Subscriber access provided by MCGILL UNIV
Article
Enthalpy and heat capacity changes on mixing: fundamental aspects and prediction by means of the PPR78 cubic equation of state Jun-Wei Qian, Romain Privat, Jean-Noeal Jaubert, and Pierre Duchet-Suchaux Energy Fuels, Just Accepted Manuscript • DOI: 10.1021/ef401605c • Publication Date (Web): 17 Sep 2013 Downloaded from http://pubs.acs.org on September 29, 2013
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Energy & Fuels is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Enthalpy and heat capacity changes on mixing: fundamental aspects and prediction by means of the PPR78 cubic equation of state. Jun-Wei QIANa, Romain PRIVAT*,a, Jean-Noël JAUBERTa and Pierre DUCHET-SUCHAUXb a
Université de Lorraine, ENSIC (École Nationale Supérieure des Industries Chimiques), LRGP (Laboratoire Réactions et Génie des Procédés), 1 rue Grandville, BP 20451, Nancy cedex 9, France. b TOTAL, 2 place Jean Millier, La Défense 6, 92400 Courbevoie, France *
Corresponding author: R. Privat. Email:
[email protected] Telephone number: (+33)383 175 128 – Fax number: (+33)383 175 152.
1 - Environment ACS Paragon -Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Abstract The PPR78 model is a predictive cubic equation of state relying on the group-contribution concept. Our previous studies have highlightened its capacity to predict the phase behavior of mixtures containing a large variety of compounds: alkanes, alkenes, aromatic compounds, permanent gases, sulphur compounds, etc. In this paper, it is attempted for the first time to answer the question "can the PPR78 model be safely used in energy-rate balances?". To do so, the largest possible number of enthalpy of mixing data and isobaric heat capacity of mixing data were collected in the open literature and predicted using the PPR78 model. It is shown that although certainly perfectible, this model generally provides from acceptable to accurate estimations of these properties depending on the nature of the mixtures and the conditions of temperature and pressure as well. Furthermore, this paper proposes some general reflections both on conceptual and practical issues: - is it always possible to claim that the excess enthalpy and the enthalpy of mixing are two strictly equivalent quantities? - does an equation of state have the same capacity to reproduce enthalpy of mixing data in onephase and in two-phase regions? - which criterion to use for evaluating the accuracy of an equation of state in terms of energy-rate balances? Keywords: enthalpy of mixing; heat capacity of mixing; PPR78; cubic equation of state; excess enthalpy; prediction; ideal solution.
2 - Environment ACS Paragon -Plus
Page 2 of 84
Page 3 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
1. Introduction Engineers use principles drawn from thermodynamics to analyze and design industrial processes. The first law of thermodynamics (also named energy-rate balance) applied to an open multi-component system at steady state, is given by: & = & +Q W
∑
u2 n& out h out + out + gzout − 2
∑
u2 n& in h in + in + gzin 2
(1)
& are the net rates of energy transfer by work and by heat, respectively; n& is the & and Q where W molar flowrate, h denotes the molar enthalpy of a stream, u, its velocity, z, its vertical position and g, the Earth's gravity. Potential-energy terms can generally be neglected (except in e.g., an oil well) as well as kineticenergy terms (except in e.g., a gas flare). The subscripts in and out mean inlet and outlet streams, respectively. From classical thermodynamics, the molar enthalpy of a p-component homogeneous system at a given temperature
T , pressure P and composition z (mole fraction vector) is: p
h(T, P, z ) =
state (T, P) + h M (T, P, z ) pure i ∑ zi ⋅ hstable
(2)
i =1
where h pure i (T, P) is the molar enthalpy of pure component i at the same temperature T and pressure P as the mixture and in its actual stable state. The h M quantity represents the molar enthalpy change on isothermal and isobaric mixing of the p components at fixed T and P and in their actual stable states. As will be detailed in the next sections, mainly two effects contribute to the value of h M :
•
a phase change of at least one of the compounds during the mixing process,
•
the non-ideality of the mixture which is revealed when the molecules making up the mixture are different in terms of size, shape and interactions which they exert on one another.
When molecules are few polar, few associating and are sufficiently alike from the point of view of their shapes and sizes (e.g. alkane mixtures) and when phase change does not occur during the mixing process, hM terms are negligible and consequently, the energy-rate balance is essentially controlled by the pure-component terms. For the other systems, a lack of accuracy on the determination of h M may have a detrimental effect on the accuracy of the energy-rate balance. In order to manage the complexity of mixtures involved in chemical industrial processes - from petroleum to pharmaceutical applications - predictive models are more and more often considered.
3 - Environment ACS Paragon -Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Whereas developers of predictive equations of state (EoS) generally concentrate their efforts on the prediction of phase-equilibrium properties, the prediction of enthalpy changes on mixing and of isobaric heat capacity changes on mixing, is rarely investigated. Note that isobaric heat capacities of M mixing, which are derived from mixing enthalpies according to cM p = (∂h / ∂T) P,z , are also
important properties, extensively measured and frequently used in chemical engineering (e.g., in calorimetry, heat transfer or coupled heat and mass transfer applications). In their Guidelines for
publication of equations of state [1], Deiters and De Reuck emphasize the necessity for developers to benchmark their models on derived properties such as enthalpy or heat capacity before publishing it. They indeed wrote: “The estimation of caloric data, such as residual specific heat capacities
(isochoric or isobaric) or speed of sound is also of general interest as well as industrial importance. Authors are urged to report predictions of such data.” Mainly two classes of EoS are currently developed and focus the attention of both industrialists and researchers: -
the vast family of cubic EoS acknowledged as simple and efficient for the representation of phase equilibria of petroleum mixture, which however may fail in predicting EoS derived properties (by predicting EoS derived properties, it is here meant that the EoS parameters were not fitted on derived properties data),
-
the EoS deriving from advanced statistical thermodynamics theories. Although these promising models need to be improved and in particular, exhibit difficulties to represent the critical and supercritical area with the same set of parameters as the one used in the subcritical region, their physical foundation often allows a rather pertinent prediction of derived properties.
In this paper, the PPR78 predictive cubic model, developed since the early 2000s by Jaubert and coworkers, is evaluated for the first time in terms of prediction of mixing enthalpy and mixing heatcapacity data. Such a model combines the widely used Peng-Robinson EoS [2,3] with a groupcontribution method aimed at estimating the temperature-dependent binary interaction parameters
k ij (T) . Twenty groups were previously defined [4-14]: CH 3 , CH 2 , CH, C, CH4 (methane), C2H6 (ethane), CHaromatic, Caromatic, Cfused aromatic rings, CH2,cyclic, CHcyclic ⇔ Ccyclic, CO2, N2, H2S, SH, H2, CH2=CH2 (ethylene), CH2,alkenic ⇔ CHalkenic, Calkenic and CH2,cycloalkenic ⇔ CHcycloalkenic. By considering as far as possible all the VLE, LLE, critical and azeotropic data available in the open literature (around 100,000 experimental points), 420 group-interaction parameters were determined. Note that the databank used to fit the model parameters did not include any mixing-enthalpy or mixing heat-capacity data.
4 - Environment ACS Paragon -Plus
Page 4 of 84
Page 5 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
The PPR78 model has shown to be capable of representing the vapor-liquid and liquid-liquid equilibrium behaviors of various types of binary mixtures as well as their critical loci, with a good accuracy. As a major result, PPR78 can efficiently predict the phase-equilibrium behavior of synthetic petroleum blends, from natural gases to heavy oils [11]. This promising result confirms that the group-interaction parameters determined through the fitting procedure using phaseequilibrium data can be safely used to predict phase-equilibrium properties of complex mixtures. In the present paper, the PPR78 equation of state is used as a purely predictive model since the properties under consideration ( h M and cM P ) were not involved in the fitting procedure of the group-interaction parameters. It is also attempted to answer the question: can the PPR78 model be
safely used in energy-rate balances? In order to provide a fair overview of the model capacities, it was decided to consider, as far as possible, all the hM and cPM data available in the open literature and to predict them using the PPR78 model.
5 - Environment ACS Paragon -Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 84
2. Discussion around the significance and the representation of enthalpy change on mixing data 2.1. Enthalpy of mixing versus excess enthalpy Before getting to the heart of the matter, it is necessary to properly characterize the enthalpy change on mixing, which is pragmatically defined as the enthalpy change that would be measured if the pure components making up the mixture were mixed together in an isothermal and isobaric mixing device of a laboratory (e.g. a calorimeter). Following this definition, there is no doubt that the pure components to be mixed are considered under their actual stable state at the working temperature and pressure: M
h (T, P, z ) =
p
h(T, P, z ) 1424 3
−
molar enthalpy of the mixture
state (T, P) ∑ zi hstable pure i
(3)
i =1
where zi is the overall mole fraction of the component i in the final mixture. As pointed out by Privat and Jaubert [15], the physical state of a binary mixture is totally independent of the physical states of the pure components that were mixed together to make it up at fixed T and P (e.g., the mixing of two pure liquids can lead either to a gaseous mixture, or to a single-liquid-phase mixture, or to a mixture in liquid-liquid equilibrium or to a mixture in liquidvapor equilibrium). In classical thermodynamics, a mixing property results from the addition of an ideal mixing property (i.e., the value of the mixing property of an ideal solution having the same temperature, the same pressure, the same composition and the same aggregation state as the real mixture) and an excess property: h M = h M,id + h E
(4)
In most of textbooks of thermodynamics, it is claimed that h M,id = 0 so that: hM = hE
(5)
This identification leads experimentalists measuring enthalpy change on mixing to name the measured quantity either enthalpy of mixing [16] or excess enthalpy [17]. Some authors even speak about excess enthalpy of mixing [18] which emphasizes that the multiplicity of terms may induce confusion. More annoying, Privat and Jaubert [15] recently proved that Eq. (5) is non-general and solely applies when the mixture and the pure components that make it up, are in the same aggregation state. Indeed, by combining the definition of the molar excess enthalpy [19]: 6 - Environment ACS Paragon -Plus
Page 7 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
p
h E (T, P, z ) =
h(T, P, z ) 1424 3
molar enthalpy of the mixture
−
aggregation state as the mixture (T, P) ∑ zi hsame pure i
(6)
i =1
(which involves potentially-fictitious states for pure components) and the definition of the enthalpy change on mixing (see Eq. (3)), one obtains the following expression for the enthalpy change on ideal mixing:
h M,id (T, P, z ) =
p
aggregation state as the mixture state (T, P) − h stable (T, P) ∑ zi hsame pure i pure i
(7)
i =1
which is non necessarily equal to zero. Note in passing, that the molar excess enthalpy is not systematically measurable since its definition may involve fictitious (i.e. non-stable) states which are not accessible from experiments. On the contrary, an enthalpy change on mixing is by definition a measurable quantity. Note furthermore that if there is no phase change of the pure compounds during the mixing process ( h M,id = 0 ) and if the mixture behaves ideally ( h E = 0 ) then h M = 0 , as stated in the introduction.
To sum up, experimentalists can only measure enthalpy changes on mixing (or equivalently, heats
of mixing). They cannot access to excess enthalpies except in the case where h E = h M , occurring when a mixture is formed from pure components that are initially in the same aggregation state as the resulting mixture.
2.2. Representation of the isothermal and isobaric enthalpy change on mixing as a function of z1 in binary systems, when phase change occurs The representation of hM versus z1 at fixed T and P for a liquid solution formed from pure liquids is a well-known application of classical thermodynamics. Numerous empirical correlations of hM(T,z1) are available in the open literature (Redlich-Kister, Van Laar, Wilson etc.) to model the behavior of liquid mixtures. The representation of hM versus z1 at fixed T and P for a gaseous mixture formed from two pure gases is strictly identical to the previous case. Let us address the case of a binary system (1) + (2) characterized by an overall composition z1 and such that a VLE exists at the considered T and P. The mole fractions of component 1 in the liquid and gas phases in equilibrium are denoted x1 and y1, respectively. For the sake of simplicity, it is first assumed that the gas phase behaves as a perfect gas mixture and that the liquid phase is ideal. By convention, pure component 1 is assumed to be more volatile than pure component 2. When mixing the two pure components (1) and (2) at fixed T and P such that 7 - Environment ACS Paragon -Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 84
P2sat (T) ≤ P ≤ P1sat (T) (pure component 1 is in a gaseous state whereas pure component 2 is in a liquid state), three cases may occur, depending on the value of z1:
•
either the final mixture is made up of a single liquid phase (i.e., z1 < x1). According to Eq. (7), one has: gas liq liq M,id h liq = z1 [h liq pure 1 (T, P) − h pure 1 (T, P)] + z 2 [h pure 2 (T, P) − h pure 2 (T, P)] 14444244443 14444 4244444 3 ≠0
(8)
=0
M Consequently, h liq is a linear function of z1 .
Since the liquid phase is supposed to be incompressible and the gas phase behaves ideally: M,id h liq (T, P, z1 ) ≈ −z1 ∆ vap H pure 1 (T)
(9)
where ∆ vap H pure i (T) denotes the molar enthalpy of vaporization of pure i at T. •
either the final mixture is made up of a single gas phase (i.e., z1 > y1). According to Eq. (7), one has: gas gas liq M,id h gas = z1 [h gas pure 1 (T, P) − h pure 1 (T, P)] + z 2 [h pure 2 (T, P) − h pure 2 (T, P)] 14444244443 14444 4244444 3 =0
(10)
≠0
M Consequently, h gas is a linear function of z 2 .
As previous, it is possible to prove that: M,id h gas (T, P, z1 ) ≈ z 2 ∆ vap H pure 2 (T)
•
(11)
or the mixture is in VLE (and x1 ≤ z1 ≤ y1 ); in that case, the enthalpy of mixing of the system is given by: ,id M,id M ,id hM VLE (T, P, z1 ) = τh gas (T, P, y1 ) + (1 − τ)h liq (T, P, x1 )
(12)
τ is the molar proportion of the gas phase which according to the lever rule, is given by:
τ=
z1 − x1 y1 − x1
(13)
By combining Eqs. (12) and (13), one observes that h M VLE is a linear function of z1 Let us consider now a non-ideal binary system (1) + (2) verifying P1sat (T) > P2sat (T) exhibiting a VLE at given T and P. According to the previous study, the isothermal and isobaric hM versus z1 curve (simply called hM-curve thereafter) is made up of three branches: •
for z1 < x1 , the system is in a liquid state and according to Eqs. (4) and (9): 8 - Environment ACS Paragon -Plus
Page 9 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
M E h M = h liq (T, P, z1 ) ≈ −z1 ∆ vap H pure 1 (T) + h liq
•
for z1 > y1 , the system is in a gas state and according to Eqs. (4) and (11): M E h M = h gas (T, P, z1 ) ≈ z 2 ∆ vap H pure 2 (T) + h gas
•
(14)
(15)
for x1 ≤ z1 ≤ y1 , the system is in a VLE and according to Eqs. (4) and (12): M M M h M = h VLE (T, P, z1 ) = τh gas (T, P, y1 ) + (1 − τ)h liq (T, P, x1 )
(16)
As previously observed, h M VLE is a linear function of z1 (regardless of the assumption carried out on the ideality of the mixture). As an illustration, the isothermal phase diagram of the nearly-ideal binary system n-hexane(1) + noctane(2) at T = 403.2 K is given in Fig. 1 as well as the isothermal isobaric hM-composition diagram at T and three different pressures: P = 1 bar (and the system is gaseous on the whole composition range), P = 5.5 bar (and the system is liquid on the whole composition range) and P = 3 bar (and the system exhibits a VLE domain). In this last case, the three branches making up the hM curve clearly appear. Note also that the differences in the orders of magnitude of hM are well visible: when the system is made up of a single phase, absolute values of hM reach several dozens of J/mol (thus confirming the near-ideality of the binary system since in these cases h E = h M ) whereas when a phase change occurs, absolute values of hM reach several thousands of J/mol (and in this case h M ≈ h M,id ).
2.3. On the capacity of EoS to predict hM data As pointed out by Eq. (4), an enthalpy of mixing results from two different contributions that are: •
an enthalpy of ideal mixing term reflecting the phase changes of the components occurring during the isothermal and isobaric mixing process (see Eq. (7)). As shown by Eq. (9), this term essentially involves pure-component enthalpies of vaporization and consequently, an equation of state able to well reproduce pure-component phase changes should be able to well estimate h M,id .
•
an excess-enthalpy term which reflects the non-ideality of the final solution and accounts for enthalpic effects due to the differences in shape and size between unlike molecules and to the different natures of interactions between them. This term is specific to the mixture and consequently only cubic EoS combined with wellparameterized mixing rules can estimate it properly.
9 - Environment ACS Paragon -Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Pure-component enthalpies of phase change often have at least one order of magnitude more than excess enthalpies and consequently, when a phase change occurs during the mixing process, one generally has: h M,id >> h E ⇒ h M ≈ h M,id . Therefore, an equation of state able to accurately predict an experimental phase change in the isothermal and isobaric hM versus z1 plane, essentially shows its capacity to reproduce pure-component enthalpies of vaporization. Contrary to what is sometimes asserted by model developers, it validates more the equation of state for pure components than the equation of state for mixtures.
2.4. Focus on some isothermal and isobaric (enthalpy of mixing, composition) projections of systems showing atypical phase behavior Whereas isothermal Pxy or isobaric Txy phase diagrams showing azeotropy, liquid phase split or criticality are well known and frequently exemplified through the open literature, the presence of such phenomena on isothermal and isobaric projections of the phase diagram in the (enthalpy of mixing, composition) plane is more rarely described. In order to illustrate how azeotropy can influence the shapes of hM-curves, the case of the CO2(1) + ethane(2) system is first considered. This system is known to exhibit absolute azeotropy [7] (see Fig. 2). Fig. 2.b shows a series of hM curves calculated at 273.15 K and at the pressures indicated by the horizontal lines represented in Fig. 2.a. As discussed in section 2.2, one can first note that the hM-curves plotted at pressures P1, P2 and P4 perfectly illustrate that the enthalpy of mixing of a mixture formed from two pure components in the same aggregation state as the mixture (see P1 and P4) is much smaller than the enthalpy of mixing of a mixture formed from a gaseous pure component and a liquid pure component (see P2). In addition, the hM-curve associated to pressure P2 is classically made up of three branches due to the existence of a VLE at T and P2: a liquid-like branch (on the left hand side) mathematically defined by Eq. (14), a vapor-like branch (on the right hand side) defined by Eq. (15) and a VLE branch (in the middle) verifying Eq. (16). At pressure P1, the mixture is entirely gaseous whereas at P4, the mixture is liquid on the whole composition range. It appears that the enthalpies of mixing of the gas phase are negligible by comparison with the ones of the liquid phase. This tends to show that the gas phase exhibits small departures from the ideal gas behavior whereas the liquid phase exhibits high departures from the ideal solution behavior (note by the way, that the presence of an azeotropic point on the phase diagram points out the non ideality of the liquid phase). The shape of the hM-curve at P3 is very singular and deserves some comments. One observes that for small and high values of z1 (the mole fraction of CO2), the mixture is in a liquid state and the corresponding hM-curve (at P3) is superimposed with the hM-curve plotted at P4 = 40 bar (at P4, the 10 - Environment ACS Paragon-Plus
Page 10 of 84
Page 11 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
mixture is liquid on the whole composition range). The reason for which the liquid branches of the hM-curves at P3 and P4 are so similar can be explained by the incompressible character of liquid phases under moderate pressures. More remarkably, the hM-curve at P3 = 37 bar is made up of five branches: two liquid ones (for small and high values of z1), two branches associated to the two VLE encountered at T and P3 and one gas branch (the middle one). At the azeotropic pressure which is an intermediary pressure between P3 and P4, the hM-curve exhibits a singular shape (see Fig. 2.c). It is completely superimposed with the hM-curve at P4 except in one point: the azeotropic point, the composition of which is denoted zaz. At z1 = zaz, the hM-curve is discontinuous and is made up of a vertical line connecting the point representing the azeotropic liquid phase Laz (located on the hM-curve P4) to the point characterizing the azeotropic gas phase Vaz. The few frequent phase behavior shown in Fig. 2.d can be observed in systems exhibiting both absolute azeotropy and a temperature minimum on the critical locus in the (P, T) plane. At 293.15 K, the isothermal phase diagram has split in two parts, each of them bounded by a mixture critical point. Fig. 2.e represents the isothermal and isobaric hM-curves associated to the horizontal lines drawn in Fig. 2.d. One first observes that the curves P1 and P2 of Fig. 2.e are rather similar to the curves P1 and P2 of Fig. 2.b. The hM-curve P3 is however quite singular. Indeed, although pressure P3 belongs to the pressure range P2sat (T), P1sat (T) , no VLE exists at T = 293.15 K and P3 explaining why, the hM curve calculated at pressure P3 is only made up of one branch (it is neither a liquid branch nor a gas branch but instead a fluid branch due to the existence of 2 critical points at pressures above and below P3). In addition, the proximity between the shapes of the 3-branch hM-curve P2 and the onebranch hM-curve P3 illustrates a memory effect. This memory effect can also be illustrated by the similarity between the 3-branch hM-curve P4 in Fig. 2.e and the 5-branch hM-curve P3 in Fig. 2.b: indeed, the inflection point lying on the hM-curve P4 in Fig. 2.e is issued from the presence of a second VLE at smaller pressures. Unusual and interesting shapes of hM-curves are also observed in systems in which the vapor-liquid (VL) and liquid-liquid (LL) regions superimpose each other. In isothermal phase diagrams, the phenomenon results in the presence of a vapor-liquid-liquid equilibrium line separating the VL and LL domains; this instance is exemplified with the water + 1,3,5-trimethylbenzene system in Fig. 3.a. In addition, note that the binary mixture chosen for illustration shows a heteroazeotropic phase behavior as well. Under low pressure P1, the system is gaseous regardless of the composition and 11 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
exhibits weak enthalpy of mixing values (see Fig. 3.b). Under pressure P2, pure component 1 is gaseous, pure component 2 is in a liquid state and the resulting mixture can be either in liquid, vapor, or vapor-liquid state. The corresponding hM-curve is classically made up of three branches. The heteroazeotropic behavior of the considered system induces the simultaneous existence of two VLE under the same pressure P3 and at the same temperature T, as previously observed in the CO2(1) + ethane(2) system. Consequently, a five-branch hM-curve is found at P3 (see Fig. 3.b). Due to the near immiscibility of the hydrocarbon in the aqueous liquid phase, only four branches are actually visible: two VLE branch (the second and fourth ones), a liquid-like branch (located on the left hand side) and a gas-like branch (the third one). For pressures P4 and P5 above the pressure of the VLLE, two liquid phases in equilibrium (LLE) are observed. Still because of the quasi immiscibility of the hydrocarbon in the aqueous phase, only two branches are visible on the hM-curves at P4 and P5 (instead of three). Due to the large difference in pressure between P4 and P5 (100 bar), the effect of the pressure on hM-curves of liquid phases becomes visible: indeed, although similar, the hM-curves plotted at P4 and P5 are not superimposed. For a pressure equal to the pressure of the VLLE, the hM-curve is similar to the hM-curve plotted at P3 except that the gas branch (the third one) reduces to a single point denoted V* (see Fig. 3.c). The three-phase region is bounded by a triangle, the vertices of which are the points characterizing the two liquid phases (Lα* and Lβ*) and the gas phase (V*) involved in the VLLE.
12 - Environment ACS Paragon-Plus
Page 12 of 84
Page 13 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
3. A short presentation of the PPR78 model As explained in the introduction, the PPR78 model relies on the Peng-Robinson EoS [2,3] with classical Van der Waals mixing rules [4-14]. Note that the PPR78 model can also be seen as an EoS/gE model combining the Peng-Robinson EoS and a Van Laar-type excess function [11,20]. In this model, the binary-interaction parameters k ij (T) are temperature-dependent and are estimated through the group-contribution concept: k ij (T) = E ij (T) − ∆ ij (T) / Θij (T) Bkl Ng Ng −1 1 298.15 A kl (αik − α jk )(αil − α jl ) E ij (T) = − 2 k =1 l =1 T/K 2 ∆ ij (T) = δi − δ j with : δi (T) = a i (T) / bi Θ (T) = 2δ δ i j ij
∑∑
(
(17)
)
In Eq. (17), a i and bi are respectively the temperature-dependent attractive parameter and the temperature-independent covolume of pure i [2,3]. Eij is the so-called Van Laar interaction parameter [11,20]. N g is the number of different groups defined by the method (for the time being, twenty groups are defined and N g = 20 ). αik is the fraction of molecule i occupied by group k (occurrence of group k in molecule i divided by the total number of groups present in molecule i ). A kl = A lk and Bkl = Blk (where k and l are two different groups) are constant group-interaction parameters determined in our previous papers [4-14]. Details about the calculation of h M and cM P with the PPR78 model can be found in appendix A.
13 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 14 of 84
4. Interest of a temperature dependence of the kij coefficient for predicting hM and cPM data As previously illustrated by Jaubert et al. [5], the kij coefficient may have such an important influence on the quantification of the attractive forces by the EoS that the phase behavior of a binary system may be completely upset by small kij variations. This coefficient – frequently assumed as constant (i.e., temperature independent) for a given binary system – needs to be adjusted on VLE data in order to catch the experimentally-observed phase behavior of the considered mixture. In most of the cases, this practice allows both a good restitution of the data by the EoS as well as safe predictions of fluid phase equilibrium not only in the temperature and pressure ranges considered for the regression but often beyond. The derived properties of the phases (such as heat capacity of mixing and enthalpy of mixing) are generally few considered to fit the kij coefficient. Eqs. (24) to (28) and (31) to (34) in Appendix A point out that the calculation of the enthalpy change on mixing and of the heat capacity change on mixing depends on the kij coefficient but also on the successive derivatives of the kij coefficient with respect to the temperature. When a constant kij is considered, these derivatives are naturally equal to zero. Because of these kij-derivatives, a property change on mixing (e.g., hM or cPM) of a mixture at a specified temperature T0 and pressure P0, calculated using a given cubic EoS with Van der Waals mixing rules and a fixed value of the kij coefficient at T0, may have different values depending on the nature of the temperature-dependent function used for evaluating the kij coefficients. Indeed, even if two different temperature-dependent functions k ij(1) (T) and k ij(2) (T) lead to the same kij value dk ij(1) dT
at (T0 ) ≠
T0 dk ij(2) dT
( k ij(1) (T0 ) = k ij(2) (T0 ) ),
their
derivatives
may
return
different
values:
(T0 ) thus inducing different values of hM and cPM.
