End-Bonded Metal Contacts on WSe2 Field-Effect ... - ACS Publications

Jun 17, 2019 - Figure 1b,c shows the optical micrographs of multilayer. WS2 grown from the ..... using the expressions NMH = VOH − VIH and NML = VIL...
1 downloads 0 Views 6MB Size
www.acsnano.org

End-Bonded Metal Contacts on WSe2 FieldEffect Transistors Chun-Hao Chu,† Ho-Chun Lin,‡,§ Chao-Hui Yeh,† Zheng-Yong Liang,† Mei-Yin Chou,‡,§ and Po-Wen Chiu*,†,‡,∥ †

Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan § Department of Physics, National Taiwan University, Taipei 10617, Taiwan ∥ Frontier Research Center on Fundamental and Applied Science of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan

Downloaded via NOTTINGHAM TRENT UNIV on July 24, 2019 at 05:49:51 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.



S Supporting Information *

ABSTRACT: Contact engineering has been the central issue in the context of high-performance field-effect transistors (FETs) made of atomic thin transition metal dichalcogenides (TMDs). Conventional metal contacts on TMDs have been made on top via a lithography process, forming a top-bonded contact scheme with an appreciable contact barrier. To provide a more efficient pathway for charge injection, an end-bonded contact scheme has been proposed, in which covalent bonds are formed between the contact metal and channel edges. Yet, little efforts have been made to realize this contact configuration. Here, we bridge this gap and demonstrate seeded growth of end-bonded contact with different TMDs by means of chemical vapor deposition (CVD). Monolayer WSe2 FETs with a CVD-grown channel and end contacts exhibit improved performance metrics, including an on-current density of 30 μA/μm, a hole mobility of 90 cm2/ V·s, and a subthreshold swing of 94 mV/dec, an order of magnitude superior than those of top-contact FET counterparts that share the same channel material. A fundamental NOT logic gate constructed using top-gated and end-bonded WSe2 and MoS2 FETs is also demonstrated. Calculations using density functional theory indicate that the superior device performance stems mainly from the stronger metal−TMD hybridization and substantial gap states in the end-contact configuration. KEYWORDS: TMD, high mobility, field-effect transistors, end contact, top contact, Schottky barrier

T

devices are often obscured by a large parasitic contact resistance.2,4−7 As is the case with carbon nanotubes, a key obstacle to the ultrascaled TMD transistors is forming lowresistance and scalable contacts.8,9 With the nature of atomic thickness in the vertical direction, metal contacts on TMDs are generally applied on top, forming so-called top-bonded contacts. With this contact scheme, the contact resistance strongly depends on the contact area, indicating a weak metal− TMD coupling. The contact resistance increases rapidly as the contact area shrinks. Despite the weak metal−TMD coupling, interface dipoles develop as a result of charge redistribution in

ransition metal dichalcogenides (TMDs) constitute a class of semiconductor materials that can be used as an alternative to silicon for the continuous scaling of devices down to the atomic scale.1 These layered semiconductors possess a variety of fascinating properties for transistor applications, including pristine interfaces without out-of-plane dangling bonds, which ensures a uniform electrostatic potential landscape for high mobility motion of charge carriers, atomic-scale thinness (99.999%) at a

CONCLUSIONS In conclusion, we demonstrate end-bonded contact geometry on WSe2 FETs through direct growth of the channel material from the edge of predefined metal contact. The resulting topcontact FETs show device performance superior to that of conventional top-contact geometry. The experimental findings reflect the fact that the top contact forms a contact barrier, through which the charge injection efficiency is low, rationally attributed to the weak orbital overlap predicted by the density functional theory. The finite thickness of the WO3−x bottom seed layer is translated into multilayer WSe2 at the contact side. This multilayer termination at the contact can be regarded as another advantage in addition to the stronger hybridization between metal and WSe2 electronic states that facilitates charge injection. The main challenge to form an end-bonded contact with TMD lies in the high temperature process, at which most of thin metal films become highly volatile, in particular, when selenium or sulfur is dissolved into the metal. Considering the compliance of the metal work function with the TMD, the choice of metal types is limited. As such, an effective way to cope with the volatility of the predefined 8152

