Electrophoresis - Analytical Chemistry (ACS Publications)

Electrophoresis. Richard D. Strickland. Analytical Chemistry 1970 42 (5), 32-57. Abstract | PDF | PDF w/ Links. Cover Image ...
5 downloads 0 Views 7MB Size
(329) Welcher, F. J., Ed., “Standard

Methods of Chemical Analysis,” Van Nostrand, Princeton, N. J., 1966. (330) White, D. C., Talanta, 13, 1303

(1966). (331) Wise, W. M., Campbell, D. E., ANAL.CHEM.,38, 1079 (1966). (332) Wooley, D. T., Money, J. N.,

McGowan, C. R., U. K . At. Energy Authority, Prod. Group, P. G. Rept. 692 (W), 16 pp (1966). (333) Yanagihara, T., Fukuda, Y., Nippon Kinroku Gakkaishi, 27, 156 (1963). (334) Yasumori, Y., Ikawa, M., Nozawa, Y., Bunseki Kagaku, 14, 871 (1965).

(335) Yen, H. Y., Jen, H. T., Hua Hsueh Hsueh Pao, 32, 191 (1966). (336) Yen, H. Y., Liu, Y. H., K’o Hsueh T’ung Pao, 17,279 (1966). (337) Yoshimori, T., Hino, Y., Takeuchi) T., Bunseki Kagaku, 15,1234 (1966). (338) Yoshimori, T., Takeuchi, T., Kagaku No Ryoikz, 18,888 (1964). (339) Zebreva, A. I., Kozlovskii, M. T.

Sovrem. Melody Analira, Melody Issled. Khim. Sostaaa a Slroeniya Veshchestv, Akad. Nauk SSSR, Inst. Geokhim. i Analit. Khim., 1965, p 214. (340) Zhetbaev, A. K., Kaipov, D. K.,

Smirin, L. N., Tyshchenko, A. P.,

Pribory a Tekhn. Eksperim., 11, 209 (1966). (341) Zozulya, A. P., “Kulonometricheskii

Analiz (Coulometric Analysis),’’ Mos-

cow: Khimiya, 1965.

(342) Zugravescu, P. Gh., Zugravescu, M. A., Rev. Chim. (Bucharest). .. 18. 51 (1967): (343) Zutic, V., Branica, bl., J. Polarog. Soc., 1 3 , 9 (1967). I

THEsupport of the Robert A. Welch Foundation and the National Science Foundation (GP-6688X) is gratefully acknowledged.

Electrophoresis R. D. Strickland, Research Service,

T

Veterans Administration Hospital, Albuquerque, N.

in this review has been selected from material appearing in approximately a thousand journals published in every part of the world. Even with an excellent library service it has been impossible to locate significant papers a t the time of their publication. I t has usually been necessary to await their citation in Chcmical Abstracts, and often to depend solely upon the abstracts for information about the contents of the articles. This is unfortunate because abstracts are frequently inadequate, and because the long delay before their appearance makes the review less current than it should be. Readers are invited to send reprints of their recent publications relating to electrophoresis to the author a t the address appearing beneath the title of this review. It would also be helpful to receive summaries of the important points in the papers; summaries would preferably be in English but arrangements have been made for obtaining translations. If this is done on a sufficiently large scale, it will do much to improve the quality and timeliness of this review. Sending a reprint will not guarantee a place in the bibliography, which is selective, but all reprints received will be given careful attention. The terminology of electrophoresis is stabilizing and now requires little attention. It seems to be generally accepted that electrochromatography should refer only to operations in which both electrophoretic and chromatographic effects are used. The need for a verb denoting the performance of electrophoresis is being filled a t this time by a new infinitive, “to electrophorese,” a word lacking euphony and employing a suffix that is properly used to form adjectives or nouns of origin (e.g., Japanese); to electrophoresize is preferable because -ize is a verb-forming suffix meaning “to subject to.” HE LITERATURE MENTIONED

74R

ANALYTICAL CHEMISTRY

This review continues the coverage of the previous one (2329) with most of the citations dating between the latter half of 1965 and the early part of 1967. The Chemical Abstracts reference numbers have been appended whenever the article mentioned has appeared in a publication that is not readily accessible. BOOKS AND REVIEWS

There are several books devoted to general electrophoretic methodology (1716, 2103, 2698); one book attempts, with some success, to cover the whole field of analysis by differential migration methods (965); there is a teaching manual for electrophoresis and chromatography (2273). Three books discuss the clinical value of electrophoresis (596, 1996, 2099). Books on specialized applications include one on cell electrophoresis (YO), one on crossing electrophoresis (1693), and one on lacquer deposition (256.4). Important chapters on electrophoretic techniques ($40, 2351), including mobility measurements (2537),amino acid determinations (263), and the significance of findings in serum protein electrophoresis (1262) appear in books that include other subjects. Current theories relating to electrophoretic mobility (639) have been reviewed, as have the general aspects of technique (90, 1553), particularly with reference to biochemical applications (1793),immunochemistry (885),and the transportation of substances by plasma proteins (465). The methods for using polyacrylamide gels (1095, 16.43, 1762, 1763,1978), starch gel (179,1011,2338), thin layers (510, 1760, 1761), and gels made up in buffers containing urea (1899) have been reviewed. A number of reviews are concerned with clinical applications of electrophoresis to serum proteins (486, 814, 1255, 1256, 1%”9), immunoglobulins (752), and hemoglo-

M.

bins (47, 2164, 2345); and with biochemical studies of carbohydrates and mucoids (1739), glycoproteins (2218), lipoproteins (218, 2130), amino acids (633, 1830), peptides (436, l647), proteins and their subunits (1897),eye lens proteins (271), and enzymes (2205), including hemolysins (1890) and lactic dehydrogenases (2132,2605). There are also reviews concerned with proteins in snake venoms (556),the electrophoretic behavior of cells ( 7 l ) , the components of cells and tissue (883), separation of viruses (1493), the composition of saliva (1463), and transformations of antibiotics in vivo (270). Uses of electrophoresis in radiochemistry (23, 1257), pharmacy (SSOS), and industry (1614) h a w been discussed. A list of reviews dealing with the use of electrophoresis for the application of coatings appears ELECTROin the section on PARTICLE PHORESIS. FUNDAMENTAL DEVELOPMENTS

The synthesis of a mixture of polymeric amino-carboxylic acids having closely spaced isoelectric points over a wide pH range has made possible a new form of electrophoresis which has been named isoelectric fractionation. When a solution of the mixed amino-carboxylic acids is placed between electrodes, the solute molecules become classified into stationary zones in the order of increasing PI; proteins dissolved in the solution form immobile zones in the regions corresponding to their isoelectric points. I t has been reported that proteins with isoelectric points differing by as little as 0.02 unit can be separated by this technique. A number of publications about this method are reported to be in press, and some are already published (733, 1813,2507). An article in a commercial publication describes the method in some detail and indicates that it will soon

phoresis to determine the mobility of milk fat globules (2428),the zeta potential of emulsified oils (1626), isoelectric points (553), electrokinetic potentials (l&l),and mobilities of mineral particles (564, 2215), particles of microscopic size (1497), and living cells (782, 1414, 2069, 2181) have been developed. One apparatus combines a thermal gradient with gel electrophoresis for studying collagen-to-gelatin transitions (1008). An automatic apparatus removes inorganic iodine from serum electrophoretically in preparation for automatic measurement of protein-bound iodine (1840). Safety precautions instituted after an electrocution caused by faulty highvoltage electrophoresis apparatus have been outlined (2296). Xew designs for high-voltage electrophoresis apparatus continue to appear (15, S75, 818, 819, 1155, 1563, 1680,ir94, zssq). Apparatus for preparative electrophoresis on a batch basis employ acrylamide gel (1720, 1968,1970),acrylamide gel in a sucrose gradient (2235), agarose gel ( 1 5 5 4 , membrane partition (1S47), starch gel (2274), and starch blocks (2094). An apparatus for separating the ?-globulin from fifteen liters of serum in twenty-four hours has been described (1726, 1727). Some of the new preparative apparatus required a high degree of ingenuity for their development; these include one in which a liquid column is stabilized by magnetically-induced rotation (1246-1249), one that makes use of thermal, gravitational, or magnetic fields in addition to electrical force (1670),one using thermal APPARATUS gradients (1906), and one using ionexchange resins to produce isotope enInventions of new apparatus have richment (106). Other continuous elecbeen predominantly for use with acryltrophoresis apparatus for general use amide gel; they include apparatus for are described (1S36, 1662, 2426). One disk electrophoresis (39bl 908, 1767, apparatus is specifically designed for 1768), electrophoresis in vertical columns (310,1018,1527,1714,19~3,1966, separating cells (890) and another is for fractionating particles (2333). 1967, 1969, 2421, 2622), and on microAncillary apparatus useful in performscope slides (852). There are new aping electrophoresis include arrangements paratus for cellulose acetate electrofor regulating potential gradient (16, phoresis (727, 1766) and for immuno587), a device for floating trays in which electrophoresis on various media (773), starch gel is prepared to ensure even bed on cellulose acetate (705),and on starch thickness (1884), several devices for or agar gel (2326). A new apparatus preparing density gradients (96, 325, for a method called countercurrent 1230, 2352), an improved technique for electrophoresis in which the migration of filling capillary tubes for disk electroions along a varying voltage gradient is phoresis (l713), a device for applying opposed by a counterflom of electrolyte samples to paper strips (2362), several solution has proved valuable for sepaarrangements for cooling electrophoretic rating substances with similar mobilities beds (300, 712, 21 48), numerous devices (1910-1916). One apparatus augments for destaining electrophoregrams (1371, electromigration with centrifugal force 1797),often by electricity (362, 69.4, 715, (1652). .4n apparatus with a travelling 1537, 1688, 2167, %?O4), devices for secanode has been used for analyzing tioning acrylamide electrophoregrams anions (14). A modified Tiselius cell (444, i447), densitometers (66, 494, 716, that can be unloaded and recharged 1366, 1561), and other devices for dewithout removal from the cooling tank tecting and measuring electrophoretic has been described (2275). Briggs cells patterns, including a recording thermofor classifying suspended particles in couple (1501) and optical devices (1004, water have been improved (261, 2028, 245S, 2588). There are also templates 2029). Apparatus for particle electro-

be possible to purchase the aminocarboxylic carrier ampholyte (930). Attention has been given to the mathematics of electrophoretic mobility (918, 1272, 2593) and to relating mobilities on paper to those in free solution (1316, 1496, 1664). There have been studies of the effect upon electrophoretic fractionation of the pore size of gels (2432), of fluid movements owing to electroosmosis and evaporation (926, 927, 1209, 1271, 1273), and of various factors (1965, 2330). The apparent variation with temperature of cell and particle mobility is caused by changes in viscosity of the medium (1565). The control of heat in thin-layer electrophoresis (511, 512) and the effects upon separation of impregnating filter paper with various buffers (1636) and nonbuffer solutions (1637) have been investigated. A statistical method for defining zone resolution has been suggested (235l), and the possibility of multiple zones arising from the interaction of buffer with a single protein has been pointed out (379). There has been a theoretical study of the effect upon gel permeation of dimer formation by monomers of macromolecules (837). Starch gel electrophoresis has been used to determine the heat of reaction involved in the reversible dimer-monomer dissociation of a protein (2305). The irregularity in voltage gradient caused by the concentration profile of zones in paper electrophoresis is negligible escept when the sample concentration is unusually high (2473).

for applying antiserum for immunoelectrophoresis (704, 2677). STABILIZING MEDIA

Nitrocellulose membranes impregnated with Tween 60 give resolutions of serum proteins superior to those obtainable on cellulose acetate (1920-1924). Cellulose acetate is preferable to paper (916, 1952); it gives higher m- and lower 7-globulins than paper (840). One author prefers paper for routine work (1844). There are favorable reports on the use of ion-exchange papers (1406, 2193) and of a polyethylenereinforced paper (970) with high wet strength. Powdered media for electrophoresis in thin layers include cellulose (1670, 2433), Pevikon (2@S), sodium(carboxymethyl)cellulose (1679), alumina (1407), urea-formaldehyde polymer on glass plates (97), and silica gel and various organic polymers (1362), the latter being spread on a flexible sheet of polyester plastic instead of glass plates. Poly(viny1 alcohol) is used as threads, as thin layers of powder (1515), and as membranes cast from solutions in hot water (1515, 1516). There is increasing use of gels cast into thin sheets; this technique is called alternatively thin-layer and thin-gel electrophoresis. Thin-gel seems preferable because it distinguishes this form of electrophoresis from electrophoresis in thin layers of powder. Examples of media used for thin-gel electrophoresis include starch gel (1214, 1S74), agarose (656), acrylamide gel (1010, 1214, 1764, 2367), and gelatin supported upon cellulose acetate strips (1405). Several derivatives of agar give less endosmotic flow than agarose (1944, 1945). -4gar containing serum albumin is a good medium for separating lactic dehydrogenase isoenzymes (2592). Cellophane can be used to support thin sheets of agar (117). Agarose is superior to agar for immunoelectrophoresis (666,1366, 1518). A standardized technique for preparing reproducible starch gels has been developed (1513),and the optimum concentration of starch for resolving serum proteins established (1287). There are two improved methods for molding starch gel beds (1017). Resolution in starch is enhanced by making the gel 1.5M (2034) or 8-11 (1572) in urea. Urea decomposes to form cyanate which reacts with proteins; this can cause false bands and other pattern alterations (467). Refinements in the use of acrylamide (45, 787, 1878, 2008), including a polyacrylamide concentration gradient (1479), incorporation of urea into the gel (180), and a modification that permits dissolving the gel in dioxane (443) have been reported. .immonium persulfate used to polymerize acrylainide can cause false patterns; riboflavin can be used instead, or thioglycolate can be used to remove persulfate from the bed VOL. 40.

NO. 5,

APRIL 1968

75 R

(338). Mixed acrylamide-agarose gel sets up in the presence of oxygen as well as having other advantages over either gel alone (2466, 2467). BUFFERS A N D SOLVENTS

A technique for creating a pH gradient a t right angles to the direction of sample migration in starch gel has been developed (616 ) . Numerous acidic buffers have been evaluated for separating stromal proteins in starch gels (132). Connective tissues can be dissolved and subjected to electrophoresis in concentrated dichloroacetic acid (1598). Variations in the properties of barbital buffers as a function of temperature have been studied (2332), as have the effects of variations in pH upon protein fractionations (912 ) . Borate or germanate buffers, pH 9.8, can be used to separate sugars and oligosaccharides (2540). BIOLOGICAL APPLICATIONS

Biological Fluids. Proteins of milk , agar have been separated on paper (44) gel (1867), and starch gel (1841). Polymorphism of milk red proteins (914, 2364) has been observed. Phenotyping procedures for p-casein (107) and for the principal proteins of cow milk have been developed (108, 658, 1331), and there have been comparative studies of the milk proteins of humans and cows (2475), of cows, sheep, goats, and buffalos (74, 530), of nineteen species of Artiodactyla (1425), and of porcine colostrum, milk, and blood serum (1134). Electrophoresis of proteins in normal examples of human (72, 207, 603, 1954, 261 S),cow (829,8476),and buffalo (115) milks has been undertaken, as has that of human (72, 603, 2613), bovine (860), and buffalo (2088) colostrums. Variations in protein composition in relation to various phases of the lactation cycle have been investigated for cows (391, 1896), kangaroos (146, 135:), and buffalos (1058). Changes in the proteins of bovine milk occur in mastitis (1697) and brucellosis (632). The protein fractions of milk from cows subsisting on diets providing urea and NH4+ as the sole sources of nitrogen remain normal (8359). Among specific milk proteins investigated are albumins in bovine milk (2363) ; a-lactalbumins in the milk of guinea pigs (337), goats (418),and cows (254); p-lactoglobulins in milk of COWS (46,907,910,1178,1557) and cows and buffalos (2198); and the caseins of cow (200,81I , 1387, 1547, 1696, 1867) and goat (2689) milk; six types of p-casein occur (1868); only one of the three K-casein fractions is a glycoprotein (1988). Immunoglobulin A from human (130, 399, 400) and rabbit (2195) colostrum has been studied. The H chain from the 7-globulin of human colostrum migrates more slowly than its serum counterpart (1985). Iron-bind76R

ANALYTICAL CHEMISTRY

ing by milk proteins of women (75,1891) and rats (684) has been investigated. An article describes measurement of the mobility of milk fat globules (6429). The effects of various methods of preservation upon milk proteins are reported (73,93,532,952,1538,1723, 2151,2464). The action on milk proteins of hydrogen peroxide ($Of?),and the action upon casein of trypsin (2251), rennin (1114), Pseudomonas (1224), and photo-oxidation (2688) has been studied. Casein fractions in cheese vary depending upon the temperature a t which the milk was treated (1571) and upon the microorganisms used in the ripening process (1351). Urinary proteins can be concentrated 3000-fold by precipitation and redissolving (2422); concentration by ultrafiltration with lyophilization gives better protein recovery with fewer changes than dialysis against poly(viny1pyrrolidinone) or pre-evaporation (f 620). Urinary proteins have been separated using gel filtration combined with elecProteins in trophoresis (592, 950). human urine have been investigated in relation to immunochemical heterogeneity in normals (896), pathological pregnancies (1870), effort proteinuria (786, 1892, 2311), kidney disease (165, 548, 1433, 2375), cadmium poisoning (I874), myelomas (994), and neoplasms (1530, 2563). Proteins in dog urine have been analyzed for diagnostic purposes (955); the proteins of rat urine have been studied (621, 2052, 2053). There are electrophoretic methods for detecting pheochromocytomas (298,299, 513, 797, 2216, 2618) and pheochromocytomas, neuroblastomas, and carcinoids (1315 ), distinguishing myoglobinuria (341, 1117), detecting folic acid deficiency (Z4%), and diagnosing hepatitis by amylase activity in urine (759, 761). Urinary gonadotropins have been analyzed by immunoelectrophoresis (1642). Metabolites in urine (653), including fluorescent substances (728) and acids of the citric acid cycle (1860) have been fractionated. Amino acids in urine have been measured (2096, 2446, 2541) in normal subjects (69) and in mental retardation (11 0 9 , l f10). Twenty-eight ninhydrin-positive substances and eighteen hexosamines have been isolated from normal human urine (2504). Specific urinary amino acids that have been investigated are proline and hydroxyproline in rickets (445),homoserine in neuroblastoma (2337), cystine and the basic amino acids in cystinuria (880), and an unidentified amino acid formed by the metabolization of penicillin (1853). Urinary glucose, galactose, and fructose can be separated in a molybdate buffer (1166). The proteins of saliva in rats (1104, 2655) and humans (804, 805, 835, 1143, 1588, 2884) have been fractionated; alterations of saliva protein distribution

during pregnancy have been investigated (409); specific substances that have been studied include salivary immunoglobulins (170), antigens (657), and parotin (1063). Blood types and salivary A, B, and H factors correlate with variations in serum alkaline phosphatase patterns (680). Human gastric juice proteins have been studied in health and in diseases of the stomach (1156, 1185, 1358, 2114, 2197, SXO4, 2285), with special attention to lipoproteins (2061), proteolytic activity (848), intrinsic factor (167, 910, 2092), and the proteins in pernicious anemia (156). .A vitamin BIZ-binding sulfomucoprotein has been isolated from human gastric juice (932). Proteins in gastric juice of horses (2075) and dogs (2615 ) and in the intestinal juice of dogs after gastric resection (1929) have been fractionated. The many proteins of human pancreatic juice have been fractionated and their enzymatic activities determined ( I f 64). Human bile proteins have been studied extensively (431, 433, 453, 961, 1150, 1151, 1607, 2320, 2381, 2597, 2661) ; the bile proteins of rats (2483),guinea pigs (432),and oxen, pigs, hens, and fish (426)have been investigated. Meconium has been studied by immunoelectrophoresis (2517 ) . There are methods for concentrating cerebrospinal fluid in preparation for electrophoresis (365, 1128, 2585), although fractionation can be accomplished without concentration (2000). Proteins in normal cerebrospinal fluid have been characterized both by electrophoresis (105, 408, 681, 1460, 1461) and by immunoelectrophoresis (162,951 , 1391). The diagnostic significance of variations in cerebrospinal fluid proteins (1333) in plasmacytoma (2143), encephalitis (1244), tuberculous meningitis (895), meningeal hemorrhage (1367), leprosy (1387), multiple sclerosis (495, 496, 1334, 2522), multiple myeloma (2571), and schizophrenia (I080) has been considered. Fibrinogen appears in cerebrospinal fluid in most neurological diseases (578), the colloidal gold test depends upon qualitative changes in 7-globulin (2570), and lactic dehydrogenase isoenzymes increase with neurological lesions but not in mental disease (527). Free fructose occurs in normal human cerebrospinal fluid (2624). The albumins of cerebrospinal fluid and serum are immunologically identical even though their mobilities differ (277). Bovine cerebrospinal fluid proteins have been studied by immunoelectrophoresis (1435, 8461).

The proteins of seminal plasma have been studied by electrophoresis (9) and immunoelectrophoresis (682, 977, 1613 ) ; the proteins of sperm and seminal plasma are similar (1613). Variations in seminal plasma proteina correlate with climacteric hormonopathy (557). The coagulable proteins in the semen of rats

(1468) and guinea pigs (1591) have been studied. A report gives exhaustive information concerning the immunoelectrophoretic character of human vaginal and cervical secretions in health and disease (969). Follicular fluid proteins in cows are closely related to blood serum proteins (572). Human amniotic fluid has been studied (976), especially with reference to the immunological character of its proteins (1321, 2199, 2468). Bovine amniotic and allantoic fluids have been subjected to immunoelectrophoretic examination (20). Normal human sweat contains twentyone amino acids (475); its proteins have been compared immunologically with those of other normal body fluids (1807). The protein distribution in tears differs between normals and patients with eye disease (2387-2389). Chyle lipoproteins decrease while al-glycoproteins increase in patients with bronchogenic carcinoma and inflammatory pulmonary diseases (690). Electrophoresis has been used to study the effects on protein distribution in the aqueous humor of rabbits of acrylic corneal implants (2651, 2652). Bronchial secretions uncontaminated by saliva contain both plasma and specific salivary proteins (1519). The yAglobulin fraction in nasal secretion is instrumental in influenza immunity (2043). Proteins of pericardiac fluid are qualitatively the same as plasma proteins (2335). There are qualitative differences between the plasma and ear perilymph proteins of cats (1879). Protein distributions in miscellaneous fluids of pathological origin, including ascitic fluid (88, 1881), gingival pocket fluid (330),otitis media effusions (1631), pleural serofibrinous secretions of neoplastic origin (1595),cantharides blister fluid (,$so),and hydatid fluid from bovine lungs (1046) have been determined. Human Serum. Descriptions are given for the electrophoresis of serum proteins on cellulose acetate (669, 734, 1129, 1169, 1808), in agar (1268, 2518, .2686),in starch gel (221, 1023, 1328, 1531,2035),in starch blocks (2469), and in polyacrylamide gel (67, 158, 709, 1112, 2007, 2629, 2700, 2701). Human serum separates into fifty components in polyacrylamide gel (2629); gel filtration accouiits for the high resolving power of polyacrylamide gel, which property also makes it useful for separating equally mobile polymeric forms of plasma proteins (1482). Sucrose gradient electrophoresis is more reproducible than paper electrophoresis (2346). There are numerous improved techniques for immunoelectrophoresis (1099, 1119, 1529, 1608, 1661, 1748, 2048), including quantitative immunoelectrophoresis (28, 29, 31, 208, 289, 290, 697, 698,1411). Serums have been fractionated by ultracentrifugation prior to immunoelectrophoresis (487). The effects

of concentration upon mobility and diffusivity of serum antigens have been determined (2063). There is a new procedure for measuring yA-globulin (266). Several novel applications that are not strictly immunoelectrophoresis make use of immune reactions for detecting (196, 942, 2702) and measuring (897, 1338, 1584, 2175) proteins. An absorption procedure has been developed to convert general into specific antiserums (2140); absorption reduces the number of electrophoretic fractions in antisera (664). There are procedures for separating serum proteins and antibodies continuously in free solution (765), for preparing unpolymerized human serum albumin (1907), and for recovering serum proteins from gel beds by elution (344). There is an improved technique of sample introduction for disk electrophoresis (1707). Fractionated proteins can be measured by dyeing (788, 1341, 2100,2S06,8672),by reaction with KllnOa ( 2 5 2 4 , by fluorescence (826, 2250), and by polarography (297, 1013). Below a minimum concentration of protein, the uptake of dyes by electrophoregrams is disproportionately low (1282). X differential stain for ceruloplasmin has been developed (2139). Despite additional evidence that densitometry is inferior to elution as a means for quantitating proteins (1067, 1838), densitometry continues to be popular (802, 836, 1280, 1952, 2225, 2520). Trichloroacetic acid in formalin is a superior fixative for electrophoregrams (2487). Techniques for photographing electrophoregrams have been described (1125). Vitamin 1312 (1956) and dextran (547) have both been used to measure endosmotic flow. The radioactivity of proteins tagged with 14C and tritium (323) or with 1311 (280) can be measured after electrophoresis. Normal values of serum proteins as determined by fractionation in polyacrylamide gel (1629, 1829) are available. Sormal distributions among young adult Koreans (2072), among people of various age groups (911, 929), in old age (493, 2516), during various phases of normal pregnancy (183, 184, 440, @ I ) , and in the postpartum period (1973) have been reported. There has been a case study of familial bisalbuminemia (205). The pattern of serum prealbumins is complex (686) and exhibits polymorphism (687). The aZmacroglobulins display immunological heterogeneity (798). The frequency of occurrence of hyper-ylA-globulinemia in Swedish adults has been established (136, 137). Deep freezing and thawing leaves serum proteins unchanged (2471) unless the process is repeated many times (2136); the plasma of blood stored a t 4 ' C shows no chauge during fourteen days, but the p-fractions decrease when storage is prolonged (1427); opinions differ concerning the stability

of immunoglobulins to prolonged storage (478, 1512, 2056, 2263). Enough collagen is dissolved in normal human serum to be detected by immunoelectrophoresis (767'). The composition of maternal and umbilical cord blood serums differ (439, 1368). Embryospecific globulins have been characterized (2392, 2393), as have P-fetoproteins (2490-2495). Studies have been made of serum proteins in premature and full-term infants (308, 623, 629, 710, 2108) and in children aged three days to three years (lido) and seven to seventeen years (1611). The plasma of infants contains heme-protein that appears to come from a transformation of H b A3 (514). Several papers discuss the general diagnostic value of electrophoresis (1250, 1630, 1998, 2260). Serum protein irregularities have been reported in myocardial infarctions (1234, 1418, 2621) and congestive heart failure (1103); in thalassemia (234, 575), hemolytic disease in infants (323, 7 l l ) , polycythemia (1729), and leukemia (1850, 2S66); in tuberculosis (571, 1036, 1344, 8234), silicosis and tuberculosis (2246), coccidioidomycosis (2123), pulmonary sarcoidosis (1065), asthmatic children (1938), asthma and bronchiectasis (2219), chronic pulmonary purulence (1251), chronic bronchitis (839), whooping cough (1458), infantile pneumonia (84),and respiratory distress of the newborn (946); in hepatitis (121, 425, 1163, 1252, 1784, 18371,

cirrhosis (51, 2583), hepatitis and cirrhosis (1060, 1184, 2654, neonatal jaundice (1139), hepatic porphyria (t854), hepatic echinococcosis (55), and hepatobiliary diseases in general (438, 1182, 1185, 1355, 1577, 2308). The serums from patients with liver diseases contain hepatic protein (990); in liver disease, heavy metal binding by serum albumin diminishes while that by all serum globulins increases markedly (435). Serum protein variations are detectable in cholera (857), typhoid (1459),typhoid and paratyphoid (lasf?), dysentery (1169, 2295, 2590), gastric diseases ( I , 2229), ulcerative colitis (1052), steatorrhea (503), and chronic diseases of the digestive organs (2423); in renal diseases (2309), including nephrosis (1494), nephritis (1101), and pregnancy toxemia (2591, 2598, 2599) ; in skin diseases (502, 534, 1207, 1278, 1737, 2128); in muscular dystrophy (111,113,114)and neurogenic muscular atrophy (112). Serum proteins (699, 1473, 1804, 2322), including perchloricacid-soluble proteins (287) and haptoglobins (813), have been studied with relation to arthritis. It has been claimed that the Rivanol test correlates with increases in 7-globulins rather than Kith IgRI-globulin, which is characteristically high in severe rheumatoid arthritis (1279); but another report states VOL. 40,

NO.