As an illustration, the experimental hM-curve of the benzene(1) + isooctane(2) system at T = 298.15 K and under P = 1.0 atm is shown in Fig. 4.a. To model these data, three curves were calculated by using the Peng-Robinson EoS with Van der Waals mixing rules and three different kij(T) expressions. These three expressions of the binary interaction parameter were parameterized in order to lead to the same kij value at 298.15 K: kij = 0.0029, in accordance with the PPR78 model. They are nevertheless characterized by three different dkij/dT values: (i) dkij/dT = −1.7×10−4 K–1 14 - Environment ACS Paragon-Plus
Page 15 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
(value predicted by the PPR78 model), (ii) dkij/dT = −5.7×10−5 K–1 (determined in order to obtain the best fit to experimental data) and (iii) dkij/dT = 0.0. The influence of dkij/dT on hM is very significant, in spite of its small magnitude. Similar illustrations and explanations apply to the influence of d2kij/dT2 on cPM. The curves in Fig. 4.b were calculated by considering the same kij value (kij = 0.0029, as predicted by the PPR78 model) and the same value of its first derivative (dkij/dT = −1.7×10−4 K–1, as predicted by the PPR78 model) but different values of the second derivative d2kij/dT2. It is again observed that the cPM values change a lot as d2kij/dT2 varies from −1.0×10−7 K–2(value fitted on experimental data) to 2.0×10−6 K–2 (value predicted by the PPR78 model). This example emphasizes how decisive the way used to express the kij coefficient is. Making it temperature dependent leads to more elaborated expressions for the hM and cPM properties and brings in return, more flexibility to the model. Therefore, the use of a kij(T) function instead of a constant kij can grandly improve the representation of these properties, provided kij(T) functions are well-parameterized.
15 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 16 of 84
5. Predicting hM and cPM data with the PPR78 model 5.1. Database Table 1 presents the list of the 144 pure components involved in this study. The pure fluid physical properties (Tc, Pc and ω) used in this study originate from two sources [21,22]. The handbook by Poling et al. [21] was used for alkanes, aromatics, naphthenes, alkenes, mercaptans, CO2, N2, H2S and H2. As some mercaptans and alkenes were missing in this book, the DIPPR database [22] was chosen instead. In order to benchmark the PPR78 model, we endeavored to collect most of the hM and cPM data available in the open literature for binary systems containing alkanes, aromatics, naphthenes, alkenes, mercaptans, CO2, N2, H2S and H2 [18,23-425]. Tables 2 and 3 in Appendix B detail the sources of the experimental hM and cPM data considered. Tables 2 and 3 also provide the temperature, pressure, hM (or cPM) and composition ranges for each of the binary systems. Note that experimental cPM data were only found for mixtures containing alkanes, aromatic compounds and naphthenes. In summary, our database includes 24,436 hM data (18,254 data for liquid mixtures, 4,334 points for gaseous mixtures and 4,848 points for mixtures in two-phase equilibrium) over 469 binary systems, and 2,251 cPM data (for liquid mixtures only) over 107 binary systems.
5.2. Proposal of a new criterion to evaluate the capacity of an EoS to predict enthalpies of mixing Criterion used for characterizing the predictive capacity of EoS in terms of hM and cPM are classically: - the mean relative errors: n 100 h ∆h M M M M ∆h M % = M with ∆h = h exp − h cal n h i=1 h exp i nc ∆c M M 100 M M M ∆ c % = M P with ∆c P = c P,exp − c P,cal P n c i =1 c P,exp i
∑
∑
- the mean absolute errors:
16 - Environment ACS Paragon-Plus
(18)
Page 17 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
M ∆h = ∆c M = P
nh
∑ ( ∆h M )i i =1
nh
(19)
nc
∑ ( ∆cMP )i i =1
nc
where nh and nc denote the number of hM and cPM data points, respectively. As previously discussed, when molecules are few polar and few associating (and this is often the case within petroleum blends), pure-component terms provide an excellent estimation of the molar enthalpy of the mixture. Therefore, the enthalpy-of-mixing terms can be seen as a correction, just aimed at improving the first estimation given by the pure-component ground terms. In other words, with few-polar and few-associating mixtures, hM terms are generally negligible with respect to purecomponent terms in the energy rate balance. Typically, hM terms are very small in alkane mixtures (several J/mol or several tens of J/mol) but are not negligible in petroleum mixtures containing CO2, H2O, alcohols, etc. (likely to reach up to several tens of kJ/mol). When the parameters involved in the kij correlations are not directly fitted on enthalpy-of-mixing data (and this is for instance, the case for the PPR78 model), the relative deviations between the calculated and experimental hM data ( ∆h M % ) can be very important and reach values sometimes greater than 100 %. However, since hM quantities are only used to evaluate the molar enthalpies, hin and hout, involved in the energy rate balance (see Eq. (1)), the relative hM deviations do not necessarily matter: only their impact on the accuracy of the energy balance should be actually addressed. In order to assess how errors on hM may affect the energy balance, it was decided to adopt a M M − h exp in terms of temperature effect ∆Th through: criterion converting the difference ∆h M = h calc
For one datapoint: For a series of data:
∆Th =
∆h M ∆h M = cP z1cP,pure 1 + z 2c P,pure 2 + cPM nh
∆Th =
∑ ( ∆Th )i i =1
nh
where cP is the molar isobaric heat capacity of the mixture.
17 - Environment ACS Paragon-Plus
(20)
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 18 of 84
Practically speaking, the quantity ∆Th indicates the misestimating of the final temperature of a mixture obtained by mixing two pure compounds in isobaric and adiabatic conditions. Because the temperature is one of the most used and easy-to-work-with process variables, this criterion allows a better understanding of the reliability of the model. In Eq. (20), the pure-component heat capacities result from the addition of an ideal gas term and a residual term: gas res cP,pure i (T, P) = cideal P,pure i (T) + c P,pure i (T, v pure i )
(21)
with v pure i , the molar volume of pure i at given T and P. gas The ideal gas terms ( cideal P,pure i ) were estimated using the DIPPR database [21]. The residual term is
calculated as explained in Appendix A.2.
5.3. Prediction of hM data The capacity of the PPR78 model to predict hM data is provided in Table 2 for each binary system and sumed up in Table 4 which provides some synthetic statistics which are graphically illustrated in Fig. 5. The binary systems were divided up in nine different chemical families: alkanes, aromatic
compounds, naphthenic compounds, CO2, N2, H2S, mercaptans, alkenes and H2. A binary system of a given family contains at least one compound of this family, the second one belonging either to the same family or to a previous one. As an example, binary systems of the naphthenic-compound family contain at least one cycloalkane, the second component being an alkane, an aromatic compound or a cycloalkane. Table 4 and Fig. 5.a point out quite important relative mean deviations in most of the families, and more especially in the alkane and naphthene families. Absolute mean variations, shown in Fig. 5.b, are rather homogeneous along the families (< 200 J/mol), excepted in the naphthenes and mercaptans families for which much more important deviations are observed. However, these trends are completely upset when the deviations are converted in terms of temperature (see Fig. 5.c). It is then observed that the average temperature change ∆Th in the alkane family is only equal to 0.5 K which seems nearly negligible. This result can be justified by a rather weak absolute mean deviation of 88 J/mol (this weak value is certainly negligible with respect to pure component terms in an energy balance). In the naphthene family, the ∆Th value is around 2 K (and the corresponding mean relative deviation ∆h M % is equal to 1490 % which is the highest value observed in Table 4). This ∆Th
18 - Environment ACS Paragon-Plus
Page 19 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
value is just a little above the alkane value but dramatically lower than the mercaptan value which reaches 29 K (whereas the associated relative mean deviation ∆h M % in the mercaptan family only reaches 363 %). In summary:
∆Th,naphthenes > ∆h % mercaptans Therefore, it appears that the ∆h M % and ∆Th criteria are strictly non equivalent to discuss the capacity of a model to predict hM data. As explained before, the ∆Th criterion is definitively prefered in the present study because it provides a fair overview on the model accuracy to perform an energy balance. Some predictions of hM data by the PPR78 model are shown in Figs. 6 to 10. These predictions were deemed as representative of the overall results. In addition, the results are sorted in three different classes: -
systems showing VLE,
-
liquid systems on the whole composition range,
-
gaseous systems on the whole composition range.
Figs. 6 and 7 show binary systems for which experimental hM data were found inside or in the vicinity of a two-phase equilibrium region. At a temperature and a pressure such that a two-phase equilibrium exists, a hM curve is made up of 3 branches as explained above and as illustrated in Fig. 1. We also explained in section 2.3 that when at a fixed temperature and pressure, a binary system exhibits a two-phase equilibrium, excess enthalpies (hE) are generally much lower than enthalpies of ideal mixing (this last quantity, hM,id, essentially involves pure-component vaporization enthalpies ∆vapHi). This is why we previously claimed that the capacity to predict mixing enthalpies inside two-phase regions is primarily linked to the choice of an EoS for pure components. Consequently, to predict such data, an EoS needs to: - accurately predict the VLE of binary systems (in order to properly locating the intersection points between the three branches of the hM-curves), - accurately predict enthalpies of vaporization of pure components.
19 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Peng-Robinson EoS for pure components is generally acknowledged to provide accurate estimations of vaporization enthalpies for a wide variety of compounds. In addition, the groupinteraction parameters of the PPR78 model were fitted in order to reproduce VLE data with the best possible accuracy. It is thus not surprising to observe quite satisfactory prediction of hM-curves in Figs 6 and 7. It must be stressed again that these good predictions of hM data in two-phase domains are nearly independent of the ability of the PPR78 model to predict excess enthalpies. To evaluate the capacity of the PPR78 model in predicting hE data, phase change must not occur at fixed T and P (the pure components and the resulting mixture have to remain in the same aggregation state). From a quantitative point of view, hM values in these two-phase regions may reach several kJ/mol or several tens of kJ/mol (because mixing enthalpies and vaporization enthalpies have the same order of magnitude). Whereas relative mean deviations ∆h M % between experimental data and their prediction by the PPR78 model are generally quite reasonable, absolute mean deviations ∆h M (and ∆Th as well) can be rather important due to the high order of magnitude of mixing enthalpies. Enthalpies of mixing of liquid systems are shown in Figs. 8 and 9. This time, no phase change occurs during the mixing process so that enthalpies of mixing and excess enthalpies are rigorously equal (hE = hM). In agreement with our expectations in section 5.3, one classically observes that hM values are weak when considering few polar and non-associating systems (see e.g., the alkane + alkane and alkane + alkene systems shown in Figs. 8a, 8b, 9b, 9c). Weak hM values are naturally also oberved in systems forming near ideal solutions (see Figs. 8d and 8f). Although important relative deviations may exist between experimental data of such systems and their prediction by the PPR78 model (see e.g., Fig. 8.a), the predicted orders of magnitude are systematically correct. Because of the low experimental hM values and the satisfactory predictions of their orders of magnitude, absolute mean deviations are small (generally less than 100 J/mol) and deviations expressed in temperature ( ∆Th ) remain reasonable which makes the model perfectly compatible with energy balances applied to mixtures containing alkanes and/or alkenes. An increase of size difference between both molecules of a binary system makes hM values increasing as illustrated in Fig. 8.c. For instance, enthalpies of mixing of the benzene + eicosane (a linear alkane having 20 carbon atoms) system reach 1.2 kJ/mol, which is one or two orders of magnitude more than for alkane + alkane systems. Furthermore, mixtures made up of an aromatic hydrocarbon and a non-aromatic hydrocarbon (e.g. an alkane, an alkene or a naphthene) are generally characterized by more important hM values than
20 - Environment ACS Paragon-Plus
Page 20 of 84
Page 21 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
in mixtures containing two non-aromatic hydrocarbons or two aromatic hydrocarbons. As an illustration, hM values observed in the 3-methylpentane + n-heptane system (see Fig. 8.b) are much lower than those observed in the n-hexane + benzene system (see Fig. 8.c) or in the cyclohexane + benzene system (see Fig. 8.e) whereas all these systems contain components of similar sizes. Enthalpies of mixing of CO2-containing liquid systems are generally quite well predicted by the PPR78 model as illustrated in Figs. 9.a and 9.d. These systems are generally characterized by important hM values (up to several kJ/mol even outside two-phase regions) and thus non-negligible absolute deviations but reasonable relative deviations. Fig. 10 illustrates the results obtained in gaseous binary systems which essentially contain small molecules encountered in natural gases. Similarly to what was observed in liquid systems, the PPR78 model is generally able to qualitatively reproduce hM curves (shapes and signs). The series of hM curves represented in Fig. 10.e is a good illustration of this statement. Experimental data show that enthalpies of mixing of the ethylene + propane system at 373.15 K change of sign when pressure goes from P1 = 75 bar to P4 = 150 bar. This trend is properly predicted by the PPR78 model although a slight delay in pressure is observed in comparison with experimental data. Quantitatively speaking, the same conclusions as before can be drawn: relative mean deviations are rather high for some of the systems shown in Fig. 10 (see e.g., Figs. 10.a, 10.b and 10.c) whereas the corresponding absolute mean deviations remain acceptable. The results obtained with the N2 + ethylene and H2 + methane systems (see Figs. 10.d and 10.f) are remarkably accurate, especially since the group-interaction parameters of the PPR78 model were never fitted on hM data.
5.4. Prediction of cPM data The capacity of the PPR78 model to predict cPM data is provided in Table 3 for each binary system. Among the nine different classes of compounds considered in the present study (and detailed in section 5.1), cPM data were only found in binary systems containing alkanes, aromatic compounds and naphthenes. Table 5 provides the overall mean absolute deviations and overall mean relative deviations calculated over the 2,251 points present in the databank. Deviations are also given for each of the three families of compounds that were defined (alkanes, naphthenes and cycloalkanes). Histograms illustrating these statistics are represented in Fig. 11. Similarly to what was observed with hM data, the best predictions of heat capacities of mixing are observed in the alkane family with an absolute mean deviation lower than 0.4 J/mol/K, which may seem acceptable. The highest
21 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
deviations are found in the naphthene family wherein the absolute mean deviations reach no less than 25 J/mol/K. An overview of these predictions is presented in Fig. 12. Although qualitatively correct, it must be acknowledged that the PPR78 model generally fails in quantitative representations of cPM data.
22 - Environment ACS Paragon-Plus
Page 22 of 84
Page 23 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
6. Conclusion In this paper, it was decided to benchmark the PPR78 EoS regarding the prediction of two derived properties that are essential to write energy balance equations: enthalpies of mixing (hM) and heat capacities of mixing (cPM). To do so, we tried to collect the largest possible number of experimental data in binary systems containing alkanes, alkenes, aromatic compounds, cycloalkanes, permanent gases (CO2, N2, H2S and H2) and mercaptans. Results for aqueous systems are under publication [426]. The study led us to the three following conclusions: -
the PPR78 model provides nearly systematically qualitatively satisfactory results: it often predicts the right signs and shapes of hM- and cPM-curves.
-
from a quantitative point of view, predictions of hM and cPM data have generally the right order of magnitude but are not as accurate as expected.
-
although predictions of hM data could be certainly improved, we have shown that for most of families of compounds investigated in this study, the observed deviations are expected to have a small impact on the accuracy of energy balances.
Note that a similar accuracy is expected from the PR2SRK model which is a predictive version of the Soave-Redlich-Kwong EoS since we previously showed that both these models (PR2SRK and PPR78) exhibited nearly identical capacities to predict phase equilibrium data [20,427]. The kij(T) function of the PPR78 model can thus be claimed to be: -
adequate for the prediction of VLE data (as proved by our previous studies [4-14]),
-
interesting but non optimal regarding the prediction of derived properties.
Starting from this last observation, it could be possible to improve the PPR78 model by simultaneously fitting its group-contribution parameters on VLE, hM and cPM data. Therefore, this study lays the foundation stone of an ambitious future work.
23 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 24 of 84
Appendix A. Calculation of hM and cPM with the PPR78 model A.1. Calculation of hM Cubic EoS can be written under the general form: P(T, v, z ) =
a m (T, z ) RT − v − b m ( z ) [v − r1 b m ( z )][v − r2 b m ( z )]
(22)
where P is the pressure of the fluid, T its temperature and v its molar volume; z denotes the mole fraction vector. R is the gas constant. Parameters r1 and r2 are two universal constants only depending on the considered EoS. For the Peng-Robinson EoS:
r = −1 − 1 r = −1 + 2
2 2
.
Functions a m (T, z ) and b m (T, z ) are expressed following classical mixing rules (also named Van der Waals mixing rules): p p a (T , z ) = m i =1 j=1 p z i bi b m (z) = i =1
∑ ∑ zi z j
a i (T)a j (T) [1 − k ij (T)] (23)
∑
R = 8.314472 J ⋅ mol−1 ⋅ K −1 −1 + 3 6 2 + 8 − 3 6 2 − 8 ≈ 0.253076587 X = 3 RTc,i X with Ω b = ≈ 0.0777960739 bi = Ω b Pc,i X+3 with . 2 2 2 R Tc,i 8 ( 5X + 1) T a = Ω ≈ 0.457235529 1 + mi 1 − with Ωa = i a Pc,i T 49 − 37X c,i if ω ≤ 0.491 m = 0.37464 + 1.54226ω − 0.26992ω2 i i i i if ωi > 0.491 mi = 0.379642 + 1.48503ωi − 0.164423ωi2 + 0.016666ωi3 The enthalpy change on mixing h M is defined by Eq. (3). Introducing residual molar enthalpies, this definition can then be rewritten as: M
h (T, v, z ) = h
res
p
(T, v, z ) −
res i (T, v pure i ) ∑ zi h pure i =1
24 - Environment ACS Paragon-Plus
(24)
Page 25 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
with vpure i , the molar volume of pure compound i at the same temperature T and the same pressure P as the mixture. From classical thermodynamics, residual molar enthalpies are given by the general expression: res ∂a res res h (T, v, z ) = a (T, v, z ) − T + P(T, v, z ) ⋅ v − RT ∂T v, z v res [ P(T, v, z) − RT / v] dv with a (T, v, z ) = − +∞
(25)
∫
Combining Eqs. (22) and (25), one obtains:
h res (T, v, z ) =
RTb m (z ) a m (T, z ) − v − b m (z ) [v − r1 b m (z )][v − r2 b m (z )] 1 ∂a m v − r1 b m (z ) + a m (T, z ) − T ln b m (z ) ⋅ (r1 − r2 ) ∂T z v − r2 b m (z )
(26)
Note that the expression for pure component residual molar enthalpy is simply deduced from the previous equation: res h res pure i (T, v pure i ) = h (T, v pure i , z i = 1)
(27)
According to Eq. (23), the derivative of a m with respect to T writes: ∂a m = ∂T z
p
p
∑∑ i =1 j=1
da da a j dTi + a i dTj dk ij zi z j (1 − k ij ) − a ia j dT 2 a ia j
(28)
According to Eq. (17), the derivative of k ij with respect to T is:
dk ij dT
=
Θij (E′ij − ∆′ij ) − Θ′ij (Eij − ∆ij ) Θij2
(29)
with: da R 2Tc a i = −mi Ω a × i Pc T dT δ′ = dδ / dT = da i / (2b a ) i i i i dT Θ′ij = dΘij / dT = 2(δ′i δ j + δi δ′j ) ∆′ij = d∆ij / dT = 2(δi − δ j )(δ′i − δ′j ) Bkl Ng N g 298.15 Akl −1 A kl Bkl 1 (α ik − α jk )(αil − α jl ) − 1 E′ij = dEij / dT = 2 T A kl T / K k =1 l =1
∑∑
25 - Environment ACS Paragon-Plus
(30)
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 26 of 84
A.2. Calculation of cPM Similarly to the enthalpy of mixing, the heat capacity of mixing at constant pressure can be expressed in terms of residual properties (that are convenient when working with EoS): res cM P (T, v, z ) = c P (T, v, z ) −
p
∑ zi cresP,pure i (T, vpure i )
(31)
i =1
According to classical thermodynamics, the residual heat capacity at constant pressure is given by: res 2 cres P (T, v, z ) = c v (T, v, z ) − R + T( κT ⋅ v)(β ⋅ P) (β ⋅ P) := (∂P / ∂T) v,z with: ( κT ⋅ v) := −1 / (∂P / ∂v)T,z c res = (∂u res / ∂T) v,z and v
(32) u res = a res − T(∂a res / ∂T) v,z
For a cubic EoS expressed from Eq. (17), these quantities write:
(∂a m / ∂T)z R − (β ⋅ P) = v − b m (z ) [v − r1 b m (z )][v − r2 b m (z )] −1 a m (T, z ) ⋅ [ 2v − (r1 + r2 )b m (z ) ] −RT + ( κT ⋅ v) = 2 [v − r1 b m (z )][v − r2 b m (z )] [v − b m (z )] ∂ 2a m v − r1 b m (z ) −T cres = ln v (r1 − r2 )b m (z ) ∂T 2 v − r2 b m (z ) z
(33)
According to Eq. (23), the second derivative of a m with respect to T writes:
∂ 2a m = 2 ∂ T z
p
p
∑∑ i =1 j=1
d 2a i da da a + 2 dTi dTj + a i j dT 2 zi z j (1 − k ij ) 2 aia j
d 2a j dT 2
−2
dk ij a j
da i dT
dT
2 a ia j
+ ai
da j dT
d 2 k ij − a ia j (34) dT 2
According to Eq. (17), the second derivative of k ij with respect to T is: d 2 k ij dT 2
=
Θij2 (E′′ij − ∆′′ij ) + [2(Θ′ij )2 − ΘijΘ′′ij ](Eij − ∆ij ) − 2Θ′ijΘij (E′ij − ∆′ij ) Θ3ij
with:
26 - Environment ACS Paragon-Plus
(35)
Page 27 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
d 2a 2 2 i = Ω mi R Tc × 1 − a i a T ⋅ da i T ⋅ Pc dT 2 dT 2 d 2 a i da i δ′′i = d 2δi / dT 2 = 2a i − / 4bi a 3i / 2 2 dT dT 2 2 Θ′′ij = d Θij / dT = 2(δ′′i δ j + 2δ′i δ′j + δi δ′′j ) 2 2 2 ∆′′ij = d ∆ij / dT = 2 (δ′i − δ′j ) + (δi − δ j )(δ′′i − δ′′j ) Bkl Ng N g Bkl 298.15 Akl −1 1 B 2 2 k l E′′ij = d Eij / dT = − (αik − α jk )(αil − α jl ) 2 − 1 2 k =1 l=1 T A kl T / K
∑∑
27 - Environment ACS Paragon-Plus
(36)
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Appendix B. Considered data - Related references and
deviations. Tables 2 and 3 provide the list of the binary systems considered for the present study. For each of them, the references of the experimental data points and the deviations observed with the PPR78 model are provided.
28 - Environment ACS Paragon-Plus
Page 28 of 84
Page 29 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
References (1)
Deiters, U. K. and de Reuck, K. M. Guidelines for publication of equations of state I. Pure fluids. Pure Appl. Chem. 1997, 69, 1237-1250.
(2)
Peng, D.-Y. and Robinson, D.B. A new two-constant equation of state. Ind. Eng. Chem. Fund. 1976, 15, 5964.
(3)
Robinson, D.B.; Peng, D.Y. The characterization of the heptanes and heavier fractions for the GPA Peng– Robinson programs. GPA Research Report. 1978, RR–28, 1–36.
(4)
Jaubert, J.-N. and Mutelet, F. VLE predictions with the Peng-Robinson equation of state and temperature dependent kij calculated through a group contribution method. Fluid Phase Equilib. 2004, 224, 285-304.
(5)
Jaubert, J.-N., Vitu, S., Mutelet, F. and Corriou, J.-P. Extension of the PPR78 model (predictive 1978, PengRobinson EOS with temperature dependent kij calculated through a group contribution method) to systems containing aromatic compounds. Fluid Phase Equilib. 2005, 237, 193-211.
(6)
Vitu, S., Jaubert, J.-N. and Mutelet, F. Extension of the PPR78 model (Predictive 1978, Peng-Robinson EOS with temperature dependent kij calculated through a group contribution method) to systems containing naphthenic compounds. Fluid Phase Equilib. 2006, 243, 9-28.
(7)
Vitu, S., Privat, R., Jaubert, J.-N. and Mutelet, F. Predicting the phase equilibria of CO2 + hydrocarbon systems with the PPR78 model (PR EOS and kij calculated through a group contribution method). J. Supercrit. Fluids 2008, 45(1), 1-26.
(8)
Privat, R., Jaubert, J.-N. and Mutelet, F. Addition of the Nitrogen Group to the PPR78 Model (Predictive 1978, Peng Robinson EOS with Temperature-Dependent kij Calculated through a Group Contribution Method). Ind. Eng. Chem. Res. 2008, 47(6), 2033-2048.
(9)
Privat, R., Jaubert, J.-N. and Mutelet, F. Addition of the Hydrogen Sulfide group to the PPR78 model (Predictive 1978, Peng Robinson EOS with temperature dependent kij calcu-lated through a group contribution method). Ind. Eng. Chem. Res. 2008, 47(24):10041-10052.
(10)
Privat, R., Jaubert, J.-N. and Mutelet, F. Addition of the sulfhydryl group (−SH) to the PPR78 model (predictive 1978, Peng-Robinson EOS with temperature dependent kij calculated through a group contribution method). J. Chem. Thermodyn. 2008, 40(9), 1331-1341.
(11)
Jaubert, J.-N., Privat, R. and Mutelet, F. Predicting the phase equilibria of synthetic petroleum fluids with the PPR78 approach. AIChE J. 2010, 56(12), 3225–3235.
(12)
Privat, R., Jaubert, J.-N. Addition of the sulfhydryl group (-SH) to the PPR78 model: Estimation of missing group-interaction parameters for systems containing mercaptans and carbon dioxide or nitrogen or methane, from newly published data. Fluid Phase Equilib. 2012, 334, 197-203.
(13)
Qian, J.-W., Jaubert, J.-N., Privat, R. Phase equilibria in hydrogen-containing binary systems modeled with the Peng–Robinson equation of state and temperature-dependent binary interaction parameters calculated through a group-contribution method. J. Supercrit. Fluids 2013, 75, 58-71.
(14)
Qian, J.-W., Jaubert, J.-N., Privat, R. Prediction of the phase behavior in alkene–containing binary systems with the PPR78 model. Fluid Phase Equilib. 2013, 354, 212-235.
(15)
Privat, R. and Jaubert, J.-N. Discussion around the paradigm of ideal mixtures with emphasis on the definition of the property changes on mixing. Chem. Eng. Sci. 2012, 82, 319-333.
(16)
Kim, J. T., Kim, H., Kim, S.-K., Kumar, M. D., and Prabu, A. A. Effect of cadmium chloride and ammonium chloride salts on the enthalpy of mixing of pyridine + water at 303.15 K. J. Chem. Eng. Data 2012, 57, 1-6.
(17)
Thiede, S., Horstmann, S. and Gmehling, J. Vapor-liquid equilibrium data, excess enthalpy data, and azeotropic data for the binary system dibutyl ether + o-xylene. J. Chem. Eng. Data 2010, 55, 3155-3159.
(18)
Oscarson, J.L., Coxam, J.Y., Gillespie, S.E. and Izatt, R.M. Excess enthalpies of mixing methane with methanol, n-heptane, toluene and methylcyclohexane at 255.4 and 310.9 K and 13.8 MPa. Fluid Phase Equilib. 1996, 114, 161-174.
(19)
Lewis, G.N. and Randall, M. Thermodynamics. Mc Graw-Hill, 1961.
(20)
Jaubert, J.-N. and Privat, R. Relationship between the binary interaction parameters (kij) of the Peng–
29 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Robinson and those of the Soave–Redlich–Kwong equations of state: application to the definition of the PR2SRK model. Fluid Phase Equilib. 2010, 295, 26-37. (21)
Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P. The Properties of Gases and Liquids, 5th Ed. 2000.
(22)
http://www.aiche.org/dippr
(23)
Wormald, C. J.; Lewis, E. J.; Hutchings, D. J. Excess enthalpies of gaseous mixtures of n-alkanes. J. Chem. Thermodyn. 1979, 11, 1-12.