DOI: 10.1021/acsnano.9b03250 ACS Nano 2019, 13, 8146−8154

Article

ACS Nano pressure of 3 kg/cm2. After overnight exposure to oxygen, a highquality ultrathin AlOx was formed, which acts as a gate dielectric. Then, a 300 nm thick Al top gate was deposited using thermal evaporation. Having formed a T-shape Al top gate, thermal evaporation was applied for the self-aligned drain/source metallization with Pd/Au (12 nm/28 nm). The gate capacitance of the AlOx thin film was measured to be ∼930 nF/cm2. For the ionic liquid gate, a small droplet of the EMIM-TFSI IL (Sigma-Aldrich) was applied onto the devices using a micropipette in a glovebox, covering the WSe2 active channel and the source, drain, and gate electrodes. The gate capacitance of the ionic liquid was ∼7 μF/cm2. Measurements and Characterizations. X-ray photoemission spectra of CVD-grown WSe2 were obtained using a VG Scientific ESCALAB 250 system. The X-ray source was generated from the Al target (1486.8 eV) with a pass energy of 20 eV, and the takeoff angle for the collection of photoelectrons was 90° from the surface normal. For Raman spectra, a high-resolution micro-Raman spectrometer (DXR, Thermo Scientific) equipped with a motorized sample stage was used to acquire the spectra. The excitation wavelength was 532 nm (2.33 eV) with a power below 0.1 mW to avoid laser-induced heating and damage. The laser spot size at the focus was around 500 nm in diameter under a 100× objective lens. For photoluminescence spectra, a high-resolution micro-PL spectrometer (HORIBA, iHR550) equipped with a motorized sample stage was used to acquire the spectra. Computational Methods. First-principles calculations were performed using the Vienna ab initio simulation package (VASP)42−44 with the projector-augmented wave method.45,46 A plane-wave energy cutoff of 400 eV was employed. A 6 × 6 × 1 and 5 × 1 × 1 k-mesh was used for the top-contact and end-contact configurations, respectively. The spin−orbit interaction was not included due to the size of the supercell. We used the local density approximation47 for structural optimization with a supercell containing an 18 Å vacuum in order to simulate the 2D system. The lattice constant of monolayer WSe2 used in the simulation was 3.28 Å.

(2) Allain, A.; Kang, J.; Banerjee, K.; Kis, A. Electrical Contacts to Two-Dimensional Semiconductors. Nat. Mater. 2015, 14, 1195− 1205. (3) Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics Based on Two-Dimensional Materials. Nat. Nanotechnol. 2014, 9, 768−779. (4) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6, 147−150. (5) Xu, Y.; Cheng, C.; Du, S.; Yang, J.; Yu, B.; Luo, J.; Yin, W.; Li, E.; Dong, S.; Ye, P.; Duan, X. F. Contacts between Two- and ThreeDimensional Materials: Ohmic, Schottky, and p−n Heterojunctions. ACS Nano 2016, 10, 4895−4919. (6) Léonard, F.; Talin, A. A. Electrical Contacts to One- and TwoDimensional Nanomaterials. Nat. Nanotechnol. 2011, 6, 773−783. (7) Ho, P. H.; Chang, Y. R.; Chu, Y. C.; Li, M. K.; Tsai, C. A.; Wang, W. H.; Ho, C. H.; Chen, C. W.; Chiu, P. W. High-Mobility InSe Transistors: The Role of Surface Oxides. ACS Nano 2017, 11, 7362− 7370. (8) Chiu, P.; Kaempgen, M.; Roth, S. Band-Structure Modulation in Carbon Nanotube T Junctions. Phys. Rev. Lett. 2004, 92, 246802. (9) Cao, Q.; Han, S.; Tersoff, J.; Franklin, A. D.; Zhu, Y.; Zhang, Z.; Tulevski, G. S.; Tang, J.; Haensch, W. End-Bonded Contacts for Carbon Nanotube Transistors with Low, Size-Independent Resistance. Science 2015, 350, 68−72. (10) Bagus, P. S.; Staemmler, V.; Woll, C. Exchangelike Effects for Closed-Shell Adsorbates : Interface Dipole and Work Function. Phys. Rev. Lett. 2002, 89, 096104. (11) Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; van den Brink, J.; Kelly, P. J. Doping Graphene with Metal Contacts. Phys. Rev. Lett. 2008, 101, 026803. (12) Gong, C.; Lee, G.; Shan, B.; Vogel, E. M.; Wallace, R. M.; Cho, K. First-Principles Study of Metal−Graphene Interfaces. J. Appl. Phys. 2010, 108, 123711. (13) Gong, C.; Hinojos, D.; Wang, W.; Nijem, N.; Shan, B.; Wallace, R. M.; Cho, K.; Chabal, Y. J. Metal-Graphene-Metal Sandwich Contacts for Enhanced Interface Bonding and Work Function Control. ACS Nano 2012, 6, 5381−5387. (14) Yoon, Y.; Ganapathi, K.; Salahuddin, S. How Good Can Monolayer MoS2 Transistors Be? Nano Lett. 2011, 11, 3768−3773. (15) Zhang, Y.; Ye, J.; Matsuhashi, Y.; Iwasa, Y. Ambipolar MoS2 Thin Flake Transistors. Nano Lett. 2012, 12, 1136−1140. (16) Liu, H.; Neal, A. T.; Ye, P. D. Channel Length Scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563−8569. (17) Das, S.; Chen, H.; Penumatcha, A. V.; Appenzeller, J. High Performance Multilayer MoS2 Transistors with Scandium Contacts. Nano Lett. 2013, 13, 100−105. (18) Bao, W.; Cai, X.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High Mobility Ambipolar MoS2 Field-Effect Transistors : Substrate and Dielectric Effects. Appl. Phys. Lett. 2013, 102, 042104. (19) Liu, W.; Kang, J.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of Metal Contacts in Designing High-Performance Monolayer nType WSe2 Field Effect Transistors. Nano Lett. 2013, 13, 1983−1990. (20) Jariwala, D.; Sangwan, V. K.; Late, D. J.; Johns, J. E.; Dravid, V. P.; Marks, T. J.; Lauhon, J.; Hersam, M. C. Band-like Transport in High Mobility Unencapsulated Single-Layer MoS2 Transistors. Appl. Phys. Lett. 2013, 102, 173107. (21) Zhang, W.; Chiu, M.; Chen, C.; Chen, W.; Li, L.; Wee, A. T. S. Role of Metal Contacts in High- Performance Phototransistors Based. ACS Nano 2014, 8, 8653−8661. (22) Chuang, S.; Battaglia, C.; Azcatl, A.; Mcdonnell, S.; Kang, J. S.; Yin, X.; Tosun, M.; Kapadia, R.; Fang, H.; Wallace, R. M.; Javey, A. MoS2 p-Type Transistors and Diodes Enabled by High Work Function MoOx Contacts. Nano Lett. 2014, 14, 1337−1342. (23) Mcdonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. L. Defect-Dominated Doping and Contact Resistance in MoS2. ACS Nano 2014, 8, 2880−2888.

