Enacting Two-Electron Transfer from a TT State of Intramolecular

11 hours ago - A simulation-led strategy enacts two-electron transfer between an intramolecular singlet fission chromophore and multi-electron accepto...
0 downloads 4 Views 1MB Size
Subscriber access provided by UNIVERSITY OF THE SUNSHINE COAST

Communication

Enacting Two-Electron Transfer from a TT State of Intramolecular Singlet Fission Hyungjun Kim, Bradley Keller, Rosina Ho-Wu, Neranga Abeyasinghe, Ricardo J Vázquez, Theodore Goodson III, and Paul M. Zimmerman J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.8b01884 • Publication Date (Web): 09 May 2018 Downloaded from http://pubs.acs.org on May 9, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 6

Enacting Two-Electron Transfer from a TT State of Intramolecular Singlet Fission Hyungjun Kim, Bradley Keller, Rosina Ho-Wu, Neranga Abeyasinghe†, Ricardo J. Vázquez, Theodore Goodson III,* Paul M. Zimmerman* Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States

Supporting Information Placeholder

tightly coupled " system, QOT2 is unique among intramolecular SF (iSF) chromophores because its TT state is not spontaneously separated into two free triplets in solution.2,4 This special property provides an opportunity to trap the double-triplet and achieve multi-electron extraction. In principle, two-electron transfer (2ET) from an entangled TT state may be advantageous for efficient energy harvesting, as competing relaxation channels will be outcompeted. Such 2ET has been suggested to occur in intermolecular SF (xSF) materials.6,16,17 While free triplet harvesting from iSF has been observed,18 evidence demonstrating 2ET from a TT state of iSF chromophores is lacking.

ABSTRACT: A simulation-led strategy enacts two-elec-

tron transfer between an intramolecular singlet fission chromophore (tetracyanomethylene quinoidal bithiopehene with !,!’-solubilizing groups) and multi-electron acceptor (anthraquinone). The thermodynamic plausibility of multi-electron transfer from a double-triplet state and the absorption spectra of electron transfer (ET) products were predicted using quantum chemical simulations. These predictions are consistent with experimental observations of reduced lifetimes in time-resolved fluorescence spectroscopy, changes in transmission profile, and appearance of new absorption bands in transient absorption spectroscopy, all of which support multi-ET in the QOT2/AQ mixture. The analysis suggests 2ET is favored over 1ET by a 2.5:1 ratio.

QOT2

!"#

QOT2H model S

C4H9O

CN

NC

OC4H9

NC

CN

S

NC S CN NC

AQ

S

O

CN

Generating, transferring, and storing multiple electrons from single photons could prove revolutionary for solar energy technologies. One promising process, singlet fission (SF), produces two excited electrons from a single photon.1 The multi-electron excited state in SF can be conceived as an entangled double-triplet2–8 and thus denoted as TT. The correlation between the two triplets makes TT a unique state that is not identical in character to 2!T1.9–13 Separation of the TT state is a challenging task by itself, requiring special molecular organization and delicate tuning of the intra- or intermolecular coupling.4,14 Towards the goals of achieving efficient solar energy harvesting, we propose the alternative way of extracting two excited electrons directly from a TT state in a bimolecular, 2-electron process. Tetracyanomethylene quinoidal bithiophene with !,!’solubilizing groups (QOT2)15 was herein tested to demonstrate this concept (see Figure 1). Our groups have revealed a long-lived QOT2 excited state with characteristics that closely relate to the TT state (21Ag) of SF, generated from a bright singlet state in sub-ps.2,4 As a single,

C 4H 9O

OC4H9

O

!$# 35.0

Concerted 2ET

Sequential 1ETs

Concerted 2ET 30.0

Electronic energy [kcal/mol]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society

Sequential 1ETs

25.0

22.7

21.1

QOT2+ TD/AQ-

19.8

20.0 15.0 10.0 5.0

0.0 0.0 -5.0

-3.1

-3.1

QOT2 TT/AQ QOT22+ DD/AQ2-

-10.0

!%#

QOT2

AQ

Charge

Spin

Charge

Spin 0

Before ET

QOT2 TT/AQ

0

!!,""

0

After 1ET

QOT2+ TD/AQ-

+1

!!,"

-1

"

After 2ET

QOT22+ DD/AQ2-

+2

!,"

-2

0

Figure 1. (A) Chemical structures of QOT2, QOT2H model and AQ. (B) CDFT energetics diagram of concerted 2ET and sequential 1ETs. (C) Diabatic representation of three states

1 ACS Paragon Plus Environment

Journal of the American Chemical Society 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Paragon Plus Environment

Page 2 of 6

Page 3 of 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society

ACS Paragon Plus Environment

Journal of the American Chemical Society 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Paragon Plus Environment

Page 4 of 6

Page 5 of 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society (3) (4)

(5)

(6)

(7)

(8) (9) (10)

(11) (12) (13)

(14)