(24)
Guenzel, K.; Bittrich, H. J. Mixing ethalpies of binary systems of olefins and diolefins. Z. Phys. Chem. (Leipzig) 1977, 258, 1073-1080.
(25)
McGlashan, M. L.; Morcom, K. W. Heats of mixing of some n-alkanes. Trans. Faraday Soc. 1961, 57, 907913.
(26)
Kimura, F.; Benson, G. C.; Halpin, C. J. Excess enthalpies of binary mixtures of n-heptane with hexane isomers. Fluid Phase Equilib. 1983, 11, 245-250.
(27)
Kireev, V. A.; Bykov, V. T.; Khodorchenko, V. V. Heat of mixing of liquids. V. Heat of mixing of benzene with dichloroethane, benzene with carbon tetrachloride and hexane with heptane. Zh. Fiz. Khim. 1937, 10, 807-812.
(28)
Mathieson, A. R.; Thynne, J. C. J. Thermodynamics of hydrocarbon mixtures. II. The heats of mixing of the binary mixtures formed by benzene, cyclohexane, heptane, toluene, and hexane. J. Chem. Soc. 1956, 720, 3708-3713.
(29)
Hamam, S. E. M.; Kumaran, M. K.; Benson, G. C. Excess enthalpies of binary mixtures of n-octane with each of the hexane isomers at 298.15 K. Fluid Phase Equilib. 1984, 18, 147-153.
(30)
Heintz, A.; Lichtenthaler, R. N. Excess enthalpies of liquid alkane mixtures at pressures up to 500 bar. I. Experimental results. Ber. Bunsenges. Phys. Chem. 1980, 84, 727-732.
(31)
Tancrede, P.; Patterson, D. Excess enthalpy. n-Octane-n-hexane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1975, 1974 (1), 24.
(32)
Lopez, M.; Carballo, E.; Legido, J. L.; Salgado, J.; Vijande, J.; Paz, A. M. I. Excess molar enthalpies of {x1CH3CH2COCH2CH3 + x2CH3(CH2)4CH3 + (1-x1-x2)CH3(CH2)ν-2CH3} (ν = 9 and 12) at the temperature 298.15 K. J. Chem. Thermodyn. 1995, 27, 879-886.
(33)
Hamam, S. E. M.; Benson, G. C. Excess enthalpies of binary mixtures of n-decane with hexane isomers. J. Chem. Eng. Data 1986, 31, 45-47.
(34)
Lopez, M.; Paz, A. M. I.; Peleteiro, J.; Legido, J. L.; Romani, L.; Perez, M. E. Excess molar enthalpies of the ternary systems pentan-3-one + n-hexane + n-decane and n-tetradecane at 298.15 K. Thermochim. Acta 1992, 211, 33-42.
(35)
Marsh, K. N.; Ott, J. B.; Costigan, M. J. Excess enthalpies, excess volumes, and excess Gibbs free energies for n-hexane + n-decane at 298.15 and 308.15 K. J. Chem. Thermodyn. 1980, 12, 343-348.
(36)
Marsh, K. N.; Ott, J. B.; Richards, A. E. Excess enthalpies, excess volumes, and excess Gibbs free energies for n-hexane + n-undecane at 298.15 and 308.15 K. J. Chem. Thermodyn. 1980, 12, 897-902.
(37)
Fernandez-Garcia, J. G.; Boissonnas, C. G. Thermodynamic properties of binary mixtures. Heats of mixing of n-alkanes and also their isomers. Helv. Chim. Acta 1967, 50, 1059-1068.
(38)
Hamam, S. E. M.; Kumaran, M. K.; Benson, G. C. Excess enthalpies and excess volumes of each of the mixtures: (n-dodecane + an isomer of hexane) at 298.15 K. J. Chem. Thermodyn. 1984, 16, 537-542.
(39)
Ott, J. B.; Marsh, K. N.; Stokes, R. H. Excess enthalpies, excess volumes, and excess Gibbs free energies for (n-hexane + n-dodecane) at 298.15 and 308.15 K. J. Chem. Thermodyn. 1981, 13, 371-376.
(40)
Tancrede, P.; Patterson, D. Excess enthalpy. n-Dodecane-n-hexane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1975, 1974 (1), 25.
(41)
van der Waals, J. H. Thermodynamic properties of mixtures of alkanes differing in chain length. III. System hexane-dodecane. Recl. Trav. Chim. Pays-Bas Belg. 1951, 70, 101-104.
(42)
van der Waals, J. H. Thermodynamic properties of some binary alkane mixtures at constant volume. Trans. Faraday Soc. 1956, 52, 916-925.
30 - Environment ACS Paragon-Plus
Page 30 of 84
Page 31 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
(43)
Lopez, M.; Paz, A. M. I.; Legido, J. L.; Romani, L.; Peleteiro, J.; Jimenez, E. Excess molar enthalpies for the (ethyl propanoate + n-hexane + n-tetradecane) system at the temperature 298.15 K. Phys. Chem. Liq. 1993, 25, 145-152.
(44)
Brady, T. J.; Shen, W. G.; Williamson, A. G. Enthalpies of mixing of multicomponent alkane mixtures. Aust. J. Chem. 1988, 41, 1763-1767.
(45)
Fernandez-Garcia, J. G.; Stoeckli, H. F.; Boissonnas, C. G. Thermodynamic properties of binary mixtures. Mixing volumes of n-alkanes. Helv. Chim. Acta 1966, 49, 1983-1986.
(46)
Holleman, T. Heats of mixing of liquid binary normal alkane mixtures. Physica (The Hague) 1965, 31, 49-63.
(47)
Larkin, J. A.; Fenby, D. V.; Gilman, T. S.; Scott, R. L. Heats of mixing of nonelectrolyte solutions. III. Solutions of the five hexane isomers with hexadecane. J. Phys. Chem. 1966, 70, 1959-1963.
(48)
Marsh, K. N.; Organ, P. P. Excess molar enthalpies and excess molar volumes for three- and four-component n-alkane mixtures simulating (n-hexane + n-hexadecane). J. Chem. Thermodyn. 1985, 17, 835-841.
(49)
McGlashan, M. L.; Morcom, K. W. Thermodynamics of mixtures of n-hexane + n-hexadecane. I. Heats of mixing. Trans. Faraday Soc. 1961, 57, 581-587.
(50)
Miller, R. C.; Williamson, A. G. Excess molar enthalpies for (n-hexane + n-hexadecane) and for three- and four-component alkane mixtures simulating this binary mixture. J. Chem. Thermodyn. 1984, 16, 793-799.
(51)
Scatchard, G.; Ticknor, L. B.; Goates, J. R.; McCartney, E. R. Heats of mixing in some nonelectrolyte solutions. J. Am. Chem. Soc. 1952, 74, 3721-3724.
(52)
Wang, Z.; Horikawa, Y.; Benson, G. C.; Lu, B. C. Y. Excess enthalpies of the ternary mixtures: diisopropyl ether+n-octane+(n-heptane or n-dodecane) at 298.15 K. Fluid Phase Equilib. 2001, 181, 215-224.
(53)
Wang, Z.; Horikawa, Y.; Benson, G. C.; Lu, B. C. Y. Excess enthalpies of the ternary mixtures: ethyl tertbutylether + n-heptane + (n-decane or n-dodecane) at 298.15 K. Can. J. Chem. 2001, 79, 388-393.
(54)
Kumaran, M. K.; Benson, G. C. Excess enthalpies of n-dodecane + n-heptane, + n-octane, and + n-decane at 298.15 K. J. Chem. Thermodyn. 1986, 18, 993-996.
(55)
Lundberg, G. W. Thermodynamics of solutions XI. Heats of mixing of hydrocarbons. J. Chem. Eng. Data 1964, 9, 193-198.
(56)
Wang, Z.; Benson, G. C.; Lu, B. C. Y. Excess Enthalpies of the Ternary Mixtures 2-Methyltetrahydrofuran + n-Octane + (n-Decane or n-Dodecane) at 298.15 K. J. Chem. Eng. Data 2001, 46, 1193-1197.
(57)
Grigg, R. B.; Goates, J. R.; Ott, J. B. Excess volumes and excess enthalpies for (n-dodecane + n-octane) and excess volumes for (n-dodecane + cyclohexane) at 298.15 K. J. Chem. Thermodyn. 1982, 14, 101-102.
(58)
Mathot, V. Thermodynamic Properties of Isomeric Hydrocarbons. Influence of the Molecular Symmetry of the Constituents. Bull. Soc. Chim. Belg. 1950, 59, 111-137.
(59)
Tancrede, P.; Patterson, D. Excess enthalpy. 2,2-Dimethylbutane-n-hexane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1975, 1974 (1), 26.
(60)
Tancrede, P.; Patterson, D. Excess enthalpy. 2,2-Dimethylbutane-n-octane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1975, 1974 (1), 27.
(61)
Tancrede, P.; Patterson, D. Excess enthalpy. 2,2-Dimethylbutane-n-dodecane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1975, 1974 (1), 29.
(62)
Ott, J. B.; Grigg, R. B.; Goates, J. R. Excess enthalpies and excess volumes for n-hexane + 2-methylpentane, + 3-methylpentane and + 2,3-dimethylbutane at 283.15, 298.15 and 313.15 K. Aust. J. Chem. 1980, 33, 19211926.
(63)
Ameling, W.; Siddiqi, M. A.; Lucas, K. Excess enthalpies for the binary systems n-octane with 2methylpentane and 3-methylpentane. J. Chem. Eng. Data 1983, 28, 184-186.
(64)
Wang, Z.; Benson, G. C.; Lu, B. C. Y. Excess enthalpies of the ternary mixtures: {tetrahydrofuran + 3methylpentane + (octane or decane)} at the temperature 298.15 K. J. Chem. Thermodyn. 2003, 35, 16351644.
(65)
Hamam, S. E. M.; Kumaran, M. K.; Zhang, D.; Benson, G. C. Excess enthalpies of binary mixtures of 2,4dimethylpentane with n-hexane, n-heptane, n-octane and n-dodecane. J. Chem. Eng. Data 1985, 30, 222-224.
31 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(66)
Tancrede, P.; Patterson, D. Excess enthalpy. 2,2,4-Trimethylpentane (isooctane)-n-hexane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1975, 1974 (1), 30.
(67)
Peng, D.-Y.; Horikawa, Y.; Wang, Z.; Benson, G. C.; Lu, B. C. Y. Excess Enthalpies of 2,2,4Trimethylpentane + n-Alkane Binary Mixtures at 298.15 K. J. Chem. Eng. Data 2001, 46, 237-238.
(68)
Mier, W.; Oswald, G.; Tusel-Langer, E.; Lichtenthaler, R. N. Excess enthalpy HE of binary mixtures containing alkanes, ethanol and ethyl-tert. butyl ether (ETBE). Ber. Bunsen-Ges. 1995, 99, 1123-1130.
(69)
Peng, D.-Y.; Benson, G. C.; Lu, B. C. Y. Excess Enthalpies of 2,2,4-Trimethylpentane + Hexane + (Octane or Dodecane) at 298.15 K. J. Chem. Eng. Data 2000, 45, 48-52.
(70)
Hamam, S. E.; Benson, G. C. Excess enthalpies of some binary mixtures of hexane isomers. J. Chem. Thermodyn. 1986, 18, 591-594.
(71)
Tancrede, P.; Patterson, D. Excess enthalpy. 2,2,4-Trimethylpentane (isooctane)-2,2-dimethylbutane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1975, 1974 (1), 31.
(72)
Hutchings, D. J.; Lewis, E. J.; Wormald, C. J. Excess enthalpies of mixtures of methane + each of the nalkanes from ethane to n-octane. J. Chem. Thermodyn. 1978, 10, 559-566.
(73)
Miller, R. C.; Staveley, L. A. K. Excess enthalpies for some binary liquid mixtures of low-molecular-weight alkanes. Adv. Cryog. Eng. 1976, 21, 493-500.
(74)
Ott, J. B.; Brown, P. R.; Moore, J. D.; Lewellen, A. C. Excess molar enthalpies and excess molar volumes for (propane + ethane) over the temperature range from 273.15 K to 373.15 K and the pressure range from 5 MPa to 15 MPa. J. Chem. Thermodyn. 1997, 29, 149-178.
(75)
Adams, W. R.; Gopal, P.; Zollweg, J. A.; Streett, W. B. Excess properties of (ethane + propane)(l) and (carbon monoxide + methane)(l). J. Chem. Thermodyn. 1987, 19, 39-46.
(76)
Diaz Peña, M.; Menduiña, C. Excess enthalpies at 298.15 K of binary mixtures of benzene with n-alkanes. The Journal of Chemical Thermodynamics 1974, 6, 387-393.
(77)
Jones, H. K. D.; Poon, D. P. L.; Lama, R. F.; Lu, B. C. Y. Heats of mixing of liquids: Application of quasilattice theory to benzene-alkane systems. Can. J. Chem. Eng. 1967, 45, 22-24.
(78)
Baluja Santos, M. D. C. Microcalorimetry of the heats of mixing. application to binary and ternary systems. Acta Cient. Compostelana 1970, 7, 3-15.
(79)
Baud, E. Thermal analysis of binary mixtures. Bull. Soc. Chim. Fr. 1915, 17, 329-345.
(80)
Casas, H.; Segade, L.; Franjo, C.; Jimenez, E.; Paz, A. M. I. Excess Molar Enthalpies of Propyl Propanoate + Hexane + Benzene at 298.15 K and 308.15 K. J. Chem. Eng. Data 2000, 45, 445-449.
(81)
Diaz Peña, M.; Menduiña, C. Excess enthalpies at 323.15 K of binary mixtures of benzene with n-alkanes. The Journal of Chemical Thermodynamics 1974, 6, 1097-1102.
(82)
Hwang, C. A.; Elkabule, A. S.; Whitman, D. L.; Miller, R. C. Excess molar enthalpies of (benzene + cyclohexane + n-hexane). The Journal of Chemical Thermodynamics 1987, 19, 1031-1036.
(83)
Jones, H. K. D.; Lu, B. C. Y. Heats of mixing of liquids for the system ethanol-benzene-hexane. J. Chem. Eng. Data 1966, 11, 488-492.
(84)
Mato, M. M.; Balseiro, J.; Jimenez, E.; Legido, J. L.; Galinanes, A. V.; Paz, A. M. I. Excess Molar Enthalpies and Excess Molar Volumes of the Ternary System 1,2-Dichlorobenzene + Benzene + Hexane at 298.15 K. J. Chem. Eng. Data 2002, 47, 1436-1441.
(85)
Pahlke, H. The Heats of Mixing of Organic Substances. Ph.D. thesis, Christian-Albrechts-Universitaet, Kiel 1935, 1-45.
(86)
Paz Andrade, M. I.; Regueiro, M.; Baluja, M. C.; Jimenez, E.; Hernandez, C. Heats of mixing at mean temperatures. Hexane-benzene system. Acta Cient. Compostelana 1970, 7, 147-152.
(87)
Ridgway, K.; Butler, P. A. Physical properties of the ternary system benzene-cyclohexane-hexane. Journal of Chemical & Engineering Data 1967, 12, 509-515.
(88)
Romani, L.; Paz Andrade, M. I. Thermodynamic Excess Functions at 25 C. III. Benzene + Isomers of Hexane. An. Quim. 1974, 70, 422-425.
32 - Environment ACS Paragon-Plus
Page 32 of 84
Page 33 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
(89)
Battler, J. R.; Rowley, R. L. Excess enthalpies between 293 and 323 K for constituent binaries of ternary mixtures exhibiting partial miscibility. J. Chem. Thermodyn. 1985, 17, 719-732.
(90)
Brown, C. P.; Mathieson, A. R.; Thynne, J. C. J. Thermodynamics of hydrocarbon mixtures. I. The heats of mixing of the binary and ternary systems formed by benzene, cyclohexane, and heptane. J. Chem. Soc. 1955, 4141-4146.
(91)
Hammerl, I.; Raetzsch, M. T. Enthalpies of mixing of normal paraffins with aromatics. Wiss. Z. Tech. Hochsch. Chem. Carl Schorlemmer Leuna-Merseburg 1973, 15, 175-178.
(92)
Kuchenbecker, D. Ph.D. thesis, Leipzig 1980.
(93)
Letcher, T. M.; Bayles, J. W. Thermodynamics of some binary liquid mixtures containing aliphatic amines. J. Chem. Eng. Data 1971, 16, 266-271.
(94)
Lu, B. C. Y.; Jones, H. K. D. Extrapolation of ternary excess thermodynamic properties. Can. J. Chem. Eng. 1966, 44, 251-254.
(95)
Muensch, E. Mixing calorimetry using a displacement calorimeter, described for the systems benzene + nheptane, 2-methylnapthalene + 1-methylnapthalene, toluene + chlorobenzene, and chlorobenzene + ethylbenzene. Thermochim. Acta 1978, 22, 237-255.
(96)
Messow, U.; Schuetze, D.; Pfestorf, R.; Kuchenbecker, D.; Suehnel, K. Thermodynamic studies on solvent/nparaffin systems. III. The benzene/n-heptane and benzene/n-decane system. Z. Phys. Chem. (Leipzig) 1977, 258, 24-32.
(97)
Ogawa, H.; Murakami, S.; Takigawa, T.; Ohba, M. Thermodynamic properties of rigid polycyclic molecules. 1: Enthalpies of solution of fused ring polycyclic aromatic hydrocarbons. Fluid Phase Equilib. 1997, 136, 279-287.
(98)
Palmer, D. A.; Smith, B. D. Thermodynamic excess property measurements for acetonitrile-benzene-nheptane system at 45.deg. J. Chem. Eng. Data 1972, 17, 71-76.
(99)
Renker, W. Private Communication(Leipzig) 1969.
(100)
Timofeev, V. The Heat of Formation in Non-Aqueous Solutions. Monograph "O teplote obrazovaniya nevodnykh rastvorov",Kiev 1904, 91-183.
(101)
Vilcu, R.; Stanciu, F. Excess Thermodynamic Functions from Calorimetric Data. Rev. Roum. Chim. 1966, 11, 175-182.
(102)
Yadav, O. P. Excess enthalpies of binary mixtures of some hydrocarbons. J. Indian Chem. Soc. 1991, 68, 596-599.
(103)
Sifaou, H.; Ait-kaci, A.; Benmakhlouf, H. J. Therm. Anal. Calorim. 2000, 60, 427-436.
(104)
Snow, R. L.; Ott, J. B.; Goates, J. R.; Marsh, K. N.; O'Shea, S.; Stokes, R. H. (Solid + liquid) and (vapor + liquid) phase equilibria and excess enthalpies for (benzene + n-tetradecane), (benzene + n-hexadecane), (cyclohexane + n-tetradecane), and (cyclohexane + n-hexadecane) at 293.15, 298.15, and 308.15 K. Comparison of GmE calculated from (vapor + liquid) and (solid + liquid) equilibria. J. Chem. Thermodyn. 1986, 18, 107-130.
(105)
Prengle, H. W., Jr.; Worley, F. L., Jr.; Mauk, C. E. Thermodynamics of solutions. New equipment for measuring heats of solution. Data for five systems. J. Chem. Eng. Data 1961, 6, 395-399.
(106)
Wormald, C. J. A differential-flow mixing calorimeter. The excess enthalpy of methane + benzene, methane + cyclohexane, and benzene + cyclohexane. J. Chem. Thermodyn. 1977, 9, 901-910.
(107)
Faux, P. W.; Christensen, J. J.; Izatt, R. M. The excess enthalpies of (n-hexane + toluene) at 308.15, 358.15, 413.15, 470.15, and 573.15 K from 7.50 to 12.50 MPa. J. Chem. Thermodyn. 1987, 19, 757-764.
(108)
Raal, J. D.; Naidoo, P. Excess enthalpy measurements using a novel highly refined microflow calorimeter and the prediction of vapor-liquid equilibria from such data. Fluid Phase Equilib. 1990, 57, 147-160.
(109)
Bykov, V. T. Heats of mixing of liquids. Zh. Fiz. Khim. 1939, 13, 1013-1019.
(110)
Coxam, J. Y.; Gillespie, S. E.; Oscarson, J. L.; Izatt, R. M. Excess enthalpies of (toluene + methanol or heptane or methylcyclohexane) and of (heptane + methylcyclohexane) at the temperatures 255.4 K and 310.9 K and the pressure 13.8 MPa. J. Chem. Thermodyn. 1995, 27, 1133-1139.
33 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(111)
Elkabule, A. S.; Whitman, D. L.; Miller, R. C. Excess molar enthalpies of (toluene + n-heptane) and (toluene + methylcyclohexane) using a new variable-volume dilution calorimeter. J. Chem. Thermodyn. 1988, 20, 615620.
(112)
Otsa, E. K.; Mikhkelson, V. Y.; Kudryavtseva, L. S. Heats of Mixing in n-Alkane - n-Alk-1-yne Systems. Russ. J. Phys. Chem. 1979, 53, 507-509.
(113)
Tamura, K.; Murakami, S.; Fujishiro, R. Excess enthalpies of binary mixtures of aromatic hydrocarbons and aliphatic ketones at 298.15.deg.K. J. Chem. Thermodyn. 1975, 7, 1089-1095.
(114)
Tsao, C. C.; Smith, J. M. Heats of mixing of liquids. Chem. Eng. Prog., Symp. Ser. 1953, 49, 107-117.
(115)
Arenosa, R. L.; Menduina, C.; Tardajos, G.; Diaz, P. M. Excess enthalpies at 298.15 K for binary mixtures of toluene + an n-alkane. J. Chem. Thermodyn. 1979, 11, 825-828.
(116)
Paz Andrade, M. I.; Castromil, S.; Baluja, M. C. Enthalpies of mixing: n-hexane + o-xylene at 25, 35, and 50.deg. J. Chem. Thermodyn. 1970, 2, 775-777.
(117)
Picquenard, E.; Kehiaian, H.; Abello, L.; Pannetier, G. Enthalpies of mixing of aromatic hydrocarbon-nalkane systems. Bull. Soc. Chim. Fr. 1972, 1, 120-124.
(118)
Siimer, E.; Kirss, H.; Kuus, M.; Kudryavtseva, L. Excess Enthalpies for the Systems o-Xylene + Cyclohexanol + Nonane at 298.15 K and 318.15 K and 3-Methylphenol + 1-Hexanol + Heptane at 298.15 K and for Constituent Binaries. J. Chem. Eng. Data 1997, 42, 619-622.
(119)
Jain, D. V. S.; Dhar, N. S. Excess enthalpies of binary mixtures nonane + ethylbenzene, + o-xylene, + mxylene, + p-xylene at 298.15 K. Indian J. Technol. 1987, 25, 591-593.
(120)
Paz Andrade, M. I.; Jimenez, E.; Baluja, M. C. Enthalpies of mixing of the hexane-m-xylene system at 25.0, 35.0, and 50.0.deg. An. Quim. 1970, 66, 955-959.
(121)
Cannas, A.; Marongiu, B.; Porcedda, S. Thermodynamic properties of n-alkylbenzene + n-alkane or cyclohexane mixtures. Comparison with DISQUAC predictions. Thermochim. Acta 1998, 311, 1-19.
(122)
Kehiaian, H. V.; Sosnkowska-Kehiaian, K.; Hryniewicz, R. Enthalpy of mixing of ethers with hydrocarbons at 25.deg. and its analysis in terms of molecular surface interactions. J. Chim. Phys. Physicochim. Biol. 1971, 68, 922-934.
(123)
Paul, H. I.; Krug, J.; Knapp, H. Measurements of vapor-liquid equilibrium, excess enthalph and excess volumes for binary mixtures of n-alkanes with n-alkylbenzenes. Thermochim. Acta 1986, 108, 9-27.
(124)
Arenosa, R. L.; Rubio, R. G.; Menduina, C.; Diaz, P. M. Excess enthalpies of binary mixtures of ethylbenzene + n-alkanes. J. Chem. Eng. Data 1985, 30, 24-26.
(125)
Murti, P. S.; Van, W. M. Vapor-liquid equilibriums and heat of mixing: octane-ethylbenzene-Cellosolve system. AIChE J. 1957, 3, 517-522.
(126)
Paul, H. I. Experimental Investigation of the Vapor-Liquid Equilibria and the volumetric Properties of binary and ternary Mixtures. VDI Forschungsh. Reihe 3 Verfahrenst. 1987, 135.
(127)
Arenosa, R. L.; Rubio, R. G.; Menduina, C.; Diaz, P. M. Excess enthalpies of ethylbenzene + alkane systems at 25°C. An interpretation in terms of the Prigogine-Flory-Patterson model. J. Solution Chem. 1985, 14, 345354.
(128)
Ghogomu, P. M.; Bouroukba, M.; Dellacherie, J.; Balesdent, D.; Dirand, M. Calorimetric measurement of molar excess enthalpies of dilute solutions of ethylbenzene + higher n-alkanes. Thermochim. Acta 1997, 302, 159-164.
(129)
Wilhelm, E.; Inglese, A.; Roux, A. H.; Grolier, J. P. E. Excess enthalpy, excess heat capacity and excess volume of 1,2,4-trimethylbenzene +, and 1-methylnaphthalene + an n-alkane. Fluid Phase Equilib. 1987, 34, 49-67.
(130)
Kovalchuk, B. A.; Olkhov, V. P.; Tsymarnaya, O. V. The Heat of Mixing of Dodecane with Aromatic Hydrocarbons. Teplofiz. Svoistva Veshchestv Mater. 1988, 24, 31-35.
(131)
Aoulmi, A.; Bouroukba, M.; Solimando, R.; Rogalski, M. Thermodynamics of mixtures formed by polycyclic aromatic hydrocarbons with long chain alkanes. Fluid Phase Equilib. 1995, 110, 283-297.
(132)
Gardeler, H.; Horstmann, S.; Tsuboi, A.; Toba, S.; Rarey, J.; Gmehling, J. Vapor-liquid equilibria at six temperatures from 313.15 K to 402.15 K and excess enthalpy data at 363.15 K and 1.65 MPa for the system
34 - Environment ACS Paragon-Plus
Page 34 of 84
Page 35 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
toluene + 2,2,4-trimethylpentane (isooctane). ELDATA: Int. Electron. J. Phys.-Chem. Data 1998, 4, 1-9. (133)
Harsted, B. S.; Thomsen, E. S. Excess enthalpies from flow microcalorimetry. 3. Excess enthalpies for binary liquid mixtures of aliphatic and aromatic hydrocarbons, carbon tetrachloride, chlorobenzene, and carbon disulfide. J. Chem. Thermodyn. 1975, 7, 369-376.
(134)
Canning, J.; Cheesman, G. H. Heat of mixing of liquids. J. Chem. Soc. 1955, 1230-1233.
(135)
Cheesman, G. H.; Ladner, W. R. The variation of the heat of mixing with temperature. Proc. R. Soc. London, Ser. A 1955, 229, 387-395.
(136)
Diaz Pena, M.; Menduina, C. Semicontinuous calorimeter for measuring heats of mixing. An. Quim. 1973, 69, 857-868.
(137)
Diez, D.; Ruiz, B.; Royo, F. M.; Gutierrez, L. C. Excess molar enthalpies at 298.15 K of (cyclohexane + a methylpyridine) and of (benzene + a methylpyridine). J. Chem. Thermodyn. 1985, 17, 371-377.