5 , APRIL 1968

77 R

that IgM is precipitated by Rivanol while IgG and IgA are not (111). A thermocoagulable macroglobulin @@I) and an elevated 7-macroimmunoglobulin (953) appear in Waldenstroem’s disease. Thyroid diseases cause serum albumin to diminish; thyrotoxicoses and goiter cause increased 7-globulin while hypothyroidism reduces 7-globulin (1044, 1364) ; antithyroid serum immunoglobulins occur in thyroiditis (863). An IgM antibody is associated with acute local insulin reactions in diabetics (677). Dysproteinemia, especially lowered albumin, is typical of multiple sclerosis (1174,1259,1265) and an IgM antibody against brain extract occurs in multiple sclerosis (2165); 7-globulins are increased in Huntington’s chorea (501); ar-glycoproteins are elevated in poliomyelitis (2678);both IgA and IgG antibodies appear in serum immune to poliomyelitis (38); immunoelectrophoresis reveals an anomalous al-protein in the serum of mongoloids (63); a familial tendency to subarachnoidal and cerebral hemorrhages is accompanied by high al- and az-globulins (543); a familial polyneuropathy is associated with an abnormal protein in the serum and spinal fluid (831). Antinuclear autoantibodies appear in serums of erythematosus patients (1503); serum 61-globulins are elevated in systemic lupus erythematosus (1621); in other collagenoses the Pl-globulin may be decreased (441) ; IgM-immunoglobulins are markedly higher in collagen than in lymphoid diseases (736); az-globulins are missing from the serums of patients with Niemann-Pick disease if there is liver involvement (2166); no clearcut abnormalities of serum proteins occur in sarcoidosis (2211). Serum albumin diminishes and globulins increase as a result of severe burns (408, 2044); albumin diminishes disproportionately after severe blood loss (1309) and surgical trauma (518,778,2463); C-reactive proteins, orosomucoid, haptoglobin, alacid glycoprotein, fibrinogen, and ceruloplasmin are all increased after surgical trauma (514); patients splenectomized for Banti’s disease show increased serum albumin (2111); albumin is reduced while the a-globulins and glycoproteins are increased after fractures (979). Serum proteins have been studied in pediatric disorders (79, 420, 1269), smallpox (306), Coxsackie virus diseases (2145), periodontitis (169), uveitis (586, 1641), syphilis (251), falsely positive serological reactions for syphilis (1192); parasitic diseases (2247), including filariasis (247, 600, 601), schistosomiasis (726, 1780), leishmaniasis (419, 1919), trypanosomiasis (1567), and dracunculosis (1071). Immunoelectrophoresis can be used to diagnose histoplasmosis (989). Electrophoresis has been used to distinguish between the pregnancy-protein and 78 R

ANALYTICAL CHEMISTRY

trophoblastic disease (2021), to follow the course of Rh autoimmunization (2227), and to detect uterine tumors (1062). There is no serum protein change in threatened abortion or severe morning sickness (185) or in sterility except when accompanied by secondary amenorrhea or premature climacteric; these conditions display diminished albumin and increased y-globulin fractions (134). Ceruloplasmins in Wilson’s disease are immunologically identical with normal ceruloplasmin (100); they are high in Hodgkin’s and other lymphaticdiseases (2673). Vitamin D deficiency causes serum protein abnormalities which are slowly corrected by vitamin therapy (1060); folic acid deficiency causes no protein abnormalities (995). ACTH (1861) and steroid therapy (1861, 2133) reduce albumin and increase as-globulin (161). Prealbumin, albumin, wl-glycoprotein, and az-macroglobulin all bind sulfonamides (452). Ragweed reagins appear to belong to an uncharacterized type of immunoglobulin (862). Electrophoresis of serum from cadavers has diagnostic significance for a t least one day pose mortem (928,1505,1506). It has been well established that in severe cancerous conditions there is diminished albumin and increased globulin, particularly in the a-regions (3, 446, 871); this is specifically true of gastric (17, 1600, 1650), pulmonary (823, 1996, 2233), and skin cancers (d), and cancers of the female genitals (4, 165). A previously unreported serum protein fraction occurs in mammary cancer (613). A newly discovered globulin fraction is diagnostic of cancer (1263). In 19,000 patient examinations, 1.26% of serums were found to contain paraproteins (2010); these were 50% myeloma, 14% Waldenstroem’s, 6% lymphatic leukemia, 13% idiopathic, and l6y0 uncertain. Immunoelectrophoresis is superior to sternal puncture for early diagnosis of plasmacytoma (2336) and, combined with gel filtration, replaces ultracentrifugal analysis for diagnosing Waldenstroem’s macroglobulinemia (1438);it detects 20y0 more cases of myeloma than does paper electrophoresis (2138). More than one paraprotein may be present in myeloma serum (135, 1198). Within the IgG, IgA, and IgM categories there is antigenic heterogeneity (707, 1931, 2194). Several cases of the relatively rare IgD type of myeloma have been reported (336, 1297, 2589); eight cases of plasmacytoma are reported in which the abnormal protein migrates between transferrin and albumin instead of in the 7-globulin region (2142). Normal Ig.4globulins have mobilities ranging between those of yl- and a2-globulins, while myeloma IgA-globulins move uniformly; the heterogeneity of the

normals is owing to variations in charge rather than in molecular weight (1847). Myeloma IgA proteins may give heterogeneous patterns by polymerizing (2474). The mobility of urinary BenceJones protein differs depending upon whether the myeloma is of the IgG, IgA, or IgM type (509). Abnormal proteins indistinguishable from myeloma proteins occur in cancer patients exhibiting hypertrophic but not necessarily malignant clones of immunocytes (1026, 1422). Immunoelectrophoresis using specific antisera is useful in differentiating gammopathies (2090). Cryoglobulinemia can appear in dermatological diseases (1116) or have myelomatous, rheumatoid, or idiopathic origins (1678, 1679) ; cases with cryoprotein syndromes caused by cryofibrinogenemia (2690) and cold hemagglutinins (946) also have been discussed. Mammalian Serum. Normal values of blood serum proteins for mature cows (1832) and for bovines of all ages (2692) have been reported. There is a procedure for continuous electrophoresis of cattle serum and milk proteins (6001). Bovine r-globulins contain IgG, IgM, and probably IgA subfractions (1676); r-globulins appear in bovine fetal serum (145); direct transfer of globulin fractions from colostrum to calf serum has been demonstrated (1894). I t has been reported that high milk fat concentration correlates with relatively high concentrations of all serum proteins in cows (2693),but another study indicates that the relationship is more complex (1106). The types of serum transferrin and hemoglobin in Swiss cattle have been determined with a view to establishing genetic frequencies (1290); phenotype studies of serum albumin in Xigerian and European cattle (326), of hemoglobin, red blood cell carbonic anhydrase, serum albumin, and transferrin in Piedmont cattle (2107), and of postalbumins in the Romagna breed (2085) have been published. Twenty-four protein fractions in the blood serum of karakul sheep have been demonstrated by immunoelectrophoresis (1569). There is evidence for two subclasses of sheep IgG-immunoglobulin (746). Two-month sheep fetal serum contains albumin and aI-, a?-, and 6globulins; al-globulin disappears during the fourth month; no 7-globulin is present during embryogenesis (6669). Serum albumin of lambs remains unchanged after birth while there is a rapid increase in all globulins during the first ten weeks of life (598). Variations in the blood proteins of ewes (1510) and of lambs (1511) as affected by month of lambing have been investigated. In goats all serum protein fractions except yglobulin become more concentrated following exposure to high environmental temperatures (373).

Normal distributions of serum proteins in developing pigs (581, 1295, 1654, 1875, 1986) and mature swine (629, 635, 1616, 2283) have been reported. Starch gel electrophoresis of pig serum albumin yields thirteen subfractions that have been classified phenotypically (1285). There are at least two types of swine IgM-globulin (2440); swine and human IgM-globulins show immune cross-reactions (873). Porcine az-macroglobulin is close to human oz-macroglobulin in amino acid composition and physico-chemical constants (101). Swine ceruloplasmin exists in a t least three geneticallydetermined types (1054). Sixteen transferrin, three albumin, eight prealbumin, and six esterase phenotypes have been demonstrated by starch gel electrophoresis in the blood serum of Salernitana horses (790). IgG, IgM, and IgX immunoglobulins have been demonstrated by immunoelectrophoresis in horse serum (2191). Human and horse yglobulins contain antigens in common (1882). The pattern of serum proteins in horses as related to season of the year, sex, pregnancy, and lactation (1297) and the changes in the pattern in newborn colts (1296, 2287) have been studied. Embryo-specific a-globulins have been demonstrated in dog fetuses (24, 26). Dog immunoglobulins fall into at least six classes (1089,1090). Rabbit serum heme-binding proteins can be divided into six phenotypes (916);the 7-globulin of rabbits has IgG and IgM fractions (281); the changing pattern of serum proteins in developing rabbits has been studied (785). Seventeen protein fractions of rat serum are distinguishable by starch gel electrophoresis (602); serum protein patterns of female albino rats show a seasonal variation (2547); the a?- and p-regions of rat plasma reversibly inactivate Serratia marcescens endotoxin (1789); serums from fetal, newborn, and adult rats have been compared electrophoretically (25); two a-proteins occur in fetal rat serum that are not present in adults (1203); an a2M-macroglobulin appears only in pregnant rats and their fetuses (284, 285) ; orally administered proteins of eggs, human colostrum, and human serum appear, antigenically intact, in the serum of rats (434). Guinea pig serums separate into about twenty fractions by immunoelectrophoresis (849). Immunoelectrophoresis of mouse serum yields twenty-one fractions (579); the 7S-,yglobulins show variations in different strains of mice (458). Other rodents that have been studied include gray squirrels, whose serum has two prealbumin fractions which comprise up to 9% of the total protein (2596); ground squirrels, for which a taxonomic system based on electrophoresis is proposed (1684); sus-

liks, which show characteristic protein changes during hibernation (561); gerbils, whose serum separates into seventeen fractions on starch gel (2033);voles (1471) and nutria (349). Electrophoresis has been used to establish the phylogenetic relationships of primates (864); serum protein fractions, including lipo- and glycoproteins, have been determined in normal adults of nine species of monkeys (83). Normal serum protein patterns have been described for Indian and African elephants (2153), cats (913), buffalos (1172, 2087), mink (1895), hedgehogs (1332),and dolphins (794, 1564). The az-macroglobulin of hedgehogs is homologous to human a2-macroglobulin (1866).

Normal distributions of serum proteins are avaibable for the domestic animals (2435) and there has been an extensive examination of polymorphism in their proteins (2434). Normal values have also been published for furbearing carnivores (216, 245). Fetoproteins of twelve mammals have been studied in relation to human a-fetoprotein (841). The effect of Mycobacterium infection upon the serum protein patterns of cattle has been studied (422, 457, 2628). Albumin and yglobulins are sharply reduced in calves with diarrhea (1311); dyspepsia in newborn calves correlates with abnormal patterns in the maternal serum protein (1747). Nematode infestations in cattle (1999) and kidneyworms in swine (147) produce antibodies in the host serum that are detectable by immunoelectrophoresis. Variations of serum proteins occur in Aujeszky disease in swine (2232), swine fever (1554), and swine listeriosis (59). Sheep with helminth infestations (599), sheep being immunized against trichinella (236), sheep on magnesium-deficient diets (1180), buffalos vaccinated against brucellosis (538), and dogs with distemper (2279) show serum protein changes. Ferrets with a disease closely resembling Aleutian disease in mink display a characteristic monoclonal hyper-7-globulinemia (1167). A specific serum protein fraction is able to transmit mink Aleutian disease (9'74). Studies have appeared on the effects of radiation upon serum proteins in rats, mice, and monkeys (1147), rats (1146, 1'742, 1818, 1859, 1994, 2242), mice (2109), rabbits (789, 1602, 1728), and guinea pigs (1470);the effects of burns in dogs (1787) and rats (607, 742, 2 2 9 4 , of electroshock, high-protein diets, and ACTH on rats (250),of orotic acid upon rat P-lipoproteins (2606),and of various experimental diets on rats (109, 407, 533, 1291, 1320, 1514, 2127); and the serum protein changes in rats given adjuvant arthritis (691, 1210), castrated rats (249), rats given thymolytic drugs (2037), hamsters given corticosteroids

(597),rabbits given sex hormones (177) and geraniol (2390), guinea pigs with brucellosis given prednisolone (1393), rats (1546) and rabbits (99) with experimental choleostasis, rabbits with ligated portal veins (2190); dogs with experimental intestinal obstruction (585), experimental peritonitis (358), experimental myocardial infarction (2670), and dogs given methyl cellulose and endotoxin (212); hamsters infected with Leishmania ( l @ l ) ,cows and guinea pigs with tuberculosis (lsld), guinea pigs with tuberculosis (556) and brucellosis (1050), rabbits with histoplasmosis (19), mice with listeriosis (2356), mice with staphylococcus infections (1211), and germ-free mice challenged orally with Candida albicans (1863); rabid sheep and goats (2158);and mice with spontaneous amyloidosis (891). A transient non-immune pre-az-fraction appears when horses are immunized with diphtheria toxoid (10);most of the immunity of horses to diphtheria toxiod appears in the @-globulins (1I ) or ?,-globulins (1170) ; the sequence in which immune proteins appear when horses are immunized to diphtheria has been d e scribed (1612); a similar study involves the development of immunity by mice to hog intrinsic factor (2093). Immune 7Sy-globulin in mice catabolizes at a rate different from the 7Syglobulins as a whole (2396). The immune bodies in anti-anthrax serum are located in the r-globulin region (2494). Serum protein changes occur in rabbits hyperimmune to Leptospira (800, 1824, 2091) and streptococcus (1792), and rabbits immune to Brucella (2682) and F u s a r i u m poae (685) and with experimentally induced serum sickness (1495). Guinea pigs made sensitive to 2,4-dinitrochlorobenzene develop a new protein belonging to the IgA group (20.45). Serum protein changes after production of ratinto-mouse chimeras (1864,1865),heart allotransplantation in dogs (428), and kidney and spleen autotransplants in dogs (1349) have been reported. Changes of blood serum proteins as the result of tumor growth have been found in canine mastocytoma (1027), mouse mastocytoma ( 3 5 4 , rat sarcoma (1974), hepatoma in rats (872, 1678), carcinoma in mice (86,905),rabbits with Brown-Pearch carcinoma (872), mice with plasmacytomas (129, 1556, l741), and tumors induced by transplanting ovaries into the spleens of rats (.%239). Specialized Blood Proteins. Many methods have been proposed for measuring haptoglobins (294, 360, 473, 1024, 1769, 2310, 2518, 2641) and establishing haptoglobin types (718, 1589, 1932, 2149). Distribution of human haptoglobin types has been studied extensively (60, 80, 852, 967, 1133, 1639, 2503) and new types have been reported (834, 2077). Variations in serum haptoglobin caused by hepatoVOL 40,

NO. 5,

APRIL 1960

e

79 R

lenticular degeneration (1674) and hemolytic anemia in children (61) have been described. Haptoglobin types in Belgian swine (941) and haptoglobins in mice (1908) have been characterized. The polypeptide chain structure of human (2276) and of dog (2470) haptoglobin and the nature of haptoglobinhemoglobin complexes have been investigated (937,1622,1754). Radioactive iron has been used to identify and measure transferrin (2265, 2266); its relative mobility in agar has been measured (1OOO). Apotransferrin and transferrin have been separated and measured independently (2664). Transferrins of types differing from the maternal can be demonstrated in fetuses at nine weeks (1675). The peptide structures of transferrin C and a geneticallydetermined variant have been compared (2039). The two binding sites of transferrin and of conalbumin form iron complexes that are equally stable (40). Transferrin types have been investigated in cattle (291, 1448, 1449, 2084), goats (2653),carp (608),andmice (1213, 1958, 8656). The biological half-life of transferrin in mice is 1.5 days (2395). There are improved methods for demonstrating (1202, 1964) and preparing (2060, 2249) group-specific proteins. A method for measuring plasma fibrinogen has been described (2462); the immunochemistry of fibrinogen fragments obtained by the action of streptokinase has been investigated (2176); the anticoagulant fraction of incubated fibrinogen has two components which disappear rapidly in the presence of thrombin ( 2 4 2 ) ; the antihemophilic factor can be separated from fibrinogen preparations by electrophoresis (24.4, 506). C-reactive protein migrates with almost any fraction from albumin to y-globulin depending on pH within the range 7.0-8.6 (544);it appears to be composed of six loosely aggregated polypeptides (Af. W. 20,000) (875). Mobilities of complement components can be determined by using their hemolytic activities to locate them (2574). Immunoglobulins. A committee sponsored by the World Health Organization has suggested a nomenclature for the immunoglobulins that is based upon their known immunochemical structure (359). These proteins include the globulins which show antibody activity-i.e. the yl-macroglobulins (also called ¯oglobulins), of molecular weight approximately 1,OOO,OOO, and the yrglobulins of molecular weight approximately 16O,OOO, both of which occur in normal serum; and the paraproteins including Bence-Jones proteins of molecular weight approximately 40,000, myeloma proteins, and Waldenstroem’s macroglobulins, which show no antibody activity but are related to serum y80R

ANALYTICAL CHEMISTRY

globulins antigenically, by electrophoretic mobility, and by their ultracentrifugal behavior. Properdin and proteins of the complement system are specifically excluded from the classification. The immunoglobulins occur in serum but may also be found in any body fluid. Under this system of nomenclature immunoglobulins would be designated optionally Ig (an abbreviation for immunoglobulin) or y from the position they occupy in electrophoregrams. The immunoglobulins recognized in this nomenclature include IgG or yG (previously designated as y, 7Sy, 6.6Sy, y2, or yes),IgA or yA (previously called &A or ylA), and IgM or y M (previously ylM, BzM, 19Sy, or ymacroglobulin) ; another class of immunoglobulin designated IgD or yD has been recognized since the publication of the proposal for immunoglobulin nomenclature. The immunoglobulins are made up of peptide chains held together by disulfide linkages, which can be separated by reduction followed by electrophoresis or gel filtration. A molecule of IgG, whose structure is the best known, is composed 20,000) and two of two light (M. W. heavy (M. W. 55,000) peptide chains, and the structures of the other immunoglobulins are relatable to this configuration. The heavy chains of each immunoglobulin account for its antigenic specificity and are the basis for separation of the immunoglobulins into classes; the IgG heavy chain is called y, that for IgA is a,and that for IgM is p ; as other classes are recognized the same correspondence is to prevail. The previous general designation of heavy chains as H (also called A) is to be discontinued. The light chains of all classes of immunoglobulins are antigenically alike, which accounts for the cross reactions among them. The light chains are of two types called K (kappa) and X (lambda), and their presence causes an immunoglobulin to fall into one of at least two antigenic types, Type K if the molecule contains K chains, or Type L if it contains X chains. As an example of usage, IgA may be either IgAK or IgAL. The previous designations of light chains as Type I, 1, or B (now called K) and Type II,2, or A (now called A) under the general category L (also called B) are to be discarded. If the chains in a class of immunoglobulins are known, its structure can be indicated by writing the peptide symbols as molecular formulas: e.g., IgAK has the structure azKs and IgAL is azXz. IgML would be written &A2)+, to indicate that IgLM’s are polymeric. Bence-Jones proteins are composed of light chains, usually dimeric, having structures K2 or X2. When peptide chains are hydrolyzed by the action of proteolytic enzymes such as pepsin or papain, the antigenN

N

binding fragment is now called Fab, and the crystallizable fragment is called Fc. The previous usage of A, C, or S for antigen-binding fragments and of B or F for crystallizable fragments, as well as the special terminology I, 11, and I11 used for rabbit peptides, has been discarded. The term Fd has been reserved for fragments that do not fall into either the Fab or the Fc class. The peptide origin of a fragment can be indicated by attaching the appropriate symbol as a subscript: e.g., Fc, indicates that the fragment is the crystallizable portion of a y chain. Fab fragments obtained by pepsin digestion which have two antibody sites should be written F(ab‘)a, while the notation for univalent fragments is Fab‘. It has been proposed that the same classification be applied to the immunoglobulins of domestic animals (1869). Mercaptoethylamine (2144), thioglycolate, mercaptoethanol, and borohydrate (1937), and mercaptoethanol incorporated in the electrophoretic bed (1901) have been used to dissociate the chains of immunoglobulins. One extended study has shown that both the heavy and the light chains of IgG globulins are heterogeneous both in mobilities and in amino acid compositions (257, 540, 963, 1937). The heterogenetiy of immunoglobulin peptides has been reported frequently (4.42, 463, 464, 689, 1035, 1226, 1930, 1982, 2038, 2256, 2257, 2405). Hybrid molecules of the types IgA heavy chainIgG light chain and IgG heavy chainIgA light chain have been synthesized from isolated chains (1914). The frequency of occurrence of K and X chains in pathological sera has been studied (1340). After enzyme digestion of peptide chains, electrophoresis has been used to characterize the fragments (754,1596,1900,2262,2536). Carboxymethylation of sulfhydryl groups with iodoacetate alters the mobility of peptide chains and fragments, and this property can be used to estimate sulfhydryl groups (706). Amino acid sequences of Bence-Jones K and A chains ( I & ) , of the C-terminal peptide from the heavy chain of horse IgG and IgG (T) (2569), and of the C-terminal peptide from the heavy chain of rabbit IgG (843) have been determined. It has been reported that the net charge of normal IgM antibodies correlates inversely with the net charge of the antigen (2014). Optical rotatory dispersion measurements are being used in an attempt to obtain data on periodic structure and differences of myeloma proteins (2579-2582). The light chains of guinea pig IgG globulin and of antihapten antibodies have different electrophoretic patterns (1 749); guinea pig IgG antibodies to lymphatic tissue show heterogeneity depending upon the tissue antigen ( l a r d ) . There is a method for

preparing ferritin-labeled immunoglobulins (416). Hemoglobin. Many papers propose methods for hemoglobin electrophoresis (339, 552, 1712, 1802, 1946, 2041, 2147, 2412) and the measurement of hemoglobin A2 (36, 37, 48, 49, 262, 560,578,574,646,717,1475,1710,1873, 2485, 2509) which is important in the

diagnosis of thalassemia. One method makes use of rheophoresis to improve hemoglobin separations (647). A technique is described for separating the hemoglobins from a single red cell (1526). Methemoglobin migrates more rapidly than hemoglobin; it accounts for several zones when mixtures of hemoglobin and methemoglobin are subjected to electrophoresis (411). Commercial cyanmethemoglobin standards have been criticized on the basis of the results of electrophoretic and other analyses (1218). Several methods for characterizing the peptide chains of hemoglobins have been proposed (648, 1069,1231,1675,2612).

Transhemation occurs between human hemoglobin and human or rhesus monkey serum albumin, but not with albumins from non-primates (1260); i t takes place more readily between albumin and fetal hemoglobin than with adult hemoglobin (2314,2640) ; transhemation also occurs between methemoglobin and serum albumin (1261, 1660). The peptide chains in rhesus and human hemoglobin have been compared (2397, 2398). The distribution of hemoglobin types in the population of Liban has been established (371). Four hundred patients with abnormal hemoglobins have been classified with respect to frequencies of distribution of the various abnormalities (2050). A description of the composition and genetic basis of abnormal hemoglobins is available (190). Hemoglobin variants have been reported in association with thalassemia (719, 1382, 1953, 24lO), sickle cell anemia (303, 796, 1277) and other anemias (390, 1312, 1947), cyanosis (693, 1672, 1673, 1798, 2634), nigremia (2224), thrombocytopenic purpura (1313),polycythemia (414), and glucose-6-phosphate dehydrogenase deficiency (1375). Other variants have been reported that are not necessarily associated with a disease (62, 160, 265, 312, 321 , 51 7, 792, 1053, 1120, 1619). Studies on fetal hemoglobin include new variants (1038, lV78), a naturally occurring hybrid (2413), and distributions in fetuses (2657, .9685), newborns and adults (2499). Fetal hemoglobin from cord blood oxidizes spontaneously to give methemoglobin (295). I n newborns, methemalbumin predominates over free plasma hemoglobin, which occurs in concentrations approximating 2.5 mg.% (1851). Deep freezing of hemolysates converts normal hemoglobin to forms having different migration rates (410).

Although methods for the electrophoresis of hemoglobins of animals have been published (1378, 2327), the attention of the reader is called to the section on methods for human hemoglobin, which should work equally well. Chimpanzees display three hemoglobin types and gibbons have two (1003); Macaca irua has five types (172) and Macaca nemestrina four (504); examination of 450 samples revealed only one hemoglobin type in baboons (357); the peptides of baboon hemoglobin are very similar to those of human hemoglobin (173). Studies on bovine hemoglobin include changes associated with development (1212, 2150), determinations of the mobilities of hemoglobin varieties (650), a study of hemoglobin and transferrin types (2560), and a phenotyping study of hemoglobin D in Nigerian cattle (327). The inheritance of hemoglobin types in zebus (1689), in a bison-bovine hybrid (328), and in horses, donkeys, hinnies, and mules (2448) has been studied. Abnormal hemoglobins accompany erythrocyte sickling in whitetailed deer (1200). Sheep develop an abnormal hemoglobin when bled to the point of anemia (275, 649). The two normal varieties of cat hemoglobin have low affinities for oxygen (2377). Of five bat species, two were found to have heterogeneous hemoglobin (1615). Rats have at least five kinds of hemoglobin (668, 669); progress has been made on analyzing peptides from rat hemoglobins (1483-1485). Polymorphism of mouse hemoglobin has been described repeatedly (738, 1648, 2411, 2558). A sloth had two hemoglobins and a South American opossum had four (2280). The hemoglobins of chickens and quail (2098) and chickens (531) have two main components; five adult and three embryonic hemoglobins can be distinguished in chickens (958); changes in the hemoglobins of developing chicks have been described (1961, 1962); the peptide chains of chick embryo hemoglobin have been classified (762), and peptide maps have been published for hen hemoglobins I and I1 (54). The hemoglobins in many species of birds have been investigated (828, 2161, 2341). Hemoglobins in lizards (869) and turtles (1466) have been studied. Hemoglobin of frogs has two electrophoretic fractions (24.61, 2.401); the embryonic hemoglobin of toads differs not only from adult toad hemoglobin but from any other known hemoglobin (1305). Lampreys have hemoglobin with two electrophoretic components (2056); h@sh have six hemoglobin zones which classify into five phenotypes (1773);the hemoglobins of teleost fishes are complex, with each fish having at least three kinds (374, 1235, 1960, 2600, ,9649); hemoglobin of salmon longer than fifteen centimeters migrates cathodically, whereas migration of

hemoglobin components is increasingly anodic as the fish diminish in size (1234); improved patterns result if fish hemoglobin is converted to cyanmethemoglobin previous to electrophoresis (2648). Cells and Cell Components. Mobilities of healthy human and animal red blood cells have been measured (2026);cell mobility is affected by aging of the cell (1481,2546);the migration of thalassemia red blood cells is abnormally rapid (2027). The effects upon erythrocyte mobility of viruses (2325), bacterial amylase (846), aggregating agents (938), agents affecting the N-acetylneuraminic acid bound to the cells (604, 2182), and antibodies (2068) have been studied. Leukocyte mobilities differ from normal in leukemia, Hodgkin’s disease, and other diseases (103, 2059); irradiation increases mobility of lymphocytes (2292);the mobility of thrombocytes in plasma, but not in water, is diminished by adenosine diphosphate (2183). Acrylamide gel yields fourteen nonhemoglobin fractions from red blood cells as compared to fifteen in starch gel and ten in agar (2430); by using enzymographic reactions on electrophoretic strips as many as twenty-eight protein fractions from red cells are demonstrable (2510); when solubilized with 0-niercaptoethanol and 5% Triton X in 8 M , urea, stromal proteins separate into many bands (2160);a sialoprotein of molecular weight approximating 300,OOO has been isolated from ox erythrocyte stroma (1439); human erythrocyte stroma has been analyzed for amino acids (242). Reticulocytes contain transferrin and az- and &antigens (2036). Cationic proteins isolated from granules of polymorphonuclear leukocytes account for their antibacterial activity (2680); this activity is independent of enzymatic action and appears to depend upon the ability of the proteins to damage bacterial cell membranes (2679,2681);leukocyte alkaline phosphatases appear to be globulins of the a1 and a2 types (819). Thrombocytes contain a t least fifteen soluble proteins, ten of which are specific antigens (641). The mobilities of bull, boar, rabbit, cock, and human sperm cells have been reported (238). The charge density of cells may depend upon their rate of oxygen utilization (2573); it is not affected by whether the cells are spread or suspended during fixation (1738). Normal, proliferating, and malignant liver cells have characteristic mobilities; neuraminidase reduces the mobility of malignant cells but not that of proliferating cells (781). Liver cells are rwistant to the action of neuraminidase (604). The kinetics of neuraminidase action correlate with the kinetics of cell mobility change (780). Tissue culture cells increase mobility as a result of fixation with formaldehyde or osmic VOL 40, NO. 5 , APRIL 1968

81 R

acid (1539). Exposure to antigen diminishes lymph node cell mobility (2343). Carbon tetrachloride poisoning diminishes the mobility of liver cells (663). The mobilities of normal and polyoma virus-transformed hamster kidney fibroblasts have been measured (739).

A method and an apparatus for separating and measuring proteins from a single cell have been described (1043). Reports on components of rat liver cells describe analysis of the nucleolar proteins (904) and the discovery that partial hepatectomy increases the mobility of the remaining nuclei (417);there are a t least fifteen proteins in liver cell membranes (1718), thirty antigens in hyaloplasm and cytoplasm granules ( l l 4 4 ) , and nine components of the tissue-specific antigen of microsomes (772). The nuclei and mitochondria from rat liver and wheat embryo have mobilities that are similar but distinguishable (317 ) . h method is described for fractionating the hydrophobic proteins of mitochondrial electron transfer chains (2374); rat liver mitochondria contain ten antigens, four of which are specific (21.92); rat brain mitochondria contain four anodic and two cathodic protein fractions (700). A variety of neoplastic and normal cell cultures all contained seven anodic and five cathodic protein fractions; the tumor cells have higher concentrations of anodic proteins than do normals (776); three histones have been isolated from HeLa cells (2291); infection of mammalian cell cultures with pox viruses results in the production of a large number of soluble antigens (460);a study has been made on the effects of sarcolysine on the mobility of Ehrlich ascites tumor cells in relation to their sensitivity to drugs (1292).

Mammalian Tissues. A technique has been described for obtaining concentrated solutions of soluble brain proteins by ultracentrifugation of homogenates (64); mammalian brain proteins are very heterogeneous (98, 631, 1683,1948,1949,2011, 2207); the S-100 ultracentrifugal fraction contains seven electrophoretically distinct components (859); fourteen water-soluble protein fractions have been separated from bovine neuroglia (2095); individuals fall into three groups on the basis of the mobilities of an albumin extractable from cerebellum, medulla, and spinal tagging is cord (2097); methi~nine-*~S preferable to other methods for detecting brain protein fractions (1066). Homocarnosine has been measured in mammalian brain (1127, 2373). Electrophoresis on Pevikon of calf heart or skeletal muscle extracts produces eight fractions (448);in heart muscle the ratio of contractile to sarcoplasmic proteins found by electrophoresis is 3.35 for the ventricle and 6.14 82 R

ANALYTICAL CHEMISTRY

for the atrium (l745),which differs from the values found by Kjeldahl or inferometric methods; heart excitoconductor tissue has more fast-moving components than does contractile tissue (1979); in dogs the fast-moving sarcoplasm components increase at the expense of the slower ones during experimental myocardial infarction (1490)and experimental atherosclerosis (899); prolonged exposure of rabbits to microwaves causes increased heart muscle phosphorylase and diminished myogen (898). I n agar gel sarcoplasm from skeletal muscle yields seven zones, cardiac muscle six, and smooth muscle ten; all fractions have enzymic activity (1065). Beef muscle develops new peptide fractions while it is being aged for food (1443); a previously undescribed protein with isoelectric point 8.5-9.0 and molecular weight 34,500 has been isolated from the skeletal muscle sarcoplasm of pigs (2180); among all classes of vertebrates the number of sarcoplasmic proteins ranges between four and fifteen, with fewer fractions among the cold-blood animals (2201). There are a t least three acidic components of myoglobin (2506); opinions differ concerning the existence of a special fetal myoglobin (1849, 2620) ; myoglobins have been studied in sloths (1074) and whales (118); thirteen of the peptides from tryptic hydrolysates of myoglobins of horses, cows, and humans are similar (6445); members of each primate superfamily have identical myoglobin peptide maps, but there are differences between families (1032). The nature of Fnactin polymers (887),peptide fragments of tropomyosin obtained by tryptic digestion (207l),and the substructure of myosin (1188, 2561) have been investigated. Autoimmunization to an antigen that develops in denervated muscle may cause nerve-resection anemia (1006). Much has been done toward elucidating the substructure of collagen (388, 398, 755, 756, 1007, 1302, 1846,2638).

Some proteins of human skin are immunologically distinct from plasma proteins (730, 735); the proteins of rat skin have also been studied (21, 2031); proteins from the skin of burn patients are rich in antibody-forming and transport proteins, but otherwise distributions are normal (2009); wool keratin has been fractionated and its components analyzed for eighteen amino acids (1649). Dehydrated rats lose from their posterior pituitary glands a protein fraction which is restored by rehydration (1988). Thyroid proteins have been studied with respect to their changes in disease (376, 377, 1398, 2066); chromatographic and electrophoretic methods for measuring proteinbound1311 in thyroid gland homogenates correlate well, although electrophoresis

gives higher values (1426). Of thirteen antigens found in thymus, only one is organ specific (2086). Pancreatic pcell homogenates of mice have been investigated (993). Chromaffin granules from the adrenal medulla contain one major and several minor protein components (2607). Four sulfosalicylic acid-soluble kidney proteins are similar in mammals, birds, and amphibians (1568); starch gel electrophoresis of proteins from normal kidneys of golden hamsters gives twenty-four bands, four of which disappear in transplantable kidney carcinoma (2174). Extracts of mouse salivary glands have four electrophoretic bands, three of which contain nerve growth factors, while the fourth inhibits nerve growth; a thymus inhibitor also is present (1002). The antigens of prostate glands (1536) and protein distributions in adenomatous prostates (1640) have been studied. The antigens from normal human liver (867) and their changes in disease (866, 1380, 2576) have been described; the normal distribution of proteins in rat liver (199, 865, 1145), their ontogenesis (610), and their changes in hepatoma (2173) and after poisoning with turpentine (211) and with carbon tetrachloride (806) have been investigated; bovine and equine liver proteins have been immunochemically analyzed (609). Human spleen antigens differ from those in serum (8137, 2319), as do those from the spleen and liver of rabbits (197); equine ferritins from spleen and liver separate into three fractions (389, 1258); most horse ferritin is mono- or dimeric, but tri-, tetra-, and pentamers also have been demonstrated (2605) ; the protein patterns of spleen extracts from vertebrates do not correlate with phylogenetic development (198). The electrophoretic pattern of lymph node cell extracts of cattle is altered by leukosis (2568). Corneal proteins (1594) and lens proteins (1068), especially the crystallins (272, 1517, 2614,) and antigens (164, 1395, 1711, 2353) have been studied; changes in lens protein composition associated with cataract have received much attention (228, 576, 768, 1424,261 7 ) .