Feng, X.; Luzanov, A. V.; Krylov, A. I. J. Phys. Chem. Lett. 2013, 4 (22), 3845. Chien, A. D.; Molina, A. R.; Abeyasinghe, N.; Varnavski, O. P.; Goodson, T.; Zimmerman, P. M. J. Phys. Chem. C 2015, 119 (51), 28258. Weiss, L. R.; Bayliss, S. L.; Kraffert, F.; Thorley, K. J.; Anthony, J. E.; Bittl, R.; Friend, R. H.; Rao, A.; Greenham, N. C.; Behrends, J. Nat. Phys. 2016, 13 (2), 176. Yong, C. K.; Musser, A. J.; Bayliss, S. L.; Lukman, S.; Tamura, H.; Bubnova, O.; Hallani, R. K.; Meneau, A.; Resel, R.; Maruyama, M.; Hotta, S.; Herz, L. M.; Beljonne, D.; Anthony, J. E.; Clark, J.; Sirringhaus, H. Nat. Commun. 2017, 8 (May), 15953. Grieco, C.; Kennehan, E. R.; Kim, H.; Pensack, R. D.; Brigeman, A. N.; Rimshaw, A.; Payne, M. M.; Anthony, J. E.; Giebink, N. C.; Scholes, G. D.; Asbury, J. B. J. Phys. Chem. C 2018, 122 (4), 2012. Burdett, J. J.; Bardeen, C. J. J. Am. Chem. Soc. 2012, 134 (20), 8597. Zimmerman, P. M.; Zhang, Z.; Musgrave, C. B. Nat. Chem. 2010, 2 (8), 648. Stern, H. L.; Musser, A. J.; Gelinas, S.; Parkinson, P.; Herz, L. M.; Bruzek, M. J.; Anthony, J.; Friend, R. H.; Walker, B. J. Proc. Natl. Acad. Sci. 2015, 112 (25), 7656. Chien, A. D.; Zimmerman, P. M. J. Chem. Phys. 2017, 146 (1). Khan, S.; Mazumdar, S. J. Phys. Chem. Lett. 2017, 8 (23), 5943. Grieco, C.; Kennehan, E. R.; Rimshaw, A.; Payne, M. M.; Anthony, J. E.; Asbury, J. B. J. Phys. Chem. Lett. 2017, 8 (23), 5700. Kumarasamy, E.; Sanders, S. N.; Tayebjee, M. J. Y.; Asadpoordarvish, A.; Hele, T. J. H.; Fuemmeler, E. G.; Pun, A. B.; Yablon, L. M.; Low, J. Z.; Paley, D. W.; Dean, J. C.; Choi, B.; Scholes, G. D.; Steigerwald, M. L.; Ananth, N.; McCamey, D. R.; Sfeir, M. Y.; Campos, L. M. J. Am. Chem. Soc. 2017, 139 (36),

(15) (16) (17)

(18)

(19)

(20) (21) (22) (23) (24) (25) (26) (27)

12488. Takahashi, T.; Matsuoka, K.; Takimiya, K.; Otsubo, T.; Aso, Y. J. Am. Chem. Soc. 2005, 127 (25), 8928. Chan, W.-L.; Ligges, M.; Jailaubekov, A.; Kaake, L.; MiajaAvila, L.; Zhu, X.-Y. Science (80-. ). 2011, 334 (December), 1541. Congreve, D. N.; Lee, J.; Thompson, N. J.; Hontz, E.; Yost, S. R.; Reusswig, P. D.; Bahlke, M. E.; Reineke, S.; Van Voorhis, T.; Baldo, M. A. Science (80-. ). 2013, 340 (6130), 334. Pun, A. B.; Sanders, S. N.; Kumarasamy, E.; Sfeir, M. Y.; Congreve, D. N.; Campos, L. M. Adv. Mater. 2017, 1701416, 1701416. Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. Nature 2014, 505 (7482), 195. Kim, H.; Goodson, T.; Zimmerman, P. M. J. Phys. Chem. C 2016, 120 (39), 22235. Kuss-Petermann, M.; Orazietti, M.; Neuburger, M.; Hamm, P.; Wenger, O. S. J. Am. Chem. Soc. 2017, 139 (14), 5225. Kaduk, B.; Kowalczyk, T.; Van Voorhis, T. Chem. Rev. 2012, 112 (1), 321. Babaei, A.; Connor, P. A.; McQuillan, A. J.; Umapathy, S. J. Chem. Educ. 1997, 74 (10), 1200. Lee, S.; Hwang, D.; Jung, S. Il; Kim, D. J. Phys. Chem. Lett. 2017, 8 (4), 884. Dereka, B.; Koch, M.; Vauthey, E. Acc. Chem. Res. 2017, 50 (2), 426. Wang, Z.; Kobayashi, T. New J. Phys. 2008, 10 (12), 123021. Lee, J.; Jadhav, P.; Reusswig, P. D.; Yost, S. R.; Thompson, N. J.; Congreve, D. N.; Hontz, E.; Van Voorhis, T.; Baldo, M. A. Acc. Chem. Res. 2013, 46 (6), 1300.

5 ACS Paragon Plus Environment

Journal of the American Chemical Society 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Paragon Plus Environment

Page 6 of 6