(138)
Hsu, K.-Y.; Clever, H. L. Excess enthalpies of the 15 binary mixtures formed from cyclohexane, benzene, toluene, 1,4-dimethylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene at 298.15.deg.K. J. Chem. Thermodyn. 1975, 7, 435-442.
(139)
Kremann, R.; Meingast, R.; Gugl, F. The Energy Change of Binary Systems. 2nd Communication: The Volume Change and Heat Emergence during Formation of Binary Mixtures. Monatsh. Chem. 1914, 35, 12351322.
(140)
Murakami, S.; Lam, V. T.; Benson, G. C. Thermodynamic properties of binary aromatic systems. II. Excess enthalpies and volumes of benzene + toluene and toluene + isomeric xylene mixtures at 25.deg. J. Chem. Thermodyn. 1969, 1, 397-407.
(141)
Paz Andrade, M. I. Thermodynamic Properties of Binary Mixtures. I. Heat of Mixing. Acta Cient. Compostelana 1964, 1, 117-130.
(142)
Rastogi, R. P.; Nath, J.; Misra, J. Thermodynamics of weak interactions in liquid mixtures. I. Mixtures of carbon tetrachloride, benzene, toluene, and p-xylene. J. Phys. Chem. 1967, 71, 1277-1286.
(143)
Rastogi, R. P.; Nath, J.; Misra, J. Thermodynamics of weak interactions in liquid mixtures. II. Mixtures of carbon tetrachloride, benzene, o-xylene, and m-xylene. J. Phys. Chem. 1967, 71, 2524-2535.
(144)
(135) Paz Andrade, M. I.; Baluja, M. C.; Nunez, L. Microcalorimetry of heats of mixing benzene-o-xylene, benzene-m-xylene, and benzene-p-xylene systems at 25.deg. An. Quim. 1971, 67, 17-22.
(145)
Paz-Andrade, M. I.; Hernandez, C.; Nunez, L.; Jimenez, E. Microcalorimetric study of heats of mixing. Benzene-o-, m-, and p-xylene systems at 50.deg. J. Chim. Phys. Physicochim. Biol. 1972, 69, 1132-1135.
(146)
Singh, J.; Pflug, H. D.; Benson, G. C. Molar excess enthalpies and volumes of benzene-isomeric xylene systems at 25.deg. J. Phys. Chem. 1968, 72, 1939-1944.
(147)
Sharma, S. C.; Lakhanpal, M. L.; Rumpaul, M. L. Enthalpies of mixing of p-xylene with benzene, dioxane, cyclohexane and methylcyclohexane. Indian J. Chem., Sect. A 1981, 20A, 225-227.
(148)
Ott, J. B.; Marsh, K. N.; Stokes, R. H. Excess enthalpies, excess volumes, and excess Gibbs free energies for benzene + p-xylene at 288.15, 298.15, 308.15, and 318.15 K. J. Chem. Thermodyn. 1980, 12, 493-503.
(149)
Ott, J. B.; Goates, J. R.; Grigg, R. B. Excess volumes, enthalpies, and Gibbs free energies for mixtures of benzene + p-xylene. J. Chem. Thermodyn. 1979, 11, 1167-1173.
(150)
Lutskii, A. E.; Obukhova, E. M.; Petrenko, B. G. The heat of mixing and the dipole moments of the molecules of components. Zh. Fiz. Khim. 1958, 32, 720-721.
(151)
Tanaka, R.; Benson, G. C. Excess enthalpies of some ethylbenzene + aromatic hydrocarbon mixtures at 298.15 K. J. Chem. Thermodyn. 1976, 8, 259-268.
(152)
Woycicki, W. Entalpies of mixing of some binary mixtures of benzene, cyclohexane, and pyridine and their methyl and ethyl derivatives. 2. J. Chem. Thermodyn. 1974, 6, 141-147.
(153)
Nath, J.; Yadava, R. B. Thermodynamic properties and dielectric constants for binary mixtures of carbon tetrachloride with cumene and mesitylene and of benzene with cumene and mesitylene. Indian J. Chem. 1971, 9, 45-47.
35 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(154)
Woycicki, W.; Sadowska, K. W. Enthalpies and volumes of mixing in the systems: n-propylbenzene with benzene, toluene and ethylbenzene and n-butylbenzene with benzene, toluene, ethylbenzene and npropylbenzene. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 1977, 25, 115-121.
(155)
Jain, D. V. S.; Dhar, N. S. Excess enthalpies of binary mixtures of benzene with n-propylbenzene, nbutylbenzene, n-hexylbenzene at 298.15, 308.15 and 318.15 K. Fluid Phase Equilib. 1989, 47, 89-94.
(156)
Jain, D. V. S.; Chadha, R.; Dhar, N. S. Excess molar enthalpies of (benzene or methylbenzene or ethylbenzene + 2-methylethylbenzene) at the temperatures 298.15 K, 308.18 K, and 318.15 K. J. Chem. Thermodyn. 1992, 24, 1027-1031.
(157)
Aznar, E.; Ruiz, B.; Losa, C. G. Excess molar enthalpies at 298.15 K of (cyclohexane + a methylquinoline) and of (benzene + a methylquinoline). J. Chem. Thermodyn. 1985, 17, 1121-1126.
(158)
Kortuem, G.; Dreesen, G.; Freier, H. J. The Thermodynamics of Mixtures of Liquids with Different Molecular Sizes. Heat of Mixing of the System Benzene - Diphenyl. Z. Naturforsch. Sec. A 1953, 8, 546-555.
(159)
Kortuem, G.; Schreiber, H. Theoretical and experimental investigation of the mixing effects of benzene with its quasidimers diphenyl, o,o'-ditolyl, and diphenylmethane. Z. Naturforsch. 1965, 20a, 1030-1044.
(160)
Kracht, C.; Ulbig, P.; Schulz, S. Molar excess enthalpies of binary mixtures containing chlorobenzene, odichlorobenzene, toluene, 4-chlorotoluene, and o-xylene. Private Communication 1999, 1-21.
(161)
Lewis, G.; Johnson, A. F. Heats of mixing of toluene and ethylbenzene. J. Chem. Eng. Data 1969, 14, 484486.
(162)
Recko, W. M.; Sadowska, K. W. Weak dipolar interaction. Heat of mixing and excess volumes of systems formed by halogen and alkyl derivatives of benzene. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 1969, 17, 307-310.
(163)
Jain, D. V. S.; Chadha, R.; Dhar, N. S. Excess enthalpies of binary mixtures toluene + propylbenzene, + butylbenzene and + hexylbenzene at 298.15, 308.15 and 318.15 K. Fluid Phase Equilib. 1994, 102, 205-210.
(164)
Holt, D. L.; Smith, B. D. Measurement of excess enthalpies with Tronac titration calorimeter. Data for some C8 aromatic binaries. J. Chem. Eng. Data 1974, 19, 129-133.
(165)
Lam, V. T.; Murakami, S.; Benson, G. C. Thermodynamic properties of binary aromatic systems. III. Excess enthalpies and volumes of isomeric xylene mixtures at 25.deg. J. Chem. Thermodyn. 1970, 2, 17-25.
(166)
Rattan, V. K.; Raju, K. S. N. Heats of mixing of binaries of isopropylbenzene with o-, m-, and p-xylenes at 298.15 K. Indian J. Technol. 1991, 29, 77-78.
(167)
Jain, D. V. S.; Dhar, N. S. Excess molar enthalpies of binary mixtures ethylbenzene + propylbenzene, + butylbenzene and + hexylbenzene at 298.15, 308.15 and 318.15 K. Fluid Phase Equilib. 1992, 81, 231-239.
(168)
Letcher, T. M.; Heyward, C.; Spiteri, W. L. The excess molar enthalpies of cyclopentane + each of six nalkanes at two temperatures. J. Chem. Thermodyn. 1983, 15, 395-396.
(169)
Inglese, A.; Grolier, J. P. E. Excess enthalpy. Cyclopentane-n-heptane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1975, 98-109.
(170)
Fenby, D. V.; Khurma, J. R.; Konner, Z. S.; Block, T. E.; Knobler, C. M.; Reeder, J.; Scott, R. L. Isomer effects in mixtures of hydrocarbons: some experimental excess volumes and enthalpies. Aust. J. Chem. 1980, 33, 1927-1941.
(171)
Trampe, D. M.; Eckert, C. A. Calorimetric measurement of partial molar excess enthalpies at infinite dilution. J. Chem. Eng. Data 1991, 36, 112-118.
(172)
Ahmed, A. Enthalpy of Mixing of n-Hexane and Cyclohexane. J. Chem. Soc. Faraday Trans. I 1973, 69, 387389.
(173)
Alessi, P.; Kikic, I.; Longo, V. The Heats of Mixing of Paraffin - Cycloparaffin Systems. Univ. Studi Trieste Fac. Ing. Ist. Chim. Appl. 1974, 49, 1-10.
(174)
Arenosa, R. L.; Menduina, C.; Tardajos, G.; Diaz, P. M. Excess enthalpies at 298.15 K of binary mixtures of cyclohexane with n-alkanes. J. Chem. Thermodyn. 1979, 11, 159-166.
(175)
Arm, H.; Bucher, P. A Calorimeter for Determing Enthalpies of Mixing. Enthalpies of Mixing of the Binary System n-Hexane + Cyclohexane at 25 °C. Chimia 1973, 27, 79-81.
(176)
Aufderhaar, O. Experimental determination of caloric data with a Tian-Calvet calorimeter and correlation of
36 - Environment ACS Paragon-Plus
Page 36 of 84
Page 37 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
vapor pressure data of pure components with an extended Antoine equation. Diplomarbeit (Universitaet Oldenburg) 1996, 1-96. (177)
Bao, J. D.; Muan, Q. G.; Xie, Y. Z.; Zhao, G. H. Huadong Huagong Xueyuan Xuebao 1983, 267-271.
(178)
Christensen, J. J.; Hansen, L. D.; Eatough, D. J.; Izatt, R. M.; Hart, R. M. Isothermal high pressure flow calorimeter. Rev. Sci. Instrum. 1976, 47, 730-734.
(179)
Christensen, J. J.; Izatt, R. M.; Eatough, D. J.; Hansen, L. D. The effect of pressure on the excess enthalpies of cyclohexane + n-hexane at 298.15 K. J. Chem. Thermodyn. 1978, 10, 25-34.
(180)
Comelli, F. Heat of mixing for 1,3-dioxolane - methyl ethyl ketone system. Chim. Ind. (Milan) 1989, 71, 7071.
(181)
D'Avila, S. G.; Carioca, J. O. B. Measurement of Activity Coefficients at Infinite Dilution by Inert Gas Stripping and Gas Chromatography. Private Communication(Campinas, Brazil) 1996, 1-7.
(182)
Dias d'Almeida, M.; Fernandez-Garcia, J. G.; Boissonnas, C. G. Thermodynamic of liquid binary mixtures. Heats of mixing of cycloalkanes. Helv. Chim. Acta 1970, 53, 1389-1394.
(183)
Ewing, M. B.; Marsh, K. N. Enthalpy of mixing of n-hexane+cyclohexane at 288.15 and 318.15.deg.K. J. Chem. Thermodyn. 1970, 2, 295-296.
(184)
Fenclova, D.; Vrbka, P.; Dohnal, V.; Rehak, K.; Garcia-Miaja, G. (Vapour + liquid) equilibria and excess molar enthalpies for mixtures with strong complex formation. Trichloromethane or 1-bromo-1-chloro-2,2,2trifluoroethane (halothane) with tetrahydropyran or piperidine. J. Chem. Thermodyn. 2002, 34, 361-376.
(185)
Gmehling, J.; Meents, B. Excess enthalpy. Cyclohexane-hexane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1992, 144-145.
(186)
Gmehling, J. Excess enthalpies for 1,1,1-trichloroethane with alkanes, ketones, and esters. J. Chem. Eng. Data 1993, 38, 143-146.
(187)
Gmehling, J.; Krentscher, B. Excess enthalpies of 12 binary liquid mixtures containing cyclohexane at elevated temperatures and pressures (up to 416 K and 1.9 MPa). ELDATA: Int. Electron. J. Phys.-Chem. Data 1995, 1, 181-190.
(188)
Grolier, J. P. E.; Benson, G. C.; Picker, P. Enthalpies of mixing of organic liquids measured directly as a function of composition by means of scanning dynamic flow microcalorimetry. J. Chem. Thermodyn. 1975, 7, 89-95.
(189)
Grolier, J. P. E. Determination of the enthalpies of mixing of nonelectrolytes using the Picker dynamic-flow microcalorimeter. Thermochim. Acta 1976, 16, 27-38.
(190)
Harsted, B. S.; Thomsen, E. S. Excess enthalpies from flow microcalorimetry. 1. Experimental method and excess enthalpies for carbon tetrachloride + cyclohexane, + benzene, and + octamethylcyclotetrasiloxane, and of n-hexane + cyclohexane. J. Chem. Thermodyn. 1974, 6, 549-555.
(191)
Heintz, A.; Lichtenthaler, R. N. Calorimetric Study of Structures of Order in Mixtures of Alkanes. Ber. Bunsen-Ges. Phys. Chem. 1977, 81, 921-925.
(192)
Heintz, A.; Lichtenthaler, R. N. An Isothermal Flow Calorimeter for Pressures to 600 bar. Ber. Bunsen-Ges. Phys. Chem. 1979, 83, 853-856.
(193)
Huemer, H.; Platzer, E.; Rehak, K. Test measurements and analysis of errors for a new equipment for the determination of excess-heat data. Thermochim. Acta 1991, 187, 95-112.
(194)
Kedrina, N. N.; Semenov, L. V.; Gaile, A. A. Enthalpy of Mixing of Hydrocarbons with Polar Solvents. Deposited Doc. Oniitekhim 1981, (600KHP-D81), 1-10.
(195)
Keil, C.; Bittrich, H. J. Mixing calorimetry without vapor space. Z. Phys. Chem. (Leipzig) 1971, 248, 65-73.
(196)
Krug, J. Experimental Study of Excess Enthalpies and Excess Volumes of Binary Liquid Mixtures. Dissertation (TU Berlin) 1985.
(197)
Letcher, T. M.; Sack, J. The excess enthalpy of mixing of some hydrocarbon mixtures. J. S. Afr. Chem. Inst. 1975, 28, 316-320.
(198)
Marsh, K. N.; Stokes, R. H. Enthalpies of mixing of n-hexane + cyclohexane at 25.deg. J. Chem. Thermodyn. 1969, 1, 223-225.
37 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(199)
Marsh, K. N. Excess Enthalpy. Int. Data Ser. Sel. Data Mixtures Ser. A 1973, 16.
(200)
Marsh, K. N. Excess Enthalpy. Int. Data Ser. Sel. Data Mixtures Ser. A 1973, 21-23.
(201)
Mattingley, B. I.; Handa, Y. P.; Fenby, D. V. Aromatic fluorocarbon mixtures. 7. Excess enthalpies of hexafluorobenzene + triethylamine, + acetone, + diethyl ether, and + dimethyl sulfoxide. J. Chem. Thermodyn. 1975, 7, 169-173.
(202)
McGlashan, M. L.; Stoeckli, H. F. Flow calorimeter for enthalpies of mixing. Enthalpy of mixing of n-hexane + cyclohexane at 298.15.deg.K. J. Chem. Thermodyn. 1969, 1, 589-594.
(203)
McLure, I. A.; Trejo, R. A. Excess functions for (n-alkanenitrile + n-alkane) liquid mixtures. 2. Excess enthalpies at 298.15 K for propanenitrile and n-butanenitrile with some C5 to C14 n-alkanes. J. Chem. Thermodyn. 1982, 14, 439-445.
(204)
Meyer, R.; Giusti, G.; Vincent, E. J.; Meyer, M. The thermodynamic properties of acetals + heptane mixtures at 298.15 K. Thermochim. Acta 1977, 19, 153-160.
(205)
Murakami, S.; Benson, G. C. Isothermal dilution calorimeter for measuring enthalpies of mixing. J. Chem. Thermodyn. 1969, 1, 559-572.
(206)
Paz Andrade, M. I.; Lema, F.; Baluja, M. C. Enthalpies of mixing at medium temperatures: hexanecyclohexane system. An. Quim. 1970, 66, 527-530.
(207)
Pineiro, A.; Olvera, A.; Garcia-Miaja, G.; Costas, M. Excess Molar Enthalpies of Tetrahydrofuran or Diisopropyl Ether + 1-Alkanols at 298.15 K, Using a Newly Designed Flow Mixing Cell for an Isothermal Microcalorimeter. J. Chem. Eng. Data 2001, 46, 1274-1279.
(208)
Pradhan, S. D.; Pathak, G. A simple calorimeter for the heats of mixing study of associated liquids: enthalpy of hydrogen bonded ethanol-butylamine complex. Proc. - Indian Acad. Sci., [Ser.]: Chem. Sci. 1980, 89, 341347.
(209)
Raal, J. D.; Webley, P. A. Microflow calorimeter design for heats of mixing. AIChE J. 1987, 33, 604-618.
(210)
Siddiqi, M. A.; Lucas, K. An isothermal high-pressure flow calorimeter. The excess enthalpy of (cyclohexane + n-hexane) at different pressures at 288.15, 298.15, and 313.15 K. J. Chem. Thermodyn. 1982, 14, 11831190.
(211)
Takigawa, T.; Ohba, M.; Ogawa, H.; Murakami, S. Thermodynamic properties of binary mixtures of hexane isomer and cyclohexane at 298.15 K. Fluid Phase Equilib. 2003, 204, 119-130.
(212)
Tanaka, R.; Murakami, S.; Fujishiro, R. Isothermal displacement calorimeter for measuring enthalpies of mixing. Bull. Chem. Soc. Jap. 1972, 45, 2107-2110.
(213)
Tanaka, R.; D'Arcy, P. J.; Benson, G. C. Application of a flow microcalorimeter to determine the excess enthalpies of binary mixtures of nonelectrolytes. Thermochim. Acta 1975, 11, 163-175.
(214)
Vesely, F.; Pick, J. Heats of mixing of normal paraffin hydrocarbons with cyclohexane, application of the quasi-lattice theory. Collect. Czech. Chem. Commun. 1969, 34, 1792-1796.
(215)
Watts, H.; Clarke, E. C. W.; Glew, D. N. New calorimeter for measurement of the enthalpy of mixing of liquids. The enthalpy of mixing of benzene with carbon tetrachloride and of n-hexane with cyclohexane. Can. J. Chem. 1968, 46, 815-821.
(216)
Yanes, C.; Pellicer, J.; Rojas, E.; Zamora, M. Calorimetric cell for the measurement of excess enthalpy of volatile liquids. Excess enthalpy of cis-9-octadecenoic acid + cyclohexane at 298.15 K. J. Chem. Thermodyn. 1979, 11, 177-182.
(217)
Yan, W.; Lin, R.; Yen, W. Excess enthalpies of seven binary liquid systems. Thermochim. Acta 1990, 169, 171-184.
(218)
Grosse-Wortmann, H.; Jost, W.; Wagner, H. G. Calorimetric Measurements of the System Ethanol Cyclohexane - n-Heptane. Z. Phys. Chem. NF 1966, 49, 74-93.
(219)
Tancrede, P.; Patterson, D. Excess enthalpy. Cyclohexane-n-octane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1975, 1974, 114.
(220)
Hill, R. J.; Mairs, T. E.; Swinton, F. L. The thermodynamic properties of binary mixtures containing an octane. III. Excess enthalpies and excess volumes. J. Chem. Thermodyn. 1980, 12, 581-587.
38 - Environment ACS Paragon-Plus
Page 38 of 84
Page 39 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
(221)
Hamoudi, Z.; Belaribi, F. B.; Ait-Kaci, A.; Boukais-Belaribi, G. Experimental and predicted excess molar enthalpies for 1,4-dioxane + octane + cyclohexane at 303.15K. Fluid Phase Equilib. 2006, 244, 62-67.
(222)
Yang, S.-K.; Gomez-Ibanez, J. D. The excess enthalpies of cyclohexane + n-dodecane and + n-nonane. J. Chem. Thermodyn. 1976, 8, 209-216.
(223)
Wagner, H.; Lichtenthaler, R. N. Excess properties of liquid cyclohexane/hydrocarbon mixtures. I. Experimental results of the excess enthalpy. Ber. Bunsen-Ges. Phys. Chem. 1986, 90, 65-68.
(224)
Zhu, S.; Shen, S.; Benson, G. C.; Lu, B. C. Y. Excess enthalpies of (ethanol or propan-1-ol + cyclohexane + decane) at the temperature 298.15 K. J. Chem. Thermodyn. 1993, 25, 909-917.
(225)
Tancrede, P.; Patterson, D. Excess enthalpy. Cyclohexane-n-dodecane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1975, 1974, 115.
(226)
Tancrede, P.; Patterson, D. Excess enthalpy. Cyclohexane-n-hexadecane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1975, 1974, 116.
(227)
Spiteri, W. L.; Letcher, T. M. The excess enthalpies of cycloheptane + an n-alkane. J. Chem. Thermodyn. 1982, 14, 1047-1050.
(228)
Wilhelm, E.; Inglese, A.; Grolier, J. P. E. Excess enthalpies of cycloheptane + n-alkane and cyclooctane + nalkane. J. Chem. Eng. Data 1983, 28, 202-204.
(229)
Marongiu, B.; Porcedda, S.; Lepori, L.; Matteoli, E. The effect of the molecular shape on the enthalpic behavior of liquid mixtures: cyclic hydrocarbons in heptane and tetrachloromethane. Fluid Phase Equilib. 1995, 108, 167-183.
(230)
Spiteri, W. L.; Letcher, T. M. The excess enthalpies of cyclooctane + n-alkanes. Thermochim. Acta 1982, 59, 73-80.
(231)
Letcher, T. M.; Scoones, B. W. The excess enthalpies of 1,2,3,4-tetrahydronaphthalene + each of four nalkanes and + each of four cycloalkanes at two temperatures. J. Chem. Thermodyn. 1982, 14, 831-835.
(232)
Porcedda, S. Excess enthalpy of cycloheptane with heptane. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1992, 92.
(233)
Ewing, M. B.; Marsh, K. N. Excess Gibbs energies, excess enthalpies, and excess volumes for mixtures of cyclopentane + 2,3-dimethylbutane. J. Chem. Thermodyn. 1973, 5, 659-664.
(234)
Dixon, D. T.; Hewitt, F. A. Excess enthalpies and volumes for neopentane + cyclohexane and tetramethylsilane + cyclohexane at 298.15 K. J. Chem. Thermodyn. 1978, 10, 501-503.
(235)
Tancrede, P.; Patterson, D. Excess enthalpy. Cyclohexane-2,2-dimethylbutane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1975, 1974, 117.
(236)
Romani, L.; Paz, A. M. I. Excess thermodynamic functions at 25.deg.. II. Cyclohexane + hexane isomers. An. Quim. 1975, 71, 3-6.
(237)
Peng, D.-Y.; Benson, G. C.; Lu, B. C. Y. Excess enthalpies of 2,2-dimethylbutane + cyclohexane + (octane or dodecane) at 25 °C. J. Solution Chem. 2000, 29, 153-164.
(238)
Ewing, M. B.; Marsh, K. N. Excess Gibbs free energies, excess enthalpies, excess volumes, and isothermal compressibilities of cyclohexane + 2,3-dimethylbutane. J. Chem. Thermodyn. 1974, 6, 35-41.
(239)
Tancrede, P.; Patterson, D. Excess enthalpy. Cyclohexane-2,2,4-trimethylpentane (isoctane) system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1975, 1974, 118.
(240)
Ewing, M. B.; Marsh, K. N. Excess Gibbs free energies, excess enthalpies, and excess volumes of cycloheptane + 2, 3-dimethylbutane. J. Chem. Thermodyn. 1974, 6, 43-47.
(241)
Ewing, M. B.; Marsh, K. N. Excess Gibbs free energies, excess enthalpies, and excess volumes for 2,3dimethylbutane + cyclooctane. J. Chem. Thermodyn. 1973, 5, 651-657.
(242)
Arora, P. S.; Phutela, R. C.; Singh, P. P. Interaction of cyclopentane with benzene, carbon tetrachloride, and cyclohexane. Thermochim. Acta 1974, 10, 47-53.
(243)
Watson, A. E. P.; McLure, I. A.; Bennett, J. E.; Benson, G. C. Excess properties of some aromatic-alicyclic systems. I. Measurements of enthalpies and volumes of mixing. J. Phys. Chem. 1965, 69, 2753-2758.
39 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(244)
Abello, L. Excess heats of binary systems containing benzene hydrocarbons and chloroform or methylchloroform. I. Experimental results. J. Chim. Phys. Physicochim. Biol. 1973, 70, 1355-1359.
(245)
Ait-Kaci, A. Ph.D. thesis, Lyon 1982, 30-60.
(246)
Bares, D.; Soulie, M.; Metzger, J. Experimental calorimetric and ebulliometric methods for determining the excess thermodynamic functions or organic liquids. Applications to binary systems composed of azaaromatic bases and an apolar solvent. J. Chim. Phys. Physicochim. Biol. 1973, 70, 1531-1539.
(247)
Battler, J. R.; Clark, W. M.; Rowley, R. L. Excess enthalpy and liquid-liquid equilibrium surfaces for the cyclohexane-2-propanol-water system from 293.15 to 323.15 K. J. Chem. Eng. Data 1985, 30, 254-259.
(248)
Cabani, S.; Ceccanti, N. Thermodynamic properties of binary mixtures of cyclohexane with cyclic amines or cyclic ethers at 298.15.deg.K. J. Chem. Thermodyn. 1973, 5, 9-20.
(249)
Casas, H.; Segade, L.; Garcia-Garabal, S.; Pineiro, M. M.; Franjo, C.; Jimenez, E.; Paz, A. M. I. Excess molar enthalpies for propyl propanoate + cyclohexane + benzene at 298.15 and 308.15 K. Fluid Phase Equilib. 2001, 182, 279-288.
(250)
Coca, J. Physical-Chemical Properties of Liquid Binary Mixtures: Viscosity and Heat of Mixing. Acta Salmant. Cienc. 1969, 33, 9-39.
(251)
Coomber, B. A.; Wormald, C. J. A stirred flow calorimeter. The excess enthalpies of acetone + water and of acetone + some normal alcohols. J. Chem. Thermodyn. 1976, 8, 793-799.
(252)
Dahmani, O.; Ait-Kaci, A. Heats of mixing at 298.15 K of the ternary cyclohexane (1) + benzene (2) + 1chlorobutane (3) system. J. Therm. Anal. 1994, 42, 963-971.
(253)
Devika, P. D.; Ramachandran, T. P.; Ananth, M. S. Enthalpy of mixing of five binary mixtures. Indian J. Technol. 1992, 30, 612-614.
(254)
Diaz Pena, M.; Fernandez Martin, F. Thermodynamics of Mixtures of Normal Alcohols. Part 1. Heat of Mixing of the System n-Butanol - Methanol at 25 °C. An. R. Soc. Esp. Fis. Quim. Ser. B 1963, 59, 323-330.
(255)
Elliott, K.; Wormald, C. J. A precision differential flow calorimeter. The excess enthalpy of benzene + cyclohexane between 280.15 K and 393.15 K. J. Chem. Thermodyn. 1976, 8, 881-893.