Studies on tissue substances include proteins from bovine enamel (363, 1164), phosphate-containing peptides from human dentine and ox bone (1346), IgA globulins, kallikrein, and transferrin in human bronchial mucous membrane (962), protein variations correlating with the pneumoconioses (1977), proteins (1957) and vitamin B12-binding substances (367, 1097) in gastric mucosa, antigens of human colon (563), proteins of bovine and porcine blood vessels (82), infiltration of serum proteins into aortic tissue as a result of stress (888, 889), the cysteine/cystine ratio in kidney cortex (505), kidney

proteins of domesticated animals (2890), proteins from normal and tumorous liver and kidney (775),globulins from granulomatous tissue from arthritic joints (77l),proteins from synovial membranes (770), and proteins from the uterine cervix (163). An acidic protein extractable from cell nuclei of normal lung tissue does not appear in homologous malignant neoplasms (206). Electrophoretic studies of multiple tissues include autoantigenic substances in the liver, kidney, lung, and spleen of rats (618), and protein distributions in fetal and adult rat muscle, liver, and brain (2202). Proteins in bats show wide individual variations which do not permit generic classification (1465). The general methodologies for agar electrophoresis (1489) and immunoelectrophoresis (884) of tissue extracts have been summarized. Lower Vertebrates. Immunoelectrophoresis of chicken antigens should be done in agar containing one t o two percent NaC1; in lower concentrations precipitations do not occur, while a t higher concentrations precipitation lines are diffuse (2393). Normal proteins of duck serum have been examined by electrophoresis and immunoelectrophoresis (1384) ; interspecies relationships of serum proteins from albatrosses and petrels (350) and from chickens, turkeys, and ducks (2694) have been studied. Allotypic specificity in the immunoglobulins of hen serum has been demonstrated (2259);the normal immunoglobulins of chickens are electrophoretically more like mammalian IgA than IgG (2400); if the bursa of Fabricius is extirpated, chicks develop IgMinstead of IgG-globulin (1586); IgG production but not the ability to produce antibodies can be restored by injecting lymphoid cells (484);a rare hereditary defect in fowl causes high IgM-globulin at the expense of IgG-globulin (351); there have been analyses of the peptides in chicken immunoglobulins and haptenspecific antibodies (854); two chicken ¯oglobulin precipitins have been demonstrated (385). Studies have been made of serum proteins from chick embryos (27,2552,2554) and chickens of various ages (2456,2525); adult and embryo-specific proteins coexist in the twelve-day chick embryo (2575). Changes in the blood serum proteins of chickens occur as a result of vitamin E-deficiency (2457,2458), the administration of hormones (33), ascarid infestation (931), sarcomatosis and myelocytomatosis (1393),erythroblastosis (1585, 1586, 2323, 2443, 2444), spirochetosis (1848),vaccination against Newcastle disease (1lor),and salmonella infection (2489). Histones from chicken liver ribosomes and chromosomes are electrophoretically indistinguishable (1388); developmental variations occur in proteins of muscles (1176,

1177)and lens proteins (816,1051, 1376, 2696) of chick embryos and chicks; storage causes marked changes in the soluble proteins of chicken muscle (1444, 1834). The feather S-carboxymethyl proteins from various bird species differ greatly (948). There is an extensive series of studies on the molecular genetics of avian proteins (149-153). Taxonomic classification of birds on the basis of serum proteins requires caution (1138). The mobilities of flavoproteins from hen serum are identical with those in egg yolk, but egg white flavoproteins differ (274). Electrophoretic heterogeneity appears to occur in the ovomucoids of all avian species (702)and the differences can be only partly accounted for by differences in sialic acid content (1573);egg white proteins of chickens are polymorphic (516, 1880); Adelie penguin egg white is unusually high in sialic acid, but otherwise the egg proteins are similar to those of the lower water fowl (701). Eleven of the twentythree peptides from tryptic digests of chicken and duck ovalbumins are common to the two species (7'43);a catalaselike activity unrelated to the enzyme or to iron content is associated with hen ovalbumin (485). Hen egg yolk livetin yields sixteen protein zones on starch gel (1037); the changes in egg yolk proteins during embryogenesis have been followed (2080,2081). The cytotoxic activity in the serum of a snake migrates in the 7-globulin region (43); Anolis lizards have been classified on the basis of blood protein interrelationships (868);the major serum protein component of crocodiles, caimans, and alligators is an a-globulin, and the pattern of caiman serum proteins differs from those of the other two species (2002); the normal ranges of serum proteins in Chrysemys picta turtles vary with the season (1508). The molecular weights and carbohydrate content of the peptide chains of IgG and IgM proteins from bullfrog serum, as well as their antibody activities, have been determined (1469); whole body gamma-radiation causes frog serum albumin to increase (1350); work on frog tissues includes analyses of soluble proteins from all organs of tadpoles and adults (1462),of embryo cell sap (2231), of skeletal muscle (882,1909, %'ZOO), and of myocardium (56);serum proteins of salamanders have been , 925). investigated (404,793,801 Serum protein distributions of carp (507)in health and disease (2360), and of the golden shiner (23429,as well as variations in fish serum protein during starvation (1310), exposure to salt water and electroshock (1633), salt concentrations and seasonal variations (1195), with age (Sod), and owing to sex differences (1136) have been investigated. Antibody production in rainbow trout occurs in the 0-globulin region (398,

1898). Taxonomic studies based on electrophoresis of fish serum (1300, 1416,1750,2454,2455,2472) have been numerous. Special proteins of fish serum include transferrins (286, 724, 1627), haptoglobins (1236), and hemopexic proteins (6243). Vesicular bile of teleosts contain six to seven proteins (427); periencephalic fluid from carp contains serum proteins and one additional protein (2244). Fish tissue proteins that have been investigated include lens proteins (301, 923, 1933), trout liver histones (1811), a pathological melanoma protein from skin lesions (IO@), and muscle proteins (1778, 1815, 1816). The amino acids in fish intramuscular plasma proteins have been analyzed (164). Invertebrates. Hemolymph proteins have been fractionated in butterflies and moths (1322, 1323, 1410, 2369), silkworms (722), army worms (1324, tomato hornworms (loss),cockroaches (22,666, 2408), locusts (623, 1549, 1604, crickets (1507),houseflies (283), blowflies ( @ I ) , fruitflies (324, honeybee (1397),milkweed bugs (2402, 2403), bloodsucking bugs (4729, and European corn borers (430). The hemoglobins of harlequin flies are remarkably varied (334, 1463, 2409). The hereditary distributions of 10 enzymes and 11 other proteins in 43 Drosophila strains have been investigated (1031, 1377). Miscellaneous insect proteins that have been studied include those from blowfly larvae (1316), from Drosophila pupae (.468), hypopharyngeal gland proteins of bees (933), sepiapterin from butterflies (567), and cuticular tanning hormone from roaches and flesh flies (749). Hemolymph proteins of various crustaceans including lobster (2316), crabs (522,568, 569),and isopods and amphipods (2594) have been fractionated. Antigens of Trichinella spiralis and Schistosoma mansoni have been studied (628). The growth factor from a nematode, Caenorhabditis briggsae, exists in nine active forms having essentially identical amino acid compositions (2125). Investigations of molluscs include characterization of snail hemolymph antigens (1593),snail muscle protein (1872,2115), snail egg protein (2626, 2627), slug egg protein (187),and shellfish mucopolysaccharides (1232). The amino acid composition of histones from molluscs, sea urchins, and starfish are similar to those from calf thymus (1812 ) . Work done on echinoderms includes a study of soluble proteins from developing sea urchins (2238),a classification of sea cucumber hemoglobin peptides (1464),and determination of ribonucleic acid and protein content from nucleoli and ribosomes of starfish oocytes (2515). Pogonophora extracts contain two h e m e VOL 40, NO. 5, APRIL 1968

0

83 R

globins and strong a-naphthyl acetate esterase (1467); brachiopod shell proteins can be used for classification ( I 098).

Investigations of proteins from animals of many species have been directed toward establishing phylogenetic relationships (76,1176,1372). Lipoproteins. There are new methods for fractionating serum lipoproteins (791, 1971, 1983), including one that makes use of stable flow freeboundary electrophoresis (2425); special techniques are available for finding the distribution of cholesterol-bearing proteins (2184, 2619), for assaying phospholipids directly on paper (2302),and for distinguishing between exo,wenous and endogenous hyperlipemia (1352). The best concentration of acrylamide gel for preparing lipoprotein patterns is 3.75% (1701). Techniques for detecting or measuring lipoproteins include turbidimetry (696), fluorescent staining with zinc tetracycline (1935), and staining with iodine (1706, 2301). There have been studies on the normal variation of serum lipoproteins with age and sex (2626, 2653) ; ingestion of lipids and cholesterol changes the quantity and quality of serum lipoproteins (220, 1403); antibodies for serum lipoproteins do not react with other serum proteins (SO) ;a new human @-lipoproteinantigen has been reported (482); the etherextractable portion of lipids in serum lipoproteins is significantly higher in atherosclerosis (81); extraction with ether-alcohol does not affect the mobility of and p-lipoproteins (52);delipidization with 2-octanol has no effect upon their antigenicity (1599); a slow a2lipoprotein, which is neither an enzyme nor ceruloplasmin, oxidizes ferrous iron (1934). h pre-beta lipoprotein occurs in 76y0of ischemic heart disease (346); aylipoprotein decreases in mobility and quantity in the leukemias and Hodgkin's disease (1409); variations in lipoproteins occur in postoperative infants (842), thyroid disease (276, 1223, 2264), cholecystitis (1130, 1716, 2282) eczema (1725), insulin shock (296), multiple sclerosis (2550), and xanthomatosis (Y-

(2106).

Lysolecithin,is transported by plasma albumin (2354). A number of comparisons of lipoproteins in various species including man have appeared (142, 424, 763, 1187); disk electrophoresis of rat serum lipoproteins shows seven zones (1704), while the lom-density lipoproteins which are centrifugally homogeneous have three electrophoretic fractions (611); an abnormal highdensity lipoprotein forms during 2acetamidofluorene carcinogenesis (1702); the electrophoretic behavior of rat serum lipoproteins indicates that the molecules are smaller than those of the human variety (1703); the egg-yolk lipoproteins of snakes, frogs, and fish have been 84

R *

ANALYTICAL CHEMISTRY

studied (7, 8). The chylomicrons of human and rat plasma separate into several zones (1705). Glycoproteins. There are methods for separating serum mucoids for analytical (1118, 1989, 2691) and preparative (1509) purposes; a procedure for the enzymatic degradation of chondromucoprotein has been proposed (174); methylene blue can be used to stain sialomucoprotein (1770). Variations in serum mucoproteins have been reported in rheumatic disease (1644), in joint diseases, burns, and mechanical trauma (1583), in skin diseases (1115), and in tuberculosis (1917 ) . Perchloric acid filtrates contain orosomucoid, haptoglobin, and albumins (288); the chemical (1289) and immunochemical (1288) properties of orosomucoid have been investigated. There have been numerous fractionations of mucopolysaccharides from various sources (343, 774, 1186, 1633, 1663, 1915). The distributions of serum glycoproteins in fetuses and newborns (1022), infants given prednisone (619), nursing infants (1137), and adults (1165,1657,1809) have been reported. Variations in blood glycoproteins occur in post-operative recovery (620), mongolism (2051), thrombocytopenic purpura (894),diabetes mellitus (1823), multiple sclerosis (2623), and acute dysentery (2278), but not in mental retardation (549). A @l-glycoprotein antigen has been reported to occur only when cancer is present (94). Glycoprotein contents of pleural, peritoneal, and edematous exudates have been fractionated (355); whole-body x-irradiation increases LYI- but reduces 02- and pglycoproteins (1779); al-, (YT, and @-glycoproteinsin rat serum increase during polyarthritis caused by Freund adjuvant (881). Glycoproteins soluble in phytic acid have been fractionated (253). There are eight variants of crl-acid glycoproteins in serum; six of these have similar molecular weights and carbohydrate and amino acid composition with 11 to 12 oligosaccharide side chains (1600). Newly reported glycoproteins include a prglycoprotein (960) and an az-glycoprotein (1061) froin human serum, a light-chain glycoprotein from mouse serum (1576), an a1-acid glycoprotein from rat serum (1158), and a subfraction of @-parotin (1700). Three glycoprotein fractions have been isolated from the aortic media (1189); there is evidence that aortic glycoproteins vary with individuals and are genetically determined (215). Histones. Improved methods for histone electrophoresis have been proposed (922, 1084,2213,2482). Histones from nuclei of chick embryos (1197), avian hemopoietic tissues (1927), ,pig leukocyte nuclei (830), trout liver (1810), erythrocytes of various animal species (2500), thymus glands (546, 1648, 1771, 1975, 2116, 2214), and

tumors (307, l77@ have been investigated. Plants. Some plant extracts inhibit acrylamide polymerization unless a special method of sample introduction is used (1744). Many investigators have been interested in the protein composition of wheat grain (166, 4.97, 671, 672, 703, 863,1221,1428, 2073, 2404,2623,2660) and flour (5, 499,lO34,1075,1121,1327, 2270); peptide mapping indicates that

glutenin is built up of gliadin peptides (660). Corn grain proteins have been fractionated (320); zein separates into many protein fractions (1326, 1652); it is a heterogeneous protein containing disulfide-linked aggregates (2459). The electrophoresis of barley proteins (346, 1597) has been studied systematically, with the result that seven basic, four neutral, and five acid proteins have been isolated (1540-1545); proteins from four varieties are immunoelectrophoretically identical (104); barley proteins lose their characteristic pattern during malting (2248); pure barley prolamine for amino acid analysis has been prepared by continuous electrophoresis (2639). The proteins, including enzymes, of wheat, barley, and barley malt have been characterized by immunoelectrophoresis (886). Legume seeds that have been analyzed include soybeans (655, 2077, 2221-2223) , beans (1222, 2089, 2124, 2674), peas (369,1360, 1361,2876), peas and hemp (1254), and alfalfa (674). The possibility of classifying legumes on the basis of their seed protein patterns has been considered (319). The protein patterns of conifer seeds are more complex than those of the mature plant (627); sorghum seed protein patterns are highly complex (2110); winter squash seeds contain nine water-soluble proteins (1055); Osage orange seeds contain seven protein zones, two of which are hemagglutinins (1096); castor beans and licorice seeds contain hemagglutinins (1070, 2514); castor bean allergen migrates in eight distinct zones, all of which have the same antigenic specificity (2299). Species interrelationships of seed proteins of the mustard family (2495) and of a genus of grasses (1085) have been studied. It has been proposed that protein patterns might be used to classify potatoes (566, 1401, 1402, 1926, 2697); a high concentration of free amino acids in potatoes indicates bad sowing qualities (1658). Onion meristems contain a greater variety of proteins in higher concentrations than do the fleshy leaves (659). The amino acid compositions of proteins from the coininon vegetables have been determined (2004). There is a method for preparing fruit tissues for protein electrophoresis (454). Studies on plant tissues include pro-

teins in wheat leaves (2630), in wheat plants during their entire life cycle (498),in corn leaves (58) and sap (1466)) in soybean leaves with regard to their resistance to fungus (987), in seedlings of beans (624, 2205)) peas (1436), and green gram (570), in alfalfa roots (469, 470), in citrus fruits (455), in rubber trees (2391), and in ivy (784). Whole chloroplasts (1736, 1805) and chloroplast proteins (333), including chlorophyll-protein complexes (2415) and pigment proteins (1755) have been studied, Pollen proteins have been studied as antigens (2017))in relation to meiosis and development (1392),and as a means for determining variety relations (2082), Flavan-3,4-diols and related compounds in acacia heart wood have been characterized (614). The stinkhorn mushroom contains a hemagglutinin specific for group 0 red blood cells (1681). Gibberellins and related compounds have been investigated (2156). Studies of the mobility of Chlorella alga cells as a function of growth rate (1425) and studies of their protein composition (232, 2102) have appeared. Humic coinpounds in podzolized soils (2205) and in peat and coal (1148), and the effect upon their mobilities of complesed iron and aluminum (1108) have been investigated. Microorganisms. Numerous papers suggest classifying fungi on the basis of their protein electrophoregrams (248, 450, 626, 877, 935, 1432, 1743, 2602). The antigenic structure of Candida (214, 1659) has been determined; the skin reaction caused by trichophytin has been traced to a carbohydrate fraction (2604); the protein composition of Coccidioides immitis depends upon the medium in which it is grown (2209). Cilia proteins of Tetrahymena are made up of subunits with molecular weights approximating 40,000 (2557); Plasmodium berghei has a complex protein composition (489,2281). Antigens of Salmonella (721, 11 73,

1791, 2267, 2293)) Shigella (ZO2-204)) dfycobacierium (394, 41 2, 850, 231 7 ) ) Clostridium (2062), Brucella (580, 988), Leptospira (1825), Streptococcus (747, 1160, 2166, 2529), Staphylococcus (992), and Escherichia coli (729) have been

examined. The effects upon electrophoretic mobilities of species differences in Rhizobium (1499), of fimbriae in coliforni organisms ( l o r d ) , and of lysis of a marine psychrophile (1440) have been investigated. i\licrobacteria can be classified on the basis of gel electrophoresis, cell Rall analysis, and serological reactions; Jf. flawum is probably a corynebacterium (2024). Escherichia coli proteins change in composition during the growth phase (1963); some of their basic proteins are similar to histones (191); they have been analyzed for oxidase and ATPase (2566); E . coli

ribosomal proteins are demonstrably altered by a mutation (1980); colicins vary in mobility depending upon the bacterial strain from which they originate (2269). There are six basic proteins in Serratia marcescens (269); the protein composition of Rhodopseudomonas palustris has been studied (972); the composition of riboqomes from Halobacterium cutirubrum has been determined (186); proteins and esterases of group D streptococci have been compared (1417 ); extracellular products of group A streptococci can be separated by starch gel electrophoresis (2611); hemolysins from different strains of staphylococci can be classified on the basis of the hemolytic activity of their electrophoretic fractions (944); the toxic protein of bacterial cell walls has been isolated (1022); a toxic protein has also been obtained from Vibrio parahuemolyticus (2460); Bacillus subtilis spores display high proteolytic activity (209). Progress has been made in measuring the mobilities of animal viruses (611, 1523-1525, 1633, 1535); viruses can be purified by electrophoresis (1887); viruses frequently separate into more than one component during electrophoresis (65, 258, 740, 2152, 2496) ; two variants of cephalomyocarditis virus can be distinguished by electrophoresis (536); classification of arboviruses by immunoelectrophoresis has been attempted (62.4). Plant viruses display heterogeneity of components (2196); both bean mosaic (1441) and tobacco mosaic (159) viruses can be classified into numerous strains by measuring their electrophoretic mobilities; a tobacco mosaic virus protein can be prepared by continuous electrophoresis (2104). The capsid of polyoma virus appears to contain only one protein (2418); electrophoresis after tryptic digestion indicates that mouse encephalitis virus is probably composed of three polypeptide chains (2058). A number of papers deal with protein composition of bacteriophages (462, 635, 667, 1708).

Enzymes. The optimum conditions for separating various enzymes on paper (1587), in starch gel (1886), and by continuous flow electrophoresis (2608) have been outlined. Although the results of studies on human isoamylases are contradictory, it seems that the parotid and pancreatic varieties are electrophoretically distinguishable (127, 12S, 227, 1757); amylolytic activity has been detected in albumin, a-, p-, and r-globulins (2241, 1826, 2533); one worker reports four amylases from the parotid and four from the pancreas (1758); there appears to be general agreement that the predominant amylase in serum and urine in pancreatitis is pancreatic in origin and that it migrates in a region between p-

and 7-globulins (30,760, 1100, 1241, 2184). Man, sheep, rabbit, guinea pig, cat, and horse are monomorphic with respect to serum amylase while rat, pig, cow, dog, and goat are polymorphic (983, 2185). The amylase patterns of both man (1768) and fruitfly (1181) are apparently inherited. Germinating barley seeds contain a t least nine amylaser, but all kinds are rarely found in single seeds (779); maize plant tissues have no amylase activity but the seeds develop amylase during the germination period (2129). Other carbohydrate-hydrolyzing enzymes that have been studied include cellulases from microorganisms (1245, 1755) and marine molluscs (1776), 6galactosidase from snails (874),various glycosidases from rat kidney (2019), aglycosidase from honey (2586), aldolases from various animal hources (85, 748), and sugarcane invertase (57). A new method for measuring serum and urinary lysozymes shows that they are moderately elevated in chronic infections and sarcoidosis (1790). A chromoprotein obtained from algae is useful for locating proteolytic enzymes after zone electrophoresis (1581). Trypsin contains four components, but only one is proteolytic (827, 1856); an cyzmacroglobulin in plasma combines with and stabilizes trypsin (1073); fin whale chymotrypsin has one anionic and one cationic component (1532); the heterogeneity of pepsin proteases has been demonstrated in several animal species (939, 2065) ; four proteolytic enzymes occur in human gastric juice (991); the activation of prorennin is accompanied by the release of two alkaline peptides (361) ; several new proteolytic enzymes have been found in pig pancreas (124); release of dye from a Congo Red-elastin coniplex can be used to measure elastase activity (934); twice re-crystallized elastase contains a proteolytic component distinct from elastase (1389); numerous proteases have been demonstrated in rat saliva (654,2003). Renins from pigs and humans have different mobilities (1836); an angiotensinase occurs in plasma when there is hepatic disease but not normally (1243); two red cell components show angiotensinase activity (2647). Commercial thrombins are heterogeneous and contain two fibrinolytic fractions (2312); electrophoresis is useful for determining purity or chemical alteration of prothrombin (861); in free solution pure bovine thrombin migrates as a single component but prothrombin migrates as two components depending upon pH (2189). Plasminogen and plasmin are inhibited by yglobulin antibodies (2016); the fibrinolytic mechanisms activated by heparin and by streptokinase differ (2513); streptokinase forms equimolar complexes with plasmin and plasminogen (564); streptokinase is free of VOL. 40, NO. 5 , APRIL 1968

e

85 R

cystine and cysteine and its molecular weight and amino acid composition are known (665); human plasminogen preparations contain four active components, but these may result from changes during the isolation procedure (405) ; one paper describes the process by which urokinase breaks down plasminogen (406); the fibrinolytic enzymes of leukocytes are distinct from plasmin (975). Plant proteases that have been studied include ficin (1801), papain (1800))bromelin (397), fungal proteases (239, 906, 1293)) and proteases from slime bacteria (1105, 2584). Protease inhibitors occur in potatoes (2662)) in serum al-globulin (688, 1339, 1454), in serum al- and az-globulin and in the inter-a-region (2177))and in egg white proteins of various birds (1694); the interactions of proteases and their inhibitors have been investigated (1 795); the inhibiting effect of sulfated polysaccharides upon peptic action is caused by the formation of complexes with the substrate rather than by interaction with the enzyme (1502). Elevated serum y-glutamyl transpeptidase may indicate liver disease (l242, 1788, 2064). Human leucine aminopeptidase occurs in several molecular forms (193, 194, 201, 1220); two serum leucine aminopeptidases are found only in liver disease (1690, 2531); a method for measuring leucine aminopeptidase has been proposed ( 3 2 ) ; an aminopeptidase distinguishable from normal leucine aminopeptidase occurs by the ninth week of pregnancy but is absent in choriocarcinoma (2271). In rats each organ contains two aminopeptidases; one shows no electrophoretic mobility while the other has a mobility similar to, but distinguishable from, those of other organs; serum aminopeptidase appears to originate in the skin (1634). Brain extracts of cats and rabbits contain electrophoretically immobile dipeptidase but the dipeptidase in chicken brain migrates (676). The distribution of cattle pancreatic carboxypeptidases is diverse (125) and is consistent with two allelomorphs in the general population (9543). Purified oxytocinase (cystine aminopeptidase) occurs in two interconvertible forms (1254, 2255). Adenosine deaminase from calf serum exists in four active forms (4991). Three L-leucyl-p-naphthylamidases occur in human serum (1219); those in the organs are inhibited by L-methionine except those extracted from muscle (2272). Five distinct arylamidases have been obtained from various human organs (9.56). Rat liver w-amidase separates into three active fractions (217 ) . Six arginase isoenzymes have been obtained from human erythrocytes (1113) ; erythrocyte and liver arginase in humans are electrophoretically distinct (372); snail arginase is 86 R

ANALYTICAL CHEMISTRY

anionic and rat arginase is cationic, but their activities are similar (378). There are new methods for detecting (342) and measuring (785) cholinesterases after electrophoresis in starch gel. Serum esterases are diminished in diseases of the liver (695, 2187, 2632); a technique for detecting C’1 esterase activity (complement) which is deficient in hereditary angioedema has been developed (2238) ; no abnormal esterase pattern appears in blood serum (1476) or skin extracts (1478) as a result of dermatoses; an improved starch gel technique permits the resolution of three previously unknown esterases in human serum (1284); two rare and apparently inheritable cholinesterase variants have been found in the serum of African natives (2486). Each human organ has a specific esterase isoenzyme pattern (2136); esterase patterns vary during embryonic development (2646); human adipose tissue contains five esterases (490) and brain contains 15 (638). Three esterases occur in the retinas of men and other animals (673) There are 18 esterases in bovine muscle (1437), 19 in mouse serum (102, 1819, 1820)) and five in rabbit and rat liver microsomes (1067). Fat ingestion causes a marked increase of esterases in intestinal lymph and serum of rats (1369): there are tissue-specific and sex-dependent differences in the esterases from rat liver and kidney (2168) ; the subcellular locations of rat brain esterases have been investigated (230); in the hamster, the esterase patterns of cancer cells do not resemble those of normal cells (1281). Miscellaneous studies on esterases include those in bird serum (11221124), crayfish hepatopancreas (562), snail organs (2625), silkworm brains (1751), whole arachnids (1885), legume root nodules (745), figworts (2577))bean leaves (2057))dermatophytes (1566))and mycobacteria (1698). Genetic control of esterase patterns has been demonstrated in dogs (1359), rabbits (917)) rats (l20), mice (1776, 1777, 1843, 2054), houseflies (116, 1766))butterflies (364)) fruitflies (1087), and maize (2169, 2170). A lipoprotein lipase has been demonstrated in human serum (1408). There are new methods for fractionating serum alkaline phosphatase (2427, 2643). Two serum acid phosphatases appear in Gaucher’s disease (855); the mobilities of alkaline phosphatases are abnormal in leukemia (2023) and in polycythemia vera (2447); of three fractions, the al-alkaline phosphatase may be the only one that increases in pulmonary, hepatic, or neoplastic disease (1079); seven types of serum alkaline phosphatases can be demonstrated in liver diseases, each disease showing a different pattern (2530); a slowmoving alkaline phosphatase occurs in some normals and sometimes as a result I

of disease (1719). One report describes four kinds of alkaline phosphatase originating from liver and bones, small intestine, kidney, and some uncertain source (2368), while another describes three kinds originating from liver, intestine, and some unknown source (195). Serum alkaline phosphatase patterns of children and adults differ (2661); urinary phosphatases also differ with age (619). There has been much interest in an alkaline phosphatase that appears in the maternal serum and seems to be of placental origin (196,630, 1201, 2022, 2025). Xuch attention has been given to red blood cell phosphatases, in part because of the possibility of classifying them genetically (713, 833, 1132, 1721, 1942). Human semen has three acid phosphatases, while vaginal fluid contains two (87). Human males and females have major immunoelectrophoretic differences in urinary phosphatases (622) ; some individuals have one and some two urinary phosphataqes (620). Xeuraminidase decreases the mobility of human liver alkaline phosphatase, but does not affect the intestinal form (1661). Alkaline phosphatase isoenzymes have been demonstrated in bovine bile (1855), hog kidney (1746)) rat mammary glands (2547) and livers (168)) guinea pig gingiva and alveolar bone (1692),mouse pancreas (2381) and small intestine (2635)) chicken serum (741, l S d Z , 2595), and fruitflies (1086, 2159). iicid phosphatases from red blood cells have been studied in monkeys (1317) and kangaroos (1318); acid phosphatases from hemolymph of bee moths (642) and from different organs of a number of animal forms (1419, l4SO) have been studied. An inorganic pyrophosphatase occurs in rabbit seminal plasma (1029). Numerous methods for resolving lactic dehydrogenase isoenzymes have been proposed (223, 878, 919, 1005, lOl~,1039,1225,1335, l 4 4 ~ , 1 4 8 6148Y, , 1785, 1936, 2078, 2307, 2365, 2441, 2549, 2636, 2668, 2684); there is also a method for glucose-6-phosphate dehydrogenase (1969); a method for peroxidase as well as lactic and malic dehydrogenases in plant extracts is described (2162). Lactic dehydrogenase isoenzyme distribution has been determined in serum of premature and fullterm infants (381)) normal and diseased children (255, 2667), healthy and diseased adults (1822), with special reference to myocardial infarction (462 , 612, 1264, 1491, 1814, 2157), liver disease (777, 1488))malignancies (1306, 2635) , skin, diseases (1,477), pulmonary embolism (1325), miscellaneous diseases (973), and thermal shock (1559). Lactic dehydrogenase distributions in lymphocytes from adult and fetal spleen and thymus have been compared (693, 1457) ; lactic dehydrogenase in white blood cells is reduced in

leukemia (515, 589, 590) and during the process of cell culture (273); human blood platelet lactic dehydrogenase isoenzymes are independent of those in serum (1040) and their pattern remains approximately the same throughout life (380). Hemolyzates from persons sensitive to fava bean proteins show characteristic lactic dehydrogenase patterns during hemolytic periods (591); fava bean sensitivity is also accompanied by a deficiency of glucose-6phosphate dehydrogenase (302). Determination of lactic dehydrogenase isoenzymes in urine is useful in diagnosing kidney disease (615, 725, 924). Lactic dehydrogenase isoenzymes have been assayed in a miscellany of human materials including spermatozoa (2601), normal and infertile semen (1799),testis (1992), endometrium (SOSO), normal and leukemic bone marrow ( 5 9 4 , cultured lung cells (429), skin (1370), soft tissues in developing fetuses (822, 1606) and adults (1152),gingiva (2579), normal and diseased kidney (662), aortic tissue (I@+$), normal and diseased muscle (382-384, 1153, 1466, 1835, 2212, 2372), diseased liver (2188, S386), brain tumors (821), diseased mammary glands (2303), intestinal mucosa in malabsorption syndrome (768), malignant gastric mucosa (181, 1353, 2655), skin tumors (295), and miscellaneous malignant tissues (1904, 1905). The zymograms of “nothing dehydrogwase” resemble those of lactic dehydrogvnase (2117). Studies on lactic dehydrogenases of lower animals include a demonstration that the enzymes of swine and man are immunologically related (1950), a genetic investigation of polymorphism in baboons (2358), B determination of isoenzyme distribution in cancerous rats (1088, 2407) and mice (1877, 25356), and proof that neonate pigs can absorb unaltered lactic dehydrogenase through the intestine (157). Investigations of lactic dehydrogenases in animal tissue include developmental studies of the enzyme in the eye lens of cattle (847, 2315), in the lenses of cattle and rabbits (231) and rabbits (892), in rabbit liver and retina as related to experimental retinitis (1734); in rat pituitary (997), submaxillary gland (2378), liver mitochondria (33), and many organs and tissues (368, 2406) ; in guinea pig testis (264); in mice infected with Riley virus (2650) and in various mouse tissues (2465); in bovine fetal organs (582), in cattle affected by oxalic nephropathy (584) and by liver flukes (683); in tissues of normal dogs (178); in nerve tissues of cats (820) and in primate brains (2357); during the development of heart, liver, and muscle in cats, pigs, and guinea pigs (1520) and of mouse mesenchyme in vitro (1666); and in mammalian cell cultures (2656). Two commercial preparations of lactic

dehydrogenase worked equally well with glyoxalate or pyruvate substrates (22.22). Some isoenzymes of mouse lactic dehydrogenase exist in several interconvertible forms (1026). Lactic dehydrogenases in the milk of humans, hogs, and cattle throughout, the lactation period have been studied (1155, 1156, 1208). There has been a comparative analysis of lactic dehydrogenase isoenzyme patterns from mammals, birds, amphibia, fish, molluscs, insects, polychaetes, and protozoans (34). Miscellaneous lactic dehydrogenase studies include those on birds (515, 817, 1492, 2040, 2616, 2687), fish (856, 996, 1307, 1752), cockroaches (838),yeast (1722), and bacteria of the Streptococceae tribe (1076). Human glucose-6-phosphate dehydrogenases have been studied with respect to hereditary variations (1194, 1551), in skin cell cultures (658), in various heterozygotic tissues (1585), in liver (2206),in red blood cells (2545), and as a marker substance for investigating leiomyomas (1586); malic dehydrogenase variations occur in infectious hepatitis (1047), in the lymphocytes of maturing thymus and spleen (459), and in fetal and atrophic muscle (1049); two zones of uridine diphosphoglucose dehydrogenase activity are obtained by cellulose acetate electrophoresis of human and rat liver extracts (2118). Malic dehydrogenase occurs as multiple fractions in the tissues of rats (2120), mice (971), and chickens (477, 12O4), in chicken and pig mitochondria (1205), in swine ascarids (1997), in maize root tips (2424), in Pziccinia urediospores from infected rye (I&?O), and in malaria parasites (2217); it is much more concentrated in the heart than in the foot and retractor muscles of a snail (1590); most of the malic dehydrogenase in broadbeans is associated with the mitochondria (318); its isoenzyme patterns are useful in avian taxonomy (1206). Glucose-6-phosphate dehydrogenase occurs in two forms in kidney, liver, and breast of rats, but only one in spleen and lung (1903); the inheritance of its isoenzymes is sex-linked in horses and donkeys (1622), hares (1774), and fruitflies (2665). Miscellaneous electrophoretic studies of dehydrogenases include glutamic from rat organs (1828) and dogfish liver (488), formic and glutamic from peas (2420), isocitric from rat organs (2116), alcohol from rat retina and liver (1237) and fruitflies (600), aldehyde from bovine liver (2016), a-ketoglutaric semialdehyde from Pseudomonas (18), xanthine from fruitflies (2658), uridine diphosphoglucose from rat liver and kidney (2119), and galactose from various rat tissues (525). Several kinds of dehydrogenase enzymes have been studied simultaneously in parasitic worms from swine (625), in thyroids of cattle, pigs, and

rabbits (178.2), in rat organs as a function of age (2154, and in legume root nodules (744). Disk electrophoresis is superior to manometric methods for measuring bacterial hydrogenases (12, 13). There is a method for assaying plant tyrosinases (1083) ; seven tyrosinases are distinguishable in the ascomycete Podospora (675); the multiple forms of broadbean tyrosinase all contain one atom of copper per mole (2012). A new method for oxidases, including ceruloplasmin, depends upon enzymatic peroxide production (2020). Work on miscellaneous oxidases includes purification of a phenoloxidase from mealworms (985) and a laccase from basidiomycetes (2226), and demonstrations that the L-amino acid oxidase of viper venom is a single substance (2699) and that rat liver and duodenal xanthine oxidases are different proteins (2070), as are rat liver 3a- and 3P-hydroxy steroid oxidoreductases (605). Two catalases occur in human blood (1528) and in snail hepatopancreas (1889); six are found in rat tissues (1731). Irradiation of barley seeds (829), virus infections of beans (692, 2286), and rust infections of wheat and rye (1431) and of flax (78) cause increases in the number of peroxidase isoenzymes. In Nicotiana each allele in the S locus determines a specific peroxidase isoenzyme (1S17). One paper indicates that lactoperoxidase is homogeneous (2354, while others report isoenzymes (586, 387). Multiple forms of peroxidase have been reported in petunias (982), beans (1940, 1941), peas (1434, 2%$O),cabbage (437), fig trees (1253), rye grass (1656), and a miscellany of plants (1429). Amino acid decarboxylases in various bacterial strains have been investigated (714).