ASSOCIATED CONTENT S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.9b03250. Details of WSe2 characterization using SEM, TEM, and XPS; device characterizations for gate capacitance; atomic model for band structure calculations (PDF)

AUTHOR INFORMATION Corresponding Author

*E-mail: [email protected]. ORCID

Zheng-Yong Liang: 0000-0003-3970-3849 Po-Wen Chiu: 0000-0003-4909-0310 Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS We thank the Ministry of Science and Technology (MOST) Taiwan Grants MOST 107-2119-M-007-011-MY2, MOST 106-2119-M-007-008-MY3, and MOST 106-2628-M-007-003MY3 as well as Academia Sinica (AS) Grant AS-TP-106-A07. REFERENCES (1) Liu, L.; Kumar, S. B.; Ouyang, Y.; Guo, J. Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors. IEEE Trans. Electron Devices 2011, 58, 3042−3074. 8153

DOI: 10.1021/acsnano.9b03250 ACS Nano 2019, 13, 8146−8154

Article

ACS Nano

(43) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169−11186. (44) Kresse, G.; Furthmüller, J. Efficiency of Ab Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15−50. (45) Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953−17979. (46) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758−1775. (47) Perdew, J. P.; Zunger, A. Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Phys. Rev. B: Condens. Matter Mater. Phys. 1981, 23, 5048.