(256)
Fujihara, I.; Kobayashi, M.; Murakami, S. Excess enthalpies of trans-decalin + benzene, + toluene, + isooctane, and + heptane at 298.15 K. J. Chem. Thermodyn. 1983, 15, 1-6.
(257)
Gmehling, J. Unpublished Data 2004.
(258)
Goates, J. R.; Sullivan, R. J.; Ott, J. B. Heats of mixing in the system carbon tetrachloride-cyclohexanebenzene. J. Phys. Chem. 1959, 63, 589-594.
(259)
Gracia, M. An isothermal dilution calorimeter for positive enthalpies of mixing. J. Chem. Thermodyn. 1977, 9, 55-59.
(260)
Hill, R. J.; Swinton, F. L. The excess enthalpies of some mixtures containing carbon disulfide. J. Chem. Thermodyn. 1980, 12, 489-492.
(261)
Karvo, M. Thermodynamic properties of binary and ternary mixtures containing sulfolane. V. Excess enthalpies of cyclohexane + benzene, cyclohexane + toluene, benzene + sulfolane, and toluene + sulfolane. J. Chem. Thermodyn. 1980, 12, 635-639.
(262)
Kumaran, M. K.; Halpin, C. J.; Benson, G. C. Limiting excess partial molar enthalpies of hexan-1-ol, 2methylpentan-1-ol, and 2-ethylbutan-1-ol in n-hexane at 298.15 K. J. Chem. Thermodyn. 1983, 15, 249-252.
(263)
Kuus, M.; Kirss, H.; Siimer, E.; Kudryavtseva, L. Excess Enthalpies for the Systems 1,3-Butanediol + Cyclohexanol + Decane and 1,2-Propanediol + 1,3-Butanediol + Cyclohexanol and for Constituent Binaries at 318.15 K. J. Chem. Eng. Data 1996, 41, 1206-1209.
(264)
Lacher, J. R.; Buck, W. B.; Parry, W. H. Vapor-pressure studies. II. Chlorobenzene-1-nitropropane. J. Am. Chem. Soc. 1941, 63, 2422-2425.
(265)
Lark, B. S.; Kaur, S.; Singh, S. Ternary heat effects in ternary mixtures. Thermochim. Acta 1986, 105, 219229.
(266)
Lohmann, J.; Boelts, R.; Gmehling, J. Excess Enthalpy Data for Seven Binary Systems at Temperatures between 50 and 140 °C. J. Chem. Eng. Data 2001, 46, 208-211.
40 - Environment ACS Paragon-Plus
Page 40 of 84
Page 41 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
(267)
Mattingley, B. I.; Fenby, D. V. Thermodynamic study of the deuterium isotope effect, the molar excess enthalpies of hexadeuterobenzene + cyclohexane and benzene + cyclohexane. Aust. J. Chem. 1975, 28, 185187.
(268)
Mrazek, R. V. Heats of Mixing: Binary Alcohol-Aromatic Systems at 25, 35, and 45 °C. Ph.D. thesis, Troy, NY 1960, 147-185.
(269)
Murakami, T.; Murakami, S.; Fujishiro, R. Heat of mixing for binary mixtures: pyridine derivatives-benzene, and -cyclohexane systems. Bull. Chem. Soc. Jap. 1969, 42, 35-40.
(270)
Murray, R. S.; Martin, M. L. Excess enthalpies of hexafluorobenzene + diethyl ether, + di-isopropyl ether, and + di-n-butyl ether at 283.15 and 298.15 K. J. Chem. Thermodyn. 1978, 10, 711-720.
(271)
Nagata, I.; Kazuma, K. Heats of mixing for the ternary system ethanol-1-propanol-cyclohexane at 25°C. J. Chem. Eng. Data 1977, 22, 79-84.
(272)
Nagata, I.; Tamura, K.; Ozaki, S.; Myohen, K. Ternary excess molar enthalpies of chloroform + acetone + cyclohexane mixtures at 298.15 K. Thermochim. Acta 1992, 209, 31-41.
(273)
Nicholson, D. E. Heats of mixing of benzene and cyclohexane. J. Chem. Eng. Data 1961, 6, 5.
(274)
Nicolaides, G. L.; Eckert, C. A. Experimental heats of mixing of some miscible and partially miscible nonelectrolyte systems. J. Chem. Eng. Data 1978, 23, 152-156.
(275)
Obbink, J. H.; Van, M. J. C.; Van, d. B. G. J. K. An isothermal displacement calorimeter for positive excess enthalpies. J. Chem. Thermodyn. 1978, 10, 691-699.
(276)
Orszagh, A.; Kasprzycka-Guttman, T. Thermodynamic properties of some heterocyclic base-aliphatic nalcohols systems. I. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 1972, 20, 349-354.
(277)
Paz Andrade, M. I.; Ocon, J.; Casanova, J. Heats of mixing near the boiling point. I. Benzene-cyclohexane. An. R. Soc. Esp. Fis. Quim., Ser. B 1965, 61, 707-716.
(278)
Ratnam, A. V.; Rao, C. V.; Murti, P. S. Thermodynamic properties of liquid mixtures: heats of mixing at 35°. Systems: benzene-cyclohexane-ethyl acetate and the three related binaries. Chem. Eng. Sci. 1962, 17, 392396.
(279)
Sabinin, V. E.; Belousov, V. P.; Morachevskii, A. G. Heat of mixing and heat of vaporization in the system benzene - cyclohexane. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 1966, 9, 382-386.
(280)
Stokes, R. H.; Marsh, K. N.; Tomlins, R. P. Isothermal displacement calorimeter for endothermic enthalpies of mixing. J. Chem. Thermodyn. 1969, 1, 211-221.
(281)
Touhara, H.; Ikeda, M.; Nakanishi, K.; Watanabe, N. Isothermal dilution calorimeter for measuring excess enthalpies. J. Chem. Thermodyn. 1975, 7, 887-893.
(282)
van Ness, H. C.; Abbot, M. M. Excess Enthalpy. Int. Data Ser. Sel. Data Mixtures Ser. A 1974, 160-161.
(283)
Vesely, F.; Hynek, V.; Svoboda, V.; Holub, R. Isothermal Calorimeter for Measuring Endothermic Heats of Mixing. Collect. Czech. Chem. Commun. 1974, 39, 355-365.
(284)
Vesely, F.; Pick, J. Heats of Mixing of Normal Alcohols with Cyclohexane. Collect. Czech. Chem. Commun. 1969, 34, 1854-1874.
(285)
Woycicki, W.; Sadowska, K. W. Heat and Volume of Mixing of Pyridine or alpha-Picoline with Cyclohexane or Methylcyclohexane. Bull. Acad. Pol. Sci. Ser. Sci. Chim. 1968, 16, 147-153.
(286)
Letcher, T. M.; Perkins, D. M. Application of the flory theory of liquid mixtures to excess volumes and enthalpies of benzene + cycloalkane and + n-alkane mixtures. Thermochim. Acta 1984, 77, 267-274.
(287)
Wilhelm, E.; Inglese, A.; Grolier, J. P. E. Excess enthalpies of binary mixtures of cycloheptane or cyclooctane with benzene or toluene or ethylbenzene at 298.15 K. Thermochim. Acta 1993, 229, 271-280.
(288)
Letcher, T. M.; Baxter, R. C. Excess volumes and enthalpies of mixing benzene with various bicyclic compounds. J. Solution Chem. 1985, 14, 35-40.
(289)
Amaya, K. Thermodynamic studies of binary systems consisting of polar and nonpolar liquids. II. Measurement of the heats of mixing for binary systems of polar and nonpolar liquids. Bull. Chem. Soc. Jpn. 1961, 34, 1278-1285.
41 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(290)
Paz-Andrade, M. I.; Amor, M. P. Heats of mixing at 25.deg. of the systems cyclohexane-o-xylene, cyclohexane-m-xylene, and cyclohexane-p-xylene. An. Quim. 1970, 66, 717-720.
(291)
Murakami, S.; Fujishiro, R. Thermochemical evidence of OH-π type intermolecular hydrogen bonds. Bull. Chem. Soc. Jpn. 1967, 40, 1784-1789.
(292)
French, H. T.; Stokes, R. H. Thermodynamics of ethanol at low concentrations in mixtures of cyclohexane and 1,4-dimethylbenzene. J. Chem. Soc., Faraday Trans. 1 1985, 81, 1459-1465.
(293)
Nagata, I.; Ogasawara, Y. Prediction of ternary excess enthalpies from binary data. Thermochim. Acta 1982, 52, 155-168.
(294)
Nissema, A.; Kaivamo, T.; Karvo, M. Thermodynamic properties of binary and ternary systems. XII. Excess enthalpies of cyclohexane + p-xylene, p-xylene + dimethyl sulfoxide, and dimethyl sulfoxide + cyclohexane + p-xylene. J. Chem. Thermodyn. 1983, 15, 1083-1086.
(295)
Fujii, S.; Tamura, K.; Murakami, S. Thermodynamic properties of (an alkylbenzene + cyclohexane) at the temperature 298.15 K. J. Chem. Thermodyn. 1995, 27, 1319-1328.
(296)
Ewing, M. B.; Marsh, K. N. Enthalpies of mixing of cyclohexane+carbon tetrachloride, of cyclohexane+cyclopentane, and of carbon tetrachloride+cyclopentane at various temperatures. J. Chem. Thermodyn. 1970, 2, 351-358.
(297)
Ewing, M. B.; Marsh, K. N. Excess functions for cyclopentane + cyclohexane, cyclopentane + cycloheptane, and cyclohexane + cyclooctane. J. Chem. Thermodyn. 1974, 6, 395-406.
(298)
Ewing, M. B.; Levien, B. J.; Marsh, K. N.; Stokes, R. H. Excess enthalpies, excess volumes, and excess Gibbs free energies for mixtures of cyclo-octane+cyclopentane at 288.15, 298.15, and 308.15K. J. Chem. Thermodyn. 1970, 2, 689-695.
(299)
Stokes, R. H.; Marsh, K. N.; Tomlins, R. P. Enthalpies of exothermic mixing measured by the isothermal displacement calorimeter for cyclooctane + cyclopentane at 25.deg. J. Chem. Thermodyn. 1969, 1, 377-379.
(300)
Ewing, M. B.; Marsh, K. N. Excess functions for cyclohexane + cycloheptane and cycloheptane + cyclooctane. J. Chem. Thermodyn. 1974, 6, 1087-1096.
(301)
Vesely, F.; Mikulic, A. V.; Svoboda, V.; Pick, J. Heats of Mixing of Normal Alcohols with Methylcyclohexane. Collect. Czech. Chem. Commun. 1975, 40, 2551-2559.
(302)
Brandt, H. Calorimeter for measuring small heats of mixture in binary liquid systems. Z. Phys. Chem. (Muenchen, Ger.) 1954, 2, 104-111.
(303)
Wilhelm, E.; Inglese, A.; Grolier, J. P. E. Excess enthalpies of binary mixtures containing either methylcyclopentane or methylcyclohexane. Thermochim. Acta 1991, 187, 113-120.
(304)
Ohnishi, K.; Fujihara, I.; Murakami, S. Thermodynamic properties of decalins mixed with hexane isomers at 298.15 K. I. Excess enthalpies and excess isobaric heat capacities. Fluid Phase Equilib. 1989, 46, 59-72.
(305)
Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I. Molar excess enthalpies of cis-decalin + benzene, + toluene, + isooctane and + heptane at 298.15 K. Fluid Phase Equilib. 1987, 32, 249-260.
(306)
Letcher, T. M.; Scoones, B. W. H. The excess enthalpies of bicyclohexyl + a cycloalkane and + an n-alkane at two temperatures. J. Chem. Thermodyn. 1982, 14, 703-706.
(307)
Jessup, R. S.; Stanley, C. L. Heats and volumes of mixing in several C12 hydrocarbon systems. J. Chem. Eng. Data 1961, 6, 368-371.
(308)
Wang, Z.; Benson, G. C.; Lu, B. C. Y. Excess enthalpies of the ternary mixtures: {tetrahydrofuran + (2,2,4trimethylpentane or heptane) + methylcyclohexane} at the temperature 298.15 K. J. Chem. Thermodyn. 2002, 34, 2073-2082.
(309)
Nagata, I.; Asano, H.; Fujiwara, K. Excess enthalpies for systems of 2-propanol-benzene-methylcyclohexane. Fluid Phase Equilib. 1978, 1, 211-217.
(310)
Tamura, K.; Murakami, S.; Fujishiro, R. Excess enthalpies of (cyclohexanone + aromatic hydrocarbon), (methylcyclohexane + aromatic hydrocarbon), and (methylcyclohexane + cyclohexanone) at 298.15 K. J. Chem. Thermodyn. 1981, 13, 47-52.
(311)
Woycicki, W. Enthalpies of mixing of some binary mixtures of benzene, cyclohexane, and pyridine, and their methyl and ethyl derivatives. J. Chem. Thermodyn. 1972, 4, 1-8.
42 - Environment ACS Paragon-Plus
Page 42 of 84
Page 43 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
(312)
Jones, D. E. G.; Weeks, I. A.; Benson, G. C. Excess thermodynamic properties of cyclopentane-isomeric decalin systems at 25.deg. Can. J. Chem. 1971, 49, 2481-2489.
(313)
Ott, J. B.; Marsh, K. N.; Stokes, R. H. Excess enthalpies, excess Gibbs free energies, and excess volumes for (n-hexane + cyclohexane), and excess Gibbs free energies and excess volumes for (cyclohexane + methylcyclohexane) at 298.15 and 308.15 K. J. Chem. Thermodyn. 1980, 12, 1139-1148.
(314)
Benson, G. C.; Murakami, S.; Lam, V. T.; Singh, J. Molar excess enthalpies and volumes of cyclohexaneisomeric decalin systems at 25.deg. Can. J. Chem. 1970, 48, 211-218.
(315)
Letcher, T. M.; Spiteri, W. L.; Scoones, B. W. Excess enthalpies of decahydronaphthalene in cycloalkanes and in n-alkanes at two temperatures. J. Solution Chem. 1982, 11, 423-434.
(316)
Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I. Excess thermodynamic properties of (cis-decalin or trans-decalin + cyclohexane or methylcyclohexane or cyclooctane) at 298.15 K. J. Chem. Thermodyn. 1988, 20, 1307-1314.
(317)
Smola, T.; Bittrich, H. J. Excess molar enthalpies of N-methyl-ε-caprolactam (NMC) + hydrocarbon systems at 298.15 K. III. NMC + cycloalkanes, aromatic hydrocarbons + cycloalkanes, NMC + aromatic hydrocarbons + cycloalkanes. Z. Phys. Chem. (Leipzig) 1989, 270, 645-657.
(318)
Christensen, J. J.; Faux, P. W.; Cordray, D.; Izatt, R. M. The excess enthalpies of (carbon dioxide + pentane) at 348.15, 373.15, 413.15, 470.15, and 573.15 K from 7.58 to 12.45 MPa. J. Chem. Thermodyn. 1986, 18, 1053-1064.
(319)
Pando, C.; Renuncio, J. A. R.; Izatt, R. M.; Christensen, J. J. The excess enthalpies of (carbon dioxide + pentane) at 308.15 and 323.15 K from 7.58 to 12.45 MPa. J. Chem. Thermodyn. 1983, 15, 259-266.
(320)
Christensen, J. J.; Walker, T. A. C.; Schofield, R. S.; Faux, P. W.; Harding, P. R.; Izatt, R. M. The excess enthalpies of carbon dioxide + hexane at 308.15, 358.15, and 413.15 K from 7.50 to 12.50 MPa. J. Chem. Thermodyn. 1984, 16, 445-451.
(321)
Christensen, J. J.; Zebolsky, D. M.; Izatt, R. M. The excess enthalpies of (carbon dioxide + hexane) at 470.15, 510.15, and 573.15 K from 7.50 to 12.50 MPa. J. Chem. Thermodyn. 1985, 17, 183-192.
(322)
Tolley, W. K.; Izatt, R. M.; Oscarson, J. L. Simultaneous measurement of excess enthalpies and solution densities in a flow calorimeter. Thermochim. Acta 1991, 181, 127-141.
(323)
Cordray, D. R.; Gunderson, L. D.; Christensen, J. J.; Oscarson, J. L.; Izatt, R. M. The excess molar enthalpies of carbon dioxide-hexane-dodecane mixtures at the temperatures (308.15, 323.15, 373.15, and 413.15) K and at the pressures 7.50 MPa and 12.50 MPa, and of carbon dioxide-nonane mixtures at 373.15 K and 7.50 MPa and 12.50 MPa. J. Chem. Thermodyn. 1991, 23, 941-949.
(324)
Christensen, J. J.; Cordray, D.; Izatt, R. M. The excess enthalpies of (carbon dioxide + decane) from 293.15 to 573.15 K at 12.50 MPa. J. Chem. Thermodyn. 1986, 18, 53-61.
(325)
Pando, C.; Renuncio, J. A. R.; McFall, T. A.; Izatt, R. M.; Christensen, J. J. The excess enthalpies of (carbon dioxide + decane) from 283.15 to 323.15 K at 7.58 MPa. J. Chem. Thermodyn. 1983, 15, 173-180.
(326)
Gardeler, H.; Gmehling, J. In Experimental determination of phase equilibria and comprehensive examination of the predictive capabilities of group contribution equations of state with a view to the synthesis of supercritical extraction processes, 2004; Elsevier B.V.: 2004; pp 3-38.
(327)
Rowley, R. L.; Oscarson, J. L.; Giles, N. F.; Tolley, W. K.; Izatt, R. M. Experimental and moleculardynamics simulated excess enthalpies and solubilities of neopentane in supercritical carbon dioxide. Fluid Phase Equilib. 1990, 60, 143-156.
(328)
Barry, A. O.; Kaliaguine, S. C.; Ramalho, R. S. Direct determination of enthalpy of mixing for the binary gaseous system methane-carbon dioxide by an isothermal flow calorimeter. J. Chem. Eng. Data 1982, 27, 258-264.
(329)
Lee, J. I.; Mather, A. E. Excess enthalpy of gaseous mixtures of carbon dioxide with methane. Can. J. Chem. Eng. 1972, 50, 95-100.
(330)
Pando, C.; Renuncio, J. A. R.; Izatt, R. M.; Christensen, J. J. The excess molar enthalpies of carbon monoxide-ethane mixtures from 293.15 to 323.15 K at 7.58 MPa. J. Chem. Thermodyn. 1983, 15, 231-235.
(331)
Wallis, K. P.; Clancy, P.; Zollweg, J. A.; Streett, W. B. Excess thermodynamic properties for {carbon dioxide (xCO2) + ethane ((1-x)C2H6)}(l): experiment and theory. J. Chem. Thermodyn. 1984, 16 (9), 811-823.
43 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(332)
Wormald, C. J.; Eyears, J. M. Excess molar enthalpies and excess molar volumes of carbon dioxide mixtures with ethane (xCO2 + (1-x)C2H6) up to 308.4 K and 11.0 MPa. J. Chem. Thermodyn. 1988, 20, 323-331.
(333)
Wormald, C. J.; Hodgetts, R. W. Excess enthalpies and volumes for (carbon dioxide + ethane) at T = 291.6 K, close to the minimum in the critical locus. J. Chem. Thermodyn. 1997, 29, 75-85.
(334)
Wormald, C. J.; Hodgetts, R. W.; Smith, G. R. Excess enthalpies of (carbon dioxide + cyclohexane)(g) and of (carbon dioxide + benzene)(g) at the pressure 101.3 kPa over the temperature range 354 K to 399 K. J. Chem. Thermodyn. 1992, 24, 943-952.
(335)
Baba, M.; Dordain, L.; Coxam, J. Y.; Grolier, J. P. E. Calorimetric measurements of heat capacities and heats of mixing in the range 300-570 K and up to 30 MPa. Indian J. Technol. 1992, 30, 553-558.
(336)
Cordray, D. R.; Christensen, J. J.; Izatt, R. M. The excess enthalpies of (carbon dioxide + toluene) at 308.15, 358.15, and 573.15 K from 6.98 to 16.63 MPa. J. Chem. Thermodyn. 1986, 18, 647-656.
(337)
Cordray, D. R.; Christensen, J. J.; Izatt, R. M.; Oscarson, J. L. The excess enthalpies of (carbon dioxide + toluene) at 390.15, 413.15, 470.15, and 508.15 K from 7.60 to 17.50 MPa. J. Chem. Thermodyn. 1988, 20, 877-888.
(338)
Pando, C.; Renuncio, J. A. R.; Schofield, R. S.; Izatt, R. M.; Christensen, J. J. The excess enthalpies of (carbon dioxide + toluene) at 308.15, 385.15, and 413.15 K from 7.60 to 12.67 MPa. J. Chem. Thermodyn. 1983, 15, 747-755.
(339)
Wormald, C. J.; Eyears, J. M. Excess molar enthalpies and excess molar volumes of carbon dioxide-toluene mixtures at 298.15, 304.10, and 308.15 K from 7.5 to 12.6 MPa. J. Chem. Thermodyn. 1987, 19, 845-856.
(340)
Christensen, J. J.; Christensen, S. P.; Schofield, R. S.; Faux, P. W.; Harding, P. R.; Izatt, R. M. The excess enthalpies of (carbon dioxide + cyclohexane) at 308.15, 358.15, and 413.15 K from 7.50 to 12.50 MPa. J. Chem. Thermodyn. 1983, 15, 1151-1157.
(341)
Christensen, J. J.; Walker, T. A. C.; Cordray, D. R.; Izatt, R. M. The excess enthalpies of (carbon dioxide + cyclohexane) at 470.15, 553.15, and 573.15 K from 7.50 to 12.50 MPa. J. Chem. Thermodyn. 1987, 19, 4756.
(342)
Cordray, D. R.; Izatt, R. M.; Christensen, J. J. The excess enthalpies of (carbon dioxide + cyclohexane) at 390.15, 413.15, 438.15, 498.15, and 508.15 K from 7.50 to 14.39 MPa. J. Chem. Thermodyn. 1988, 20, 225234.
(343)
Lewis, K. L.; Mosedale, S. E.; Wormald, C. J. The enthalpies of mixing of methane + argon, methane + nitrogen, and methane + hydrogen in the gaseous and two-phase regions. J. Chem. Thermodyn. 1977, 9, 121131.
(344)
McClure, D. W.; Lewis, K. L.; Miller, R. C.; Staveley, L. A. K. Excess enthalpies and Gibbs free energies for nitrogen + methane at temperatures below the critical point of nitrogen. J. Chem. Thermodyn. 1976, 8, 785792.
(345)
Wormald, C. J.; Lewis, K. L.; Mosedale, S. The excess enthalpies of hydrogen + methane, hydrogen + nitrogen, methane + nitrogen, methane + argon, and nitrogen + argon at 298 and 201 K at pressures up to 10.2 MPa. J. Chem. Thermodyn. 1977, 9, 27-42.
(346)
Calado, J. C. G.; Gopal, P.; Zollweg, J. A.; Thompson, W. R. Heat-of-mixing for the partially miscible system nitrogen-ethane. Can. J. Chem. 1988, 66, 626-627.
(347)
Guedes, H. J. R.; Zollweg, J. A.; Filipe, E. J. M.; Martins, L. F. G.; Calado, J. C. G. Thermodynamics of liquid (nitrogen + ethane). J. Chem. Thermodyn. 2002, 34, 669-678.
(348)
Wormald, C. J.; Lewis, E. J.; Terry, A. J. Second virial coefficients of benzene and cyclohexane from measurements of the excess molar enthalpy of (0.5N2 + 0.5C6H6) and (0.5N2 + 0.5C6H12) from 333.2 K to 433.2 K. J. Chem. Thermodyn. 1996, 28, 17-27.
(349)
Wormald, C. J. A new gas phase flow mixing calorimeter: test measurements on (nitrogen + cyclohexane). J. Chem. Thermodyn. 1997, 29, 701-714.
(350)
Hejmadi, A. V.; Katz, D. L.; Powers, J. E. Experimental determination of the enthalpy of mixing of nitrogen + carbon dioxide under pressure. J. Chem. Thermodyn. 1971, 3, 483-496.
(351)
Lee, J. I.; Mather, A. E. Excess enthalpy of gaseous mixtures of nitrogen and carbon dioxide. J. Chem. Eng. Data 1972, 17, 189-192.
44 - Environment ACS Paragon-Plus
Page 44 of 84
Page 45 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
(352)
Barry, A. O.; Kaliaguine, S. C.; Ramalho, R. S. Excess enthalpies of the binary system methane-hydrogen sulfide by flow calorimetry. J. Chem. Eng. Data 1982, 27, 436-439.
(353)
Letcher, T. M.; Bricknell, B. C. Calorimetric Investigation of the Interactions of Some Hydrogen-Bonded Systems at 298.15 K. J. Chem. Eng. Data 1996, 41, 166-169.
(354)
Allred, G. C.; Beets, J. W.; Parrish, W. R. Excess Properties for 1-Butanethiol + Heptane, + Cyclohexane, + Benzene, and + Toluene. 2. Excess Molar Enthalpies at 283.15, 298.15, and 333.15 K. J. Chem. Eng. Data 1995, 40, 1062-1066.
(355)
Brown, P. R.; Ott, J. B.; Lemon, L. R.; Moore, J. D. Excess molar enthalpies for (propane + ethene) over the temperature range from 273.15 K to 373.15 K and the pressure range from 5 MPa to 15 MPa. J. Chem. Thermodyn. 1996, 28, 905-921.
(356)
Lobo, L. Q.; Calado, J. C. G.; Staveley, L. A. K. The thermodynamics of liquid mixtures of methane + ethene. J. Chem. Thermodyn. 1980, 12, 419-427.
(357)
Gagne, C.; Kaliaguine, S. C.; Ramalho, R. S. Experimental study of excess enthalpies for the binary gaseous system methane-ethylene by flow calorimetry. J. Chem. Eng. Data 1986, 31, 298-302.
(358)
Gruszkiewicz, M. S.; Sipowska, J. T.; Ott, J. B.; Brown, P. R.; Moore, J. D. Excess enthalpies for (ethane + ethene) at the temperatures (273.15, 298.15, 323.15, 348.15, and 363.15) K and the pressures (5, 7.5, 10, 12.5, and 15) MPa. J. Chem. Thermodyn. 1995, 27, 507-524.
(359)
Wormald, C. J.; Eyears, J. M. Excess molar enthalpies of (carbon dioxide + ethene) in the liquid and nearcritical regions. J. Chem. Thermodyn. 2001, 33, 775-786.
(360)
Ba, L. B.; Kaliaguine, S. C.; Ramalho, R. S. Excess enthalpies for gaseous ethylene + nitrogen by flow calorimetry. J. Chem. Thermodyn. 1978, 10, 603-612.
(361)
Woycicki, W. Excess enthalpies of binary mixtures containing unsaturated aliphatic hydrocarbons. 1. nAlkene + n-alkane. J. Chem. Thermodyn. 1975, 7, 77-81.
(362)
Pittau, B.; Marongiu, B.; Porcedda, S. Thermodynamics of binary mixtures containing alkenes. 1. Excess enthalpies of some alkenes and polyenes + n-heptane or cyclohexane mixtures. J. Chem. Eng. Data 1992, 37, 124-126.
(363)
Woycicki, W. Excess enthalpies of binary mixtures containing unsaturated hydrocarbons. 4. n-Diene + nalkane and + cyclohexane. J. Chem. Thermodyn. 1980, 12, 165-171.
