.; Chatterjee, A. P. Conf. Ser. Inst. fhys. 7978 1979, 46, 16-30.
Anal. Chem. lB82, 5 4 , 125R-131R (115) Solomon, T. Top. App/. Pbys. 1979, 36, 189-213. (116) Knights, J. C.; Lucovsky, G. CRC Crit. Rev. Solid State Mater. Sci. 1980, 9, 211-83. (117) Well, J. A. Hyperfine Mefact. 1981, 6 , 371-4.
(118) Bacquet, G.; Dugas, J. “Solid Electrolytes”; Hagenmuller, P.,Van Oool, W., Eds; Academic Pres: New York, 1978; pp 109-122. (119) Richards, P. M. Top. Curr. Phys. 1979, 75, 141-74. (120) Bjorkstam, J. L.; Villa, M. Magn. Reson. Rev. 1980, 6 , 1-57.
Nuclear Malgnetic Resonance Spectrometry John R. Wasson’ Kings Mountain Specialties, Inc., P.O. Box
I 173, Kings Mountain, North Carolina
28086
The books (2-,36a)on NMR spectrometry range from those containing introductory discussions to those dealing with state-of-the-art developments. The growth in other-thanproton spectroscopy and significant applications in polymer and medical areas are also reflected in the number of review articles. Table 1. lists review articles. For convenience, the references in Table I are collected separately in the bibliography.
Modification of the INEPT sequence enables application of the sequence to two-dimensional NMR and provides a simplified form of two-dimensional 13C J spectroscopy (52). Three-dimensional NMR imaging by Fourier reconstruction zeugmatography has been described (53). Reduction of spurious base line effects in broad line NMR has been discussed and a simple circuit to reduce them by a factor of 300 presented (54). A new noise-reduction filter has been described (55)which is capable of reducing the noise considerably and keeping the line width in the spectrum practically constant. A simple method for detection of zero-quantum transitions has been reported (56). A procedure has been described for obtaining absorption mode spin-echo NMR spectra of large molecules (57). A computer program has been described for the determination of diffusion coefficients from field-gradient spin-echo data (58). The reviews listed in Table I afford additional references to instrumental and technique developments.
APPARATUS AND TECHNIQUES
SPECTRAL ANALYSIS
Purification of chloroform for NMR can be achieved by using molecular sieves (37). A correction has been given to the static tube method for determination of magnetic susceptibilities of solutes in solution (38). Use of internal and external references in determinations of weak molecular complexes has been evaluated (39). Calibration of methanol and ethylene glycol thermometers has been verified and extended (40). A Mg-AT]? thermometer for 31PNMR studies of biological systems which is based on the temperature dependence of the chemical shift difference between the a P and p P resonances in neutral pH solutions of Mg-ATP has been reported (41). Am equinnolar solution of P h 3 P 0and Ph3P in toluenedBhas been proposed as a thermometric system for 31Pdynamic studies (42). A method for temperature determination using the clearing point of liquid crystals has been recommended (43). A sensitive 59C0NMR thermometer for multinuclei FT-NMR has been described (44). Phosphorus-31NMR measurementswith small surface coils have been used to observe phosphorus metabolism of perfused hearts within localized regions. The method allows for direct, noninvasive, sequential assessment of the altered regional metabolism resulting from myocardial infarction and response to drug treatment, which cannot be examined by conventional techniques (45). A simple, fast recovery, low-noise receiver amplifier for pulsed NMR experiments has been reported (46) as has a high-performance cryogenic pulsed spectrometer (47). Use of a commercial waveform analyzer in a pulse FT-NMR system (48) and a versatile pulse sequence generator for pulse NMR (49)have been described as has a heating element for a furnace that can work in an 8-T field of a superconducting magnet at temperatures up to 2200 K (50). A microprocessor-based device has been described (51) for controlling magnetic field gradients in three dimensions, including the design logic, the interface to a minicomputer and a NMR spectrometer, and the mathematical basis for a two-stage reconstruction method that may be used with the controller.
Estimation of errors in eigenvectors and eigenvalues from magnetic resonance results by use of linear data-fitting techniques has been refined (59). Both transient and steady-state expressions have been developed for X3-(A) Overhauser studies (60). Separation of the different orders of multiple-quantum transitions by use of pulsed field gradients has been described (61). The explicit analysis of zero quantum transition (ZQT) NMR for weakly coupled homonuclear spin systems has been given (62) as has a treatment of second-order dynamic frequency shifts in the spectra of spin 3/2 nuclei (63) and the theory of multiple quantum double resonance (64). A powerful method for computing NMR (and slow motional ESR) spectra has been developed by using the Lanczos algorithm modified to tridiagonalize complex symmetric matrices (65). An efficient method of simulating NMR line shapes of rigid multiproton molecules has been described (66). A data base of about 4000 13CNMR spectra has become available (67). A low cost data system has been reported which can be connected to existing spectrometers. Software and BASIC programs are idso described (68).Computer programs for interpreting and predicting 13C NMR spectra have been described (69). A computer progran, ASREY, has been developed for the analysis of spectra on a minicomputer (70). A possible mathematical model has been offered for the correlation tables used in spectroscopy (71). Reasons for the occasional failure of convergence of the LAOCOON 3 program have been discussed (7’2)as had error analysis in LAOCooN-like interative programs (73). A proposal has been made to overcome the methodical problem of additional unspecific shielding in studies of A + D AD reactions where D is an aromatic molecule (74). Density matrix theory of ABC ==AB’ C’ chemical exchange (75) and chemical shift equivalence and magnetic equivalence in conformationallymobile molecules (76)have been discussed. Analytical expressions have been given for magnetic resonance line shapes of powder samples with axially symmetric Hamiltonians (77). A semiempirical theory of boron chemical shifts using gauge-invariantatomic orbitals has been presented (78) as has simplex optimized INDO calculation of 13C chemical
This review covers thie published literature from July 1979 to July 1981 althou h a few references to other work are also included, As note in earlier reviews ( I ) the volume of literature published is imlpossible to summarize in such a short space. However, it is hoped that where this review fails as a review, it succeeds in capturing the flavor of this dynamic research area and serves as a useful guide to the applications and literature on NMFL spectrometry.
f
BOOKS AND REVIEWS
For biographical material, see the review on electron spin resonance.
0003-2700/82/0354125R$06.00/0 0 1982 American Chemical Society
+
125 R