(24) Gong, C.; Colombo, L.; Wallace, R. M.; Cho, K. The Unusual Mechanism of Partial Fermi Level Pinning at Metal−MoS2 Intefaces. Nano Lett. 2014, 14, 1714−1720. (25) Liu, Y.; Wu, H.; Cheng, H.; Yang, S.; Zhu, E.; He, Q.; Ding, M.; Li, D.; Guo, J.; Weiss, N. O.; Huang, Y.; Duan, X. F. Toward Barrier Free Contact to Molybdenum Disulfide Using Graphene Electrodes. Nano Lett. 2015, 15, 3030−3034. (26) Chuang, H.; Tan, X.; Ghimire, N. J.; Perera, M. M.; Chamlagain, B.; Cheng, M. M.; Yan, J.; Mandrus, D.; Toma, D.; Tomanek, D.; et al. High Mobility WSe2 p- and n-Type Field-Effect Transistors Contacted by Highly Doped Graphene for LowResistance Contacts. Nano Lett. 2014, 14, 3594−3601. (27) Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-Engineered Low-Resistance Contacts for Ultrathin MoS2 Transistors. Nat. Mater. 2014, 13, 1128− 1134. (28) Ma, Y.; Liu, B.; Zhang, A.; Chen, L.; Fathi, M.; Shen, C.; Abbas, A. N.; Ge, M.; Mecklenburg, M.; Zhou, C. Reversible Semiconducting-to-Metallic Phase Transition in Chemical Vapor Deposition Grown Monolayer WSe2 and Applications for Devices. ACS Nano 2015, 9, 7383−7391. (29) Liu, Y.; Guo, J.; Zhu, E.; Liao, L.; Lee, S.; Ding, M.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. Approaching the Schottky−Mott Limit in van Der Waals Metal−Semiconductor Junctions. Nature 2018, 557, 696−700. (30) Telford, E. J.; Benyamini, A.; Rhodes, D.; Wang, D.; Jung, Y.; Zangiabadi, A.; Watanabe, K.; Taniguchi, T.; Jia, S.; Barmak, K.; Pasupathy, A. N.; Dean, C. R.; Hone, J. Via Method for Lithography Free Contact and Preservation of 2D Materials. Nano Lett. 2018, 18, 1416−1420. (31) Kang, J.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational Study of Metal Contacts to Monolayer TransitionMetal Dichalcogenide Semiconductors. Phys. Rev. X 2014, 4, 031005. (32) Chai, Y.; Ionescu, R.; Su, S.; Lake, R.; Ozkan, M.; Ozkan, C. S. Making One-Dimensional Electrical Contacts to Molybdenum Disulfide-Based Heterostructures through Plasma Etching. Phys. Status Solidi A 2016, 213, 1358−1364. (33) Molina-Śanchez, A.; Wirtz, L. Phonons in Single-Layer and Few-Layer MoS2 and WS2. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 84, 155413. (34) Sourisseau, C.; Cruege, F.; Fouassier, M.; Alba, M. SecondOrder Raman Effects, Inelastic Neutron Scattering and Lattice Dynamics in 2H-WS2. Chem. Phys. 1991, 150, 281−293. (35) Kim, H.; Ovchinnikov, D.; Deiana, D.; Unuchek, D.; Kis, A. Suppressing Nucleation in Metal-Organic Chemical Vapor Deposition of MoS2 Monolayers by Alkali Metal Halides. Nano Lett. 2017, 17, 5056−5063. (36) Allain, A.; Kis, A. Electron and Hole Mobilities in Single-Layer WSe2. ACS Nano 2014, 8, 7180−7185. (37) Radisavljevic, B.; Kis, A. Mobility Engineering and a Metal− Insulator Transition in Monolayer MoS2. Nat. Mater. 2013, 12, 815− 820. (38) Dobrescu, L.; Petrov, M.; Dobrescu, D.; Ravariu, C. Threshold Voltage Extraction Methods for MOS Transistors. IEEE 2000, 1, 371−374. (39) Li, Y.; Zhou, Z.; Zhang, S.; Chen, Z. MoS2 Nanoribbons : High Stability and Unusual Electronic and Magnetic Properties. J. Am. Chem. Soc. 2008, 130, 16739−16744. (40) Lin, Y. C.; Yeh, C. H.; Lin, H. C.; Siao, M. D.; Liu, Z.; Nakajima, H.; Okazaki, T.; Chou, M. Y.; Suenaga, K.; Chiu, P. W. Stable 1T Tungsten Disulfide Monolayer and Its Junctions: Growth and Atomic Structures. ACS Nano 2018, 12, 12080−12088. (41) Yeh, C. H.; Chen, H. C.; Lin, H. C.; Lin, Y. C.; Liang, Z. Y.; Chou, M. Y.; Suenaga, K.; Chiu, P. W. Ultrafast Monolayer In/GrWS2-Gr Hybrid Photodetectors with High Gain. ACS Nano 2019, 13, 3269−3279. (42) Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for OpenShell Transition Metals. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 48, 13115−13118. 8154

DOI: 10.1021/acsnano.9b03250 ACS Nano 2019, 13, 8146−8154