(364)
Letcher, T. M.; Baxter, R. C. Excess enthalpies and excess volumes of (benzene or cyclohexane or n-hexane + an alkene or an alkyne) at 298.15 K. J. Chem. Thermodyn. 1987, 19, 321-326.
(365)
Kudryavtseva, L. S.; Kuus, M.; Viit, H.; Eisen, O. Excess enthalpy. 1-Heptene - heptane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1981, 13-16.
(366)
Woycicka, M. K. Excess Enthalpies of Dilute Solutions of n-Propanol with Unsaturated Hydrocarbons. Bull. Acad. Pol. Sci. Ser. Sci. Chim. 1983, 31, 107-112.
(367)
Siimer, E.; Kuus, M.; Kudryavtseva, L. Excess enthalpies of systems containing unsaturated hydrocarbons by UNIFAC group contribution. Thermochim. Acta 1992, 209, 103-110.
(368)
Karbalai Ghassemi, M. H.; Grolier, J. P. E. Excess enthalpy. 1-Octene-n-hexane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1976, 66-69.
(369)
Kuus, M.; Kudryavtseva, L. S.; Eisen, O. Thermodynamic properties of mixtures of n-octane with isomers of n-octene. 1. Heats of mixing. Eesti NSV Tead. Akad. Toim., Keem. 1980, 29, 25-31.
(370)
Kudryavtseva, L.; Siimer, E. Excess enthalpies of 1-nonene-n-nonane, 1-hexanol-2-hexyn-1-ol, 1-nonene-2hexyn-1-ol-n-nonane, and 1-hexanol-2-hexyn-1-ol-n-nonane at 298.15 K. Thermochim. Acta 1994, 237, 4347.
(371)
Delmas, G.; Nguyen, T. T. Correlation of orientations in chain molecules in the liquid state: heats of mixing for dodecanol, dodecyl chloride, 1-dodecene and 1-decene with four normal and four branched alkanes. J. Chim. Phys. Phys.-Chim. Biol. 1975, 72, 1285-1290.
(372)
Fischer, K.; Gmehling, J. Vapor-liquid equilibria, activity coefficients at infinite dilution and heats of mixing for mixtures of N-methyl pyrrolidone-2 with C5 or C6 hydrocarbons and for hydrocarbon mixtures. Fluid Phase Equilib. 1996, 119, 113-130.
45 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(373)
Wang, Z.; Benson, G. C.; Lu, B. C. Y. Excess enthalpies of binary mixtures of 1-hexene with some branched alkanes at the temperature 298.15 K. J. Chem. Thermodyn. 2004, 36, 45-47.
(374)
Karbalai Ghassemi, M. H.; Grolier, J. P. E. Excess enthalpy. Benzene-1-hexene system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1975, 186-190.
(375)
Wang, Z.; Benson, G. C.; Lu, B. C. Y. Excess molar enthalpies of binary mixtures of 1-hexene with some cyclic and aromatic hydrocarbons at 298.15 K. Thermochim. Acta 2004, 414, 31-33.
(376)
Marongiu, B.; Porcedda, S.; Pittau, B.; Kehiaian, H. V. Thermodynamics of binary mixtures containing linear or cyclic alkenes. II. Mixtures with benzene or tetrachloromethane. Fluid Phase Equilib. 1994, 99, 185-198.
(377)
Kuus, M.; Kudryavtseva, L.; Kirss, H. Heats of mixing of n-octene isomers with some organic compounds. Eesti NSV Tead. Akad. Toim., Keem. 1982, 31, 54-57.
(378)
Kudryavtseva, L.; Kuus, M.; Kirss, H.; Vink, I. Effect of molecular structure on the excess enthalpies of mixtures with unsaturated hydrocarbons. Eesti NSV Tead. Akad. Toim., Keem. 1989, 38, 84-92.
(379)
Junghans, W.; Weber, U. v. The binary system, ethylbenzene-styrene; vapor-liquid equilibriums at 30, 60, 90, and 120° by a dynamic method and the heat of mixing at 20°. J. Prakt. Chem. [4] 1955, 2, 265-273.
(380)
Letcher, T. M.; Baxter, R. C. Excess enthalpies and excess volumes of (a bicyclic compound + 1-hexene or 1hexyne or 1-heptene or 1-heptyne) at 298.15 K. J. Chem. Thermodyn. 1988, 20, 39-47.
(381)
McFall, T. A.; Post, M. E.; Christensen, J. J.; Izatt, R. M. The excess enthalpies of (1-butene + methyl tertbutyl ether), (1,3-butadiene + propene), and (carbon disulfide + methanol) as functions of temperature. J. Chem. Thermodyn. 1982, 14, 509-515.
(382)
Woycicki, W. Excess enthalpies of binary mixtures containing unsaturated hydrocarbons. J. Chem. Thermodyn. 1984, 16, 219-224.
(383)
Royo, F. M.; Gracia, M.; Gutierrez, C. Thermodynamic Study of Some Binary Mixtures and Energy Parameters of the Various Types of Contacts involved. III. Rev. Acad. Cienc. Exact. Fis. Quim. Nat. Zaragoza 1982, 37, 51-59.
(384)
Moore, J. D.; Brown, P. R.; Ott, J. B. Excess molar enthalpies and excess molar volumes for the binary mixtures of 2-methylpropane, 2-methylpropene, and propan-2-ol at the temperatures (298.15 and 323.15) K and the pressures (5, 10, and 15) MPa. J. Chem. Thermodyn. 1997, 29, 179-195.
(385)
Diaz Pena, M.; Espino, B.; Perez, R.; Arenosa, R. L. Excess enthalpies of cyclohexene + n-alkanes. Bol. Soc. Quim. Peru 1984, 50, 64-68.
(386)
Letcher, T. M.; Baxter, R. C. Excess enthalpies of binary mixtures for 1,3-cyclohexadiene and 1,4cyclohexadiene + cyclohexane, + n-hexane and + benzene. Thermochim. Acta 1986, 102, 245-248.
(387)
Grolier, J. P. E.; Inglese, A.; Wilhelm, E. Excess enthalpies of binary systems of cyclic ether + cyclohexene. J. Chem. Eng. Data 1982, 27, 333-335.
(388)
Woycicki, W. Excess enthalpies of (cyclohexylamine or aniline + cyclohexane or cyclohexene or a cyclohexadiene). J. Chem. Thermodyn. 1986, 18, 317-322.
(389)
Letcher, T. M.; Baxter, R. C. Excess enthalpies and excess volumes of (a bicyclic compound + cyclohexene or 1,3-cyclohexadiene or 1,4-cyclohexadiene) at 298.15 K. J. Chem. Thermodyn. 1988, 20, 149-157.
(390)
Liao, D.-K.; Meng, X.-L.; Tong, Z.-F.; Zheng, D.-X.; Peng, D.-Y.; Lu, B. C. Y. Excess Molar Enthalpies of p-Cymene + α-Pinene + β-Pinene at (298.15, 308.15, and 318.15) K and at Atmospheric Pressure. J. Chem. Eng. Data 2007, 52, 808-811.
(391)
Knoester, M.; Taconis, K. W.; Beenakker, J. J. M. Excess enthalpies of gaseous mixtures of hydrogen, nitrogen, and argon between 150 and 293°K. and at pressures up to 130 atm. Physica (Amsterdam) 1967, 33, 389-409.
(392)
Benson, G. C.; D'Arcy, P. J.; Kumaran, M. K. Heat capacities of binary mixtures of n-heptane with hexane isomers. Thermochim. Acta 1984, 75, 353-360.
(393)
Saito, A.; Tanaka, R. Excess volumes and heat capacities of binary mixtures formed from cyclohexane, hexane, and heptane at 298.15 K. J. Chem. Thermodyn. 1988, 20, 859-865.
(394)
Benson, G. C.; D'Arcy, P. J. Heat capacities of binary mixtures of n-octane with each of the hexane isomers at 298.15 K. Can. J. Chem. 1986, 64, 2139-2141.
46 - Environment ACS Paragon-Plus
Page 46 of 84
Page 47 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
(395)
Kumaran, M. K.; Benson, G. C.; D'Arcy, P. J.; Halpin, C. J. Speed of sound, molar volume, and molar isobaric heat capacity for binary liquid mixtures: analysis in terms of van der Waal's one-fluid theory. J. Chem. Thermodyn. 1984, 16, 1181-1189.
(396)
Bendiab, H.; Roux-Desgranges, G.; Roux, A. H.; Grolier, J. P. E.; Patterson, D. Excess heat capacities of ternary systems containing chlorobenzene or chloronaphthalene. J. Solution Chem. 1994, 23, 307-323.
(397)
Mier, W.; Lichtenthaler, R. N.; Roux, A. H.; Grolier, J. P. E. Excess molar heat capacities Cp,mE and excess molar volumes VmE of {x1CH3(CH3(CH2)5CH3 + x2CH3C(CH3)2CH2CH(CH3)CH3 + x3CH3C(CH3)2OC2H5 + (1-x1-x2-x3)C2H5OH}(1) I. Binary and quaternary mixtures. J. Chem. Thermodyn. 1994, 26, 1323-1334.
(398)
Costas, M.; Patterson, D. Excess heat capacity. Benzene-hexane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1985, 212-223.
(399)
Karbalai Ghassemi, M. H.; Grolier, J. P. E. Excess heat capacity. Cyclohexane-n-hexane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1976, 95-96.
(400)
Tanaka, R. Excess heat capacities for mixture of benzene with n-heptane at 293.15, 298.15, and 303.15 K. J. Chem. Eng. Data 1987, 32, 176-177.
(401)
Grolier, J. P. E.; Faradjzadeh, A. Excess heat capacity. Benzene-tetradecane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1979, 131-141.
(402)
Grolier, J. P. E.; Faradjzadeh, A. Excess volume. Benzene - 2,3-dimethylbutane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1981, 30-38.
(403)
Wilhelm, E.; Faradjzadeh, A.; Grolier, J. P. E. Excess volumes and excess heat capacities of 2,3dimethylbutane + benzene and + toluene. J. Chem. Thermodyn. 1982, 14, 1199-1200.
(404)
Fortier, J. L.; Benson, G. C. Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter. J. Chem. Thermodyn. 1976, 8, 411-423.
(405)
Iguchi, A. Excess molal specific heat of nonelectrolyte solutions. Kagaku Sochi 1977, 19, 64-65.
(406)
Rajagopal, E.; Subrahmanyam, S. V. Excess functions VE, (δVE/δp)T, and CpE of isooctane + benzene and + toluene. J. Chem. Thermodyn. 1974, 6, 873-876.
(407)
Malakondaiah, K.; Subbarangaiah, K.; Subrahmanyam, S. V. Excess thermodynamic functions of n-hexane + toluene: Application of Flory's theory. Phys. Chem. Liq. 1991, 23, 49-56.
(408)
Fortier, J. L.; Benson, G. C. Heat capacities of some binary aromatic hydrocarbon mixtures containing benzene or toluene. J. Chem. Eng. Data 1979, 24, 34-37.
(409)
Hyder Khan, V.; Subrahmanyam, S. V. Excess Thermodynamic Functions of the Systems: Benzene + pXylene and Benzene + p-Dioxane. Trans. Faraday Soc. 1971, 67, 2282-2291.
(410)
Grolier, J. P. E.; Faradjzadeh, A. Excess Volumes and Excess Heat Capacities of Monoalkylbenzenes (C8 C10) + Benzene Mixtures. Int. Data Ser. Sel. Data Mixtures Ser. A 1983, 247-252.
(411)
Fortier, J.-L.; Benson, G. C. Heat capacities of binary C8 alkylbenzene mixtures. J. Chem. Eng. Data 1980, 25, 47-49.
(412)
Jain, D. V. S.; Chadha, R.; Sehgal, S. K. Excess molar heat capacities of binary mixtures of the isomeric xylenes at 303.65-321.65 K. Fluid Phase Equilib. 1994, 96, 195-202.
(413)
Cerdeirina, C. A.; Tovar, C. A.; Gonzalez-Salgado, D.; Carballo, E.; Romani, L. Isobaric thermal expansivity and thermophysical characterization of liquids and liquid mixtures. Phys. Chem. Chem. Phys. 2001, 3, 52305236.
(414)
Tovar, C. A.; Cerdeiriña, C. A.; González, D.; Carballo, E.; Romaní, L. Second-order excess derivatives for liquid mixtures of non-electrolytes. Fluid Phase Equilib. 2000, 169, 209-221.
(415)
Subrahmanyam, S. V.; Rajagopal, E. Excess Thermodynamic Functions of the Systems Isooctane + Carbon Tetrachloride and Isooctane + Cyclohexane. Z. Phys. Chem. NF 1973, 85, 256-268.
(416)
Tanaka, R. Excess heat capacities for mixtures of benzene with cyclopentane, methylcyclohexane, and cyclooctane at 298.15 K. J. Chem. Eng. Data 1985, 30, 267-269.
(417)
D'Arcy, P. J.; Hazlett, J. D.; Kiyohara, O.; Benson, G. C. Excess heat capacities of mixtures of benzene with
47 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
cyclohexane at 298.15 K. Thermochim. Acta 1977, 21, 297-300. (418)
Grolier, J. P. E.; Wilhelm, E.; Hamedi, M. H. Molar Heat Capacities and Isothermal Compressibility of Binary Liquid Mixtures: Carbon Tetrachloride + Benzene, Carbon Tetrachloride + Cyclohexane and Benzene + Cyclohexane. Ber. Bunsen-Ges. Phys. Chem. 1978, 82, 1282-1290.
(419)
Páramo, R.; Zouine, M.; Casanova, C. New Batch Cells Adapted To Measure Saturated Heat Capacities of Liquids. J. Chem. Eng. Data 2002, 47, 441-448.
(420)
Tanaka, R. Determination of excess heat capacities of (benzene + tetrachloromethane and + cyclohexane) between 293.15 and 303.15 K by use of a Picker flow calorimeter. J. Chem. Thermodyn. 1982, 14, 259-268.
(421)
Fujii, S.; Tamura, K.; Murakami, S. Thermodynamic properties of mixtures containing 1,3-diphenyl-propane at 298.15 K. Thermochim. Acta 1995, 257, 1-12.
(422)
Rajagopal, E.; Subrahmanyam, S. V. Excess Thermodynamic Functions of the Systems Cyclohexane + Isomeric Xylenes. Bull. Chem. Soc. Jpn. 1981, 54, 282-284.
(423)
Siddiqi, M. A.; Svejda, P.; Kohler, F. A Generalized van der Waals Equation of State. II. Excess Heat Capacities of Mixtures Containing Cycloalkanes (C5, C6), Methylcycloalkanes (C5, C6) and n-Decane. Ber. Bunsen-Ges. Phys. Chem. 1983, 87, 1176-1181.
(424)
Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I. Excess molar isobaric heat capacities and isentropic compressibilities of (cis- or trans-decalin + benzene or toluene or iso-octane or n-heptane) at 298.15 K. J. Chem. Thermodyn. 1988, 20, 1183-1189.
(425)
Tamura, K. Excess heat capacities of the mixtures containing methylcyclohexane at 298.15 K. Fluid Phase Equilib. 2001, 182, 303-312.
(426)
Qian, J., Privat R., Jaubert, J.-N. Predicting the phase equilibria, critical phenomena and mixing enthalpies of binary aqueous systems containing alkanes, cycloalkanes, aromatics, alkenes and gases (N2, CO2, H2S, H2) with the PPR78 equation of state. Ind. Eng. Chem. Res. 2013 (submitted for publication).
(427)
Jaubert, J.-N., Qian, J., Privat R., Leibovici, C.F. Reliability of the correlation allowing the kij to switch from an alpha function to another one in hydrogen-containing systems. Fluid Phase Equilib. 2013, 338, 23-29.
48 - Environment ACS Paragon-Plus
Page 48 of 84
Page 49 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
List of Tables Table 1. List of the 144 pure components used in this study. Table 2. Binary system database for hM data. Table 3. Binary system database for cPM data. Table 4. Deviations between experimental hM data and their prediction by the PPR78 model. The results are sorted out by chemical family. Table 5. Deviations between experimental cPM data and their prediction by the PPR78 model. The results are sorted out by chemical family.
49 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 50 of 84
Table 1. Component methane ethane propane n-butane n-pentane n-hexane n-heptane n-octane n-nonane n-decane n-undecane n-dodecane n-tridecane n-tetradecane n-pentadecane n-hexadecane n-heptadecane n-octadecane n-nonadecane n-eicosane 2-methylpropane(isobutane) 2,2-dimethylpropane 2,2,3-trimethylbutane 2-methylbutane 2,2-dimethylbutane 2,3-dimethylbutane 2-methylpentane 3-methylpentane 2,2-dimethylpentane 2,3-dimethylpentane 2,4-dimethylpentane 2,2,4-trimethylpentane(isooctane) 2-methylhexane 3-methylhexane 2,2-dimethylhexane 2,5-dimethylhexane 3,3-dimethylhexane 3,4-dimethylhexane 2,2,5-trimethylhexane 2-methylheptane 4-methylheptane 2,2-dimethylheptane 2-methyloctane 2,2,4,4,6,8,8-heptamethylnonane benzene methylbenzene(toluene) 1,2-dimethylbenzene(o-xylene) 1,3-dimethylbenzene(m-xylene) 1,4-dimethylbenzene(p-xylene) ethylbenzene
Short name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2m3 22m3 223m4 2m4 22m4 23m4 2m5 3m5 22m5 23m5 24m5 224m5 2m6 3m6 22m6 25m6 33m6 34m6 225m6 2m7 4m7 22m7 2m8 Hm9 B mB 12mB 13mB 14mB eB
Component 1,2,3-trimethylbenzene 1,2,4-trimethylbenzene 1,3,5-trimethylbenzene 1-metylethylbenzene(cumene ) propylbenzene butylbenzene tertiobutylbenzene p-cymene naphthalene 1-methylnaphthalene 2-methylnaphthalene 1,1’-biphenyl diphenylmethane phenanthrene cyclopropane cyclopentane methylcyclopentane trans-1,3-dimethylcyclopentane cis-1,2-dimethylcyclopentane 1,1-dimethylcyclopentane ethylcyclopentane cyclohexane methylcyclohexane ethylcyclohexane propylcyclohexane isopropylcyclohexane cycloheptane cyclooctane 1,2,3,4tetrahydronaphthalene(tetralin) trans-decalin cis-decalin 1,1’-bicyclohexyl carbon dioxide nitrogen hydrogen sulfide methyl mercaptan ethyl mercaptan propyl mercaptan butyl mercaptan isopropyl mercaptan isobutyl mercaptan tert-butyl mercaptan sec-butyl mercaptan hydrogen ethylene propene 1,2-propadiene 1-butene trans-2-butene cis-2-butene
Short name 123mB 124mB 135mB iprB prB buB tbuB tbu pcy BB 1mBB 2mBB Bph Dph phe C3 C5 mC5 t13mC5 c12mC5 11mC5 eC5 C6 mC6 eC6 prC6 iprC6 C7 C8 tet tCC6 cCC6 bcy CO2 N2 H2S 1sh 2sh 3sh 4sh iprsh ibush tbush sbush H2 a2 a3 aa3 1a4 t2a4 c2a4
50 - Environment ACS Paragon-Plus
Component 2-methyl-1-butene 2-methyl-2-butene 3-methyl-1-butene 2-ethyl-1-butene 1,3-butadiene 1-pentene 4-methyl-1-pentene 1-hexene trans-2-hexene cis-2-hexene trans-3-hexene trans-trans-2,4-hexadiene 1,5-hexadiene 1-heptene trans-2-heptene cis-2-heptene trans-3-heptene 1-octene trans-3-octene cis-3-octene trans-4-octene cis-4-octene myrcene 1-nonene 1-decene 1-undecene 1-dodecene 1-hexadecene 1-octadecene styrene alpha-methylstyrene 2-methylpropene 2-methyl-1,3-butadiene 2-methyl-1-pentene beta-pinene cyclopentene 1,3-cyclopentadiene 3-methylcyclopentene cyclohexene 1,3-cyclohexadiene 1,4-cyclohexadiene 1-methyl-cyclohexene 1,5-cyclooctadiene alpha-pinene
Short name 2m1a4 2m2a4 3m1a4 2e1a4 13a4 1a5 4m1a5 1a6 t2a6 c2a6 t3a6 tt24a6 15a6 1a7 t2a7 c2a7 t3a7 1a8 t3a8 c3a8 t4a8 c4a8 myr 1a9 1a10 1a11 1a12 1a16 1a18 Ba2 Bma2 2ma3 2m13a4 2m1a5 bp aC5 13aC5 3maC5 aC6 13aC6 14aC6 1maC6 15aC8 ap
Page 51 of 84
6-8
298.15413.20
6-9
298.15298.15
6-10
293.15308.15
1.013251.01325 1.00000488.0000 0 1.010001.01000 1.00000485.0000 0 1.013251.01325 1.010001.01325 1.010001.01000 1.000001.01325 1.010001.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.010001.01000 1.013251.01325 1.010001.01325 1.013251.01325
5-7 5-8 5-10
6-11 6-12 6-14 6-16 7-8 7-10 7-12 7-16 8-10 8-12 8-16 10-12 10-16 22m3-8 22m4-6 22m4-7 22m4-8 22m4-10
298.15308.15 283.15308.15 298.15298.15 293.15349.15 298.15413.20 298.15298.15 298.15298.15 293.15323.15 298.15298.15 298.15298.15 293.15323.15 298.15298.15 293.15293.15 323.15323.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15
0.50000.5000 0.50000.5000 -
References
293.15298.15
5-6
-
-
0
24
0
23
50.8
17.1
-
0
31
0
23
48.1
22.8
0.16
-
0
29
0
23
52.5
45.2
0.27
-
0
37
0
23
54.2
8.9
0.06
-
0
28
0
23
57.3
35.4
0.20
-
1
27
0
23-24
55.0
2.9
0.02
-
1
29
0
23-24
57.4
9.2
0.05
-
0
20
0
23
61.1
24.7
0.12
(T,P,hM,z)
6-7
4-8
-
Deviations ∆h M %
(T,P,hM,y)
1.013251.01325
4-6
-
0.36500.8150 0.36600.8970 0.36300.7240 0.33100.7810 0.40000.7550 0.39700.6000 0.32800.6280 0.39400.7040
Number of points (T,P,hM,x)
293.15293.15
3-8
-
z1 range (1st compound mole fraction)
5-16
3-7
16.300047.1000 23.800063.7000 70.700096.2000 9.600020.3000 44.400071.6000 2.70009.0000 10.000020.6000 34.300044.5000 20.100025.5000 149.1000 151.2000 -28.470023.4000
y1 range (1st compound gas mole fraction)
Pressure range (bar) 1.010001.01000 1.010001.01000 1.010001.01000 1.010001.01000 1.010001.01000 1.010001.01325 1.010001.01325 1.010001.01000 1.013251.01325
x1 range (1st compound liquid mole fraction)
Temperature rage (K) 344.20396.90 383.20413.20 403.20413.30 363.20393.20 403.20413.20 293.15403.20 293.15413.20 403.20413.20 293.15293.15
3-6
Enthalpy of mixing range (J/mol)
Table 2. Binary system (1st compound2nd compound)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
∆h M (J/mol)
∆Th / K
0.15
0.48760.6906
-
-
3
0
0
25
199.7
45.3
0.21
0.47320.5589
-
-
3
0
0
25
16.2
24.3
0.08
0.05000.9500
-
-
31
0
0
26-28
528.4
6.0
0.03
0.420022.2000
0.10040.9003
0.24800.7530
-
32
20
0
23,2931
223.2
8.9
0.04
1.90009.9000
0.10610.8931
-
-
19
0
0
32
274.2
12.3
0.05
0.410037.4000
0.04980.9620
-
-
120
0
0
25,30,3 3-35
209.4
15.9
0.07
0.590025.9800 1.060059.9000 6.700067.9000 -31.6000129.8900 0.05607.2000 1.930010.6400 5.430030.3300 33.4000111.6000 1.03904.9610 3.490020.5100 33.000087.2000 0.94005.1700 45.000049.2000 -92.52800.0000 4.20005.9000 3.970023.3700 11.360035.2000 12.780073.5500
0.04740.9818 0.04990.9829 0.04860.8986 0.03800.9860 0.05010.9510 0.05000.9500 0.05010.9500 0.26250.6651 0.05000.9500 0.05020.9499 0.46540.6417 0.05010.9499 0.50000.6279 0.29900.8550 0.18110.8142 0.05000.9500 0.10020.9000 0.05060.9498