Two glutamic-oxalacetic transaminases occur in the blood serum and tissues of humans (2S2, 1605, 2047, 2676), pigs (1732),and rats (1126,1796); pig heart cytoplasm containsat least four (1504) ; the qualitative distribution of the two transaminases in fetal and adult thymocytes is the same, but they differ quantitatively (1048) ; mature red blood cells contain only one of the two, but the immature cell3 contain both (1455) ; human semen is rich in glutamic-oxalacetic transaminase (1S02); rat liver contains two L-tyrosine-oxdoglutaric transaminases (1364); it has been established that the concentration of glutamic-oxalacetic transaminase in serum reflects the degree of tissue damage in neoplastic diseases (2171). Hexokinase isoenzyme distribution has been studied in human blood cells (634, 1009), in the tissues of various mammals (909),in fruitflies (1677), and in experimental hepatomas (2339); aldolase isoenzymes have been fracVOL 40, NO. 5 , APRIL 1968

87 R

tionated in experimental hepatomas (2339), rabbit brain (1845), and chicken tissues (978) ; a genetically determined variant of red blood cell galactose-lphosphate uridyltransferase has been discovered (1621) ; cancer chemotherapy alters serum phosphohexose isomerase distribution (2609). Creatine phosphokinase isoenzymes have been studied in human serum (2258) and serum and tissue (2497); in muscle-wasting conditions the isoenzyme pattern of creatine kinase resembles that of fetal muscle (1623, 2131). The kind of univalent cation present in buffer affects the immunoelectrophoretic behavior of pyruvic kinase (2288); two types of pyruvic kinase are present in rat liver (2383). In man, the isoenzyme pattern of adenylate kinase is genetically determined (720). Trout muscle conbains three electrophoretically distinct enolases (492). Purified phosphoglyceric kinase from rabbit muscle yields two electrophoretic fractions (126).

There is a method for identifying deoxyribonucleases following acrylamide gel electrophoresis (322); the mobilities of these enzymes have been measured in cat, rabbit, rat, and mouse (2005); ribonuclease isoenzymes in human tissues, serum, and blood cells have been studied (1991); two forms of leucyltransfer ribonucleic acid synthetase are found in Escherichia coli (2666). Two methods for detecting carbonic anhydrase activity in electrophoregrams have been proposed (643, 1592); human erythrocytic carbonic anhydrase isoenzyme activities vary with age, thyroid disease, and vitamin BI2 deficiency (2569), and with heredity (1381); serum contains carbonic anhydrase that does not come from erythrocytes (1871, 1872); the number of red blood cell carbonic anhydrase isoenzymes varies among mammalian species (1045). Miscellaneous reports describing the application of electrophoretic methods to enzymes include isolation of an acylation apoenzyme from pigeon liver (893), xylose reductase from rat and human liver (2121), a sulfhydryldisulfide interchange enzyme from beef liver (565), and lactate cytochrome c reductases from yeast (92). The electrophoretic characteristics of cytochrome c have been studied by freesolution electrophoresis (171, 731-733, 1199).

Many papers report analyses of a number of enzymes of different classes: these include hydrolases and dehydrogenases in human blood cells (1217), intestinal mucosa (1216), jejunal biopsies (769), mammalian pancreatic islets (2382), human urine (2534), and chicken tissues (637, 1709) ; hydrolases in human pancreas (1190) and gastrointestinal mucosa (1216), tissues of various animals (1769), whole spider 88 R

0

ANALYTlCAL CHEMISTRY

mites (1765), and potatoes (2241), and hydrolase zymogens from rat pancreas (1827); and various classes of enzymes in heart muscle (311, 1066), blood serum and brain of many vertebrates (677679), experimental hepatomas (1783), viper venom (1646), milk-ripe barley (1730), aspergillus (2437), and pollen (1850). Most human enzymes display genetically controlled polymorphism (949)'

Hormones. Human growth hormone separates into two (ISSO),three (2126), or four (94.9) fractions with essentially identical properties; rabbit antiserum to human growth hormone contains three antibodies in the y-globulin region (2006); human, but not bovine, growth hormone forms a complex with human albumin that migrates between a2- and 8-globulin (474) ; simian and human growth hormones are closely related (1839); bovine growth hormone exists in multiple electrophoretic forms that appear to be interconvertible (764, 1993); in mice, the major component of pituitary extract is growth hormone (1376) which is more concentrated in diabetic than in control mice (1691); administration of norethynodrel to rats depletes growth hormone and stimulates prolactin (148). The apparent prolactin activity of ox growth hormone is caused by contaminating prolactin which, unlike human prolactin, is easily removed by electrophoresis (2542). Human pituitary prolactin contains three antigens (1329) ; adenohypophyseal explants cultured in vitro can be used to produce prolactin (2018), which may be internally labeled with tritium and 14C (396). Long-acting thyroid stimulating hormone (TSH) is high in the y-globulin of myxedemics; its action may be antagonistic to standard TSH (1001); electrophoresis shows that preparative chromatography of TSH on DEAE cellulose causes deamidation and loss of activity (476) ; normal bovine TSH binds more readily than 1alI-labeled TSH to antibodies against the hormone (966); peptide mapping distinguishes TSH from other pituitary glycoproteins (861). Adrenocorticotrophic hormone in plasma can be assayed by radioimmunochemical methods (708). Chorionic and pituitary luteinizing hormones (LH) show immunological cross reactions (751) ; an antiserum serologically specific for LH has been prepared (661); four methods of preparing LH and follicle stimulating hormone (FSH) have been compared (608). FSH and interstitial cell stimulating hormone (ICSH) isolated by starch block electrophoresis from the urine of postmenopausal women show different protein, sialic acid, hexosamine, and hexose compositions (1603). Pituitary gonadotropin moves between a2- and 8-globulin, chorionic gonadotropin between 8- and

y-globulin (2642). Of rat pituitary hormones, prolactin migrates fastest, growth hormone slower than albumin, and TSH and LH migrate very slowly (1276).

Gonadotropic substances in urine of pregnant mares separate into two fractions with activities corresponding to FSH and ICSH (1064). Electrophoresis can be used to determine insulin content of the pancreas (1148) and plasma (1674, 1862); tagging the tyrosines of insulin with iodine results in several electrophoretically distinct derivatives which are determined by the degree of iodination (233, 353); reports that insulin is bound by a,-globulin in cats (844), albumin and a-globulin in guinea pigs (1019), a-globulin in normal and 0-globulin in diabetic humans (1059), and by a2-macro-, 8-macro-, and ai-globulins in humans (845) are contradicted by reports that there is little (809) or no (810) binding of insulin by serum proteins; in starch gel, insulin is heterogeneous (2519) ; one fraction of insulin is colored, fluorescent, and possibly allergenic (588). An improved method has been proposed for measuring the thyroxinebinding capacity of prealbumin (1786); the thyroxine-binding capacity of prealbumin is lower for women that for men (335) ; heart disease reduces the thyroxine-binding capacity of serum proteins (2478); Tris instead of barbital buffers should be used for investigating binding of thyroxine and iodotyrosiiies by serum proteins (110, 901, 2703); between three and five serum proteins transport thyroxine or triiodothyronine (996, 1337, 1383, 1@8, 1618, 2419);

native thyroglobulin and that prepared in vitro do not differ in mobility (1821); thyroxine-binding globulins do not transport lipids (2480); thyroxine transport by the inter-a proteins increases in pregnancy, liver disease, and cancer, but not in thyroid disease (2186); in thyroid carcinoma most of the iodine is albumin-bound (2013); the effect, in guinea pigs, of thyroglobulin immunity upon thyroxine and triiodothyronine plasma transport has been described (1913). The normal distribution of iodinated proteins in thyroid extract includes both globulins and albumin, but in thyroid cancer only thyroalbumin is present (2067); the ratios of thyroid thyroxine and triiodothyronine vary depending upon the kind of thyroid pathology (2289); progress has been made in defining the structure of sheep thyroglobulin (1994) ; the thyrosinebinding proteins estracted from human pituitaries migrate in a re,' ion corresponding to serum 8-globulin (9a)). The coronary-dilator protein froin hypothalamus separates into three fractions, one of which is biologically active (795). The calcium-depressiilg ability of electrophoretic subfractions of p r o -

tin A has been studied (1625). A melanin-dispersing hormone in crabs is a single, amphoteric, heabstable substance (175), The binding of sulfate-steroid conjugates to albumin is lipophilic rather than ionic (1753); corticosteroids move principally with serum a-globulins (2578), while @-globulins appear to transport estrogens (2042). The Girard T derivatives of steroid hormones can be separated electrophoretically (6). Biochemicals. Electrophoresis has been found increasingly useful in separating amino acids in mixtures and protein hydrolyzates (316, 766, 858, 1149, 1666-1669, 1888, 2610, 2631), including hydrolyzates of gluten (2479), nheat proteins (9/,88), and muscle proteins (870); and free amino acids in plant extracts (246, 1162), molasses (651,1270) , seeds (2268), wines (2637), blood serum (876, f 6 8 5 ) , bovine crystalline lens (757),and ram semen (1601). Methods for specific amino acids or related substaxicei include the basic amino acids (1082, 1562, 1868), basic and dicarboxylic amino acids in plant proteins (812), glutamic acid in soy sauce (2633), histamine (1445, 2210, 2632), iodotyrosines (1984), and the sulfur-containing amino acids (1042, 1842), including lanthionine (1610). There is a method for isolating methionine peptides (2383') and another for locating diwlfide bridges between peptides (3/8); sulfhydryl groups on proteins can be detected in agar gel electrophoregrams (2695). Zone mobilities of amino acids can be reliably calculated from diffusion coefficients (641). Papers concerned nith electrophoresis of carbohydrate compouiids discuss hexosamines from blood serum (803), acid mucopolysaccharides from rat skin (1472),separation of chondroitin sulfate 73 from A and C (954,the separation of three forms of plastocyanin (2576), high-voltage electrophoresis of carbohydrates and glycoproteins (1560),and techniques for fractionating mono- and oligo-saccharides (53, 2220). There is great heterogeneity among ribosomal proteins (1348,1412, 1628, 1632,2300, 2439), which differ in composition between species (466,1682) but not during ontogenesis (940, 1682); the proteins of ultracentrifugal ribosomal fractions are electrophoretically related (825,1161). Two basic protein fractions from calf thymus nuclei differ greatly in amino acid composition from histones and ribosomal proteins (2548). I t is reported that ribonucleic acid fractionation by gel electrophoresis is related to the sedimentation coefficient (l17111400);the heterogeneity of RNA depends to some extent upon the mode of its preparation (1191); fractionations of RNA from neuronal and neuroglial tissue (652,l717),pigeon pancreas and liver (210, 2361), bovine pituitary

(2477), rat liver (1555, 2451, 2452), mouse skin (2450),and onion roots (2384) have been achieved. Several papers describe methods of separating and classifying fragments after hydrolysis of RNA (226, 456, 879); these include methods for determining the kinds and proportions of the bases (176, 986, 2449), which display anomalous behavior in triethylammonium buffers (347), and fractionation and measurement of nucleotides (224,807,999, 1179, 1301, 2101, 2172, 2521, 2671) and nucleosides (1981,2083, 2481,2567). The migration rate of the ultracentrifugal fractions of polyomavirus deoxyribonucleic acid are in the order 20s > 14.5s > 16s (2416); polyoma virus DNA migrates much faster than host cell DNA (2417); DNA synthesized by polymerase has been analyzed electrophoretically (2178, 2179). The effects upon DNA mobility of interaction with basic proteins (1781), adsorption on particles (416),and thermal denaturation (&?I) have been studied. Electrophoresis has been used for determining vitamin A-protein complex in beef liver (2370), for isolating the individual B-complex vitamins (1925), for measuring vitamin C in fruits (1363) and vitamin D in serum (521), and for fractionating flavonoids from plants (2052). There is an electrophoretic method for detecting and measuring neomycin in blood serum (329). Forensic, Toxicological, and Pharmaceutical Applications. Electrophoregrams are forensically useful for characterizing or identifying many substances (1193),including seminal fluid (1833), the group-specific proteins in blood spots (356,2318), and the haptoglobin types of blood stains (526, 824). Determination of group-specific proteins in cadavers, blood stains, and stored blood is unreliable (968). It seems to be characteristic of poisonings that albumin is diminished and ( ~ 1 and &globulins are elevated: this is true of the brains of rabbits subjected to experimental chronic alcoholism (2340) and of serum proteins in alcoholism (447), and of poisonings by carbon disulfide (331, 2208, 2277), nitrogen mustard (542),lead (332, 401, 2498), cadmium (1S l ) , manganese (959),mercury vapor (1267), and carbon monoxide, aryl halides, acids and bases, barbiturates, and tranquilizers (1131). A fast-moving hemoglobin develops in lead poisoning (413). Electrophoresis is superior t o the classical methods for detecting metallic poisons in biological material (1624)and is also excellent for isolating and identifying strychnine in tissues (309). Electrophoresis is well adapted to separating alkaloids (644,645), including those of ragweed (1671) and ergot (35),as well as the quaternary biological

amines (188). The glycosides of senna (292)and the glue thistle (2511,2512) have been separated and identified. A technique has been developed for measuring the rate of release of active substances from sustained-action pharmaceutical preparations (2163). The use of iontophoresis for introducing drugs into living material for assay or medicinal purposes is increasing (122, 252,403, 533, 606,980,981, 1015, 1081, 11 6S,1238-1 240,1286,1308,1883, 2328, 2527,2565). Methods for detect,ing adulterants in food include techniques for casein in meat products (133), gelatin in milk products (1806),and synthetic colors in foods (1955). Interest in the properties of snake venom protein fractions continues (236, 243, 305, 423, 1030,1645, 2228, 2562); there also have been electrophoretic studies of venoms from stonefish (545), marine snails (,2587), scorpions (1733), honeybees (213), bees, wasps, and yellowjackets (95),and spiders (1550, 2513). Interactions. There is a new method for investigating the transportation of substances by serum proteins (1638). When subtances interact, the products can often be detected electrophoretically. Formation of complexes between proteins that have been reported include IgM with IgG to give multiple electrophoretic peaks (723), diphthin and serum globulins (2146),basic proteins of leukocytes and plasma globulins (1094), elastase and serum proteins (182), concanavalin-A and carbohydrate-containing serum proteins of various animals (1695), histones and glycoproteins (2049),and @I-seromucoid and human chromoproteins (256). The binding of vitamin B12in serum is t o a B- and to an al-globulin (lSdS),specifically to an al-glycoprotein (947); only one of two uroglycoproteins binds vitamin BI2 and the binding capacity is greater in leukemics and females than in normal males (11.41). Hydroxyethyl starch and dextran interact with plasma proteins to form several bands in the y-region, and they also modify the erythrocyte envelopes (2414); serum albumin forms heterogeneous complexes with acidic polysaccharides at low pH values but not under physiological conditions (237); acacia coacervates primarily with the albumin and al- and az-globulins in serum (1653); hyaluronic acid forms a complex with albumin (1724); at pH 6.5, serum albumin forms three electrophoretically distinct complexes with alkylbenzenesulfonates (550); although albumin and p-proteins react reversibly with urate, a protein in the region between al-and arglobulin binds it specifically, and this protein is absent in patients with gout (68); catechol amines are transported VOL 40, NO. 5, APRIL 1968

89 R

by a 0-protein (1609). Albumin properly labeled with lalI has the same mobility as normal albumin (278, 279) ; 66Zn is bound to albumin and the aglobulins, but not t o p- and a-globulins (1939); the effects of 10 metallic ions on serum proteins have been studied (91). The structures of copper glycine and histidine complexes depend upon pH (2663). The effects of temperature and concentration upon the structure of uranyl-methionine have been investigated (1319). General Chemical Applications. Both the dissociation constants (2538) and the mobilities (640. 1092) of lowmolecular-weight organic compounds can be calculated from theoretical considerations. Analyses of aliphatic monocarboxylic acids (189) and dicarbovylic acids (1396), as well as of mixed biphenyl sulfonic acids (2261) and of iodobenzoic and iodohippuric acids ( 6 8 9 , have been accomplished. Electrophoresis has been used for rapid analysis of phenols and amines used as rubber antiovidants (2644, 2645), and for analyzing cationic surface active agents (1740), photographic developing agents (2617 ) , photographic addition agents (2350), mixtures of urea, thiourea, semicarbazide, and thiosemicarbazide ( I d l S ) , stilbene derivatives (760),polycyclic aromatic hydrocarbons (%I+%), metals and porphyrins in petroleum pioducts (964), and phenylarsenic compounds (2253); it has been used to study the chemistry of organotill compounds (393), to test the purity of biological stains (1021) and triphenylmethane dyes (2074), and t o investigate the nature of dye-binding by phospholipids (370) and by wool (2371). The stages in formation of polyethylenimine (1852), poly(methacry1ic acid) (1425), and nylons and poly(ethy1ene terephthalate) (967) have been followed by elrctiophoresis, which has been discused as a way t o investigate polymeis (89,479,1299). Fused nitrates have been used t o separate monovalent cations (737), sodium and potassium (1016), sodium isotopcs i6079),and sodium and calcium (2636) ; wlfate melts from a liquid phase for separating uranium, titanium, vanadium, manganese, cobalt, nickel, copper and cerium (1298); lithium-potassium chloride eutectic mixtures are u~eful for separating beveral metals iricludiiig 6Li-5Li isotopes (1580). Procedures are described for separating the lanthanides (42, 138, 141, 451, 1227, 12&?), the actinides (449, 1474, 2837, 2501), or both (139, 140, 808, 127i), fission product? (119, 1157, 1345, 1831), radioactive cations ( 4 1 ) ; and for investigating complexes of copper, zinc, cobalt, and nickel (259), platinum group metals (145, 537, 1233, 1803), iron thiocyanate (1102), metal with chelating agents (1091, 1229), copper-ammonia 90 R

ANALYTICAL CHEMISTRY

(260), manganese citrate (2%?!?0), inorganic ions with N-(2-hydroxyethyl)iminodiacetic acid (1093), and complexes of type HgXz(solid)-NsY-HzO (528). Separations of ions include lalI (1686, 1687), sulfur (267, 2602), and iron (1390),in different oxidation states; many anions (2380); and alkali metals on paper impregnated with 12-heteropolyacids (2659). Special applications of electrophoresis t o inorganic chemicals include analysis of cations from soils (2252) and building materials (1028), determination of heavy metals in natural water (670), a study of Liesegang ring formation (1365),a way t o hydrolyze sulfur nitride (268), and a demonstration that xenic acid exists in solution as Xe02+or Xe022+(1480). Particle Electrophoresis. Apparatus for particle electrophoresis has been described in the section entitled Apparatus. Biological applications of particle electrophoresis appear in the section entitled Cells and Cell Com-

ponents. Literature describing coatings formed by particle electrophoresis has now reached proportions that require separate review treatment (222, 471, 636, 753, 815, 984, 1446, 1893, Z l d l , 2324, 2344,2394,2438,2544) ; there is a book

that describes electrophoretic lacquering ($664); individual articles on this subject will no longer be cited in this review. The mobilities of pharmaceutical suspensions (352), polystyrene particles (2484), pigment particles (2605), montmorillonite (226), ferric oxide in various electrolytes (f303), titanium oxide in pentanol (903), magnesium oxide, titanium carbide, and glass in ethanol (2683), metallic and glass spheres in transformer oil (lSO4), zinc ferrocyanide (1665), glass and quartz suspensions (551), and carbon black (I373) have been measured; particles of manganese minerals move differently depending upon the effect of visible light (1876). Electrophoresis has been applied t o classifying starch and poly(vinyl alcohol) (8246), drilling muds (1918), rare earth oxides (2113), magnesium oxide, titanium carbide, and glass (123) by particle sizes; to purifying water (483, 696, 799); to forming metallic coatings ($40, 2076) ; to synthesizing mica sheets (1558); to purifying cerium (7'7) ; and to various aspects of printing and photography (392, 1990, 2348, 2349, 2572, 2639). LITERATURE CITED

( 1 ) Abasov, I. T., Terapevt. Arkh. 37, 51

( 1 9 6 5 ) ; C A 63,188176. ( 2 ) Abasov, I. T., Vestn. Dermatol. i Venerol. 39, 41 (1965); C A 64, 40498. ( 3 ) Abasov, I. T., V o p . Onkol. 1 1 , 41 (1965); C A 64,405Od. ( 4 ) Abasov, I. T., Akhundova, I. G., Akusherstvo i Ginekol. (Moscow) 41, 117 (1965); C A 64,11296.

( 5 ) Abbott, D. C., Johnson, J. A., J. Food Sci. 3 1 , 3 8 (1966); C A 64, 117628. ( 6 ) Abdel-Wahab, M. F., Bishara, R. H., 2. Anal. Chem. 219, 183 ( 1 9 6 6 ) ; C A 65, 14042g. ( 7 ) Abe, S., Gifu I k a Daigaku Kiyo 12, 241 (1964); CA 6 3 , 1 3 6 8 5 ~ . ( 8 ) Ibid., p. 269; C A 63,13685e. ( 9 ) Acharya, U. S. V., Gunaga, K. P., Rao, S. S., Indian J . Biochem. 3 , 208 (1966); C A 66,174922. ( 1 0 ) Acharya, U. S. V., Rao, S. S., Ezperientiu 22, 167 (1966); C A 64, 16453e. ( 1 1 ) Acharya, U.S . V., Rao, S. S., Indian J . Bzochem. 3 , 33 (1966); CA 65, 4429f. ( 1 2 ) Ackrell, B. A. C., Asato, R. N., Mower, H. F., J. Bacteriol. 92, 828 (1966). ( 1 3 ) Ackrell, B. A. C., Mower, H. F., Non-Heme Iron Proteins, Role Energy Conversion, Sump., Yellow Springs, Ohio 1965,283; C A 64,8561h. (14) Achiwa, S., Denki Kagaku 33, 567 (196s); C A 64,2729~. ( 1 5 ) Ibid., 34, 506 (1966); C A 66, 61461k. ( 1 6 ) Ibid., p. 902; C A 67,76399. ( 1 7 ) Adamczyk, B., Marczynska, A., Oszacki, J., Yowotwory 16, 33 (1966); C A 65,4392h. ( 1 8 ) Adams, E., ROSSO, G., Biochem. Biophys. Res. Commun. 23, 633 (1966). ( 1 9 ) Adamson, D. )I., Cozad, G. C., J.Bacteriol. 92,887 (1966). (20) Addis, F., Longo, L., Veterinaria ( M i l a n ) 15, 350 (1966); C A 66, 92969m. _-. _.

( 2 1 ) Adelmann, B., llarquardt, IT., Kueh?, K:, Biochem. Z. 346, 282 (1966). ( 2 2 ) Adivodi. K. G.. Navar. K. K.. Curre4 Sci. (India') 35," 587 (1966); CA 66,44519t. ( 2 3 ) Adloff, J. P., Chromatog. Rev. 7 , 52 (1965). -. _. , ~

( 2 4 ) Afanas'eva, A. V., Byul. Eksperim. Biol. i Med. 60. 70 (1966): CA 64, 5616e. ( 2 5 ) Ibid., 62, 78 (1966); CA 66, 63216h. ( 2 6 ) Afanas'eva, A. V., Vop. X e d . K h i m . 12,327 ( 1 9 6 6 ) ; C A 65,7715h. ( 2 7 ) Afanas'eva, A. V., Tatarinov, Yu. S., Zh. Evol. Biokhim. Fiziol. 2 , 308 (1966); CA 6 5 , 17436h. ( 2 8 ) Afonso, E., Clin. Chim. Acta 13, 107 (1966). (291 Afonso. E.. Ibid.., 14., 63 (1966). . (3oj Ibid., p. 193. ( 3 1 ) Ibid., p. 567. ( 3 2 ) Agostoni, A., Tittobello, A,, Boll. SOC.Ital. Biol.Sper. 40, 2073 (1964). ( 3 3 ) Agostoni, A.,. Vergani, C., Villa, L., Nature 209, 1024 (1966). ( 3 4 ) Agrell, I. P. S., Kjellberg, B., Comp. Biochem. Physiol. 16, 515 (196.5). ( 3 5 ) Agurell, S., Acta Pharm. Suecica 2 , 3.57 ( 1 9 6 5 ) ;C A 64,6404f. ( 3 6 ) Aicardi, G., Boll. SOC.Ital. Biol. Sner. 41. 1151 (1965). ( 3 7 j Aicardi, G.,'Minerva Pediat. 17, 1791 ( 1 9 6 5 ) ; C A 64,115349. ( 3 8 ) Ainbender, E., Berger, R., Heviay, AI. &I., Zepp, H. D., Hodes, H. L., Proc. SOC.Exptl. Biol. Med. 119, 1166 I,1- 96.5). - - - ,. ( 3 9 ) Ainson, H., Eesti iVSV Teaduste Akad. Toim., Biol. 16, 3 (1967); CA I

67,1084~.

( 4 0 ) Aisen, P., Leibman, A., Reich, H. A., J. Bzol. Chem. 241, 1666 (1966). ( 4 1 ) Aitzetmueller, K., Buchtela, K., Grass, F., J. Chromatog. 2 2 , 431 (1966). ( 4 2 ) Aitzetmueller, K., Buchtela, K., Grass, F., Hecht, F., Mikrochim. Acta 1966,1101; C A 66,79944e. ( 4 3 ) Aizawa, K., Ogawa, Y., Yamaguchi, Y., Nippon Univ. J . Med. 6 , 97 (1964); C A 65,6048~.