-
-
68
0
0
36
175.4
20.1
0.08
32,3742
90.3
21.9
0.09
-
-
168
0
0
-
-
21
0
0
43
59.6
19.7
0.07
187.9
22.8
0.08
-
-
198
0
0
42,4451
0.32600.7440
-
22
20
0
23,52
226.6
2.3
0.01
-
-
19
0
0
53
65.2
4.7
0.02
-
-
19
0
0
54
32.0
6.3
0.02
19.2
12.8
0.04
-
-
19
0
0
25,42,5 5
-
-
19
0
0
56
31.6
1.1
0.00
-
-
30
0
0
54,57
11.8
1.4
0.01
-
-
7
0
0
25,42
21.3
16.4
0.05
-
-
19
0
0
54
14.0
0.5
0.00
-
-
5
0
0
25,42
41.9
19.6
0.05
-
-
17
0
0
58
267.3
196.4
0.98
-
-
5
0
0
59
1667.7
89.2
0.49
-
-
20
0
0
26
647.8
109.2
0.57
-
-
13
0
0
29,60
558.8
158.4
0.78
-
-
20
0
0
33
359.9
184.1
0.82
51 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
22m4-12 22m4-16 23m4-6 23m4-7 23m4-8 23m4-10 23m4-12 23m4-16 2m5-6 2m5-7 2m5-8 2m5-10 2m5-12 2m5-16 3m5-6 3m5-7 3m5-8 3m5-10 3m5-12 3m5-16 6-24m5 24m5-7 24m5-8 24m5-12 6-224m5 7-224m5 224m5-8 224m510 224m512 224m516 22m423m4 22m42m5 22m43m5 22m4224m5 23m42m5 23m43m5 2m53m5 1-3
283.15303.15 293.15298.15 283.15313.15 298.15298.15 298.15298.15 298.15298.15 283.15303.15 293.15298.15 283.15313.15 298.15298.15 283.15313.15 298.15298.15 283.15303.15
1.010001.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
293.15298.15
1.013251.01325
283.15313.15 298.15298.15 283.15313.15 298.15298.15 283.15303.15
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
293.15298.15
1.013251.01325
298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15313.15 298.15323.15 298.15298.15 298.15298.15 298.15323.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 91.50302.20
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.010001.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.010001.01000 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
20.5300156.3000 58.7000254.9000 -5.58001.3500 1.67009.9300 5.970017.1800 6.440046.8800 14.9400122.1000 43.9000209.2000 0.64005.6200 2.480013.0500 6.990027.2000 7.030044.4100 14.3400104.0000 102.9000 194.8000 0.07004.7500 1.940010.9500 5.620025.0000 7.660040.6700 13.3500104.8000 114.3000 189.1000 1.30007.6600 8.140022.9900 12.890034.6100 17.8300113.3000 -11.60000.0000 1.000021.0000 5.040026.1600 12.360069.5700 20.5100117.9400 90.7000233.5000 0.41001.3500 -2.60000.0000 0.24002.2400 -10.20000.0000 -6.96000.0000 -1.11000.0000 0.43001.4000 5.1000155.3000
0.05010.9501 0.19410.9482 0.05800.9309 0.05000.9500 0.10010.9000 0.03900.9500 0.05010.9501 0.18080.9347 0.05010.9377 0.05000.9500 0.10010.9000 0.04330.9460 0.05030.9501 0.16640.8079 0.03370.9473 0.05000.9500 0.10010.9001 0.05000.9499 0.05010.9499 0.24340.7947 0.05010.9498 0.10010.9005 0.10410.8999 0.05010.9500 0.05000.9498 0.05000.9780 0.05000.9500 0.05010.9500 0.05000.9500 0.26150.9009 0.09990.8999 0.10010.9001 0.05010.8990 0.21760.7456 0.10020.9005 0.10230.8972 0.10000.9003 0.30190.8274
Page 52 of 84
-
-
83
0
0
3738,61
-
-
20
0
0
263.3
286.8
1.16
37,47
157.2
332.6
1.16
118.3
0.66
-
-
37
0
0
62
21108. 3
-
-
20
0
0
26
2130.5
152.1
0.79
-
-
9
0
0
29
1553.0
197.7
0.96
-
-
20
0
0
33
771.5
256.3
1.13
-
-
67
0
0
37-38
473.5
378.9
1.52
-
-
17
0
0
37,47
272.5
442.2
1.49
-
-
37
0
0
62
764.4
25.4
0.14
-
-
20
0
0
26
423.7
39.7
0.20
-
-
38
0
0
29,63
414.0
67.2
0.32
-
-
19
0
0
33
277.8
84.6
0.37
-
-
73
0
0
37-38
192.2
130.6
0.51
-
-
22
0
0
37,47
86.5
142.0
0.49
-
-
44
0
0
62
2647.1
27.6
0.15
-
-
20
0
0
26
542.7
42.7
0.22
505.6
71.9
0.35
-
-
41
0
0
29,6364
-
-
23
0
0
33,64
323.9
93.4
0.41
-
-
76
0
0
37-38
206.0
139.2
0.54
-
-
19
0
0
37,47
91.5
149.5
0.50
-
-
19
0
0
65
1102.1
58.9
0.30
-
-
9
0
0
65
500.7
84.5
0.40
-
-
12
0
0
65
434.3
107.6
0.48
-
-
13
0
0
65
230.6
177.5
0.65
-
-
25
0
0
66-67
2076.8
175.3
0.85
-
-
54
0
0
67-68
2112.1
182.5
0.82
-
-
34
0
0
55,67
1289.2
246.3
1.06
-
-
19
0
0
67
599.1
292.8
1.15
-
-
19
0
0
69
421.9
343.2
1.23
-
-
13
0
0
42,55
280.3
472.4
1.48
-
-
9
0
0
70
24912. 1
237.5
1.32
-
-
10
0
0
70
6233.9
104.8
0.58
-
-
10
0
0
70
7510.0
97.8
0.54
-
-
4
0
0
71
221.0
18.4
0.09
-
-
9
0
0
70
666.6
33.6
0.18
-
-
9
0
0
70
3570.3
29.1
0.16
-
-
9
0
0
70
119.6
1.2
0.01
0.13800.8920
-
11
83
0
72-73
89.8
78.5
1.87
52 - Environment ACS Paragon-Plus
Page 53 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
277.00394.30 318.50403.50 343.20407.70
1.013251.01325 1.013251.01325 1.013251.01325
1-7
255.40413.30
1.01325138.0000 0
1-8
410.20418.30
1.013251.01325
2-3
200.00373.15
1.01325150.0000 0
304.50363.20 372.20403.20 403.20413.20 91.50303.20
1.010001.01000 1.010001.01000 1.010001.01000 1.013251.01325
5-B
298.15298.15
1.013251.01325
6-B
290.65323.15
0.800001.01325
B-7
288.15323.15
1.010001.01325
B-8
291.15323.15
1.010001.01325
B-10
298.15323.15
1.013251.01325
B-11
298.15298.15
1.013251.01325
B-12
298.15323.15
1.013251.01325
B-13
298.15298.15
1.013251.01325
B-14
293.15323.15
1.013251.01325
B-15
298.15298.15
1.013251.01325
B-16
293.15323.15
1.013251.01325
B-17
298.15298.15
1.013251.01325
B-18
323.15323.15
1.013251.01325
B-20
323.15323.15
1.013251.01325
22m4-B
298.15298.15
1.013251.01325
23m4-B
298.15298.15
1.013251.01325
1-4 1-5 1-6
2-4 2-6 2-8 1-2
7.500051.2000 25.800067.9000 43.600099.3000 729.0000 105.1000 84.0000140.7000 2991.000 3547.000 8.900019.0000 36.200051.7000 69.4000122.4000 1.150084.9000 175.0000 886.3450 19.7620940.0000 30.10001008.430 0 158.3100 1037.000 0 112.5000 1072.300 0 257.0000 1108.000 0 70.00001164.000 0 270.8860 1198.680 0 46.20001263.000 0 172.0000 1293.000 0 34.40001347.600 0 176.0000 1390.000 0 127.0000 1213.000 0 145.0000 1266.000 0 433.2000 909.1000 435.4000 913.8000
-
0.20900.8980 0.25500.7080 0.29400.8220
-
0
96
0
72
35.7
11.5
0.18
-
0
75
0
72
32.3
15.2
0.17
-
0
61
0
72
37.7
26.1
0.26
-
0.33000.8420
0.01960.6019
0
37
33
72,18
51.1
40.1
0.31
-
0.38000.7960
-
0
19
0
72
40.5
49.6
0.39
0.03440.9855
0.03440.9850
0.01710.9855
199
75
404
74-75
138.3
127.0
0.93
-
0
26
0
23
47.2
6.8
0.08
-
0
28
0
23
43.6
19.4
0.17
-
0
20
0
23
49.8
53.5
0.37
-
11
81
0
72-73
32.4
9.7
0.17
0.28250.7879
0.37700.6690 0.43400.7480 0.39400.7920 0.14700.8660
0.04340.8994
-
-
37
0
0
76-77
24.8
171.2
1.23
0.00430.9918
-
-
251
0
0
28,7888
19.8
124.8
0.81
0.01020.9756
-
-
320
0
0
55,89101
18.3
122.1
0.74
0.05600.9636
-
-
85
0
0
76,81,1 00,102103
17.8
136.4
0.76
0.03840.9828
-
-
155
0
0
77,81,9 2,96
16.9
127.8
0.63
0.15020.9588
-
-
24
0
0
76
17.2
152.7
0.77
0.04900.9902
-
-
83
0
0
76,81
15.0
126.7
0.60
0.12840.9649
-
-
9
0
0
77
15.3
120.4
0.51
0.03530.9952
-
-
277
0
0
76,81,9 2,104
15.7
135.4
0.56
0.16130.9808
-
-
25
0
0
76
14.2
155.3
0.71
0.03710.9965
-
-
228
0
0
55,76,8 1,104
12.4
120.8
0.50
0.16620.9827
-
-
27
0
0
76
15.1
175.1
0.76
0.12650.9868
-
-
46
0
0
81
11.1
106.1
0.38
0.14280.9860
-
-
61
0
0
81
9.3
78.5
0.29
0.18520.8522
-
-
15
0
0
88
28.6
220.4
1.54
0.15000.8536
-
-
13
0
0
88
8.8
62.7
0.43
53 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
2m5-B
298.15298.15
1.013251.01325
3m5-B
298.15298.15
1.013251.01325
B-224m5
298.15323.15
1.013251.01325
1-B
363.15413.15
6-mB
293.15573.15
7-mB
255.40323.15
1.013251.01325 1.01325125.0000 0 0.79000138.0000 0
mB-8
298.15298.15
1.013251.01325
mB-10
298.15308.15
1.013251.01325
mB-12
298.15298.15
1.013251.01325
mB-14
298.15298.15
1.013251.01325
mB-16
298.15323.15
1.013251.01325
6-12mB
298.15323.15
1.013251.01325
7-12mB
298.15298.15
1.013251.01325
12mB-9
298.15318.15
1.013251.01325
6-13mB
298.15323.15
1.013251.01325
7-13mB
298.15323.15
1.013251.01325
13mB-9
298.15298.15
1.013251.01325
6-14mB
298.15323.15
1.013251.01325
7-14mB
298.15298.15
1.013251.01325
14mB-9
298.15298.15
1.013251.01325
298.15308.15 298.15298.15
1.013251.01325 1.013251.01325
298.15298.15
1.013251.01325
288.15308.15 298.15298.15
1.013251.01325 1.013251.01325
eB-9
293.60298.15
1.013251.01325
eB-10
298.15298.15
1.013251.01325
eB-12
298.15298.15
1.013251.01325
eB-14
298.15298.15
1.013251.01325
14mB-10 14mB-14 14mB-16 7-eB 8-eB
605.2000 920.5000 483.0000 921.3000 427.0500 1018.230 0 19.000062.6000
Page 54 of 84
0.18100.7010
-
-
18
0
0
88
10.6
88.1
0.58
0.14000.7252
-
-
17
0
0
88
10.5
85.1
0.57
0.15660.9047
-
-
26
0
0
55,105
32.3
261.9
1.62
-
0.28800.8710
-
0
60
0
106
42.0
19.2
0.28
22.0000592.5000
0.01640.9758
-
0.01640.9757
425
0
92
28,78,1 07-108
24.1
76.8
0.39
36.4000594.0000
0.01280.9687
-
-
198
0
0
28,55,9 2,100,1 09-114
141.3
503.4
1.04
0.13960.9438
-
-
29
0
0
115
35.3
168.8
1.11
0.03490.9883
-
-
119
0
0
92,115
35.9
163.4
0.96
0.17670.9593
-
-
31
0
0
115
71.2
373.9
2.20
0.05540.9855
-
-
58
0
0
92,115
67.8
364.7
1.94
0.15520.9713
-
-
41
0
0
55,115
67.6
420.1
2.18
0.16000.8200
-
-
35
0
0
78,116
35.3
128.3
0.76
0.24000.7700
-
-
6
0
0
117
73.0
270.3
1.87
0.15900.8950
-
-
31
0
0
118-119
93.3
308.7
1.95
0.16000.8300
-
-
30
0
0
78,120
36.5
113.9
0.73
0.15990.7918
-
-
23
0
0
55,117
66.9
225.8
1.54
0.18590.8807
-
-
11
0
0
119
162.6
506.5
3.35
0.16000.8300
-
-
23
0
0
78
44.2
124.9
0.87
0.06900.9653
-
-
35
0
0
92,117
117.5
300.9
2.09
0.18540.9025
-
-
10
0
0
119
217.6
521.2
3.38
-
-
88
0
0
92
168.8
400.5
2.28
-
-
27
0
0
92
305.1
805.8
4.29
-
-
10
0
0
117
305.7
1023.7
5.79
-
-
81
0
0
113,121 -123
28.7
125.3
1.00
-
-
39
0
0
124-125
9.6
44.4
0.25
0.18640.8810
-
-
12
0
0
119,126
15.0
75.4
0.41
0.07800.9613
-
-
29
0
0
127
21.5
105.9
0.56
0.10900.9718
-
-
32
0
0
124
31.1
167.9
0.84
0.10950.9680
-
-
25
0
0
127
37.4
210.3
1.02
144.0000 568.0000 42.4000618.4000 141.0000 630.0000 74.3000725.9000 134.0000 777.0000 236.0000 446.5000 287.5000 420.0000 185.0000 440.0000 200.0000 381.0000 229.4000 401.4000 198.0000 377.5000 163.3000 349.0000 50.1000347.0000 134.8000 319.9000 32.0000330.1000 55.1000369.1000 180.6000 412.7000 34.3000568.9000 99.0000708.9000 296.3000 744.0000 111.0000 620.0000 97.0000673.0000 129.0000 728.0000
0.03060.9779 0.07160.9783 0.20100.9180 0.01430.9792 0.04080.9277
54 - Environment ACS Paragon-Plus
Page 55 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
eB-16
298.15330.00
1.013251.01325
eB-18
303.15330.00
1.013251.01325
eB-19
311.45330.00
1.013251.01325
0.14070.9971
-
-
48
0
0
124,128
41.0
181.6
0.89
0.84350.9706
-
-
12
0
0
128
29.8
98.3
0.48
0.85210.9732
-
-
12
0
0
128
28.5
89.4
0.42
313.02330.00 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
-
-
13
0
0
128
34.1
108.2
0.50
-
-
16
0
0
129
222.7
371.5
2.60
-
-
18
0
0
129
455.5
736.4
4.92
-
-
16
0
0
129
576.5
910.9
5.73
-
-
22
0
0
129
663.1
1166.4
7.84
-
-
18
0
0
129
716.1
1284.3
8.28
7-135mB
298.15298.15
1.013251.01325
0.26400.7370
-
-
6
0
0
117
188.6
533.9
4.06
135mB16
298.15298.15
1.013251.01325
0.14100.8960
-
-
7
0
0
117
472.9
1365.0
9.32
7-prB
298.15298.15
1.013251.01325
0.35800.6150
-
-
4
0
0
122
1.1
4.6
0.02
8-prB
298.15308.15
1.013251.01325
0.16500.8015
-
-
36
0
0
123
13.9
51.5
0.25
7-iprB
298.15298.15
1.013251.01325
0.27500.7920
-
-
7
0
0
117
4.9
22.9
0.13
298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
-
-
15
0
0
129
13.2
63.7
0.43
-
-
15
0
0
129
94.1
374.0
2.24
-
-
20
0
0
129-130
135.6
559.9
3.18
-
-
15
0
0
129
176.4
698.0
3.91
-
-
29
0
0
129
198.8
806.9
4.39
phe-20
391.75391.75
1.013251.01325
0.09990.9007
-
-
10
0
0
131
27.6
283.9
0.60
224m5mB
293.15363.15
1-mB
255.40310.90
1.0132516.50000 138.0000 138.0000
0.01620.9615
-
-
80
0
0
105,132 -133
24.8
95.5
0.49
-97.000019.0000
-
-
0.01280.9036
0
0
32
18
960.5
87.7
0.87
B-mB
279.45337.65
1.013251.01325
2.600079.1310
0.03580.9913
-
-
154
0
0
28,79,1 00,134142
12.6
5.5
0.04
293.15323.15 289.45323.15
1.013251.01325 1.013251.01325
23.2000214.9000 30.3000238.6480
0.03320.9753 0.04470.9701
-
-
57
0
0
143-146
32.0
34.8
0.23
27.8
29.0
0.20
287.85328.45
1.013251.01325
7.8700177.6000
0.01970.9897
46.8
54.2
0.37
B124mB
293.15298.15 298.15298.15
1.013251.01325 1.013251.01325
0.05000.9500 0.09530.9422
B135mB
298.15303.15
1.013251.01325
298.15318.15 298.15318.15 298.15318.15 298.15298.15
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
15.8200104.5000 96.5670379.4050 119.1180 441.9140 12.7000143.7000 37.4000107.1000 57.3000195.1000 88.0000173.0000
eB-20 7-124mB 124B -10 124mB12 124mB14 124mB16
7-1mBB 101mBB 121mBB 1mBB14 1mBB16
B-12mB B-13mB B-14mB B-eB
B-prB B-iprB B-buB B-1mBB
13.7000793.0000 117.0000 531.0000 115.0000 510.0000 90.6000545.0000 18.7000274.1000 16.9000252.4000 16.5000252.3000 16.3000266.4000 18.4000275.0000 238.0000 308.6000 157.6000 389.6000 410.0000 445.0000 259.0000 430.5000 348.2000 507.0000 19.2000753.9000 40.6000697.5000 30.0000652.6000 32.5000616.5000 42.1000597.5000 354.2630 1343.150 0 39.4500662.6000
0.84910.9799 0.01950.9564 0.05670.9852 0.06550.9873 0.07430.9889 0.15920.9885
0.00700.9584 0.01780.9452 0.00880.9361 0.07240.9904 0.03610.9898
0.09650.9428 0.08200.9627 0.19720.9088 0.10140.8952 0.15870.8493
139,143 -146 135,138 ,142,14 4-149
-
-
60
0
0
-
-
302
0
0
-
-
31
0
0
150-152
40.0
29.0
0.19
-
-
13
0
0
138
17.3
46.1
0.30
-
-
22
0
0
138,153
9.0
27.4
0.18
-
-
44
0
0
154-155
37.2
35.8
0.21
-
-
39
0
0
153,156
91.8
70.6
0.45
-
-
30
0
0
154-155
40.9
55.5
0.30
-
-
13
0
0
157
91.8
132.4
0.81
55 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
B-2mBB B-Bph B-Dph mB12mB mB13mB
309.15318.15 344.75344.75 308.15308.15 298.15298.15 298.15298.15
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
54.0000143.0000 57.7780144.8630 1.38209.5880 9.400047.0000 7.300043.0000
0.15900.8833 0.13540.8747 0.16820.9094 0.06870.9476 0.06030.9574
Page 56 of 84
-
-
14
0
0
157
93.8
107.1
0.62
-
-
12
0
0
158
173.6
182.2
1.03
-
-
12
0
0
159
734.7
35.5
0.20
-
-
36
0
0
140
3.7
1.1
0.01
-
-
17
0
0
140
18.9
6.1
0.04
85.7
12.9
0.08
247.5
17.8
0.11
79,135, 138,140 ,160 151152,161 -162
mB14mB
290.65338.15
1.010001.01325
4.100050.1000
0.05000.9500
-
-
123
0
0
mB-eB
298.15303.15
1.013251.01325
-12.73000.0000
0.05000.9500
-
-
43
0
0
298.15298.15 298.15298.15 298.15318.15 298.15318.15 298.15318.15 288.65298.15 288.65298.15 298.15343.15 298.15298.15 288.65298.15 298.15343.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15318.15 298.15318.15 298.15318.15 298.15298.15 298.15298.15 318.15318.15 288.20298.20 288.20298.20 288.20298.20 288.20298.20 298.15298.15 288.20298.20 293.20308.20 298.15298.15
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
38.6180121.5030 31.3800153.4270 0.30004.9000 -28.10000.0000 7.900022.3000 0.461011.3000 0.712010.5510 2.554039.4400 18.960092.5900 -10.88600.0000 3.224035.1500 18.330097.7900 -9.95000.0000 14.937038.8280 8.159028.6600 -20.31000.0000 -4.10008.0000 -3.70000.0000 9.100024.3000 0.70304.6020 -2.60005.9000 7.300044.4000 16.000058.4000 13.000060.8000 11.200071.1000 27.300087.2000 10.6000108.9000 33.4000166.9000 43.6000268.1000 7.940061.7100
0.14680.9063 0.11050.9509 0.10610.9210 0.17080.8930 0.07890.9006 0.03470.9822 0.03380.9649 0.03240.9650 0.09970.9241 0.03510.9666 0.03530.9652 0.09040.9179 0.03650.9663 0.12910.8929 0.09680.9224 0.08880.9610 0.05620.9230 0.18750.8489 0.11390.9306 0.06430.9144 0.07270.8893 0.05500.9500 0.06630.9316 0.06350.9336 0.06880.9642 0.09390.9276 0.20110.9728 0.08330.9474 0.10510.9524 0.00770.0623
-
-
10
0
0
138
45.5
40.2
0.23
-
-
13
0
0
138
14.7
14.8
0.09
-
-
39
0
0
154,163
1154.2
31.6
0.18
-
-
30
0
0
156,162
199.5
36.8
0.21
-
-
50
0
0
154,163
374.0
54.6
0.29
-
-
59
0
0
103.1
8.6
0.05
-
-
55
0
0
106.4
5.0
0.03
-
-
78
0
0
151,164
116.5
29.7
0.17
-
-
18
0
0
166
106.0
67.8
0.37
100.1
5.2
0.03
mB124mB mB135mB mB-prB mB-iprB mB-buB 13mB12mB 14mB12mB eB12mB 12mBiprB 14mB13mB eB13mB 13mBiprB eB14mB 14mB124mB 14mB135mB 14mBiprB eB-prB eB-iprB eB-buB 135mB124mB prB-buB 2mBB1mBB 5-C5 C5-6 C5-7 C5-8 C5-10 C5-12 C5-16 5-C6
139,164 -165 139,164 -165
-
-
63
0
0
139,164 -165
-
-
80
0
0
151,164
135.1
32.6
0.19
-
-
18
0
0
166
106.8
68.2
0.37
-
-
50
0
0
151,164
1083.4
75.4
0.45
-
-
11
0
0
138
8.3
2.6
0.01
-
-
13
0
0
138
39.6
7.5
0.04
-
-
19
0
0
166
76.7
12.0
0.07
-
-
43
0
0
154,167
63.3
2.1
0.01
-
-
24
0
0
156
465.4
11.3
0.06
-
-
49
0
0
154,167
51.7
9.6
0.05
-
-
14
0
0
138
104.9
3.2
0.02
-
-
10
0
0
154
332.5
3.1
0.01
-
-
8
0
0
95
100.1
26.5
0.12
-
-
25
0
0
168
227.8
93.7
0.69
-
-
28
0
0
168
224.0
99.8
0.68
-
-
38
0
0
168-169
182.2
96.6
0.61
-
-
26
0
0
168
159.4
108.1
0.65
-
-
11
0
0
169
169.8
107.5
0.62
-
-
26
0
0
168
84.6
89.3
0.46
-
-
37
0
0
168,170
54.6
88.1
0.42
-
-
8
0
0
171
31.1
11.3
0.07
56 - Environment ACS Paragon-Plus
Page 57 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
6-C6
288.15413.21
0.79000300.0000 0
1.7000241.6000
0.00180.9909
-
-
1535
0
0
C6-7
293.15323.15
1.00000285.0000 0
4.9200293.0000
0.20300.9969
-
-
68
0
0
C6-8
298.15313.15
1.00000290.0000 0
3.6200288.2000
0.08950.9979
-
-
120
0
0
C6-9
298.15313.15
1.013251.01325
176.1500 296.2000
0.29480.8578
-
-
32
0
0
C6-10
298.15313.15
1.00000290.0000 0
2.5100365.9000
0.05000.9988
-
-
115
0
C6-11
298.15313.15
1.013251.01325
86.0000354.9000
0.16420.9535
-
-
53
0
28,58,7 879,82,8 5,87,10 8,111,1 71-217 30,55,9 0,171,1 91,218 30,171, 174,191 ,214,21 9-221
11.3
17.9
0.11
15.2
25.5
0.15
13.3
24.6
0.13
191,222
7.2
18.6
0.09
0
30,171, 174,191 ,223224
11.2
25.9
0.13
0
174,191
7.6
22.8
0.10
11.6
34.5
0.14
C6-12
293.15313.15
1.00000291.0000 0
2.1000415.0000
0.12130.9992
-
-
100
0
0
30,171, 191,214 ,222,22 5
C6-13
298.15298.15
1.013251.01325
102.0000 401.0000
0.12360.9540
-
-
27
0
0
174
8.5
28.3
0.11
C6-14
293.15308.15
1.000001.01325
2.2100483.2000
0.02920.9993
-
-
176
0
0
104,171 ,174,22 3
13.0
41.1
0.16
C6-15
298.15298.15
1.013251.01325
104.0000 478.0000
0.12750.9612
-
-
27
0
0
174
13.9
55.6
0.21
C6-16
293.15323.15
1.013251.01325
1.7300562.2000
0.00910.9995
-
-
218
0
0
55,104, 170171,174 ,191,22 6
15.7
59.6
0.22
C6-17
298.15298.15
1.013251.01325
0.15930.9641
-
-
28
0
0
174
17.5
83.8
0.31
288.20298.20 288.20298.20 288.20298.20 298.15298.15
1.013251.01325 1.010001.01325 1.013251.01325 1.013251.01325
-
-
22
0
0
227
13.1
20.1
0.12
-
-
52
0
0
227-229
11.0
16.4
0.09
-
-
23
0
0
227
9.8
17.8
0.09
-
-
10
0
0
228
10.2
15.9
0.07
C7-12
288.20298.20
1.013251.01325
0.10950.9332
-
-
21
0
0
227
4.9
14.4
0.06
C7-14
298.15298.15
1.013251.01325
0.08570.9628
-
-
10
0
0
228
18.2
52.6
0.21
C7-16
298.20308.20
1.013251.01325
0.13660.8741
-
-
21
0
0
227
11.1
39.4
0.14
288.15298.15 288.15298.15 288.15298.15 298.15298.15
1.013251.01325 1.010001.01325 1.013251.01325 1.013251.01325
-
-
22
0
0
230
13.3
21.1
0.12
-
-
49
0
0
228-230
12.4
16.6
0.09
-
-
25
0
0
230
11.2
19.4
0.09
-
-
10
0
0
228
20.7
35.7
0.16
C8-12
288.15298.15
1.013251.01325
0.11660.9299
-
-
26
0
0
230
15.4
43.9
0.17
C8-14
298.15298.15
1.013251.01325
0.07790.9589
-
-
10
0
0
228
39.5
106.4
0.40
C8-16
298.15308.15
1.013251.01325
0.10220.9360
-
-
25
0
0
230
29.7
94.4
0.32
6-tet
288.20298.20
1.013251.01325
0.09700.9339
-
-
19
0
0
231
81.5
290.1
4.38
6-C7 7-C7 C7-8 C7-9
6-C8 7-C8 8-C8 9-C8
119.0000 565.0000 62.4000226.2000 20.1000261.9000 72.9000293.7000 44.8000274.6000 109.7000 398.7000 79.2000365.8000 139.3000 480.6000 48.0000219.8000 19.3000253.5000 65.1000279.0000 40.0000254.1000 112.0000 392.8000 77.1000329.5000 102.3000 456.4000 139.1000 476.6000
0.05980.8765 0.06410.9706 0.09150.9367 0.06050.9467
0.08270.9232 0.07060.9734 0.08450.9078 0.05870.9451
57 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
7-tet
288.20323.15
1.010001.01325
tet-12
288.20298.20