( 4 4 ) Akhundov, K. R., Dzhavadov, I. K., Tr.Azerb. Nauch.-Issled. Vet. Znst. 19, 177 ( 1 9 6 8 ) ; C A 6 6 , 114685~. ( 4 5 ) Akroyd, P., Anal. Bwchem. 19, 399 (1967). ( 4 6 ) Akroyd, P., Nature 208, 488 (1965). ( 4 7 ) Aksoy, M., T u r k T i p Cemiyeti Mecmuasi 31, 431 ( 1 9 6 5 ) ; C A 6 4 , 11671d. ~~. ( 4 8 ) Aksoy, M., Erdem, S., Clin. Chim. Acta 12,696 ( 1 9 6 5 ) ; C A 64,3946e. ( 4 9 ) Aksov, hl., Erdem, S., T u r k T i p Cemiyeti Mecmuasi 31, 593 (19651; C A 64,20173e. ( 5 0 ) Aladjem, F., Nature 209, 1003 (1966). ( 5 1 ) Albano, O., Papanicolaou, N., Buffe, D., Caroli, J., Burtin, P., Ternynck, T., Giiilbert, B., Rev. Intern. Hepatol. 16, 207 ( 1 9 6 5 ) ; C A 65,19118f. ( 5 2 ) Albutt, E. C., J . Med. Lab. Technol. ( L o n d o n )2 3 , 6 1 ( 1 9 6 6 ) ; C A 65,5713e. ( 5 3 ) Aleksandrov, L. V., Musakin, A. P., Metod y Analiza Radioaktivn. Preparatov, Sb. Statei 1965, 28; C A 63, 140449. ( 5 4 ) Alekseenko, L. P., Orekhovich, V. N., V o p . Med. K h i m . 12, 295 ( 1 9 6 6 ) ; C A 65,5714~. ( 5 5 ) Alekseeva, RI. I., Med. Parazitol. i Parazitarn. Bolenzi 34, 396 ( 1 9 6 5 ) ; C A 64.5595f. ( 5 6 ) Al$a, E.”,Analele Stiint. Univ. “A1. 1. Cuza. lasi, Sect. IZ l l a , 21 ( 1 9 6 5 ) ; C A 64,86799. ( 5 7 ) Alexander, A. G., J . Agr. Univ. Puerto Rico 51. 39 (1967): C A 66. 72670d. (58) Alexandrescu, V., Stud. Cercet. Biochim. 8 , 151 ( 1 9 6 5 ) ; C A 63, 137046. ( 5 9 ) Alieva, N. A., Abutalybova, A. G., T r . h e r b . Nauch.-Zssled. Vet. Znst. 20, 72 ( 1 9 6 6 ) ; C A 66,114039. ( 6 0 ) Alimova, hl. AI., V o p . Med. K h i m . 11,68 ( 1 9 6 5 ) ;C A 64,16382b. ( 6 1 ) Alimova, A I . & Evdokimova, I., A. I., Yurkov. Yu. A.. Koroleva. T. S.. Prohl. Gematol. Pereliv. Kro& 12, 3 i ( 1 9 6 7 ) ; C A 67,1568m. ( 6 2 ) Allan, N., Beale, D., Irvine, D., Lehmann, H., Nature 208, 658 (1965): C A 64,69419. ( 6 3 ) Allegranza, A., Canevini, P., Maderna, A., Strada, G. P., Boll. 1st. Sieroterap. M i l a n 44, 432 ( 1 9 6 5 ) ; C A 64,20360~. ( 6 4 ) Allegranza, A,, Canevini, P., Mocarelli, p., Clin. Chim. Acta 13, 119 ( 1 9 6 6 ) ; C A 64, 10072d. ( 6 5 ) Allen, D. W., Biochim. Biophys. Acta 133,180 (1967). ( 6 6 ) Allen, R. C., Jamieson, G. R., Anal. Biochem. 16,450 (1966). ( 6 7 ) Allen, R. C., Moore, D. J., Zbid., p. 457. ( 6 8 ) Alvsaker, J. O., Scand. J . Clin. Lab. Invest. 18,227 ( 1 9 6 6 ) ; C A 64, 18129h. ( 6 9 ) Ambert, J. P., Pechery, C., Charpentier, C., Hartmann, L., ilnn. Biol. Clin. ( P a r z s )24, 17 (1966); C A 64, 20171e. ( 7 0 ) Ambrose, E. J., editor, “Cell Electrophoresis,” Little, Brown, and Co., Bojton, 1965,204 pp. ( 7 1 ) Ambrose, E. J., Progr. Biophys. Mol. Biol. 16,241 (1‘366); C A 65, 14081h. ( 7 2 ) Ambroiino, C., Liberatori, J., Papa, G., Ponzone, A., Minerva Pediat. 18, 1304 ( 1 9 6 6 ) ; C A 65,14205d. (73) Ambrosino, C., Liberatori, J., Papa, G., Sarra, C., Ibid., p. 7 6 2 ; C A 65, 9621a. ( 7 4 ) Ambrosino, C., Liberatori, J., Sarra, C., Ubertalle, A., Zbid., p. 7 5 6 ; C A 65, 11 121d. ( 7 5 ) Ambrosino, C., Ponzone, A., Papa, G., Minerva hfed. 56, 4165 (1965); C A 64,11640a. ( 7 6 ) Ambrosiue, H., Nature 209, 524 ( 1 9 6 6 ) ;C A 64,14764b. ( 7 7 ) Amonenko, V. &I.,Kruglykh, A. A., Pavlov, V. S., Morozova, L. N., Zzv. ~

I

,

Akad. N a u k S S S R , Neorgan. Materialy 2,578 ( 1 9 6 6 ) ; CA 65,3463d. (78) Andreev, L. N., Shaw, M., Can. J . Botany 43,1479 (1965). ( 7 9 ) Angelopoulos, B., Karalis, D., Tsoukantas, A., Eleftheriadon, A. E., Danopoulos, E., Med. Pharmacol. E x p . 14,517 ( 1 9 6 6 ) ; C A 65,77779. ( 8 0 ) Angelopoulos, B., Tsoukantas, A,, Dan0 oulos, E., J . Med. Genet. 3 , 276 (19667; C A 66,83721s. ( 8 1 ) Anisimov, V. E., Kovichkov, V. I., Salikhov, I. G., Lab. Delo 1966, 211; C A 65.2780e. ( 8 2 ) AnAau, E., Jericho, K., Res. Vet. Sci. 6,428 ( 1 9 6 5 ) ; C A 64,5544d. ( 8 3 ) Annekov, G . A., Pachaliya, N. A,, V o p . Antropol. 1966, 110; C A 66, 9295if. ( 8 4 ) Annenkov, G. A., Shengeliya, A. A., V o p . Fiziol., E k s p . Patol. Radiobiol., Tr. Znst. Eksp. Patol. Terap. A k a d . Med. N a u k S S S R 1965, 133; C A 65, 12698f. (85) Anstall, H. B., Lapp, C., Trujillo, J. M., Science 154,657 (1966). ( 8 6 ) Antif’eva, B. A., T r . Omskogo Med. Znst. 54,215 ( 1 9 6 4 ) ; CA 63,16912e. ( 8 7 ) Anzai, S., Kagaku Keisatsu Kenkyusho Hokoku 17, 346 (1964); C A 6 3 , 18.5.5.5a. ~. .. (88) Anzai, T., Sato, K., Fukuda, M., Carpenter, C. M., Proc. SOC. Exptl. Biol. Med. 120, 94 (1965): C A 64, 40489. ( 8 9 ) Anzuino, G., Constantino, L., Gallo, R., Vitagliano, V., J . Polymer Sei., Pt. R 4,459 (1966). ( 9 0 ) Aoki, K., Tampakushitsu Kakusan Koso 9 , 4 7 4 (1965); C A 64,996s. ( 9 1 ) Aoki, K., Hari, J., Kawashima, K., Arch. Biochem. Biophys. 120,255 (1967). ( 9 2 ),Aoyama, M., Kitsutani, S., Ragashisa. >I.. Plant Cell Phvsiol. 7. 607 (1966). ’ ( 9 3 ) Aparicio, M.,Intern. Dairy Congr., Proc. lrth, Munich 1966, 2 , 349; C A 67,2208f. ( 9 4 ) Arakawa, W., Juzen Zgakukai Zasshi 70, 354 ( 1 9 6 4 ) ; C A 65, 1210d. ( 9 5 ) Arbesman. C. E.. Lanelois. C.. Shul‘ man, S., J . Ailergy 36, 1 4 7 ( 1965): ( 9 6 ) Arciis, A. C., Anal. Biochem. 18, 381 IlR67). \ - - _ ,. . ( 9 7 ) Ardelt, H. W., Lange, P., Opel, P. H., Ger. (East) Patent 40,500 (Cl. G 01 n), Aug. 15, 1965, Appl.. hlay 15, 1962; 2 pp; C A 64, 10787e. ( 9 8 ) Ardry, R., Risbec, O., Ann. Biol. Clin. ( P a r i s ) 24, 63 (1966); CA 64, 18111~. (99) Arezio, G., Cincera, G. hl., Gallinotto, G., Minerva Chir. 21, 633 ( 1 9 6 6 ) ; C A 66,9426e. ( 1 0 0 ) Arioka, I., Yanai, J., Sano, I., Ogita, Z., Kikkawa, H., Clin. Chim. Acta 12, 353 (1965). ( 1 0 1 ) Armand, Y. J., Guinand, S., Biochim. Biophys. Acta 113,289 (1967). ( 1 0 2 ) Arnason, A., Pantelouris, E. -M., Comp. Biochem. Physiol. 19, 53 (1966). ( 1 0 3 ) Arnold,, R., Cell Electrophoresis, S y m p . Brat. Biophys. Soc., London 1963,36 (Pub. 1965); C A 65,94769. ( 1 0 4 ) Aru, L., Jaagosild, A., Eestz N S V Tead. A k a d . Toim., Biol. 14, 558 ( 1 9 6 5 ) ; C A 64, 13219h. ( 1 0 5 ) Asagami, Y., Seibutsu Butsuri Kagaku 1 1 , 327 ( 1 9 6 6 ) ; CA 65, 142059. ( 1 0 6 ) Asahi Chemical Industry Co., Ltd., Kakihana, H., Atomic Fuel Corp., Fr. Patent 1.403.198 (C1. B Old. G 211. June 18, 1965; ’Japan Appl. June 21; 1963; 10 pp; cf. U.S. Patent 2,989,457; C A 65. l706h. ( 1 0 7 ) &chaffenburg, R., J . Dairy Sci. 49, 1284 (1966). ( 1 0 8 ) Aschaffenburg, R., Thymann, M., Zbid.. 48. 1524 (1965). ( 1 0 9 ) Aschkenasy, A.,’ C. R. SOC.Biol. 159,800 ( 1 9 6 5 ) ; C A 64,5530h.

( 1 1 0 ) Asenjo Sebastian, M. A., de Castro del Pozo, S., Planas Mestres, J., Rev. Clin. Espan. 102, 274 (1966); C A 66, 176256. ( 1 1 1 ) Askanas, W., J . Neurol., Neurosurg., Psychiat. 3 0 , 4 3 (1967); C A 6 6 , 8 4 0 0 4 ~ . ( 1 1 2 ) Askanas, W., Life Sci. 5, 1517 (1966~. \ _ _ _ _

( 1 1 3 ) Zbid., p. 1767. ( 1 1 4 ) Zbid., p. 1775. ( 1 1 5 ) Aslanyan, E. S., Materialy Dokl. Konf. Molodykh Nauchn. Rabotn., Erevansk. Zoovet. Znst., Sb., Erevan 1965, 7 3 ; C A 65, 1 9 0 8 2 ~ . ( 1 1 6 ) Asperen, K. van hlazijk, M. E. van, Oppenoorth, F. J., Entomol. Exptl. A p p l . 8 , 163 (1965); C A 64,7100b. ( 1 1 7 ) Astrauskas, V., Lab. Delo 1966, 343; C A 65, 1 2 8 9 3 ~ . ( 1 1 8 ) Atassi, M. Z., Saplin, B. J., Biochem. J . 98, 82 (1966). ( 1 1 9 ) Auchapt, J. M.. Tret, J., Comm. Energil. A t . (Fr.), Rappt. 3095, 16 pp. (1966); C A 6 6 , 51229b. ( 1 2 0 ) Augustinsson, K. B., Henricson, B., Biochim. Biophys. Acta 124, 323 (1966). ( 1 2 1 ) Aiiriti, R., Sempirini, A., Spano, G., hlarinoni, G. F., Rizza, 0.) Rapisarda, R., Tallarida, G., Boll. SOC.Ztal. Biol. Sper. 42, 1130 (1966); CA 6 6 , 636039. ( 1 2 2 ) Avanzino, G. L., Bradley, P. B., Comis, S. D., Woistencroft, J. H., Intern. J . Neuropharmacol. 5 , 331 (1966); C A 65, 11184h. ( 1 2 3 ) Avgustinik, A. I., Zhuravlev, G. I., Vigdergauz, V. S., Kolloidn. Zh. 28, 465 (1966); C A 6 5 , 1 9 3 4 6 ~ . ( 1 2 4 ) Avrameas, S., Biol. Med. (Paris) 54, 563 ( 1 9 6 5 ) ; C A 64, 8559e. ( 1 2 5 ) Avrameas, S., Uriel, J., Protides Biol. Fluids, Proc. Colloq. 12, 225 ( 1 9 6 4 ) (Pub. 1965); C A 6 4 , 2 0 0 7 8 ~ . ( 1 2 6 ) Avramov, I. A,, Repin, V. S., Biokhimiya 30, 1187 ( 1 9 6 5 ) ; C A 64, 10008g. ( 1 2 7 ) Aw, S . E., Nature 209, 298 (1966). ( 1 2 8 ) Aw, S . E., Hobbs, J. R., Biochem. J . 99, 16P (1966). ( 1 2 9 ) Awdeh, Z. L., Askonas, B. A., Williamson, A. R., Zbid., 102,548 (1967). ( 1 3 0 ) Axelsson, H., Johansson, B. G., Rymo, L., Acta Chem. Scand. 20, 2339 (1966). ( 1 3 1 ) Gelsson, B., Piscator, M., Arch. Envaron. Health 12, 374 (1966); C A ( 1 64. 3 2 ) 16.517h,. Azen, E. A,, Nazhat, R. A., SmithI

ies, O., J . Lab. Clin. Med. 67,650 (1966). ( 1 3 3 ) Baal, J. P. W. van, Leget, J. N., Z . Lebensm.-Utersuch.-Forsch.127, 263 (196B): C A 64. 1263c. ( 1 3 4 ) Bablidze, ‘V. I., Soobshch. Akad. N a u k Gruz. S S R 41, 581 (1966); C A 65,1184e. ( 1 3 5 ) Bachmann, R., Acta Univ. Lund., Sect. 1 1 , No. 10, 31 pp. (1966); C A 65, 1205e. ( 1 3 6 ) Bachmann, R., Scand. J . Clin. Lab. Invest. 17, 316 (1965); C A 63, 15342h. ( 1 3 7 ) Bachmann, R., Laurell, C. B., Scand. J . Clin. Lab. Invest. 17, 39 ( 1 9 6 5 ) ; C A 63, 15342f. ( 1 3 8 ) Baechmann, K., Radiochim. Acta 4 , 124 (1965). ( 1 3 9 ) Ibid., 6 , 6 2 (1966). ( 1 4 0 ) Baechmann, K., 2. Anal. Chem. 218, 321 (1966). ( 1 4 1 ) Baechmann, K., Goerisch, H., J . Chromatoa. 23. 336 (1966). ( 1 4 2 ) Baed&, D.H., ’Proc.’ Intern. S y m p . Baboon I t s Use E x p . A n i m . , l s t , S a n Antonio 1963, 301 (Pub. 1965); C A 67, 9277m. ( 1 4 3 ) Bagliano, G., Ossicini, L., J . Chromatog. 19, 412 (1965). ( 1 4 4 ) Baglioni, C., Biochem. Bwphys. Res. Commun. 2 6 , 8 2 (1967); C A 6 6 , 5 3 9 0 1 ~ . VOL. 40, NO. 5, APRIL 1968

91 R

( 1 4 5 ) Baglioni, T., Fioretti, C., Arch. Vet. Ztal. 16, 7 ( 1 9 6 5 ) ; CA 6 5 , 11125~. ( 1 4 6 ) Bailey, L. F., Lemon, M., J . Reprod. Fertility 11, 473 (1966); C A 65, 9442s. ( 1 4 7 ) Baisden, L. A,, Tromba, F. G., J . Parasitol. 53, 100 (1967). ( 1 4 8 ) Baker, B. L., Zanotti, D. B., Endocrinology 7 8 , 1037 (1966). ( 1 4 9 ) Baker, C. hl. A., Can. J. Biochem. 44, 853 (1966). ( 1 5 0 ) Baker, C. AI. A,, Comp. Biochem. Physiol. 16, 93 (1965). ( 1 5 1 ) Zbid., 20,949 (1967). ( 1 5 2 ) Baker, C. 31. A,, Hanson, H. C., Ibid., 17, 997 (1966). ( 1 5 3 ) Baker, C. 11. A., hIanwell, C., Labisky, R. F., Harper, J. A., Zbid.,

( 1 8 2 ) Baumstark, J. S., Arch. Biochem. Biophys. 118, 619 (1967). B i o ~ h v s .118. ( 1 8 3 )‘Biyer, Bayer, H., 2. Geburtshilfe Gynaekol. 165,300 (1966); C A 6 5 , 2 0 6 6 2 ~ . ( 1 8 4 ) Zbid., p. 307; C A 65,20662d. ( 1 8 6 ) Zbid., p. 322; CA 65,20662e. ( 1 8 6 ) Bayley, S. T., J . Mol. Biol. 15, 420 (1966). ( 1 8 7 ) Bayne, C. J., Comp. Biochem. Physzol. 19, 317 (1966). ( 1 8 8 ) Bayzer, H., J. Chromatog. 24, 372 (1966). ( 1 8 9 ) Zbid., 27, 104 (1967). ( 1 9 0 ) Beale. D.. Lehmann. H.. Nature . 207, 259 (1965). ( 1 9 1 ) Beaver, J. L., Cruft, H. J., Biochem. J. 101, 665 (1966). n. 467. ( 1 9 2 ) Beckman, L., Bjorling, G., Christor . doulou, C., Acta. Genet. Statist. Med. ( 1 5 4 ) Bal, V. V., Mel’kova, L. A., 16, 59 (1966); C A 64, 1 6 3 6 7 ~ . Yur’eva, V. I., Izv. Vysshikh Uchebn. ( 1 9 3 ) Zbid., p. 122; C A 65,5742e. Zavedenii. Pishchevava Tekhnol. 1966. 51; C A 65, 5934d. ” ( 1 9 4 ) Ibid., p. 223; C A 65,5742f. ( 1 9 5 ) Beckman, L., Bjorling, G., Heiken, ( 1 5 5 ) Balasz, A., Dlugogurski, Z., Akush. A,, Zbid., p. 305; C A 65, 15860e. Ginekol. (.2loscow) 42, 32 (1966); CA ( 1 9 6 ) Bednarik, T., Clin. Chzm. Acta 15, 66,448329. ( 1 5 6 ) Balazs, V., Acta Med. Acad. Sci. 172 (1967). ( 1 9 7 ) Bednarik, T., Physiol. Bohemoslov Hung. 21, l ( 1 9 6 5 ) ; C A 63, 18803b. 15, 27 (1966); C A 64, 14671f. ( 1 5 7 ) Balconi, I. R., Lecce, J. G., J . Nutr. ( 1 9 8 ) Bednarik, T., Cajthamlova, H., 88, 233 (1966). ( 1 5 8 ) Baldi, A,, Quaderni. Sclavo Diagn., Physiol. Bohemoslov. 16, 78 (1967); CA 66,72484~. Clin. Lab. 2, 118 (1966); CA 66,624848. ( 1 5 9 ) Ball, E. hl., Arch. Biochem. Biophys. ( 1 9 9 ) Bednarik, T., Rejnek, J., Physiol. Bohemoslov. 14, 354 ( 1 9 6 5 ) ; C A 64, 114,547 ( 1966). ( 1 6 0 ) Ball, E. W., Meynell, 33. J., Beale, 1096a. D.. Kvnoch. P.. Lehmann. H.. Stretton. ( 2 0 0 ) Beeby, R., Intern. Dairy congr., Proc. 17th, Munich 1966, 2 , 9 9 ; C A A.‘O. IV.. i1ratu;e209. 1217(1966). 67, 139k. (161)-Baltbh, A. L.,Lepp& hi. H., Lolans, ( 2 0 1 ) Behal, F. J., Klein, R. A., Dawson, V. T., J . Zmmunol. 96, 149 (1966). F. B., Arch. Biochem. Biophys. 115, 545 ( 1 6 2 ) Bammer, H., Klin. Wochenschr. (1966). 44, 1099 ( 1 9 6 6 ) ; CA 65, 19132b. ( 2 0 2 ) Belaya, Yu. A., Z h . Mikrobiol., ( 1 6 3 ) Banerjee, S., Roy, S. C., Indian J . Epidemiol. i. Immunobiol. 42, 6 (1965); Biochem. 2. 278 (1965): CA 64. 18168b. CA 63, 1385le. ( 1 6 4 ) Barabanov, V. bI.;’Zh. Obshch. Biol. 27,252 (1966); C A 6 4 , 2 0 4 0 2 ~ . ( 2 0 3 ) Ibid., p. 55; C A 64,1180b. ( 1 6 5 ) Baranyai, P., Czirbesz, Z., Kapus, ( 2 0 4 ) Zbid., p. 130; CA 64, 102300. Gv.. Acad. Sci. Huna. 5 , 339 (1964): ( 2 0 5 ) Bell,’ -H. E., Nicholson,- S. F., Ck ‘64,8753b. Thompson, Z. R., Clin. Chim. Acta 15, ( 1 6 6 ) Barber. J. T.. Wood. H. L.. Steward. 247 (1967). . F.’C., Can.’j. Boiany 45; 5 (1967). ( 2 0 6 ) Belousov, A. P., Mant’ev, V. A., ( 1 6 7 ) Bardhan, K. D., Callender, S. T., Vop. Med. K h i m . 13, 120 ( 1 9 6 7 ) ; C A Spray, G. H., Gut 7 , 566 ( 1 9 6 6 ) ; C A 67, 94969. 66,4089. ( 2 0 7 ) Belvady, B., Rao, P. U., Indian ( 1 6 8 ) Barka, T., Holzner, J. H., Ann. J . Biochem. 2 , 277 (1965); C A 6 4 , Histochim. 7 , 4 3 ( 1 9 6 2 ) ; CA 63, 16662e. 18135~. ( 1 6 9 ) Barkhatov, Yu. V., Lyubomirova, ( 2 0 8 ) Benas, A,, Clin. Chim. Acta 15, 541 I. AI., Andrianov, P. N., Garazha, K. N., ( 1 9 6 7 ) ; CA 66,922773‘. Stomatologiya 45, 19 (1966); CA 6 6 , ( 2 0 9 ) Benassi, G., Bonanni, ?VI.V., Boll. 53817r. Zst. Sieroter. Milan. 44, 163 (1965); ( 1 7 0 ) Barlotta, C., Minerva Stomatol. 15, C A 6 3 , 15243e. 29 (1966); CA 64, 18214b. ( 2 1 0 ) Beney, L., Szekely, hl., Biochem. J . ( 1 7 1 ) Barlow, G. H., Margoliash, E., 100, 17C (1966). J . Biol. Chem. 241, 1473 (1966). ( 1 7 2 ) Barnicot, N. A., Huehns, E. R., ( 2 1 1 ) Benjamin, 1). C., Weimer, H. E., Jolly, C. J., Proc. Roy. SOC. (London) Nature 209, 1032 (1966). Ser. B. 165, 224 (1966). ( 2 1 2 ) Benko, S., Tiboldi, T., Csanady, ( 1 7 3 ) Barnicot, N. A., Jolly, C. J., hl., Durszt, F., Varga, L., Medgyesi, Huehns. E. R.. Dance. X.. Proc. Int. G., S e t a Med. Acad. Scz. Hung. 22, Symp. Baboon Its Use Exp.’Anim., I s t , 87 ( 1 9 6 6 ) ; CA 65, 11079h. Sun Antonio 1963, 323 (Pub. 1965); ( 2 1 3 ) Benton,. A. W., Patton, R. L., J . C A 67,9278n. Insect Physzol. 1 1 , 1359 ( 1965). ( 1 7 4 ) Barrett, A. J., Nature 211, 1188 ( 2 1 4 ) Berchev, K., Izmirov, I., Experi(1966). entia 23, 103 (1967). ( 1 7 5 ) Bartell, C. K., Gen. Comp. Endo( 2 1 5 ) Berenson, G. S., Radhakrishnacrinol. 8 , 208 (1967). murthy, B., Fishkin, A. F., Dessauer, ( 1 7 6 ) Bartley, E. T., Jr., Powsner, E. R., H., Arquembourg, P., J . Atherosclerosis Weiner, L. bl., Zak, B., Proc. SOC. Res. 214 ( 1 9 6 6 ) ; C A 65, 6066e. Exptl. Biol. Med. 123, 595 (1966). ( 2 1 6 ) Berestov, V. A., Dokl. Vses. Akad. ( 1 7 7 ) Baskakova, V. P., Belki v Med. i Sel’skokhoz. il’auk 1966, 4 0 ; CA 65, lllar. Khoz., A k a d . ,Vauk Ukr. S S R 2729h. 1965,99; CA 63, 18589e. ( 2. 1 7 ) Berezov, T. T., T r . Univ. Druzhby ( 1 7 8 ) Battistacci, M., Compagnoni, ?*I Narodov 7, 22 ( 1 9 6 4 ) ; C A 64, 11488f. C., Atti SOC. Ztal. Sci. Vet. 20, 249 ( 2 1 8 ) Berg, G., Aerztl. Lab. 1 1 , 298 (1966); C A 6 6 , 113610e. ( 1 9 6 5 ) ; CA 65,9313b. ( 1 7 9 ) Battistini, A., Lattante 37, 97 (1966); C A 65, 12544h. ( 2 1 9 ) Berg, G., Roorand, U., Witte, S., Goetz, H., Bressel, D., Clin. Chim. Acta ( 1 8 0 ) Bauer, R. D., Thomasson, W. A., 12, 282 (1965). J . Chromatoo. 22,496 (1966). ( 2 2 0 ) Berg, G., Willital, G. H., Klin. ( 1 8 1 ) Baume,-P., Builder, J. E., Fenton, Wochenschr. 43, 1109 (1965); C A 6 4 , B. H., Irving, L. C., Piper, D. W., 25229. Gastroenterology 5 0 , 7 8 1 (1966). 1

92 R

.

ANALYTICAL CHEMISTRY

I

,

( 2 2 1 ) Berg, Yu. N., hlarkina, E. A., Fenina, E. P., Yur’ev, V. A., Lab. D e b 1967, 134; C A 6 6 , 1 1 2 8 2 9 ~ . ( 2 2 2 ) Berger, S., Siemens 2. 39, 1209 (1965); C A 64, 11437h. ( 2 2 3 ) Bergerman, J., Clin. Chem. 12, 797 (1966). ( 2 2 4 ) Bergner, H., 2. Med. Labortech. 5 , 2 8 3 (1964);C A 63, 18631f. ( 2 2 5 ) Bergquist, P. L., J. Chromalog. 19,615, (1965). ( 2 2 6 ) Bergseth, H., Rheol. Acta 6 , 70 (1967); CA 66, 119178s. ( 2 2 7 ) Berk, J. E., Hayashi, S., Searcy, R. L Hightower, N. C., Jr., Am. J . Digest. Diseases 11,695 (1966). ( 2 2 8 ) Bernat, R., Hryniewiecki, L., Straburzynski, G., Acta Physiol. Polon. 17, 225 (1966); C A 65, lllO9g. ( 2 2 9 ) Bernatonis, J., hlickiene, N., Mickus, V., Lietuvos T S R Aukstuju Mokyklu Mokslo Darbai, Chem. i r Chem. Tech. 7 , 193 (1965); C A 64, 1-. 2 9.9 9 ~ . ( 2 3 0 ) B&nsohn, J., Barron, K. D., Doolin, P. F., Hess, A. R., Hendrick, M. T., J . Histochem. Cvtochem. 14, 455 (1966). ( 2 3 1 ) Bernstein, L., Kerrigan; M., Maisel, H., E x p . Eye Res. 5 , 3 0 9 (1966). 1232) -, Bers. E. P.. Pinevich. V. V.. Resnik. K. P., Vkstn. Leningrad.‘Univ.,‘ 2 1 , Ser: Biol. 4 , 4 7 (1966); C A 6 6 , 9 2 7 0 8 ~ . ( 2 3 3 ) Berson, S . A., Yalow, R. S., Science 152, 205 (1966). ( 2 3 4 ) Berti, G., Bonanni, M. V., Pathologica 58, 167 (1966); CA 6 6 , 103407e. ( 2 3 5 ) Bertke, E. hI., Watt, D. D., Tu, T., Toxicon 4 , 7 3 (1966); CA 6 5 , 59359. ( 2 3 6 ) Bessenov, A . S., Peregrina, hl. I., Temat. Sb. Rub. Gel’mintol. Sel’skokhoz, Zhivotn. 12, 232 (1966); CA 66,84088h. ( 2 3 7 ) Bettelheim, F. A., Laurent, T. C., Pertoft. J.. Carbohudrate Res. 2. 391 (1966).’ ’ ( 2 3 8 ) Bey, E., Cell Electrophoresis, S y m p . Brit. Biophys. SOC., London 1963, 142 (Pub. 1965); C A 65, 94419. ( 2 3 9 ) Bezborodov, A. hI., Nauchn. Dokl. Vysshei Shkoly, Biol. ,Vauki 1964, 156; C A 65, 10864~. ( 2 4 0 ) Bhargava, hl. M., Steenivasan, A., Recent Advan. Food Sci., Papers, Cambridge, Engl. (Leitch, J. M., Rhodes, D. N., Eds, Butterworths) 1962, 65 (Pub. 1963); C A 63, 1 3 9 2 8 ~ . ( 2 4 1 ) Bhowan, A. S., Indian J . Exptl. Biol. 3.272 (19651: C A 64.13136e. ( 2 4 2 ) Bican, P., din. Chhn. Acta 14, 139 (1966). ( 2 4 3 ) Bicher, H. I., Klibansky, C., Shiloah, J., Gitter, S., Vries, A. der, Biochem. Pharmacol. 14, 1779 (1965). ( 2 4 4 ) Bidwell, E., Dike, G. W.R., Denson, K. W. E., Brit. J . Haematol. 12, 583 (1966); C A 65, 17239~. ( 2 4 5 ) Bieguszewski, €I., Roczniki N a u k Rolniczuch Ser. B 88. 349 ( 1 9 6 6.,) : CA 6 6 , 174g3v. ( 2 4 6 ) Bieleski, R. L., Turner, N. A., Anal. Biochem. 17. 278 (1966). ( 2 4 7 ) Biguet, J., D’Haussy, R., Aubry, M., Rose, F., Bull. SOC.Pathol. Exotique 57. 1098 (.1 9 6 4,) (Pub. 1965): . . . CA 63. 18849~. ( 2 4 8 ) Biguet, J., Tran, P. Van Ky, Andrieu, S., Bull. SOC.Pharm. Nancy 71, 6 (1966): C A 66,934292. ( 2 4 9 ) Biondi, A.,’ Badolato, F., Rend. Accad. Sci. Fis. M a t . 32, 133 (1965); C A 66,74271~. ( 2 6 0 ) Biondi, A,,Badolato, F., Ric. Sci. Rend., Sez. B, 6 , 259 ( 1 9 6 5 ) ; C A 64, 11619e. ( 2 5 1 ) Birbraer, hl. L., Sinitsyna, L. N., Vestn. Dermatol. i Venerol. 39, 56 ( 1 9 6 5 ) ; C A 64. 7257f. ( 2 5 2 ) Biscoe, *T. J., Straughan, D. W., J . Physiol. (London) 183, 341 (1966); CA 64, 18117~. ~

\ -

~

(233) Biserte, G., Courtois, J. E., Havez, R., Agneray, J., Hayem-Levy, A., Bull. SOC.Chim. Biol. 47, 1827 (1965). (254) Biserte, G., Dautxevaux, M., Crouwy, F., Moschetto, Y., Ibid., 48, 1107 (1966). (235) Biserte, G , Farriaux, J. P., Hoste, A., Gitinamard, 11. P., Fontaine, G., .inn. Biol. Clin. ( P a r i s ) 24, 663 (1966); C-4 65,9433e. (256) Biserte, G., Havez, R., HayemLevy, A., Bernard, S., C. R . SOC.Biol. 159,833 (1965); C A 63, 18526~. ( 2 3 7 ) Biseite. G.. Racadot-Lerov. N.. Puthol. Biol. 14, 821 (1966); CA 6 5 ; 204009. (238) Biserte, G., Samaille, J., Sautiere, P., Moschetto, Y., Ringel, J., Plessemaker, G., Compt. Rend., Ser. D 262, 2301 (1966). (259) Biswas, S. D., Dey, A. K., J . Indian Chem. SOC.42, 763 (1965); CA 64, 17U18c. (260) Biswas, S. D., Garg, V. C., Dey, A. K., Chim. Anal. ( P a r i s ) 48, 96 (1966); CA 6 5 , 1430d. (2G1) Black, A. P., Smith, A. L., J . A m . Water Works -4ssoc. 58, 446 (1966). ( 2 6 2 ) Black, 31. B., bliller, H., Jr., Wan, J., Am. J . Clin. Pathol. 46, 483 (1966). (263) Blackbivn, S., Methods Riochem. Anal. 13, 1 (1963). (264) Blackshaw, A. W.,Samisoni, J. I., Aztstralian .J. Bioi. Sci. 19, 841 (1966); C.1 66,2733613. ( 2 6 ) Blackwell, 13. Q., Blnckwell, B. N., ITiimig, J. Tung-Ilsiang, Chien, Li-Chin, Saniaharn, A., Thephysdin, C., Borvoriiiin, C., Science 150, 1614 (196.3). (266) Blneker, F., Fischer, K., Landbeck, G., Deut. X e d . Wochenschr. 91, 2259 (1966); CA 66,54207d. (267) Blaxius, E., Kraemer, R., J . Chromatog. 20, 367 (1963). (268) Blasins, E., Wagner, IT., Ibid., 26, 349 (1967). (269) Blaxsek, V. A., JIarx, A., Naturwissenschajten 53, 553 (1966); C A 66, 172Olb. (270) Bliriov, N. O., Khokhlov, A. S., Antibiotiki, 12, 261 (1967); CA 67, 9001k. (271) Bloemendal, H., Bnal. Chim. Acta 38, 169 (10G7). ( 2 7 2 ) Bloemendal, H., Bont, W. S., Benedetti, E. L., N'isse, J. II., Exp. Eye Xcs. 4, 319 (196.5). ( 2 3 ) Bloom, A. D., Tsnchioka, M., Wajima, T., Science 156, 979 (1967). (274) Blum, J. C., Gaudin-Harding, F., C'ompt. Rend.. Ser. D 262. 1299 (1966). ( 2 7 , ; ) Bliint. M.I I . , Am. j.Physiol. 209, 986 (1065). (276) Bobylev, Ya., Kazan. M e d . Zh. 1966, 43; C A 66, 9385e. (277) Bocci, V., Oammack, D. B., J . Seurochem. 13. 875 (1966). ( 2 7 8 ) Bocci, v., Viti, A., i o ~ ~. o c Ital. . Biol. Sper. 42, 1118 (1966); CA 66, 724.52i. (279) I k . , P. 1121: CA 66,72453k. (280) Bocci; V., Viti, A., Gam. Biochim. 15, 303 (1966); C A 66, 73152~. (281) Ibid., p. 372; C.1 66, 638102. (28%)13odansky, O., Schwartz, &I. K., Si.sselbanm, J. S., Advan. Enzyme Regulation 4,299 (1966); CA 66, 9309q. ( 2 8 3 ) Bodnaryk, It. P., i\.Iorrison, P. E., 7 . Insect Physiol. 12, 963 (1966). (284) Boffa, G. A., Fine, J. AI., JacquotArmand, Y., Gaudin-IIarding, F., Susbielle, II., C. R . SOC.Riol. 159, 1342 (196.5); CA 64, 11632h. (285) Boffa, G. A,, Jacquot-Armand, Y., Gaudin-ITarding, F., Sushielle, II., Pine, J . M., Zbid., p. 1307; CA 64, 11632h. ~

I~

(286) Boffa, G. A., Marinelli, G., Drilhon, A., Fine, J. M., Compt. Rend., Ser. D 262, 2294 (1966). (287) Bogdanikowa, B., Bernacka, K., Drozd, J., Clin. Chim. Acta 13, 221 (1966). (288) Bogdanikowa, B., Drozd, J., Bernacka, K., Polskie Arch. M e d . Wewnetrznej 35,939 (1965); C A 64, 14676e. (289) Bogdanikowa, B., Droxd, J., Dubinska, L., Bogdanik, T., Clin. Chim. Acta 14,807 (1966). (290) Bogdanikowa, B., Droxd, J., Ditbinska. L.. Boedanik. T.. Polskie Arch. Med. We&etrznzj36,9'( 1966); CA 65,20493g. (291) Bogdanov, L. V,., Obukhovskii, V. &I., Z h . Obshch. Bzol. 28, 76 (1967); CAI 66,83737g. (292) Boggiano, Z. G., Montes, G. RI., Rev. Real Acad. Cienc. Exact.. Fis. Nut. Madrid 59, 605 (1965); C.k 6 5 , 8669b. (293) Bohn, L., Rothenborg, I€. W.,J. Invest. Dermatol, 48, 256 (1967). (294) Bohuon, C., Boy, J., Delarue, J. C., Protides Biol. Fluids, Proc. Colloq. 12, 461 (1964) (Pub. 1965); CA 64, 201736. (298) Boi-Doku, F. S., Pik, C., Biochem. Biovhws. Acta 115.495 (1966). (296)'Bojanovic, J.' J., Jevtovic, A. D., Corbic, RI. O., Glasnik Hem. Drustva, Beograd 29, 157 (1064); C A 64, 16243e. (297) Bojanovic, J. J., Sevalievic, Lj. 11.. Acta Aled. lkgoslav. 18, 204 (1964); CA 64,4015d. (298) Bol'shakova, T. D., Tr. p o ~Vovoi Apparature i Metodikam, I - y i [Pervyi] M o s k . i l l e d . Inst. 1965, 56; Crl 65, 4242d. (209) Bol'shakova, T. D., Salov, V. I., Men'shikov, V. V., Ibzd., p. 111; C A 65, 18976b. (300) Bon, W. F., C2in. Chim. Acta 13, ~53k (1966). (301) Bon, W. F., Rnttenberg, G., Swanborn, P. L., Smitt, W. W. S., Ploeg, P. 13. W. van der, Exp. Eye Res. 5, 58 I 1Ofifi) (3021I Bonsignore, A., Fornaini, G., Leoncini, G., Fantoni, A., il'ature 211, 876 (19661. ( 3 b ) Bbokchin, R. XI., Nagel, R . L., Ranney, H. M., J . Biol. Chem. 242, 248 (1967). (304) Booke, II. E., Trans. Am. Fzsheries SOC.94, 307 (1965). (305) Boquet, P., Ixard, Y., Jouannet, &I., Meaume, J., Conipt. Rend., Ser. D 262, 1134 (1966). (306) Bordas, J., Jolibois, C., Acker, P., Boll. SOC. Pathol. Exolzque 57, 1214 (1964) (Pub. 1963); C.4 64, 10213b. (307) Bornancin, &I., Riviere, TI., Coirault, Y., Vendrely, R., Bull. Assoc. Franc. Etude Cancer 52, 32.5 (1963); C A 65,4390~. (308) Borrone, C., Gemme, G., Mainardi, P. C., Famularo, L., Minerva Pediat. 17, 1633 (1965); CA 64, 18127h. (309) Bors, Gh., Popa, I., Voicu, A., Stan, T., Arma\eicu, L., Ioanid, S., Farmacia (Bucharest) 14, 651 (1966); CA 66, \ A Y V " , .

44im

(310) Bosman, T., Lab. Pract. 15, 435 (1966); C A 64,20172e. (311) Bossa, F.; Enzymologia 31, 170 (1966); C A 66, 166682. (312) Botha, RI. C., Beale, D., Isaacs, W. A., Lehmann, €I., Nature 212, 792 (1966). (313) Bpttjni, E., Filippi, G., Cozzi, F., Maggioni, G., Acta Haematol. 36, 361 (1966); CA 66,63480q. (314) Bottini, E., Filippi, G., Cozzi, F., Maggioni, G., Experientia 22, 19 (1966); CA 64,7129b. (315) Bottomley, R. H., Locke, S. J., Ingram, H. C., Blood 27,85 (1966). (316) Bottomley, S. S.,Anal. Biochem. 18,472 (1967). (317) Boulter, D., Douglas, H. W., Lay-

cock, M. V., New Phytologist 64, 443 (1965). (318) Boulter, Do, Laycock, M. V., Biochem. J . 8P (1966). (319) Boulter, D., Thurman, D. A., Derbyshire, E., S e w Phytologist 66, 27 (1067). (320) Boundy, J. A., Woychik, J. I I . , Dimler, R. J., Wall, J. S., Cereal Chem. 44, 160 (1967). (321) Bowman, B. H.,Barnett, D. R., Hite, R., Bzochena. Biophys. Res. Commun. 26,466 (1967); CA 66,91701s. (322) Boyd, J. B., Mitchell, 11. K., ilnal. Biochenr. 13, 23 (1965). (323) Ibid., 14, 441 (1,966). (324) Boyd, J. B., Mitchell, H. K., Arch. Biochem. Riophys. 117, 310 (1066). (325) Bozarth, R. F., Browning, R. E., Gross, S., Contrib. Boyce Thompson Inst. 23,141 (1965). (326) Braend, >I., Efremov, G., Nord. Veterinarmed. 17, 585 (1965); CA 64, 873%. (327) Braend, M.,Efremov, G., Ramtad, A.. Hereditas 54. 235 (1966): CA 65. , 2731a. (328) Braend, hI., Gasparski, J., Nature 214, 98 (1967). (329) Brammer, II., Hemoglobin, Precursors illetab. 1964. 90; CA 64, 1 1 3 3 . 2) Brody, I. .4., Remick, J. S., Engel, c'. K., Arch. A-eurol. 13, 126 (1963). (343) Brookhart, J. IT., J . Chromatog. 20,191 (1965). (344) Broome. J.. Jordan. E. 11..S e m r a tion Sci. 1, $19'( 1966); ' Ca4 6 6 ; 26b73p. (345) Brown, D,, Boyd, W.J. R., J . Inst. Brewing 72, 541 (1966); CA 66,36589~. (346) Brown, D. F., Doyle, J. T., Am. J . Clin. Yutr. 20, 324 (1967). (347) Brown, E: G., Mangat, B. S., Anal. Biochem. 15, 542 (1066). (348) Brown, J. R., Ilartley, B. S., Biochem. J . 101,214 (1966). (349) Brown, L. E., Comp. Biochem. Physiol. 19, 470 (1966). (350) Brown, 1,. E., Fisher, €1. I., Auk, Quart. J. Ornithol. 83, 111 (1966); CA 66, 113398s. (351) Brueggemann, J., Merkenschlager, JI., Kirchner, B., Loezch, U., Naturwissenschaften 54, 97 (1967). (352) Bruh, R. R., ilnales Fnc. Quim. Farm., L'niv. Chile 16, 23 (1964) (1965); C A 64, 19327f. (3.53) Brunfeldt, K., Sci. Tools 12, 5, 17 (1965); C A 65,42426. I

VOL 40, NO. 5 , APRIL 1968

,

e

93 R

(354) Brunish, R., Asboe-Hansen, G., Artn _. . Pathol. Microbiol. Scand. 6 5 . 185 (1965); '2.4 64, 13185h. (355) Bryla, R., Polski Tygod. Lekar Wiadomoscz Lekar. 20, 757 (1965); CA 64, 131858. (356) Brzecka, K., LIikulewicz, W., Ann. Med. Leaale Criminol.. Police Sci. Tosicol. 46,250 (1966); (2.4 6 6 , 1141419. ( 3 5 7 ) Biiettner-Janubch, J., Proc. Znt. Symp. Baboon Its Use Exp. Anzm., lst, San Antonzo 1963, 95 (Pub. 1965); C A 67, 9276k. (358) Bulanov, I. K., Vrachebnoe Delo 1966,20, CA 64,20377~. (359) Bull. World Health Organ. 30, 447 (1964). (360) Bundbchuh, G., Deut. Gesundheitsw. 15, 2103 (1960); CA 56, 7632h. (361) Bundy, H. F., Albizati, L. D., Ilogancamp, D. AI., Arch. Bzochem. Bzophys. 118, 536 (1967). (362) Burger, W. C., Wardrip, W. O., Anal Bzochem. 13, 380 (1965). (363) Burges, R. C., llarlaren, C. M., Tooth Enamel, Its Composztaon, Properties, F u n d . Struct., Rept. Proc., Intern. Symp., London 1964, 74; (2.4 6 5 , .5975h. (364) Burns, J . l L j Johnson, F. AI., Sczence 156,93 (1967). (365) Burrows. S..Clzn. Chem. 11, 1068 (196.5). (366) Biirtin, P., Guilbert, B., Ruffe, D., Clin. Chim. Acta 13, 673 (1966). (367) Burtin, P., Vendrely, C., Rapp, W., Protides Riol. Fluids, Proc. Collog. 12, 216 (1964) (Pub. 1965); CA 64, 16376~. (368) Buta. J. L.. Conklin. J. L.. Dewey, 11. AI., J . Hzstochem. Cytochem. 14, 6.78 (108K'i. C - A 65. 17454~. (369) Buzila, L., Stkd. Cercet. Biochim. 9, 21 (1966); CA 65,25089. (370) Bvrne, J. )I., Quart. J . Microscop. Sci. 104,441 (1963); CA 64,21968. (371) Cabanneb, It., Taleb, N., Ghorra, F.. Srhmitt-Beurrier. A,. S o u v . Rev. Fr. Hk.matol. 5, 851 (1965); ' C A 64, 16420~. (372) Cabello, J., Prajoux, V., Plaza, M., Arch. Biol. Xed. Erp. . 3., 7 (1966); C A 6 5 , 7534b. (373) Cakala, S.,Jusko-Grundboeck, J., Acta Physiol. Polon. 16, 763 (1966); CA 64, 13161~: (374) Callegarlnl, C., Ric. Sci. 36, 59 (1966); CA 64, 20284a. ( 3 7 5 ) Camag, Chemieerzeugnisse wid Adsorptionsterhnik A.-G., Brit. Patent 1,056,708 (Cl. B. Olk), Jan. 25, 1967; Ger. Appl. Dec. 20, 1963; 5 pp; CA 6 6 , 671892. (376) Camerada, P., Leo, P., hlasia, L., Pinna, E., Ksai, E., Rass. Jled. Sarda 69, 201 (1966); C A 6 6 , 27260j. (377) Zbid., p. 415; CA 6 6 , 103412~. (378) Campbell, J. W., Comp. Biochem. Physiol. 18, 179 (1966); C-4 65, 2541d. (379) Cann, J. R., Biochemistry 5 , 1108 (1966). (380) Cao, A., Falorni, A., Gazz. Sanit. 37,422 (1966); CA 6 6 , 7 3 9 0 3 ~ . (381) Cao, A,, Rlacciotta, A., Chiappe, F., hlannucci, P. >I., Ann. Ztal. Pediat. 19, 114 (1966); C A 65, 14199~. (382) Cao, A., Vacciotta, -4., Fiorelli, G., hlannucci, P. >I., Ideo, G., Enzymol. Bioi. Clin. 7, 156 (1966); C A 6 6 , 103515 p . (383) Cao, .A., hlacciotta, A., Ideo, G., L h n i i c c i , P. RI., Ann. Ztal. Pediat. 19, 148 (1966); CA 65,14247~. (384) Cao, A., hlacciotta, A., Ideo, G., Nannucci, P. >I., Boll. SOC. Ital. Biol. Sper. 42, 709 (1966); CA 66, 10.37~. (385) Carey, J., Fowler, R., Sg, M., iVature 211. 30 (1966): C A 65. St5130. (386) Carlstrom, A., Acia Chem.' Scan;. 20, 1426 (1966); C-4 65, 17270~. (387) Carlstrom, A,, Vesterberg, O., Zbid., 21,271 (1967); CA 6 6 , 11235%. ,

\ - - - - , >

94R

I

~

ANALYTICAL CHEMISTRY

(388) Carmichael, D. J., Suture 211, 861 Insect Physiol. 12, 1595 (1966); CA 66,53288~. (1966). (422) Ch'en, YungHsiung, Ch'u M u Shou (389) Carnevali, F., Tecce, G., Tesei, Z Hsueh Pao 8. 61 1965): C A 64, B., Ric. Sci. Rend., Sez. R 6 , 419 (1965); 10213d. CA 64, 16183b. (423) Cheng, Hsien-Chang, Ou-Yang, (390) Carrell, R. W., Lehmann, H., Chao-Ho, Toxicon 4, 235 (1967); CA Hutchison, H. E., Nature 210, 915 66,62932b. (1966). (424) Cherkovich, G. M., Annenkov, G. (391) Carroll, E. J., Murphy, F. A., A., Byul. Eksperim. Biol. i. Med. 60, Aalund. 0.. J . Dairu Sci. 48. 1246 54 (1965); C.4 64,8714e. (1965). (425) Chernenko, V. D., Knyazhevich, (392) Carter's Ink Co., Areth. Appl. A. V., Teor. Prakt. Vop. Mikrobiol. 6,500,591 (Cl. B 4lf), July 19, 1965; U.S. Epidemiol., Khar'kov Med. Znst. 1965, Appl. Jan 16, 1964; 10 pp; CA 63, 111; CA 6 6 , 1141371. 1737.7s. (426) Chevrier, J. P., Creac'h, P. V., (393) Ca-sol, A., Barbieri, R., ,4nn. Chim. Proces-Verbaux Seances SOC. Sci. Phys. 55,606 (1965); CA 63, 14358~. (394) Castelniiovo, G., Morellini, >I., Nut. Bordeaux 1963-64. 247: CL4 63. 16660b. Am. Rev. RPspirat. Diseases 92, Pt. 2, (427) Zbid., 1964-65, 132; CA 6 5 , 1092h. 29 (1965). (428) Chiba, C., Kondo, >I., Rosenblatt, (395) Catt,, K., Moffat, B., Australian hl., Bine, R . J., Proc. SOC. Erptl. Riol. Exptl. Bzol. Med. Sci. 44, 597 (1966); Xed. 123, 746 (1966); CA 6 6 , ri3876j. CA 6 5 , 18971b. (429) Childq, V. A., Legator, ?VI. S., Life (396) Catt, K., Moffat, B., Endocrinology Sci. 4, 1643 (1965). 80,324 (1967). (430) Chippendale, G. ll., Beck, S. D., (397) Cawdey, L. P., Schneider, D., EberJ . Insect. Phusiol. 12, 1629 (1966). hardt, L., Vox Sanguinzs 11, 81 (1966); (431) Chisiu, N., Rev. Roumnine Riochem. C'A 64, .5613h. 3,207 (1966); CA 65, 19142b. (398) Cebecauer, L., Kozarstvi 16, 220 (432) Zbid., p. 311; C A 66,36116~. (1966); CA 6 6 , 52284~. (433) Chisin, N., Stud. Cercet. Biochim. (399) Cebra, J. J., Small, P. A., Jr., 8. 427 (1965'1, C A 64. 16456e. Biochemistry 6 , 503 (1967). (434) Zbid., 9, 269 (1966); CA 66,9240e. (400) Cederblad, G., Johansson, B. G., Sb. ., A'auchn. Tr (43.5) Chistyakov, N. >I Rvmo, L., Acta Chem. Scand. 20, 2349 Ivanovsk. Gos. Med. Znst. 29, 109 (1964); (1966). CA 64, 1132e. (401) Cempel, M., Krechniak, J., ByckowTampa(436) Chitani, K., Yaoi, Y ski, S., Gdanskie Towarzyst. Y a u k . , kushitsu Kakusan Koso 10. $50 (1965): Wrildzial S n u k . nrat.-Prtyrodniczi/ch, , CA 65. 7603~. Rozprawij Wydzialu III 1, 42 (1964); (437) Chmielnicka, J., Acta Polon. Pharm. C A 64, 14847e. 22, ,537 (1965); C A 64, 1792-5h. (402) Cervetti, R., Frariceachelli, A., (438) Choi, Jin Hak, Taehnn .Iraewahak Intern. Congr. Occupational Health, 14th, Hoe Chapchi 8 , 41 (1965); C.4 6 5 , Madrid 1963. 857 (Pub. 1964): C2464. 9490~. 18192~. (439) Chojnowska, I., Ginekol. Polska (403) Chalazonitis, N., Takerichi, H., 37, (1966); CA 65, 2060%. C. R. Soc. Biol. 160, 610 (1966); CA (440) Zbid., p. 933 (1966); CA 6 6 , 3.5873b. 65, 20612f. (441) Chopova, I., C. R. Acad. Bulgare (404) Chaliimeau-Le Foulgoc, >I. T., Sci. 18, 10.51 (196.5); CA 64, 13204h. Fine, J. ll.,Gallien, L., Compt. Rend., (442) Chouleq, G. L., Singer, S. , J , ImSer. D 262,1989 (1966); C A 65,4321d. munochemistry 3, 21 (1'366); C A 64, (40.5) Chan, J. Y. S., llerts, E. T., Can. 147.i0q. J . Riochem. 44,469 (1966). (443) Choules, G. L., Zimm, B. H., Anal. (406) Zbid., p. 487. Riochem. 13, 336 (1963); C.1 64, 996b. (407) Chang, Yet-Ov, Varnell, T. R., (444) Chrambnch, .4., Ibid., 15, evliri, J. G., Irish J . Med. Scz. 491, 507 (1966); CA 66, 4302.5. ( 5 7 8 ) I)e Zanche, L., Tavolato, B., Boll. Soc. Ital. Biol. Sper. 42, 1240 (1966); CA 6 6 , 63715u. ( 5 7 9 ) I)i Addarid, A., G . Med. Mil. 116, 326 ( 1 9 6 6 ) ; C A 66, 27044s. ( , S O ) Iliaz, It., Chordi, A., Ezperientia 22, 823 (1966); CA 66, 361871. ( 5 8 1 ) llickerson, J. W. T., Southgate, I ) . A4. T., Biochem. J . 103,493 (1967). ( 3 8 2 ) 1 3 Ilomizio, G., Rlinorrheri, F., Arch. Vet. Ita!. 17, 413 ( 1 9 6 6 ) ; C A 66, 113609m. ( 5 8 3 ) Zbid., p. 421 ; CA 6 6 , 1 0 3 4 6 4 ~ . (.i84) Totaro, L., lbid., 16, 321 (1965); C.4 65, 142479. ( 5 8 3 ) 1)idur. RI. E.. Klin. Khir. 1966, 54: C-1 66, 272319. ( 5 8 6 ) IXerkhues, B., Boeke, W., Arch. Klin. Exp. Ophthalmol. 168, 423 (1965); CA 64,71739. ( 5 8 7 ) llike, G. W. It., Bew, G. E., J . Clin. Pothol. 20, 97 (1967). ( 5 8 8 ) Ilillon, W. W., Romans, R. G., Can. J . Bwchem. 44, 1171 (1966). ( 5 8 9 ) Dioguardi, N., Agostoni, A., Enzymol. Biol. Clin. 5 , 3 (196.5); CA 63, 18803h. ( 5 9 0 ) llioguardi, N., Agostoni, A., FioProtides Biol. Fluids, Proc. (1964) (Pub. 1965); C A 64, 14502h. ( 5 9 1 ) Uioguardi, N., Fiorelli, G., Aresu, G., Alanniicci, P. PVZ., Folia Huematol. (Leivziu)83. 244. discussion 248 (1965): . ., CA 63,-15340b. ’ ( 5 9 2 ) Dioguardi, N., Fiorelli, G., Ideo, G., Emanuelli. G.. Farmaco (Pavia). Ed. Prat. 21, 334 ( i 9 6 6 ) ; CA 63, lO942f. ( 5 9 3 ) Dioguardi, N., Ideo, G., Mannucci, P. RZ., Fiorelli, G., Enzywwl. B k l . Clin. Int. J . Biol. Med. Enzywwl. 6 , (1966); CA 6 6 , 8424w. ( 5 9 4 ) IXogiiardi, N., Ideo, G., hlannncci, P. AI., Fiorelli, G., Agostina, A., [bid., p. 1; Crl 64,14497d. ~

96 R

ANALYTICAL CHEMISTRY

( 5 9 5 ) Dioguardi, N., Secchi, G. C., Arch. Ital. Mal. Appl. Diger. 31, 356 ( 1 9 6 4 ) ; C A 67, 1638~’. ( 5 9 6 ) Dittmer, A., “Plasma Eiweiss und Elektrophorese. Grundlagen, Methodik, Klinik” (Plasma Albumin and Electrophoresis. Principles, Methods, Clinics), G. Fischer, Jena, 1965, 477 pp; CA 65, 10957b. ( 5 9 7 ) DitLel, J., Hove, E., 2. Vergleich. Physiol. 50, 221 (1965); C A 64, 3936d. (598) Ilobson, C., Australian J . Exptl. Biol. filed. Sei. 44, 575 (1966); CA 65, 19073~. ( 5 9 9 ) Ilohson, C., iyature 207, 1304 (1965); CA 63, 18822t. ( 6 0 0 ) Dodin, A., Brygoo, E . R., Richaud, J., Rloreau, J. P . , Bull. SOC. Pathol. Exotzoue 58. 1072 (1965): CL4 66, 1140f4a. ( 6 0 1 ) Dodin, A., Moreau, J. P., Lambert, C., Zbid., p., 1079; C A 67, 9820h. ( 6 0 2 ) Ilolexalova, V., Brada, Z., Kocent, A., Biochem. Biophys. Acta 107, 294 (1965). ( 6 0 3 ) Doleaalova, V., Brunecky, Z., Cesk. Pediat. 20,513 ( 1 9 6 3 ) ; C.1 63, 16879f. ( 6 0 4 ) Iloljanski, F., Eibenherg, R., Cell Electrophoresis, Symp. Brit. Biophijs. Soc., London 1963, 78 (pub. 1965); C A 6 5 , 92438. ( 6 0 5 ) Doman, E., Koide, S. S.,Biochem. Biophys. Acta 128,209 (1966). ( 6 0 6 ) Domaniewski, J., Folia Histochem. Cytochem. (Cracow)4,87 (1966); CA 65, 12678d. ~~. ( 6 0 7 ) Donati, L., Francesconi, G., Ingrami, A., Atti Accad. M e d . Lombarda 20,432 (196.5); C A 66, 1128e. (608) Donirii, P., Puxzuoli, I)., IYAlessio, I., Lunetifeld, B., Eshkol, -4., Parlow, A. F., Acta Endocrinol. 52, 169 (1966); C A 65, 12494h. ( 6 0 9 ) Ilony, J., J . Pharm. Relg. 22, 3 (1967); CA 66, 1 1 4 1 8 9 ~ ~ . ( 6 1 0 ) llorfman, N. A., Vop. Med. Khim. 1 3 , 5 l (1967); C A 66,929316. ( 6 1 1 ) Douglas, H. W., Ilondle, C. J . M., Williams, B. L., J . Gen Microbiol. 42, 107 (1‘366). (6121 Dioxiades. T.. Ariaenostou. E.. ‘ Stefanakis, N.; Nosokomlicka Chron. 25; 767 ( 1 9 6 3 ) ; CA 66,1033.54k. ( 6 1 3 ) I>ragorii, G., Itaimondi, L., Radiobiol. Radioterap. Fis. Med. 20, 167 ( 1 9 6 5 ) ; C A 63, 188i)Oa. ( 6 1 4 ) Ilrewcs, S . E., liollx, I). G., Biochem. J. 98. 493 11966). ( 6 1 3 ) Ihibarb, U: C., Helv. k e d . Acta 33, 139 (1966); CA 65, 126.5?f. ( 6 1 6 ) Duhhs, C . A., Sczence 151, 463 (1966). ( 6 1 7 ) Dudacek, W. E., Narayan, K. A., Biochem. Bwphws. Acta 125, 604 (1966). ( 6 1 8 ) Dufour, ‘U.: Protides biol. Fluids, Proc. CoZloq. 12, 282 (1964) (Pub. 1965); C A 64, I6456d. ( 6 1 9 ) Dufour, D., Rev. I m m u w l . 29, 411 ( 1 9 6 5 ) ; C A 65, 2568a. ( 6 2 0 ) Dufour, I)., Gagnon, P. H., Trebblay, A., Bussieres, J., Rev. Franc. Etudes Clin. Biol. 1 1 , .536 ( 1 9 6 6 ) ; C A 65, 14203e. ( 6 2 1 ) Dufour, I)., Gaiithier, G., Lemieux, S., Ezperientia 22,28 (1966). ( 6 2 2 ) Dufour, D., Tremblay, A., Lemieux, S.,Rev. Franc. Etudes Clin Bwl. 1 1 , 89 (1966): C A 64. 20093d. ( 6 2 3 ) D’uke, E.‘ J., Comp. B w c k m . Phusiol. 17, 661 ( 1 9 6 6 ) ; C A 64,16339~. (624j Dumazert, c., Vo-Van-Luu, Fayolle, J., C . R. SOC.Biol. 157, 1971 (1963); C A 6 3 , 13709n. (62.5) Duiiagan, T. T., De Luque, O., J . Parasitol. 5 2 , 727 (1966). ( 6 2 6 ) Ihrbin, It. I)., Nature 210, 1186 (1966). ( 6 2 7 ) Durzan, D. J., Can. J . Bolany 44, 359 ( 1 9 6 6 ) ; C A 64,180263.

( 6 2 8 ) Dusanic, D. G., Lewert, It. M., J . Infect. Diseases 16, 270 (1966). ( 6 2 9 ) Duvina, P. L., Belisario, C., Riv. Clin. Pediat. 7 6 , 150 (1965); C A 65, 4360o. ( 6 3 0 ) fiymling, J. F., Scand. J . Clin. Lab. Invest. 18, 129 (1966); CA 64, 179245. ( 6 3 1 ) I)yurnhaum, V. I., Vestn. Leningr. Univ. 21, Ser. Biol. 1.77 (1966): . . . , CA 64, 17903~. ( 6 3 2 ) Dzhavadov. I. K.. Tr. Azerb. h’auch.-lssled. Vet. Inst. 20, 247 (1966); ~

C A 67. 1680s. I

-

-

( 6 3 3 ) Eastoe, J. E., Brit. Med. Bull. 22, 174 (1966); (7.4 6 5 , 2 6 0 3 ~ . (634) Eaton, G. RI., Brewer, G. J., Tasian. It. E., A-alure 212, 944 (1966). ( 6 3 5 ) Ebermann. R.. Bodenkultur 16. 356 (1965): CA 66. 270420. ( 6 3 6 ) Ehertshaeuser, H.:Baender, Bleche, Rohre 6 , 9 ( 1 9 6 5 ) ; C A 64, 3 8 4 2 ~ . ( 6 3 7 ) Ecohichon, 11. J., Can. J . Biochem. 44,1277 ( 1 9 6 6 ) ; C A 65,10853h. ( 6 3 8 ) Erobichon. D. J.. Can. J . Phwswl. Phnrmacol. 44, 223 ’ ( 1 9 6 6 ) ; CA” 64, 14487e. ( 6 3 9 ) Edward, J. T., Advances Chromatog. 2,63 ( 1 9 6 6 ) ; CA 6 6 , 5 1 8 3 3 ~ . ( 6 4 0 ) Edward, J. T., Waldron-Edward, I)., J . Chromatog. 20, 563 (1Y6ti). ( 6 4 1 ) Ibid., 24, 125 (1966). ( 6 4 2 ) Edwards, J. S., Fiore, C., Entomol. Ezptl. A p p l . 9 , 419 (1966); C A 6 6 , 44.5749.. ( 6 4 3 ) Edwards, 1,. J., Patton, R. L., Stain Technol. 41, 333 (1966). (644) Efirnenko, A. ll.,Aplechn. Delo 1 5 , 44 (1966); CA 65,8667b. ( 6 4 5 ) Efimenko, A. AI., Farmatseut. Zh. ( K i e v )21,32 ( 1 9 6 6 ) ; CiZ 65,206ha. ( 6 4 6 ) Efimenko, A. N.,Lab. Delo 1965, 412; C A 63, 1.5208~. ( 6 4 7 ) Ibid., 1967, 137; C A 66, 1122282. (648) Efremov, G., A\’ature 208,298 (1965). ( 6 4 9 ) Efremov, G., Braend, Rl., Animal Prod. 8 , 161 (1966); CA 65,9433s. ( 6 3 0 ) Efremov, G., Braend, If.,Biochem. J . 97, 867 (196.5). (6.51) Egorova, N. P., Meleshko, V. P., Izu. Vusshikh C’chebn. Zauedenii. Pischchevatja l’eknol. 1965, 191; 6.4 64, 281 _ _ -i h .

( 6 3 2 ) Egyhazi, E., Biochem. Biophys. Acta 114, 316 (1966). ( 6 5 3 ) Eichhorii, F., Rutenherg, A,, Israel J . Med. Sci. 2. 640 (1966): C.4 66. 3.531Or. ( 6 3 4 ) Ekfors, T. O., Iteikkinen, P. J., Malmiharju, T., IIossu-Havn, V. K., Hoppe-Seyler’s Z . Physiol. Chem. 348, 111 (1967); CA 6 6 , 62100d. ( 6 5 5 ) Eldridge, A. C., Anderson, Ii. L., Wolf, W. J., Arch. Biochem. Biophys. 115, 495 (1966). ( 6 6 6 ) Elevitrh, F. R., Aronson, S. B., Feichtmeir, T. V., Enterline, RZ. L., Am. J . Clin. Pathol. 46, 692 (1966); C A 66, 52838m. ( 6 5 7 ) Ellison, S.A., J . Dental Res. 45,644 ( 1 9 6 6 ) ; CA 66, 174942. ( 6 5 8 ) El-Negoumy, A. IT.,Anal. Bwchem. 14,437 (1966); CA 6 5 , 2 9 0 0 ~ . (659) El-Shafie, M. W., Ilavis, G. N., Proc. A m . Soe. Hort. Sci. 89,431 (1966). ( 6 6 0 ) Elton, G. A. H., Ewart, J. .4. D., J . Sei. Food ‘4gr. 17, 34 (1966). ( 6 6 1 ) Ely, C. A., Cheii, Bei-Loo, Endocrinology 79,362 (1966). ( 6 6 2 ) Emanuelli, G., Fiorelli, G., Biisilacchi, M., Minerua Med. 57, 1630 (1966); C A 65. 11102h. ( 6 6 3 ) Epshtein, Ya. A., Prokhorov, V. .4., Dokl. Akad. Nauk Tadzh. S S R 8 , 35 (1963); C A 64. 414%. ( 6 6 4 ) Epshtein-Litvak, Ii. V., Kokoriiia, T. A., Zh. Mikrobiol., Epideniiol. Zitimunobiol. 43,46 ( 1 0 6 6 ) ; C A 6 6 , 74447k. ( 6 6 5 ) Engel, It., Dctct. .Wed. ll‘ochschr. 91, 2123 (1966); C A 66,44169d.

( M 6 ) I~iigeln~:iiiii,F., Pentiey, I)., Gen. ('onzp. Entloerirzol. 7 , 314 (1966); C A 66, tisly. (667) Eiigcr, 11. I)., Kaesberg, P., J . -1101. Ilia/. 13, 260 (1963). (66s) Erioki, Y., 'l'oinitx, S.,Sato, Rl., J a p . %J.I'husiol. 16, 70" (1966); CA 66,

'Yumero Hors Ser. 1, 14, 1 (1965); C A 65, 13980h. (704) Feinberg, J. G., Brit. Patent 1,030,474 (Cl. C 12k), ?\lag 23, 1966, Appl. Dec. 12,1962; 4 p p ; CLZ65,4436h. (70.1,) Feinberg, 31. P., JIann, L. T., Blatt, W. F., Am J . Clin. Pathol. 44, l i i ( 1 96.S\. , / - - -

134 (1!)60); C;l 66, 72465r. (672) Eacribaiio, 11. J., Keilova, H., Griibxr, P., IZiochcm. IZiophp-. d c t a 127, 04 119tim. (673)' E&, 11., .tcta Ophthalmol., Suppl. 77, 113 pp. (1003): C.l 65, 4164d. (674) Esposito, 1'. ill., Ulrich, V., Proc. Il'est 1-a. Acatl. Sci.37, 48 (1065). (67.5) L s e r . K.. %. T'ererbrcnoslehre 97. 327 ' (1066); k.4 65, 12OGOGc. " (676) Eider, 11. I.., IIarselquist, H., A4rkit. K m i 25, 129 (1904); C A 64, 1102:;g. ( 6 7 7 ) Ihl'd., p. 143: C'A 64, 11623h. ( 6 7 8 ) Eider, 11. \ d . J Jl:isselqiiist, I€., Kyyroe, II., Hpano, G., Cao, A., Maciotta, A., Boll SOC. Ztal. Biol. Sper. 42, 691 (1966); CA 65,17504d. (1050) Ignat'eva, 0. A., Nuriev, G. G., Cch. Zap. Kazansk. Vet. Inst. 90, 107 (1964) ; C.4 65 ,7793f. (1051) Ikeda, A., Zwaan, J., Develop. BioZ. 15, 347 (1967). (1052) Ill'khamov, A. I Glnyamov, T. ll., Sazyrova, V. %., Med. Zh. U z b . 1965,19; CA 64, 11680b. (1053) Imamura, T., Am. J . Human Genet. 18. 584 (1966). (1054) Imlkh, P.', Saiure 203, 658 (1964). (1055) Ingestad, R., Tryding, K . , ilcta ilfed. Scand. 180, 449 (1966); CA 66, 9403h. (1056) Iordanov, B., C. R. Acad. Bulp. Sci. 19,867 (1966); CA 66, 16552e. (10.57) Iordanov, B., Tsvetanova, E., Sou. Med. 17. 661 (1966): ,. CA 66. 6252%. (1058) Intrieri, F., De Paolis, P., Badolato, F., Acta Med. Vet. 1 2 , 413 (1966); CA 67. 9304t. (1059) Iiino, J., Kyoto Furitsu Ika Daigaku Zasshi 71, 373 (1962); CA 63, 153034. (1060) Isa-Zade, G. AI., Tagieva, S. A., Azerb. Med. Zh. 42, 9 (1965); CA 64, 11678e. (1061) Ishihara, K., Schmid, K., Biochemistry 6, 112 (1967). I

1

.

(1062) Ito, T., Kurashiki Chuo Byoin lllempo 35, 39 (1966); CA 67, 15069.. (1063) Ito, Y., Okabe, S., Samba, S., Endocrinol. Japon. 12, 69 (1965); CA 64, 5540d. (1064) Itze, L., Arendarcik, J., Skarada, 13.. Endokrunol. Polska 16, 167 (1965); C A 64, 13 (1065) Ivan F.1 322

F., S., CA 64,8750~. (1067) Iwatsubo, K., Jap. J . Pharmacol. 15. 244 (1963): C A 64. 2339b. (1066) Izumi, K:,Fukudka Zguku Zasshi 55, 101 (1964); C-4 65, 12446g. (1069) Izzo, P., Boll. SOC.Ital. Biol. Sper. 42, 874 (1966); CA 66, 7 3 1 2 9 ~ . (1070) Jaffe, R. G., Wagner, F., Marcano, P., Hernandez, It., Scta Cient. Venezolana 15, 29 (1964); CA4 64, 6944b. (1071) Jain, It. C., Gupta, 0. P., Indian J . f l e d . Sci. 20, 713 (1966); CA 66, 4496Oe.

(1072) James, A. AI., List, C. F., Biochim. Biophys. Acta 112, 307 (1966). (1073) James, K., Taylor, F. ,B., Jr., Fudenberg, €1. H., Clin. Chzm. Acta 13, 359 (1966). (1074) Jammaers, C., Arch. Int. Physiol. 73,651 (1965); C 4 64, 1091g. (1075) Jankiewicz, M., Pomeranz, Y., J . Sci. Food Agr. 16, 644 (196.5). (1076) James, J., Saris, X. E., Ann. Med. Exptl. Biol. Fenniae 43, 248 (1965); C 4 64, 6!161d. (1077) Javid, J., Proc. Sat. Acad. Sci. U.S. 57, 920 (1967). (107X) Jenkins, G. C., Beale, I)., Black, A. J., Huntsman, G. I t Lehmann, H., Brit. J . Hermatol. 13, &2 (1967). (1079) Jensen, B. S., Dan. 3 l e d . Bull. 13, 175 (1966); C A 66,74116b. (1080) Jensen, K., Claiisen, J., Osterman, E., ilcta Psychiat. Scand., Suppl. 180, 437 (1964); C A 63, 18S2Xg. (1081) Jesenovec. S . . Sulek. V..Farm. Vesin. (I,jjublu&na)'17, 89 '(1966); CA 66 , 73953k. (10F;2) Jirgl, V., .4nal. Biochem. 13, 381 (1965). (1083) John, V. T., Ragetli, €1. W. J., Biochem. J . 101, 21C (1966). (1084) Johns, E. W., Ibid., 104, 78 (1!167). (1085) Johnson, B. I,., Hall, O., Acta Agr. Scand., Suppl. 16, 222 (1966); CR 67,86492. (1086) Johnson, F. >I., Nature 212, 843 (1866). (1087) Johnson, F. M.,Kanapi, C. G., Itichardson, I. R., Can. J . Biochern. 43, 1955 (1965). (1106)Jurencova, G.,Popvici, D.,Raitaru, X., Stud. Cercet. Uiol., Ser. Zool. 18, 543 (1966);C d 67, 1336j. (1107) Jusko-Grundboeck, J., Polskie Arch. LVeterynar 9 , 285 (1965); CA 65, 77929. (1108)Juste, C., Compt. Rend., Ser. D 262, 26!12 (1966). (1109) Juul. P..Scand. J . Clin. Lab. Invest. 18,'629 11966); CA 66,36168n. (1110) Juul, P., L'beskrift Laeger 128, 779 (1966);CA 65, 206619. (1111) Kahn, P., lilzn. Wochenschr. 45, 101 (1967); C d 6 6 , 6 3 8 1 3 ~ . (1112) Balab, AI., Matlocha, Z., Vnitrnz Lekar, 12,949 (1966);CA 66,406h. (1113) Kalab. 11.. Pelikan. Y.. Acta ' Cniv. Palacki. Olbrnuc., Fac: Med. 1966, 21: C.~~ A 67. 231i. .. (1114) Kalaii,-E.d II.,(1240) Kohen, E., Legallais, V,, Kohen, C., Exp. Cell Res. 41, 223 (1966). Peterson, W. C., Jr., J . Invest. Dermatol. 46,480 (1966). (1241) Kojecky, Z., Matlocha, Z., Acta (1208) Kjellberg, B., Karlsson, B., BioUniv. Palackianae Olomztc., Fac. Xed. 40, 199 (1966); C A 65, 14256b. chint. Biophys. Acta 128, 589 (1966). (1209) Klamberg, H., Krey, W., Saran, (1242) Kokot, F., Kuska, J., Grzybek, H., H., 2. Anal. Chem. 215, 365 (1966). Cekanski, tl., Arch. Immimol. Therap. (1210) Khmer, B., Experientia 21, 529 Exp. 13,586 (106-5);CLt64, 1471%. (1965). (1243) Kokubii, T., Ueda, E., Fujimoto, (1211) Klasky, S.,Pickett, SI. J., Nature S., Hiwada, K., Sanga, H.,Yamamura, 211, 1298 (1966). Y., Clin. Chim. Acta 12, 484 (1965). (1212) Kleihauer, K., Brauchle, E., (1244) Kolar, O., Klin. Wochenschr. 44, Brandt, G., Ibid., 212, 1272 (1966). 279 (1966); C d 64, 1644.5h. (1213) Klein, P. A., Roop, B. L., Roop, (1245) Kolev, D., Sikolov, T., Cholakov, W.E., Zbid., p. 1376. I.. Banikova. Si.. Petkov. P.. Farma(1214) Klein, U. E., Clin. Chim. Acta 16, tsiya (Sofia)’ 16,‘ 37 (1966); ’ Crl 65, 164 (1967). 1A733f. (12i$)’Kiein, U. E., Drube, H. Chr., (1246) Kolin, .4.,J . Chromatog. 26, 164 Hansen, H. Th., Klin. Wochenschr. 45, (1967). 95 (1967); C A 66,73869n. (1247) Ibid p. 180. (1216) Klein, U. E., Drube, H. Chr., (1248) Kollh, A., Proc. Satl. Acad. Sci. U.S. 56. 1051 11966). Hansen. H. Th.. Mielke. H.. Zbid. D. 244; CA 66, 1020420. (1249) Kolin, A., Protzdes Riol. Fluids, (1217), Klein. U~. E.. T,oeffler. Proc. Colloo. 12. 410 11964’1 -~ -~~~~~ H.. Leuck- - , Pub. 1965); C.4 g4, 2Oi72L.feld, E., Ibid., 44, 637 (1966);’ C a 65, 7714c. (1250) Koller, F., 3fed. Lab. 19, 281 (1218) Klein-Wisenberg, A. v., Clotten, (1966); CA 66, 63729~. R., Bibliotheca Haematol. 21,79 (1964) (1261) Komarevtsev, N. G., Beiki v (Pnb. 1965): CA 63. 18623e. M e d . i 9 a r . Khoz.. -4katl. ~ Y a u kCkr. SSR 1965. 105: C,4 63. 1962.k (1219) Kleinei, H., Gkaff, G., C. R. SOC. (1252) Komka-Gorkina,’ Z. A,, Frolova, Biol. 160,714 (1966); CA 65,20604h. L. K., V o p . ‘lied. Khim. 12, 23 (1966); (1220) Kleiner, H., Schrani, E., Clin. CA 64, 16441d. Chim. Acta 14, 377 (1966); C-4 65, (1283) Kon, S., Whitaker, J . R., J . 12544d. Food Sci. 30, 977 (1963). (1221) Kloos, G., 2. Z,ebensm.-Untersuch.(12.54) Konarev, J7. G., Chekmin, I. F., Forsch. 133, 8 (1966); C 4 66, 43769n. Yiimaguiina, Kh. A,, G a v r i l y k , I. P., (1222) Kloz, J., Turkova, V., Klozova, E., Biol. Plant., Acad. Sci. Bohemoslov. Fiziol. Rast. 13, 453 (1966); CA 65, 9441d. 8.’164 (1966): Cd 64. 18025~. (1255) Koneman, E. W., Rocky Mt. J l e d . (1223) Klyachko, IT.’R.,Saitgaleeva, J. 63, 39 (1966). hI. Sh., Probl. Endokrinol. i Gormon(12,56) Ibid. p. 47. terap. 1 1 , 8 (1965); CA 63, 16732~. (12Fj7) Konrad-Jakovec, Z., Sb. Ref. Celo(1224) Knaiit, T., Bruderer, G., Milchstatni Radiochem. Konf.. 3. Liblice. wissenschaft 20, 315(19 65); CA 63, Czech. 1964, 74; C A 64,“1303hc. 1.5247~. (12.58) Kopp, I?., Vogt, A , , Siind, H., (1225) Knedel, AI., Eberhard, K., ilbh. Deut. A k a d . Wiss. Berlin, Kl. Kirzeder, H., Glas-Znstr.-Tech. 10, 631 hled. 1966, 223, discussion 229; CA (1966); C A 65, 14018h. 67, l52j. (1226) Knight, K. L., Lopez, 11. A., (12.59) Korin, 11. >I., Zh. Nmropatol. Haurowitz, F., J . Biol. Chem. 241, Psikhiat. 65, 1623 (1963); C.4 64, 2286 (1966). 11673d. (1227) Knobloch, V., Sb. Ref. Celostatni I

\ -

Radiochem. Konf., 3, Liblice, Czech. 1964, 3 ; CA 64, 1503% (1228) Knobloch, Jr., Jen, Te-Hou, Soorem. Metody Analzza, M e l o d y , Zssled., Khim. Sostava i Stroeniya Veshchestv, Akad. iVazik SSSR, Znst. Geokhim. i Analit. Khim. 1965, 222; C A 64,

5794d. (1229) Knobloch,

V., Stary, J., Zh. Analit. Khim. 20, 1160 (1965); C A

64, 11857g. (1230) Knolle, P., Luedke, H. J., Acta Biol. Xed. Ger. 16. 222 (19661: ,, CA 65, 4236h. (1231) Kobayashi, S., Acta dded. h’agasakiensia 10, 12 (1965); CA 65, 1085Ob. ~

102 R

ANALYTICAL CHEMISTRY

\

(1263) Korotkoriichko, 5’. P., Ishchenko, I. N., Fedorova, A. P., Kuzmenko, I. I., Didenko, G. G., Protscnko, R. A., Goncharenko, E. G., Titol, T. G., Rozhko, 0. T., Mol. Om. ZhiznennUkh Protsessov 1966, 139; C A 67, 19536y. (1264) Korovkin, R . F., Xikhaleva, 5 . P., Chernieriko, I. S., Lab. Delo 1966, 702; CA 66, 536882. (126.5) Koscielak, J., Siebroj-Dobosz, I., Warecka, K., 1Yeurol. Seziroch, Psych. Polska 13, 685 (1963); CA 63, 15346e.

(1266) Koskimies, O., Saxen, L., Ann. Med. Exptl. Bid. Fenniae 44, 151 (1966): CA 65, 14244e. (1267) Kosmider, S., Arch. Immun02. Theraw. Expl. 13, 204 (1965); CA 63, 13919a. (1265) Kot, 31. )I., Dokl. TSKhA (Timiryazmsk. Sel’skokhoz. Akad.) 110, 347 (196.5); CrZ 65, 10946~. (1269) Koiivalainen, K., Ann. Paediat. Fmniae 12, 83 (1966); C.! 65, 20633~. (1270) Koval, T’. G., Rorisovn, S. K., Skirstymonskii, A. I., Tr., U k r . A‘a7ichn.I.sded. Inst. Spirt. i Likero-Vodochn. Prom. 1965, 90; C.4 65, 245,5,f. (1271) Kowalczyk, J., Chem. Anal. (Warsaw) 9, 213 (1964); C.4 63, 14100,f. (1272) Ibid., 10, 29 (1965); C.4 63, (1273) Kowalczyk, J., Cxaplinski, .4., Chem. ilnal. (Warsaw) 9, 1021 (1964); CA 63, lFi598d. (1274) Koyama, J., Miyajima, s.,J . Biochem. (Tok?yo) 61, 283 (1967); C A 66. 1141200. (127;) Kraak, W.,Wd?, G. D., J . Chromatog. 20, 197 (1965). (1276) Kragt, C. L., AIeite., J., Proc. Soc. Exptl. Biol. J f e d . 121, 803 (1966). (1277) Kraiis. L. 31.. lIivaii. T.. Illchi, I., Kraiis) :4. P., Biochem;’stry 5 , 3701 (1 966 ).

(1273)-Kraus, Z.,llateia, F., ilcta Dermafo-Venereol.46, 217 (1966); C A 65, 1.590.in. (1279) Krawczynska, H., Baldyaa, A., Loeder. Z..Clin. Chim. Acta 15. 403 (1967). (1280) Kremers, B., Briere, X. O., Batsakis, ,J. G., Am. J . Alerl. Technol. 33, 28 11967). (1281) Krensser, E. H., Cancer Res. 26A, 2181 (1066l 112S2) Kieiitzer. H. ,J. 11.. Clin. Chzm. A c t a 12, 57: (1965). (1283) Krichevskii, Yu. .4., Tr. Khar’kov. Gos. d l e d . Inst. 50, 282 (1961) (Pub. 1962); C.4 66, 272952. (1284) Kristan, 11.. Pihar,. O.,. Clin. Chim. :Irta 13, 405 (3966). (128:) Kristjnnsson, F. K., Genetics 53, 675 11966). (1286) Krnjevic, K., Proc. Jfeeting CoU. Intern. .~eiiro-Psilchopharmacol., 3rd, .1lunich 1962, 260 (Piih. 1964); C A 64, 16391a. (1287) Krotoski, W. A., Benjamin, D. C., Weimer, TT. E., Can J . Riochem. 44. -546 (1966). (1288’1 Krotoski. W. A , . Weimer. I T . E.. Riirhim. Rioph?qs..2cta 133, 278’(1967). ’ (3289) Krotoski, W. A , , Weimer, H. E., Clin. Chim. Acta 13, 329 (1!)66). (1290) Kriimmen, TT., Z. Tiermecht. Xuechtungshiol. 81, 139 (l9GT,), C-4 64, 1s1.700. (1291) Kryitkova, L. V,, Vop. Pitan. 25, .57 ( I 066) ; C A 66, 63025?/. (1202) KII, Kuo Yen, Liii) Li, Shih Yen Shenq TVu Hsueh Pao 10, 144 (196.5); CA 65, 7753.f. (1293) Kiicera, AI., Veda Vyzkum Prumyslir Potrailinarskem 16. ,51 (1963): C A 64, 300%. (1294) Kuch, J., Polskie Arch. Med. JT7ezmetrmej 37, 427 (1966); CA 66, 1033.56n. (120.5) Kiidryashov, .4. G., Evstratova, .4. lI., 9michn. Dokl. Viisshei Shkolij, Rior. .Vairki 1966, SO; C,4 6 6 , 8 3 3 ~ . (1296) Kiidryashov, A. G., Sergeeva, A, V., Dokl. T8Kh.t (Timiri/azeid. Spl’skokhoz. .Ikad.) 110, 273 (196c5); Cit 65, 943:b. (1297) Kiidryashov, A. G., Sergeeva, A . V., \larkova, A. 3 [ . , Dokl. TSKhA ( T ~ i i r i j n z e u s k .Sel’skokhoz. .4kad.) 166, 23.7 (1966); C,1 65, 174.58e. (1203) Kiiehnl, IT., Khan, AI. A., J . Chromalog.23, 149 (1966).

(1299) Kukharchik, 11. XI., Baramboim, N. K., Sauchn. Tr. Jfosk. Tekhnol. Insf. Legkoi Prom. 29, 117 (1964); CA 63. 149940. (1300) KiliGova, N. I., Dokl. Akad. SSSR 163, 1285 (1963); C 4 63, 16839e. 11301) Kullvev. P., Birvukova, X. V., Mamedniyazov, 0. N.,"Izu. Akad. iVauk Turkm. SSR. Ser. Biol. , Y a k 1966, 49; C.4 6 6 , 9 1 7 4 3 ~ . (1302) Kulonen, E., Hollmen, T., Nanto, V., Pikkarainen, J., Struct. Functzon Connective Skeletal Tissue, Proc., St. Andrews, Scot. 1964, 216 (Pub. 1965); CA 65,10946g. (1303) Kumar, A., Bhatnagar, P. D., Bhattacharya, A. K., Kollozdn. Kh. 28, 416 (1966); C.4 65,6343~. (1304) KLIO, Simion Chaw-Yuan, A D 628617, avail. CFBTI $3.00 cy, 114 pp. (1963); from U . S . Gout. Res. Develop. 41,92 (1966). (1303) Kurata, Y., Okada, S., SABCO (Soc. ,Ireas Biol. Chem Oaerlavl J .

(1966); C d 65, 13h33c. (1308) Kushnev, Yu. -4., Vestn. Dermatol. i Venerol. 35, 11 (1961); CA 63, 1881Sb. (1309) Kaz'mina, F. V., IIeilunas, I. lI., Vestn. Khzrurg. 96, 63 (1963); CA 65, 77X.in.

(1310j Kuz'mina, V. V., Gidrobiol. Zh. Akad. ,Yauk Ckr. SSR 2, 74 (1906); CA 66, 17324~. (1311) Kwiatkowski, T., Xikolajcuk, lI., Polskie Arch. IVeterunar 9. 577 11966): C A 65,60469. (1312) Labie, D., Rosa, J., Souvelle Rev. Franc. Hematol. 6, 426 (1966); CA 65, 14235b. (1313) Labie, D., Schapira, G., Suture 209,1033 (A966). (1314) Laborie, F., Laborie, R., Tignal, N., J . J l e d . Bordeauz Sud-Quest 142, SO3 (196.5); C A 63, 16930~. (1313) Lachhein, L., Schuetz, J., Clin. Chmz. Acta 15,429 (1967). (1316) Lahiri, 11. lI., J . Indian Chem. Soc. 42,843 (1963); C d 64, 13034b. (1317) Lai, L. Y. C., Acta Genet. Statist. .\led. 17, 104 (1967); C A 66, S3697u. (1318) Lai, L. Y. C., .Yature 210, 643 (1966). (1319) Lai, Tsai-Teh, Cheng, Heng-Shou, J . Electroanal. Chem. 12, 225 (1966). (1320) Lakshmanan, F. L., Marshall, 11. W.,Proc. SOC.Ezpfl. Bid. Jfed. 122, 33.5 (1966); CA 65, 7699g. (1321) Lambotte. 11.. Salmon. .T.. Lam' bert, P. H., Piotzd& Bzol. Fiuidk, Proc. Colloq. 12, 207 (1964) (Pub. 1963); CA I ,

64.I 1----X%n.ih..

(1552) Lemy, II.,C. R. cad. ~ c i . Paris, , Ser D 264,767 (1967); C d 66,92735a. (1323) Lamy, M.,Proces-Verbaux Seances SOC.Scz. Phys. S a t . Bordeaux 1963-64, 241; C.4 63,16S40a. (1324) Zbzd., 1964-65,47; C d 6 5 , 3 9 3 3 ~ . (1323) Landau, A., Ilamot, B., Harefuah 66,331 (1964); C A 64, 102009. (1326) Landry, J., Sallantiii, AI,, Compt. Rend., Ser C262, 136 (1966). (1827) Landry, J., Sallantin, JI., Baudet, J., JIosse, J., Ann. Phijsiol. Vegetale 7, 283 11963): Cd 65.12333h. (1328)'Lange, T., Z. Klin. Chem. 3, 168 (1963); C-4 64,3426d. (1329) Laron, Z., Apostolakis, Il., J . Endocrinol.35, 117 (1966). (1330) Laron, Z., A4ssa, S., JIatoth, J., Harefziah64, 1 (1963); C d 64,8397g. (1331) Larsen, B., Tymann, JI., Acta Vet. Scand. 7,189 (1966): CA 66.3478%. (1332) Larsen, B., Tonder, d.,Acta Physiol. Scand. 69, 262 (1967); C A 66, 113658b. (1333) Laterre, E. C., Acta Seurol.

Psychiut. Belg. 66, 289 (1966); CA 66, 63268b. (1334) Zbid.. D. 305: CA 66.63536n. (1335) Latn&, A . ' L . , Turner, D. Jl., Clin. Chim. Acta 15,97 (1967). (1336) Lauber, E. J., Natelson, S., Microchem. J . 11,498 (1966). (1337) Launay, 31. P.. Can. J . Biochem. 44. 16.57 11966). (1336) Laurell, C , B., Anal. Biochem. 15, 43 (1966). (1339) Laurell, C. B., Giistavsson, E., Clzn. Chim. Acta 15,361 (1967). (1340) Laurell, C. B., Snigurowicz, J., Scand. J . Haematol. 4 , 4 6 (1967); CA 66, 63836s. (1341) LaT'elle, A., Van Alten, P. J., Stain Technol.40,347 (1965). (1342) Law, G. R. J., hlunro, S. S., Science 149, 1518 (1965). (1343) Lawrence, C., Brit. J . Haematol. 12,569 (1966); CA 65, 17441~. (1344) Lawrence. S. H.. Protides Biol. F1u;ds. Proc. 'Colloa. '12. 468 11964) - , (Pub. i965); CA 64, 7821.51. (1345) Lazzarini, E., Intern. i l p. p. l . Radiation Isotopes 16, 443 (196.5). (1346) Leaver, A. G., Shuttleworth, C. A., Arch. Oral Biol. 11, 1209 (1966). (1347) Leaver, F. W.,Anal. Biochem. 14, 14.5 (1966). (1348) Leaver, J. L., Biochem. J . 101, 32P (1966). (1349) Lebedev, A. A., Korolev, B. K., Ratnikov, V. I., Byul. Eksp. Bio. M e d . 60,42 (1963); CA 64,7190g. (1350) Lebez, D., Antonijevic, AI., Furlan, Jl., AECAccession No. 18243, Rept. S o . NIJS-R-454. Avail. Dep. mn, 3 pp. >

( 1 96.;).

(ld51, Ledford, R. A., O'Sullivan, A. C., h'ath, K. R., J . Dairy Sci. 49, 1098 (1966). (1352) Lees, R. S., Frederickson, D. S., J . Clin. Invest. 44.1968 11965). (13.53) Leese, C. L.; European J . Cancer 1, 211 (196.5); C A 64, 11663h. (1354) Lehrs, E., Latvijas PSR Zinatnu -4Lad. Vestis 1966, 124; C A 65,142428. (1355) Lehtonen, A., Naentoe, V., Brnmmer, P., Acta J f e d . Scand. 180, 235 (1966); CA 65, 17503~. (13n6) Leise, E . X, Evans, C. G., Proc. SOC.Exptl. Biol. J f e d . 120, 310 (1963). (1337) Lemon, JI., Bailey, L. F., Australian J . Exptl. Biol. M e d . Sci. 44, 705 (1966); C 9 66, 33904n. (13.58) Lend'el, 31. F., Lab. Delo 1965, 346; C A 63, 18631~. (1339) Leone, C. A,, Anthony, R. L., Comp. Biochem. Physiol. 18, 359 (1966). (1360) Leonov, G. B., -Yauch.Dokl. Vyssh. Shk Biol. Sauki 1967, 94; CA 66, 102l76q. (1361) Leonov, G. B., Tr. Khim. Prir. Soedin., Kishinev. Gos. Univ. 6, 95 (196.5) (Pub. 1966); C 4 67, 7 8 9 ~ . (1362) Lestienne, A,, Przybylowicz, E. P., Staudenmayer, W. J., Perry, E. S., Baitsholts, A. D., Tischer, T. N., J . Pharm. Belg. 20, 213 (1965); CA 64, 2723a. (1363) Letzig, E., Sahrung 9, 337 (1965); C.4 63, 13430g. (1364) Levin, F. B., Dokl. Akad. ,Vauk SSSR 168, 1422 (1966); CA 65, 9232h. (1365) Levinson, J., Chemistry 39, 32 (1966). (1366) Levy, G. B., Instr. Control Systems, 39, 101 (1966). (1367) Levy, J. Jl.,Grunewald, C., Klein, F., Saripanidou, E., Ann. Pediat., Semaine Hov. 14, 20 11966): . , , CA 66. 84024j. (1368) Lewandowski, J., Rozalska, A., Leyko, W., Am. J . Obstet. Gynecol. 96, 1159 (1966). (1369) Lewis, A. A. hI., Hunter, R. L., J . Histochem. Cytochem. 14, 33 (1966).

(1370) Lewis, C., Jr., Schmitt, X, Hershey, F. B., J. Invest. Dermatol. 48, 221 (1967). (1371) Lewis, G. P., Yudowitz, B. S., Clin. Chim. Acta 15, 187 (1967). (1372) Lewis. J. H.. Protides Biol. Fluids. Proc. Colloq. 12, 149 (1964) (Pub: 1965); CA 65, 771.5d. (1373) Lewis, K. E., Parfitt, G. D., Trans. Faraday SOC.,62, 1652 (1966). (1374) Lewis, L. *I.,Clin. Chem. 12, 596 (1966). 1373) Lewis, R. A., Hathorn, AI., Blood 26, 176 (196.5). 1376) Lewis, U. J., Xem. Endocrinol. 15, 179, discussion 188 (1967); CA 67, 92.51 I / .

1377)terlaiid, C. K., Miller, E. J., Karakawa, W. W., Krause, R. AI., J . Exptl. d l e d . 123. ,599 (1966). (1793) bstrowski, I+., Postep:] Biochem. 1 1 , 341 (196.5);C-4 63,16755e. (1794) Ostrowski, W., Krawczyk, A., Acta Biochiin. Polon. 13, 121 (1966); CA 65, 12.5379. '

(179.5) Osiina. I). T.. Feenev. I?. E., Arch. Riochem. 'Rzophys. 118,340 (1967). (1796) Otani, T . T., Morris, TI. P., Advan. Enzyme IZegiilation 3 , 325 ( 1 96.5). (1797) Otto, S.V.,Tubiash, 11. S., Itosenfield, A., Chemist Analyst 55,93 (1966). (1798) Overly, W. L., Iiosenberg, A,, Harris. J. W.. J . Lab. Clin. X e d . 69. 62 (1967). (1799) Ovlisen, B., Protides Biol. Fluids, Proc. Collog. 12, 280 (1964) (Pub. 1965);CA 6 4 , 1 4 5 0 3 ~ . (1800) Owada, Y., Yamamoto, S.,Kochi Daigaku Gakujutsu Kenkyu Hokoku, Shizen Kagaku 9 , 77 ( 1 9 6 0 ) ; Crl 65, 14023g.

(1801) Ibid., p. 83; C A 65,1402.ih. (1802) Owens, J. B., Miller, A. P., Brown, W. G., Stool, J. A., '4rn.J. Clin. Pathol. 46,144 (1966). (1803) Oyoshi, A , , Oyoshi, E., Senoo, l l . , Shinagawa, ll., J . IYucl. Sei. Technol. (TOky0)3,237 ( 1 9 6 6 ) ;CA 65,98189, (1804) 07eretskovskava, S. E., Edel'man, Z. I., Ananenko, A. .4., Gershkovich, V. I., Bop. Revmatztma 5 , 24 (196.5); C A 63,15361h. (1805) Packer, L., Sobel, P. S.,Gross, E. L., Mel, H C., J . Cell Biol. 28, 443 (1966). (1806) Padmoyo, hl., Lriserez, A , , Mitt, Gebiete Lebensm Hyg. 56, 110 (1965); C A 64,5672d. (1807) Page, C. O'N., Jr., Ilemington, J . S., J . Lab. Clzn. .Ired. 69,634 (1967). (1808) Paget, ll., Coiistenoble, P., ilnn. Biol. Clin. ( P a r i s )23, 1209 (1965). (1809) Ibid,, p. 24, 181 (1966). (1810) Palau, J., Biitler, J. .4.V., Biochem. J . 98,.5P (1966). (1811) Ihid., 100,779 11966). (1812) Palaii, J., Snbirana, J. A., Ibid., 101,34P(1966). (1813) Paleiis, S.,Vesterberg. O., Trans. Int. Symp. Comp. Hemoglobin Structure, Thessaloniki, 1966,149 (1966). (1814) Paloheirno, J. A., Pitkaenen, E., Ann. Jied. Internae Fenniae 54, 129 (196.5):CA 64. 14732s. (1815) Pan, Chia-IlsiG, Tsao, Hui-Ting, Hsue, Tsiin-Chieh, Jen, 1Llei-Hsuan, Shcng W i i H u a Hsueh Yu Sheng IVu W u La Hszieh Pao 4 , 83 ( 1 9 6 4 ) ; Crl 66, 52293e. (1816) Pan, Chia-Hsiu, Tsao, Hui-Ting, Wang, Kiiei-Yuan, Tsao, Tien-Chin, Ihid., p. 7 2 ; C A 66, 52292d. (1817) Pandey, K. K., Suture 213, 669 (1967). (1818) Panov, D., T)elic, V., Ilic, V., Kilbarda, LI., Knjovic, B., Zivnricevic, S., Arch. Farm. (Belgrade) 15, 237 ( 1 9 6 5 ) ;Crl66,26432e. (1819) Pantelouris, E. X, Arnason, A., Comp. Riochenz. Philsiol. 20, 647 (1967). (1820) Pantelouris, E. AT., Arnason, A,, J . Embryol. Exptl. Morphol. 16, 55 ( 1F)AAI. - - - I \

821) Papa, C., Salabe, G. B., Fontana, s., Roll. Soc. Ital. Bzol. Sper. 42, 679 ( 1 9 6 6 ) ;CA 65,18892b. 822) Papadopoulos, N. ll., Kintzios, J. A., Am. J . Clin. Pathol. 47,96 (1967). 823) Paredes S.,ll.,Rev. Ecuator. X e d . Cienc. Biol. 9 , 157 (1966);C A 6 7 , 1619d. 824) Parnas, J., Cegielka, ll., Rev. Immunol. 28, 335 ( 1 9 6 4 ) ; C A 6 3 , 15378b. 523) Parnas, J., Cegielka, AI., Cybulska, AI., Zentr. Vetcrinaermed., Reihe B. 13, 286 ( 1 9 6 6 ) :C A 65,12710b. 826) Parrochis, E., Davila, l f . , Armas M.,It., Lobo Parga, G., Rufin, F., Parraguez, A., l'illaniieva, S., Rev. Clin. Espan. 103,113 ( 1 9 6 6 ) ;C A 6 6 , 7 3 9 2 5 ~ . 827) Pascale, J., Avrameas, S.,Uriel, J., J . Biol.Chem. 241,3023 (1966). 828) Pashev, I. G., Clin. Chim. ilcta. 16, 127 (1967). VOL. 40, NO. 5 , APRIL 1968

107R

Intern. Arch. Allergy A p p l . Immunol. 1829) Pastewka, J. V., Ness, A. T., 29,.533(1966);CA65,111179. Peacock, h.,C., Ibid., 14,219 (1966). (186.5) Ibid., p. 568,CA 65, 11118b. 1830) Pataki, G., Z. K l i n . Chem. 2, 129 11866) Picard. J . J.. Vandebroek. G., (1964);CA 64,5425~. ' Hekmans, J. F., Ijefosse, G., Bidchim: 1831) Pauwels, M.,Gijbels, R., IIoste, Biophys. Acta 117,111 (1966). J., Anal. Chim. Acta 36, 210 (1966). (1867) Piccinini, D., Corriere Farmacista 1832) Pavel, J., Babak, .4.,Svozil, R., 21,72 (1966): C S 65,15699h Stanek, S., Sb. I'ys. S k . Zrnierl. Brne, (1868) Picco, S., Reggianini, M.,Boll. RadaA 1966,431; CA 66, 103080t. Chim. Farm. 105, 891 (1966); C.4 66, 1833) Pavlov, Yu. V., Sudebno-Jled. 1128272~. Alin. Zdrai,ookhr. SSSR 8, 16 (1965); (1869) Pierce, A. E.! Brit. Vet. J . 122, 3 C.4 64, 13076f. (1966). (1834) Pavlovskii, P. E., Grigor'eva, 11870) Piceatid. 11.. Charvet. F.. C. R. 31. P., Irv Vysshikh Vchebn. Zavedeniii, Congr. *Tat, hoc. &mantes. Sect.'Sci. 87, Pishchevaya Tekhnol. 1966, 54; C d 65, 463 (1964); C I 64,18182~. 11240a. (1871) Pihar, O., Clin. Chim Acta 13, 731 (1835) Pearsoii, C. >I,, Kar, N. C., Ann. (1966). S.Y..-2cad, Sei. 138, 293 (1966). (1872) Pihar, O., Collection Czech. Chem. (1836) Peart, W. S., Liibash, G. D., Cornmztn. 30. 3220 1196.;). Thatcher, G. S . , AIuiesan, G., Biochim. (1873) Pinfield, A . S.,Rodgerson, I>. O., Hiophys. .Ic/a 18, 640 (1!166). CIin. Chem. 12,883 (966). (1837) Pechacek, AI., I)ulirek, K., Sb. (1874) Piscator, )I., .lrch Enzzron. Health, T-ed. Praci, Lekar, F a k . Karlovy C'niv. 12, 33.5 (1966). Hradci Kralooe 8 , 583 (1963); CA 64, (1875) Pi,kac, A . , Drazan, J., I'et. Jled. 20381h . 11, 131 (1966). (1838) Pechar, J., Grafnetter, D., Pavlik, (1876) Plaksii:, I. AI., lIchedliqhvilil L. F., Casopis Lekaru Cpskych 104, 1316 G.. Shafeev. 1 1 . Sh.. Dokl. Akad. .\auk (196,j);C d 65,5843.f. SdSR 167, fl00 (1966);C1;' 65,6475.f. (1839) Peckham, Vi, I)., J . Biol. Chem. (18i7) Plass, I{., d r c h . Geschwulstforsch. 242, 190 (1967). 26, 10 (196.5); C A I 64, 14713~. (1840) Pedersen, E. 31. (to Beckman (1878) Pleiigei, S.-4., Belg. Patent 666,282, Instruments, Inc.), t i . S. Patent 3,238.115 (CI. 204-300), l l n y c h 1, 1966, - 4 ~ ~ 1 . Xov 3, 196T,, Appl. J1ily 2, 196.5; 11 pp.; C A 65, 144808. April 17, 1961, and Feb. 15, 1965; 6 pp.; (1879) Pluzhnikov, A t . S., V o p . M e d . C.4 64, 16273b. Khim. 12, 54.5 (1966); CA ' 65,20610~. (1841) Peereboom, J. W. C., Barnhoorn, (1880) Poder, O., Pavel, Yu. G., Genetika ilk Dairy J . 19,234 (1965); 1966, 120; C.1 66,83447n. C A 64,1486Gh. (1881) Podil'chak, AI. LI., Klin. Med. (1842) Pelletier. 0.. J . Aur. Food Chem. (.lioscow) 43,W (1963); CA 63, 18798e. 14,496 (1U66). (1882 j Pogorelov, 11.E., I'atogenez, Klin(1843) Pelzer, C. F., Genetics 52, 819 ika i Lechenie Kishechnykh Infektsii, (1QG.i) ,- . - ,. Vtoroi Jiosk. Gos. N e d . Inst. 1965. 144: (1841) Pende, B., F a r m . Glasmik 2 2 , 343 C.l 6 5 , 2 8 1 9 ~ . (1966); C'A 66, 16979,r. (1883) Pohle, W., LIatthies, 11 , .1cta Biol. (1845) Penhoet, E., liajk\imxr, T., liatter, .\led Ger. 17, 721 (1966), CA166, 92324.r. W.J., Proc. .\-at(. i l c a d . Sei. C . S. 56, 884) PokrovskiI, A. A Korovnlkov, 1273 (1966). K. A , Bzokhzm?i~a31. ( 8 (1966), Cdl (1846) Penttinen, 1X.)Kari, A , , Iiuloneii, 65,1022e. E., Acta Chem. iScand. 20, 1304 (1966). 88.5) Pollak. P . AI.. . Y a t ~ ~ 211. e 546 (1847) Perelmiitter, L., Goodfriend, L., (1966). ' Can J . , Riochem. 45,203 (1967). 886) Pollmanii, R., Quast,, H., Z. 11848) Perk, K., Hort, I., rtoian Diseases ;Yatztrjorsch. b 21, 398 (1966); Cd 65, 10, 205 (1%6). 14020d. (1849) Pelkoif, G. T., J . Lab. Clzn. X e d . 887) Polson, A,, Kipps, A., d r c h . Ges. 67, .%5 (1966). T'irusfoisch. 20. 198 119i6): C A 66, (18.50) Peiolini, G., Cabtatlo, I,., Anchisi, 113 12"ov. F., 3 l i n c . i ~X ~e d . 57, 1942 (1966), C d 888) Polj-anovckiT, 0. L., Top. .lied. 65; 11002b. Khzm. 12, .is1 (1966,; C.1 66, 4417:3?. (1P.51) Perona, G. P., .liinerva Pediat. 15, (1889 j Ponciano dos Haiitos, C., Acuoly, 1316(1Y63);C:I 64, 1102~. L. G. de A . , .Ina?s Fac N e d . C'nzv. (18;i2) Perriiie, T. I]., Goolsby, P. F., J . R e c i f e 23, 137 (1963), C'A 64,9.52b. IJo/?jmerSei., Part 11-1 3, 3031 (1965). 11890) Ponder, E , Cell Electrophoresis, (1853) Perry, T. L., Dixon, G. II., Hansen, Synp. Brit. Ih'ophys. Soc., Idondon 1963; S., S a f u r e 206, 893 (196.5), 186 (Pub. 196d); C.,t 65, 9.504b. (1834) Peseiidorfer, F., Itien. Z . Inn. (1891) Ponzone, A , , Papa, G., J[inerua l i e d , Grensycb. 47, 4.56 (1966); CA 66, Pediat. 18, 84%(1966);('11 65, 3088e. 9334771. (1892) Poortmans, J Profides Biol. Fluids, (183-5) Peterlik, AI.) Jlonatsh. Chem. 96, Proc. Collop. 12, 3 2 i (1964) (Pub. 1965); 1261 (1963);CA 66, 102043y. CA 64,20322e. (1856) Peterson, R. C., J . Pharm. Sei. 55, 49 (1966). (1893) Popkov, A . P., Gorbachev. .4.S., (18,;;) Peterson, It. F., Kopfler, I?. C., Korolev, Yu. N . , Zmhchita Jlctal. 1, Riochem. Biophys. IZes. Cornnun. 22, 874 (196.5): C.4 63, 1 388 (1966); C.4 6 4 , 1 4 4 5 0 ~ (1884) Popovici, D., Jurencova, G., Stud. (1858) Peterson, R. F., Sanman, L. W., Cercet. Biol., Ser. 2001.18, 33 (1966); Hamilton, 1). F., J . Dairy Sei. 49, 601 CA 64, 18149d. (1066). (189.5) Porter, L). I)., I>ison, F. J., ,4m. (18,X) Petraiiyi, G., Bencziir, bl.,J f a g y . J . Vet. Res. 27,335 (1966). Radio/. 17, 374 (196j); C.l 66, 1 6 9 0 4 ~ . (1896) Porter, lt. 11.)Conrad, €1. It., J . (1860) Petriin'kina, A . lI., Silina, L. I., Dairy Sei 50, ,505 (1967). Lab. Del0 1967,28; CA 55,73132s. 1897) Porter, li. It., Brit. J f e d . Bull. 22. (186:) Pevchikh: V. V.? Terapei'f. Arkh. 164 11966): C.4 65.4140~1. 38, 109 (1966); Cd 64,20143:. 1898) Poqt, G., J . Fish. Res. Board Can. (1862) Pfeiffer, E. F., Alelani, F., Dit23, 19.57 (1966). schuneit,, H., Schoeffiing, K., Bull. 189'3) Poiilik, 11. I)., Methods Biochem. Schwaiz. A k a d . M e d . ITiss. 21, 276, Anal. 14, 4.5.5 (1966). 1900) Poulik, 31. I]., Satztre 210, 133 (1966). 1901) Poiilik, 11. I)., Protides B i d . (1864) Phillips, 11. E., Thorbecke, 0.J., ~

,

,

108 R

ANALYTICAL CHEMISTRY

~

Fluids, Proc. Collog. 12, 400 (1964) ( P u b 1065);CA 64, 17902b. 902) Povoa, IT, Jr., drquiv. Brasil. Endocrinol. Jletabol. 12. 55 11963): C d 64, 34682d. 903) Poznan&a. 11.. Gore AI.. Bull. Acud. Polon. Sh., Ser. Sci. B;ol. 13, 629 (1965); C d 64, 16204e. 904) Poznanska, IT., Wilkinson, J. €1.) Withyeombe, W. A., Polski l'ygod. Lekar. 21,337(1966): C d 65,4393~. 90.5) Poziiariska-Linde, H., Wilkinson, J. II,, Kunkel, 13. G.>J . E r p . M e d . 124, 185 ( 1066 ). (1Gl.i) Preto-Parvis, V., Cabririi, G. Ann. Histochinz. 7, 39 (1962): CA

348Xf

(lii6j"PriCe, G. AI., Bosman, T., J . Insect Phyniol. 12, 741 (1966). (1917) Price, \V. II., Harrison, € I . , AIolenda, J., &4m.J . Epidemiol. 83, 152 (19AA). \ - - - - ,

(1918) Prikryl, J., Pr. T'ysk. Cstavzc C S . .Ynf/. Doli/, Publ. 224, 6.5 (1965); Cd 66, O i l 270. (1919) Priolisi, h., Giiiffre, L.,Pathol. .Ilicrobiol. 30, 21.5 (1967). 11920) Pristoupil, T. I., Bioch7'm. Biophys. .Irta 117,475 (1966). (1921) Pristoiipil, T.I., Clin. Chim. ilcta 15,179 (1967). (1922) Pristoupil, T. I Ezperienlia 2 2 , 478 (1 966) ; C d 65,76&d. 11923) Pristounil. T.(1967). I.. Frirovn., V.. C'hrOmatog. 2 4 :331 ,~J . (1924) Priut,oiipil, T. I., TIruba, A , , Clin. Chim. *2cta 14,502 (1966). (1923) Proenca cla Ciinha, 0. R., Proenca dri Ciinha, A., Bol. Escola Farni., C'niv. Coimbra, Ed. Cient. 25, 54 (1965); CA 65, 367la. (1926) Protsenko, 11. A . , Biokhim. Om. Zashch. I h t . , Akarl. S a u k SSSR, Inst. Riokhinz 1966,73; C.4 66,923OOb. (1927) Piirkayastha, It., Neelin, J. M., Biochim Hiophus. Acta 127,468 (1966). (1928) Piirkayastha, It., Rose, D., J . Duirjj Sci. 48, 1419(1965). (1929) Piishkarev, A. S., Afanas'eva, A. V..Buiil. Eksw. Biol. M e d . 61. 39 (1966j; C A 64,18182a. (19.30) Putnam, F. W., Koziirii, RI., Eadey, C. W., J . Biol. Chem. 242, 2447 il(lR7)

(1931) buattrin, S . , T e l a p i a 51, 165 (1'366).C.-l 66, i4113y. (1W2) Queen, K. G., Peacock, A . C., C l m . Chim. A c t a 13,47 (1966). (1933) IZabaey, JI., I'rotidPs 191'01.Fluids, Proc. Colloo. 12, 237 11964) (Pub. 1965): C'A 64, 1Slk8h. ' (1934) Ilabinovitz, ?I., Chayen, R., Schen, 1:. J., Goldschmidt, L.. Clzn. Chim. Acta 14. 270 11966). (1935) Itabinovite, AI., Schen, R. J., Ibid., 12,474 (1965). (1936) Rabinowtz, D. C., Pins, D. J.,

1rnierowic.z. 11.. J . -4m. Osteoaath.

k i i o 66,2?8 ~ (1666).

(1937) ltacadot-Leroy, N., LIellin, G., Biserte, G., Patho?. Biol. 14, 80.5 (1966); C A 65,'20400b. (1938) Itnchev, I,., Basheva, L., Dyakov, I)., Pediatiiya (Sofia) 4, 590 (1965); C d 64,1818Sa. (1939) Itacoveanu, X., Stanculescn, v., Tritta, E., Stud. Cercet. Blochim. 8, 465 11965): C d 64, 1 6 3 8 2 ~ . ( l i 4 0 ) Ilacusen,' D., .Vature 213, 922 (1967). (1941) lt:icusen, D., Foote, M.,Can J . Bot. 44,1633 (1'366). (1942) Itadam, G., Strauch, IS., Z. K l i n . rhein. 4, 234 (1966). Crl 65, l5728e. (1943) ll~dliak~isliiiamurthv; B., Dalferes, E. ll., Jr., Berenson, (2: S.,Biochim. Biophys. Acta 107,380 (196,j). (1944) Hegetli, H. \V. J., Weintraub, >I., Ibid., 111, .i22(1965). (194.5) Ibid., 112, lGO(1966). (1946) Itahbar, S., Acta Uiochirn. Iranica 3, 32 ( l 9 G ) ; C-4 64,13334~2. (1947) Itahbar, S., Beale, D., Isaacs, W. A , , Lehniarin, II., Brit. M e d . J . 1967-1, 674. (1948) llajam, P. C., Bogoch, S.,Inamunology 11,211 (1966). (1949) ltajam, P. C., Bogoch, S., Rushworth. 11.h..Forrester. P. C.. Ibitl.., 11., 217 (Ib66). ' (19.50) ltejeusky, K., C'ol/oq. Ges. Physiol. Chciiz. 15, 173 (1064) (Pub 1965); C A 64,20397e. (1951) llakowska, AI., Lambert, I., Kucharcfyk, B , Groddka, Z., h'ocznikz Panstwowego Zakladu Hig.17,73 (1966); Cd 65, 7607h. (1932) ltanloev, P Acta Pathol. Jlacrobzol. Scand. 66, 48.5 (1966); CA 65, 10945h. (1933) llannev, IT. 11.) Jacobb, A. S., Segcl, It. I,.',.vature 213, 876 (1967). (19.54) Ilno, P. U., Belavady, I3 , Indian J A l r d . Res. 55,174 (19671, CA 66,92968k. (193,;) liao, T. S. S.,S:istry, L. V. L., Siddappa, G. Y , lndzun J . l'echnol. 3, 332 (1965), C d 64, 7269e. (19.56) l:app, W.>CIin. Chini. Acta 15, 177 (1967). (19.57) Hnpp, IT.>Colloq. Ges. Phylsiol. Chern. 15,47 (1964); CA464, 1637Od. (1938) Ilasmiiaseii, 1). I., Koehn, It. K., Genetics 54, 1353 (1966); C A 66, :35872a. (1939) Itat t,azxi, 11. C., Beriiirii, L. F., Foi,elli, G., 3Iarinucci, P. >I., .Vature 213, 7 0 (1967); (:A 66, 62064~. (1960) Itattazsi, 11. C., Pik, C., Ibid., 208, 4S9 (1065). (1961) Ilaiiiiirli, I,., Callegarini, C., Cucchi, C., 8 i c . Sci 36, 203 (1966); CA 65, 7687h. (1962) Ilaiiriich, L., lIanelli, H., Ric. Sci. Rend., Sez. B 6, 267 (196.5); C A 64, 11607c. (1963) llaunio, li.] Sarinio, S., Acta C h e m Scanrl. 19,2428 (1066);C 4 64, 14610~. Iliioslahti, E., Krause, (196.1) Rauriio, IT., E., Acta Pathol. JJicrobiol. Scand. 67, 424(1966); C d 65, 13017d. (1965) Ravoo, E., Gelliiigx, P. ,J.> Anal. Chini. Acta 38, 219 (1967). (1966) Ilaymoud, R. II., Raymond, S., TJ. S.Patent 3,208,929 (Cl. 204-20!)), Sept. 28, lWi5, Appl. Sept. 11, 1962; 4 pp. ; C 9 64, 5793e. (1967) Raymond, S.,Brit. Patent 1,021,287 (C1. B Olk), March 2, 1966; 4ppl. Sept. 21, 1964; 3 p p . CA 64, 1846%. (1968) Raymond, S.,U.S. Patent 3,255,100 (Cl. 204-MI), Jiiiie 7, 1966, Appl. Sept. 15, 1964; 6 pp; C A 65,5864h. (1969) Raymond, S., Broome, J., Science 153,1381 (1966). (1'370) Raymond, S., Jordan, E. >I., Separation Sci. 1 , 9 5 ( 1966). ~

(1971) Raymond, S., Miles, J . L., Lee, J. C. J., Science 151,346 (1966). (1972) Read, K. R . H., Comp. Biochem. Physiol. 17,375 (1966). (1973) Reboud, P., Groslambert, P., 01livier, C., Groulade, J., Ann. Biol. C l m . (Paris) 25,383 (1967); C A 67, 129%. (1974) Reddy, V. V. S., Rao, V. S.,Siri, AI., Curr. Sci. 36, 143 (1967); C A 66, 1138i3t. (1975) Redentish, B. A., Debabov, V. G., Biokhimiua 32, 169 (1967); C 4 66, 101866e. (1976) Reeder, R., Bell, E., J . M o l . Biol. 23, 577 (1967); CA 66,72479~. (1977) Reeves, A. L., Busby, E. K., Scotti, L., Am. I n d . Hyg. Assoc. J . 27, 278 (1966). (1978) Reich, G., Hebestreit, G., Winkler, J., 2. Chenz. 6, 401 (1966); CA 66, 32186~. (1979) Reichel, C., Lnkacs, E., Lapohos, E., Kapusi, A,, AIody, E., Szabo, St., Stud. Cercet. Biochim. 9, 181 (1966); CA 65, 1264!5e. (1980) Reid, P. J., Orias, E., Gartner, T. K., Biochenz. Biophys. Res. Commun. 21,66(1965);CA63, 18698b. (1981) lleinauer. H.. Bruns. F. H.. J . Chromatog. 19,'4.53 ( 1965). ' (1982) Reisfeld, It. .4.,Small, P. A., Jr., Science 152, 1253 (1066). (1983) Iteissell, P. K., Hagopian, L. ll., Hatch, F. T., J . Lipid files. 7, 551 (1966). (1984) Iteith, W. S., Brown, B. L., Biochem. J . 100, 10P (1966). (1985) I?ejnek, J., Kostka, J., Kotynek, D.,,Tuture 209,926 (1966). (1986) Rejnek, J., Kostka, J., Travnicek, J., Folia Nicrobiol. 11, 173 (1966) ; C.4 65, 5979g. (1987) Renders, J., Jaiis$en, P., Sande, AI. van. Acta .Veurol. Psuchiat. Bela. 65,808 ( 196Li);CA 65,11932. (1988) Ilennels, AI. L., Endocrznology 78, 6*59(1'366). (198'3) Itennert, 0. II., Sature 213, 1133 (1'367). ( 1990) Research Laboratories of Australia Ltd.. Bele. Patent 644.307. June 15. ~

(1966). (1992) Ilessler, N., Tuttle, C., Zbid., p. 1268; Cy1 65, 7541s. (1993) Reusser, F., KO, H., Experientia 22,310( 1966); C A 65,4194~. (1994) Iteuter, A. AI., Gerher, G. B., Kennes, F., Remy-llefraigne, J., Rudiat. Res. 30,725 (1967). (19O.i) Revillar, J. P., Manuel, Y., "Les Proteinaries. Valeiir Semeiologique de Leur Etude Electrophoretique" (Proteiniirias. Semeiological Value of Their Electrophoretic Study), Camugli, Lyons, 1963, 127 pp.; C,4 65, (1996) Reznik, A. Ya., Dokl. Akad. S a u k Bedorussk. S S R 9, 749 (1'365); C A 64, 13188b. (1997) Ithodes, AI. B., > l u s h , C. L., Kelley, G. W., Jr., E x p . Parusiiol. 15, 403 (1964); C.4 65, 17277e. (1998) Ricci, C., Micheletti, P. C., LoBue, B.. Xinerva Metl. 57. 286,s (1966); CA 66,84007j. (1999) Rice, C. E.. Smith, 11. J., Cochrarie, D., Can. J . Conip. M e d . Vet. Sci. 31,37 (1967). (2000) Rice, J. D., Jr., Bleakney, B., Clin. Chiin. Acta 12,343 (196,j). (2001) Richter, € I . , Arch. Tierernaehr. 16, 4.57 (1966), C.4 65, 18975~. (2002) Rider, J., Baryel, A. II., Comp. Biochem. Physiol. 20, 1005 (1967). (2003) Riekkinen, P. J., Ekfors, T. O., Acta Chem. Scand. 20, 2013 (1066); C A 66,33902k.

(2004) Ririno, G., Becker, >I., Arch. Gartenbau 13,341 (196;); CA 64,5677b. (2003) Riou, G., Jac uemin-Sablon, A., Trithaut, R., B d l . j o c . Chim. Biol. 48, 53 (1966); CA 65,3744rl. (2006) Ripa, R., Vierucci, A,, Varone, D., Jfinerva J l e d . 56, 3Sl9 (196-5); C.l 64, 10228~. (2007) Ititchie, R. F., J . Maine M e d . Ass. 58, lei(1967). (2008) Ritchie, R. F., Harter, J. G., Bajrles, T. B., J . Lab. Clin. M e d . 68, 842 (1966). (2009) Rittenbury, 11. S., AD 615485., avail. CFSTI, 26 pp. (1963); Crl 63, 1693%. (2010) ~Riva, G., Spengler, G., Winerva ilferl. 57,4134 (1966); C A 6 6 , 9 3 1 9 6 ~ . (2011) Rizeo, P. A,, Amabile, G., Bernardi, G., Riv. Seurobiol. 12, 216 (1966); CA 66, 17462n. (2012) Robb, D. A , AIapson, L. W., Swain, T., Phytochemistr?/ 4, 731 (1965). (2013) Ibbbins, J., Weathers, B., Cancer Res. 26,492 (1966). (2014) Robbins, J. B., AIozes, E., Rimon, A., Sela, JI., .\-ature 213, 1013 (1967). (2015) I?obbins, J. TI., Arch. Biochem. Biophqs. 114, 38.5 (1966). (2016) Robbiris, K. C., Summaria, L., Immunochemislr!y 3, 29 (1966). (2017) Itobbiiis, K. C., Wu, H., ISsieh, B., Ibitl., p. 71. (2018) Itobboy, S. J., Kahn, R . II., Endocrinology 78,440 (1966). (2019) Robinson, l)., Price, R . G., Dance, N., Biochem. J . 102,325 (1967). (2020) Robillson, J. C., Lee, G., Arch. Biochern. Biophys. 120,428 (1967). (2021) Robirison, J. C., London, W. T., Pierce, J. E., Am. J . Obstet. Gpecol. 96, 226 (1966). (2022)' Robirlson, J. C., Pierce, J. E., Blumberg, B. S., ;lm J . Obstet. Gynecol. 94, 5.59 (1066). (2023) Robinson, J. C., Pierce, J. E., Goldsteiii, I>.P.. Science 150,58 (1965). (2024) Robinson, K., J . A p p l . Bacteriol. 29.616 11966). (2026) Robion, E. B., Harri,, TI., .Vature 207, 12.57 (196.5). (2026) Rocciiz70 M.,Lombardo, G., Riv. Pedzat. siczl. 19, 366 (1964), C.4 66, 27196t. (2027) Ibid., p. 375. C.l 66,271971,~. (2028) Rock, R . AI., Burbank, S . C., Jr., J . Am. Water It'orks .4ssoc. 58, 676 ( 1 066)

(2029)u1i0ck, R. M., Burbank, 1;. C., Purdue I'niv. Eng. Bull., Ext. Ser. 118, 389 (196.5). (2030) Itoddick, J. W., Jr., Ing, G. K. C., Midboe, D., Ani. J . Ohstet. Giynecol. 95, 459 (1966). (2031) Roderrnurid, 0. E., Fasold, H., Tiirba, F., Leinhrock, A., Arch. K l i n . E x p . Dermatol. 226, 300 (1966), CA 66, 16.i3Dz. (2032) :odionov, I. I., Khodns, K. A,, Sh. *\ auchn. Tr. Vitebskogo J l e d . Inst. 1964, p, 168; C.4 64, 6951c. (2033) Roesler, B., *4cta Riol. M e d . Ger. 15,539 (1966); C A 64,16176h. (2034) Zhid., 106 (1966); C A 65, 42425. ( 2 0 3 5 ) Ibid., 17, 371 (1966); C.l 66, 169772. (2036) Rogers. J., Spry, C., Guy's Hosp. Rept. 113, 1.53 (1964). (2037) Roguoni, F., Bergonxi, F., Jlinerva Pediat. 18,453 (1966); C.4 65, 326%. (2038) Roholt, 0. A., Presmaii, D., Science 153. 1257 11966). (2039) Roop,' 1%'. E., Piitnam, F. W., J . Bid. Chem. 242,2507 (1967). (2040) Rose, R. G., Wilson, A. C., Science 153,1411 (1966). (2041) Iiovnhaiim, D. L., Am. J . d l e d . Sci. 252, 726 (1!)66). (2042) Rosenbarim, W., Christy, S. P. VOL. 40, NO. 5 , APRIL 1968

109 R

Kelly, W. G., J . Clin. Endocrinol. .lIdab. 26, 13!)!) (1!)66). (2043) ltu-en, lt. I)., Alford, R . H., Uiitlcr, M’, T., Vannier, W. E., J . I i i i u t u n o l . 97, 369 (1966). i20-14) llotelli. L.. Pibtacchi. E.. Mineraa ( ‘ h ~ ~ , 2 1 , 4 ~ 1 ( 1 ~ 6 6 )66, ; C ;1136b. I (204.Y)I l o t h m n i i . U., .Acta SOC. Med. 17psalicri. 71, 109 (1966);C A 65, 13911e. (2046) J:othwe!l, K., Whitehead, J. K., .\’ature 213, 797 (1967). (2047) I?otzscti, W., Wenzel, K. W., .Ida Uiol. .lfed. Ger. 17. 561 (1966): CA . 66, 83696t. (2045) Iloribaud, P., C. R. Acad. Sci., Paris, Ser. D 263, 1777 (1966); CA 66, 32s33,f. (204‘3) lioitssel, P., Sautiere, P., Havez, It., Hiserte, G . ) Compt. Rend. 261, 5697 (196,Y);C.4 64, 11464e. (2030) lloiisselet. F.. Pathol. B i d . Semaine Hop. 13, 1224 (1963); CA 64, 13194g. (2031) liovercalli, A., RIaderiia, A., Aldehi, 15.. dlinerva Pediat. 17, 190 (1965); C S 63, 18829h. (2052) 110~7,A. K., Keuhaus, 0. W., Proc. Soc. Expti. Biol. Xed. 121,894 (1966). (2033) Roy, A. K., Seuhaus, 0 . W., Harmiwn. C. R.. Biochim. Bwvhus. ‘ y A c t a 127, 72 (1966): (20.54) Ruddle, F. H., J . Histochem. Ciltochem. 14, 2*5(1966). (2033) Radloff, V.,Zelenik, M.,Braunitzer, G., J . Physiol. Chem. 344, 284 (1966). ( 2 0 3 6 ) Eudnitskaya, AI. Z., Probl. Germat o / . Perelia. Krovz 11, 45 (1966); C A 65, 1211h. ( 2 0 > 7 ) Iludolph, K., Stahmanii, RI. A., Plant Physiol. 41, 389 i1966). (2038) liiieckert, I