1.013251.01325
tet-16
298.15323.15
1.013251.01325
288.15308.15 298.15298.15 298.15298.15 288.15308.15 298.15298.15 298.15298.15
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
22m5-C6
298.15313.15
1.013251.01325
24m5-C6
301.15301.15
1.013251.01325
C6224m5
293.15323.15
1.00000290.0000 0
C6-34m6
308.15308.15
1.013251.01325
C6-4m7
308.15308.15
1.013251.01325
288.15313.15 288.15313.15 363.15413.15
1.013251.01325 1.013251.01325 1.013251.01325
298.15308.15
1.013251.01325
C5-23m4 22m3-C6 22m4-C6 23m4-C6 2m5-C6 3m5-C6
23m4-C7 23m4-C8 1-C6 C5-B
B-C6
B-C7 B-C8 B-tet C5-mB
60.3000530.0000 138.4000 598.9000 156.4000 712.9000 -7.24004.9700 70.600098.5700 5.6000154.2000 4.4700167.0000 6.5000205.6000 5.8000185.6000 108.1000 181.4000 102.1600 172.0800 18.7000190.5000 156.4000 224.3000 164.3000 219.5000 15.7700168.3100 15.3400185.3500 20.500067.9000 145.7000 647.0000
Page 58 of 84
0.10340.9736
-
-
59
0
0
55,229, 231-232
62.6
233.0
3.17
0.15990.9515
-
-
21
0
0
231
125.7
555.1
46.90
0.07750.9497
-
-
30
0
0
55,231
41.3
219.2
0.88
-
-
94
0
0
233
58777. 1
414.8
2.90
-
-
9
0
0
234
662.2
588.0
4.05
386.8
357.8
2.28
534.5
556.1
3.42
239.3
258.3
1.57
0.03670.9805 0.23700.7360 0.04000.9900 0.00700.9900 0.00680.9900 0.02000.9900
211,235 -237 211,236 ,238 171,211 ,236
-
-
69
0
0
-
-
148
0
0
-
-
53
0
0
-
-
50
0
0
211,236
254.2
285.4
1.73
0.18800.7430
-
-
16
0
0
191
216.7
332.3
1.91
0.17580.7115
-
-
5
0
0
105
529.7
704.3
3.89
0.05710.9737
-
-
131
0
0
30,55,1 33,191, 220,239
48.9
65.8
0.37
0.34780.8218
-
-
8
0
0
220
381.2
749.3
4.04
0.39530.8221
-
-
9
0
0
220
204.3
416.3
2.16
-
-
96
0
0
240
580.2
634.5
3.68
0.02490.9713 0.02750.9741
-
-
96
0
0
241
596.6
703.0
3.92
-
0.28600.8820
-
0
60
0
106
36.9
18.7
0.23
0.10300.9423
-
-
36
0
0
169,242 -243
19.4
96.3
0.79
4.7
26.7
0.20
13.3
77.3
0.55
16.1
91.8
0.63
280.15413.21
0.8000017.54000
3.3000867.4800
0.00120.9987
298.15298.15 298.15298.15 298.15323.15
1.010001.01325 1.010001.01325 1.013251.01325
0.10160.9689 0.11130.9719 0.07500.9387
298.15298.15
1.013251.01325
98.3000820.9000 98.8000818.4000 37.7000163.0000 146.0000 365.4000
0.12930.8932
51,55,7 9,82,85, 87,90,9 7,103,1 12,138, 171,176 177,186 ,189,20 0,204205,212 213,216 218,243 -285 243,286 -287 243,286 -287
-
-
1397
0
0
-
-
32
0
0
-
-
36
0
0
-
-
25
0
0
55,288
27.6
32.7
0.20
-
-
8
0
0
243
95.7
257.8
2.02
36.3
143.3
0.98
85.3
283.7
1.77
C6-mB
290.65413.21
1.0132517.54000
18.5200627.5160
0.05300.9937
-
-
132
0
0
28,7879,137138,141 ,171,18 7,243,2 61,289
C612mB
298.15300.05
1.013251.01325
157.0000 631.7000
0.10030.8992
-
-
30
0
0
102,121 ,290
58 - Environment ACS Paragon-Plus
Page 59 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
C613mB
298.15323.15
1.013251.01325
93.7080575.6000
0.18000.9664
-
-
32
0
0
C614mB
288.15313.15
1.013251.01325
20.1290587.6900
0.01610.9930
-
-
174
0
0
C6-eB
298.15298.15
1.013251.01325
0.02500.9779
-
-
57
0
0
C6124mB
298.15298.15
1.013251.01325
0.07960.9303
-
-
13
0
0
C6135mB
298.15298.15
1.013251.01325
0.08060.9312
-
-
13
0
298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15
1.013251.01325 1.013251.01325 1.010001.01325 1.010001.01000 1.010001.01325 1.010001.01000
-
-
20
-
-
-
C61mBB
298.15298.15
1.013251.01325
C62mBB
309.15318.15
1.013251.01325
288.15308.15 288.15308.15 283.15313.15 288.15318.15 283.15318.15 283.15353.15 288.20298.20 288.20323.15
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
288.20298.20
1.013251.01325
288.20298.20 298.15298.15 298.15298.15 298.15298.15
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
mC5-16
298.20308.20
1.013251.01325
6-mC6
273.15298.15
1.013251.01325 1.01325138.0000 0 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.010001.01325
47.4000584.2000 146.8580 640.4870 142.0890 623.4160 78.2000694.1000 37.1000542.4000 73.7000622.3000 73.7000548.8000 70.6000619.7000 65.1000529.1000 363.0000 936.0000 395.0000 927.0000 0.860035.4700 -16.040012.8800 -56.60000.6300 -0.11009.1000 -19.400019.3000 -11.80004.7000 58.3000258.6000 95.3000503.0000 158.9000 451.9000 88.2000436.7000 52.3000107.1000 18.400096.0000 22.8000148.9000 104.0000 300.0000 4.900018.6000
C6-prB C6-iprB mB-C7 C7-eB mB-C8 eB-C8
C5-C6 C5-C7 C5-C8 C6-C7 C6-C8 C7-C8 C5-tet C6-tet C7-tet C8-tet 6-mC5 mC5-7 mC5-10
7-mC6 mC6-8 mC6-10 mC6-16 8-eC6 6-tCC6 7-tCC6
255.40323.15 298.15298.15 298.15298.15 273.15308.20 298.15298.15 298.15298.15 298.15298.15
55,290291 79,102, 138,147 ,290,29 2-294 121,291 ,295
75.6
267.2
1.69
59.6
219.1
1.40
25.2
97.6
0.61
138
54.4
237.7
1.37
0
138
58.8
253.7
1.49
0
0
295
10.1
47.5
0.27
19
0
0
295
43.4
162.0
0.97
-
23
0
0
243,287
43.1
182.0
1.20
-
-
13
0
0
287
37.6
130.9
0.77
-
-
26
0
0
243,287
53.9
224.1
1.42
-
-
13
0
0
287
56.1
182.5
1.03
0.12180.9003
-
-
14
0
0
157
6.6
50.5
0.30
0.15780.9154
-
-
13
0
0
157
5.0
34.9
0.20
-
-
98
0
0
182,242 ,296
108.4
21.1
0.16
-
-
100
0
0
182,297
1222.8
13.8
0.10
49.8
4.2
0.03
0.05000.9750 0.02500.9750 0.08640.9631 0.04230.9241 0.09490.9666 0.08340.9617
0.01060.9918 0.03350.9790 0.01230.9831 0.02990.9761 0.02120.9973 0.02960.9762 0.07620.9370 0.09440.9579
-
-
162
0
0
182,298 -299
-
-
104
0
0
182,300
529.1
11.2
0.07
-
-
174
0
0
182,297
692.1
19.6
0.11
-
-
137
0
0
182,300
75.6
1.8
0.01
-
-
19
0
0
231
23.9
45.1
0.30
-
-
31
0
0
55,231
25.7
95.6
0.55
-
-
17
0
0
231
4.3
14.0
0.08
-
-
18
0
0
231
21.5
62.9
0.33
-
-
7
0
0
173
862.1
813.9
7.78
-
-
11
0
0
169
1015.4
698.2
5.91
-
-
11
0
0
169
760.1
791.8
5.95
0.11390.9224
-
-
13
0
0
170
352.3
759.1
4.45
0.09190.9116
-
-
18
0
0
133,301
16068. 4
1743.9
18.28
6218.4
3215.9
8.56
0.11480.8712 0.09760.9508 0.27000.8400 0.13690.9576 0.17410.9677
4.700089.0000
0.09580.9378
13.300040.2000 20.390080.3300 65.0000259.1000 23.500041.1000 -34.20000.0000 -33.90000.0000
0.14080.8898 0.08100.9262 0.12130.9366 0.25000.8100 0.05000.9500 0.09900.9521
-
-
77
0
0
55,110, 173,301 -303
-
-
16
0
0
301
3194.5
969.4
7.13
-
-
11
0
0
303
1570.7
918.0
6.12
-
-
21
0
0
133,170
1038.8
1879.3
9.72
-
-
6
0
0
173
2489.6
868.3
5.52
-
-
11
0
0
304
6015.0
1281.3
14.28
-
-
36
0
0
229,256
8771.2
1630.2
17.81
59 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
6-cCC6 7-cCC6 6-bcy 7-bcy 8-bcy 12-bcy bcy-16 22m3mC6 224m5mC6 22m4tCC6 23m4tCC6 2m5tCC6 3m5tCC6 224m5tCC6 22m4cCC6 23m4cCC6 2m5cCC6 3m5cCC6 2m7cCC6
298.15298.15 298.15298.15 288.20298.20 298.15298.15 288.20298.20 288.20300.05 298.20308.20 273.15273.15 273.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15
1.013251.01325 1.010001.01325 1.013251.01325 1.010001.01000 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 138.0000 138.0000
1-mC6
255.40310.90
mC5-B
298.15298.15
1.013251.01325
B-mC6
298.15308.15
1.013251.01325
B-eC6
283.15298.15
1.013251.01325
B-tCC6
298.15298.15
1.013251.01325
B-cCC6
298.15298.15
1.013251.01325
B-bcy
298.15298.15
1.013251.01325
mC6-mB
255.40310.90
0.79000138.0000 0
300.05300.05 283.15298.15
1.013251.01325 1.013251.01325
mB-eC6
283.15298.15
1.013251.01325
eC6-eB
283.15298.15
1.013251.01325
mBtCC6
298.15298.15
1.013251.01325
mBcCC6
298.15298.15 298.15298.15
1.013251.01325 1.013251.01325
mC614mB mC6-eB
C5-mC5
19.1000111.0000 21.4000139.2000 6.000033.0000 8.500024.3000 7.200046.2000 20.800084.1000 24.0000128.0000 27.300034.0000 11.010054.3900 15.400086.0000 8.200050.0000 -22.40000.0000 -0.50005.8000 15.030073.8800 29.5000158.4000 25.9000142.1000 20.9000112.9000 23.8000124.3000 33.3000178.7000 584.0000 -0.0000 192.8000 755.0000 51.9000790.0000 230.0000 876.0000 190.8900 766.4600 126.7000 776.3000 229.9000 855.5000
0.05000.9500 0.05000.9500 0.12610.9265 0.17560.9274 0.07740.9164 0.08640.9085 0.05790.9478 0.34100.7370 0.04670.9500 0.05000.9500 0.05000.9500 0.05000.9500 0.05000.9500 0.09960.9507 0.05000.9500 0.05000.9500 0.05000.9500 0.05000.9500 0.05000.9500
Page 60 of 84
-
-
11
0
0
304
1720.6
1197.9
13.85
-
-
32
0
0
229,305
1496.3
1449.9
16.43
2161.4
86.35
-
-
17
0
0
306
10516. 4
-
-
15
0
0
229
9336.9
1566.3
12.81
-
-
16
0
0
306
8572.0
2469.1
65.09
-
-
20
0
0
306-307
4941.3
2850.2
154.32
-
-
18
0
0
306
2283.1
1849.2
10.71
5540.4
36.14
-
-
4
0
0
133
17913. 3
-
-
28
0
0
133,308
5973.3
2067.1
22.41
-
-
11
0
0
304
3224.2
1767.6
24.66
-
-
11
0
0
304
3412.3
1072.0
14.75
-
-
11
0
0
304
9065.3
1164.3
14.19
1140.7
13.89
-
-
11
0
0
304
76508. 4
-
-
18
0
0
256
3892.8
2096.0
28.10
-
-
11
0
0
304
1690.9
1734.1
25.46
-
-
11
0
0
304
1123.2
1019.4
14.74
-
-
11
0
0
304
1517.7
1085.3
13.80
-
-
11
0
0
304
1353.3
1071.3
13.60
-
-
20
0
0
305
1052.3
1356.1
16.22
-
-
0.04150.9060
0
0
36
18
702.3
1793.9
24.88
0.08770.9319
-
-
11
0
0
169
60.1
326.1
1.64
0.01880.9855
-
-
66
0
0
303,309 -310
30.1
162.2
0.81
0.10300.9011
-
-
12
0
0
311
137.3
1106.5
2.40
0.09970.9500
-
-
20
0
0
256
23.8
136.5
0.56
0.05000.9500
-
-
24
0
0
55,305
24.0
131.9
0.55
0.09580.8723
-
-
13
0
0
288
5.8
35.0
0.13
57.2000557.0000
0.02620.9622
-
-
87
0
0
110111,133 ,285,31 0
2308.9
9223.0
1.89
85.0000447.0000 60.7000458.0000 183.0000 584.0000 183.0000 502.0000 166.1600 486.8300 99.5000539.1000 -12.37000.0000
0.05700.9400 0.03440.9583
-
-
10
0
0
147
152.7
406.0
2.36
-
-
31
0
0
310-311
87.4
332.4
1.17
0.10330.8932
-
-
12
0
0
311
99.1
535.7
1.40
0.14690.8868
-
-
12
0
0
311
116.9
534.1
1.41
0.09940.9011
-
-
17
0
0
256
139.0
522.0
2.50
-
-
20
0
0
305
117.6
460.3
2.22
-
-
10
0
0
303
4867.7
388.1
2.42
0.05000.9500 0.06780.9554
60 - Environment ACS Paragon-Plus
Page 61 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
C5-mC6
298.15298.15
1.013251.01325
C5-tCC6
298.15298.15
1.013251.01325
C5-cCC6
298.15298.15
1.013251.01325
C5-bcy
288.20298.20
1.013251.01325
298.15298.15 293.15308.15 298.15298.15 298.15298.15 298.15298.15 288.20298.20 298.15298.15 298.15298.15 288.20298.20 298.15298.15 298.15298.15 288.20298.20
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
tet-tCC6
298.15298.15
1.013251.01325
mC5mC6 mC6eC6 mC6tCC6 mC6cCC6
298.15298.15 298.15298.15 298.15298.15 298.15298.15
CO2-5
308.15573.15
CO2-6
308.15573.15
CO2-9
373.15373.15
CO2-10
283.15573.15
CO2-12
318.15318.15
CO222m3
310.00313.15
1-CO2
283.15353.15
CO2-2
217.00323.15
CO2-B
354.50398.60
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 75.80000 124.5000 0 62.90000 125.0000 0 75.00000 125.0000 0 75.80000 125.0000 0 40.00000 140.0000 0 62.90000 104.4000 0 5.07000111.4570 0 1.01325110.0000 0 1.010001.01000
mC5-C6 C6-mC6 C6-eC6 C6-tCC6 C6-cCC6 C6-bcy C7-tCC6 C7-cCC6 C7-bcy C8-tCC6 C8-cCC6 C8-bcy
112.3000 -0.0000 270.5600 -0.0000 129.1400 -0.0000 142.6000 -0.0000 9.100046.8000 0.030023.1200 27.900072.0000 -7.430025.2200 -3.850040.6000 39.5000126.0000 -7.90000.0000 0.500014.7000 38.2000158.4000 -1.50008.4800 3.730023.1000 36.4000178.2000 124.0000 245.0000 -52.04000.0000 1.10004.2000 1.22007.2000 8.990049.2600 4022.000 4460.000 4090.000 5050.000
0.07620.9605
-
-
10
0
0
303
336.7
244.0
1.48
0.03070.9736
-
-
36
0
0
312
114.3
196.7
1.12
0.02320.9894
-
-
37
0
0
312
363.1
277.0
1.56
0.05190.9205
-
-
19
0
0
306
322.2
319.7
1.62
-
-
11
0
0
169
1462.7
479.4
2.65
8578.4
325.1
1.74
860.5
471.3
2.34
0.05260.8876 0.03420.9751 0.10300.8896 0.05000.9753 0.05000.9765 0.12370.9285 0.14500.9238 0.16320.8638 0.09970.9318 0.05000.9500 0.05000.9500 0.07420.9564
-
-
87
0
0
133,152 ,313
-
-
9
0
0
152
-
-
55
0
0
314-316
6097.0
427.2
2.10
443.0
2.19
-
-
55
0
0
314-316
14278. 9
-
-
19
0
0
306
641.1
557.7
2.42
-
-
8
0
0
315
8052.5
441.0
2.04
-
-
8
0
0
315
14707. 4
509.4
2.35
-
-
17
0
0
306
539.1
592.1
2.43
442.4
1.95
-
-
20
0
0
315-316
18759. 3
-
-
19
0
0
315-316
3058.6
473.4
2.09
-
-
18
0
0
306
494.3
607.2
2.36
-
-
9
0
0
317
8.3
17.8
0.07
-
-
10
0
0
303
62.4
22.7
0.14
-
-
10
0
0
152
386.9
9.0
0.05
-
-
11
0
0
316
1457.5
62.4
0.33
-
-
11
0
0
316
106.0
32.3
0.17
-
0.03870.9905
0.03870.9907
0
175
414
318-319
36.0
159.7
1.17
-
0.02440.9918
0.02000.9918
0
176
547
320-322
57.9
208.7
1.45
1980.000 -252.000
-
-
0.05840.9934
0
0
49
323
31.4
138.2
0.80
4750.000 3370.000
0.06310.9939
-
0.03620.9945
102
0
301
324-325
122.1
259.7
1.54
2974.800 -688.600
-
-
0.05000.9980
0
0
170
326
162.9
425.3
2.21
4300.000 -493.000
-
-
0.06000.9800
0
0
118
327
496.3
368.4
2.53
6.0003990.000
-
-
0
636
0
328-329
11.6
38.0
0.63
-373.0006514.000
0.04100.9790
0.02500.9780
0.04600.9790
118
185
105
330-333
27.3
187.3
1.35
31.900052.5000
-
0.35900.6210
-
0
40
0
334
40.6
17.4
0.24
0.20460.8634 0.05950.9491 0.11830.8783 0.05000.9500 0.05000.9500
0.09500.9000
61 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
CO2-mB
298.15573.15
69.80000 175.0000 0
CO2-C6
308.15573.15
1.01000143.9000 0
N2-1
91.50298.00
N2-CO2
283.15353.15
1-H2S
293.15313.15
1.01325102.3000 0 6.310007.90000 0.470001.02000 0.440001.02000 10.13000 121.5900 0 5.0700015.20000
3SH-7
298.15298.15
1.013251.01325
283.15333.15 283.15333.15 283.15333.15
5.000005.00000 5.000005.00000 5.000005.00000
C6-4sh
283.15333.15
5.000005.00000
a2-3
273.15373.15
1-a2
115.77313.15
a2-2
273.15363.15
a2-CO2
260.95306.62
N2-a2
283.15338.15
a3-3
323.15323.15
N2-2 N2-B N2-C6
4sh-7 B-4sh 4sh-mB
1a6-6 1a6-12 t2a6-6 t2a6-7 c2a6-6 c2a6-7 t3a6-6 t3a6-7 15a6-6 6-1a7 1a7-7
92.1092.30 333.20433.20 333.20433.20
298.15298.15 293.15293.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15303.15
50.00000 150.0000 0 1.0132534.45000 50.00000 150.0000 0 35.00000 110.0000 0 10.36000 48.35000 50.00000 100.0000 0 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.010001.01325
5660.000 7060.000 4212.000 6510.000 13.00003059.000 0 17.4000178.0000 41.000071.7000 40.300075.1000 9.00004400.000 0
Page 62 of 84
0.11500.9870
-
0.03470.9946
66
0
885
335-339
59.8
149.0
1.23
-
0.03930.9902
0.03640.9902
0
137
716
334,340 -342
51.3
180.5
1.38
0.11700.7140
0.06000.7840
0.10600.8530
12
75
28
343-345
14.9
73.8
1.02
-
-
0.05000.9980
0
0
41
346-347
75.6
69.9
1.22
-
0
15
0
348
35.7
20.6
0.31
0.50000.5000
0
15
4
348-349
25.5
16.0
0.19
-
0.50000.5000 0.50000.5000
-
0.10000.9000
-
0
693
0
350-351
12.4
49.2
1.01
-
0.18400.8470
-
0
39
0
352
56.4
48.7
1.31
0.09000.8690
-
-
12
0
0
353
10.3
51.4
0.31
-
-
60
0
0
354
18.0
79.0
0.45
-
-
58
0
0
354
466.3
374.3
2.56
-
-
59
0
0
354
885.4
494.7
111.57
0.04970.9497
-
-
57
0
0
354
154.2
719.9
4.45
355
160.0
100.4
0.75
356-357
15.8
16.9
0.33
23.8000190.8000 217.2000 724.1000 72.0000698.3000 9.9000146.7000 -91.20000.0000 103.0000 682.5000 2440.000 3026.000 16.5000250.7000
0.02110.9850
0.02810.9855
0.00880.9861
146
125
567
0.23680.9313
0.20300.8160
-
18
36
0
-436.2002355.400
0.02050.9834
0.01430.9824
0.01520.9667
121
471
206
358
24.2
29.7
0.18
98.00002340.000 0
0.04100.8510
0.05000.9010
0.04200.9640
51
47
76
359
17.1
124.4
0.57
28.72001147.000 0
-
0.12300.9090
-
0
75
0
360
14.7
23.4
0.56
17.112097.9830
0.05330.9531
-
-
35
0
0
257
36.6
24.7
0.20
10.700061.1000 96.5000136.9000 22.600055.8000 24.100056.6000 21.400074.9000 32.500072.7000 21.400063.1000 28.700065.7000 82.6000246.6000 30.100047.1000 0.609059.1000
0.04750.9419 0.27370.6299 0.12510.8495 0.12940.8771 0.07590.9037 0.13040.8781 0.12700.9058 0.12920.8769 0.09680.8953 0.19820.8115 0.00210.8908
-
-
17
0
0
197,361
35.2
14.9
0.08
-
-
17
0
0
37
73.0
92.4
0.36
-
-
9
0
0
361
2.4
1.1
0.01
-
-
5
0
0
362
33.1
13.8
0.07
-
-
9
0
0
361
30.7
16.2
0.09
-
-
5
0
0
362
5.8
3.1
0.02
-
-
9
0
0
361
16.3
7.6
0.04
-
-
7
0
0
362
13.1
6.7
0.04
-
-
9
0
0
363
22.4
38.9
0.23
-
-
8
0
0
364
88.7
36.4
0.19
0
361,365 -366
21.3
9.1
0.04
0.04060.9630 0.04790.9498 0.01980.9495
-
-
26
0
62 - Environment ACS Paragon-Plus
Page 63 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15323.15 298.15318.15 298.15323.15 298.15318.15 298.15318.15 298.15318.15 298.15318.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
1a12-16
298.15298.15
1.013251.01325
2m4-1a5
363.13363.13
1a7-12 t2a7-7 c2a7-7 t3a7-7 6-1a8 7-1a8 1a8-8 1a8-16 t3a8-8 c3a8-8 t4a8-8 c4a8-8 1a9-9 7-1a10 1a10-10 8-1a12 9-1a12 1a12-12
37.000097.0000 13.800045.5000 11.600063.0000 21.000067.8000 13.400029.4000 22.100039.8000 17.200046.6000 60.1000163.8000 20.100055.1000 48.100057.6000 21.700064.0000 57.300066.3000 23.300040.5000 9.900026.7000 18.000045.4000 77.000077.0000 73.000073.0000 88.000088.0000 133.5000 133.5000
0.17900.9000 0.13090.8985 0.06920.8868 0.08650.9076 0.18130.8690 0.17270.8463 0.11300.8850 0.26560.9036 0.12500.8880 0.46400.5560 0.12200.8730 0.44900.6180 0.19800.8240 0.09710.8856 0.15400.8550 0.63000.6300 0.60000.6000 0.40000.4000
-
-
9
0
0
367
67.8
53.7
0.20
-
-
9
0
0
361
5.3
1.2
0.01
-
-
9
0
0
361
20.5
10.2
0.05
-
-
9
0
0
361
32.3
15.2
0.07
-
-
10
0
0
368
256.6
60.4
0.29
-
-
12
0
0
55
81.3
27.2
0.12
-
-
40
0
0
369
28.4
10.4
0.04
-
-
12
0
0
55
82.1
96.3
0.29
-
-
33
0
0
369
25.0
10.8
0.05
-
-
7
0
0
369
28.1
15.5
0.07
-
-
36
0
0
369
30.3
15.0
0.06
-
-
6
0
0
369
38.2
23.5
0.10
-
-
13
0
0
370
38.2
13.1
0.05
-
-
9
0
0
362
251.2
50.9
0.21
-
-
10
0
0
367,371
31.7
9.2
0.03
-
-
1
0
0
371
21.6
16.6
0.06
-
-
1
0
0
371
2.6
1.9
0.01
-
-
1
0
0
371
54.1
47.6
0.14
0.47000.4700
-
-
1
0
0
371
80.4
107.3
0.27
19.750057.7900
0.10510.9049
-
-
9
0
0
372
44.0
18.6
0.10
11.390062.4600 13.880079.5200 10.720058.6700 9.830054.8800 10.060055.9000 154.5000 154.5000
0.05000.9500 0.05000.9499 0.05010.9500 0.05010.9500 0.05010.9500
-
-
19
0
0
373
512.0
226.3
1.31
-
-
19
0
0
373
387.5
212.5
1.22
-
-
19
0
0
373
229.3
94.2
0.53
-
-
19
0
0
373
252.3
96.1
0.54
-
-
19
0
0
373
241.0
95.0
0.48
0.57000.5700
-
-
1
0
0
371
172.9
267.2
1.00
1a6224m5
298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15
15.00000 15.00000 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
224m51a12
298.15298.15
1.013251.01325
1a6-B
298.15363.13
1.0132524.12000
74.7540591.5000
0.03640.9499
-
-
58
0
0
197,257 ,374375
37.5
154.4
1.02
15a6-B
298.15298.15
1.010001.01000
0.11160.9004
-
-
9
0
0
376
61.6
139.6
0.99
B-1a7
298.15298.15
1.013251.01325
0.09320.9550
-
-
17
0
0
364,374
32.2
144.2
0.92
B-1a8
298.15323.15
1.013251.01325
0.10130.9587
-
-
27
0
0
55,374, 377
25.7
128.4
0.76
B-t3a8
298.20298.20
1.013251.01325
0.39600.7560
-
-
5
0
0
377
26.1
166.6
0.98
B-1a10
298.15298.15
1.010001.01000
0.11740.8646
-
-
9
0
0
376
12.5
63.9
0.33
1a6-mB
298.15298.15
1.013251.01325
0.05000.9500
-
-
19
0
0
375
18.7
35.7
0.25
mB-1a8
298.65298.65
1.013251.01325
95.0000308.0000 137.8000 614.6000 152.8000 680.0000 578.0000 674.0000 224.0000 704.0000 48.1800268.0800 124.0000 316.0000
0.17400.9040
-
-
12
0
0
377
79.9
195.1
1.19
1a622m4 1a623m4 1a6-2m5 1a6-3m5
63 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
mB-t3a8
298.65298.65
1.013251.01325
mB-t4a8
298.20298.20
1.013251.01325
298.15298.15 298.15298.15 293.15293.15 298.15413.21 298.15298.15 298.15298.15 298.15298.15
1.013251.01325 1.013251.01325 1.013251.01325 1.0132513.78000 1.013251.01325 1.013251.01325 1.013251.01325
298.15298.15
1.013251.01325
298.15323.15 298.15298.15 298.15298.15
1.013251.01325 1.013251.01325 1.000001.00000
298.15298.15
1.013251.01325
298.15298.15 298.15298.15 298.15298.15 298.15298.15
298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 49.78000 49.78000 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
2m13a45
293.15298.15
1.013251.01325
2m13a46
293.15303.15
1.013251.01325
2m13a47
293.15298.15
1.013251.01325
2m1a512
283.15303.15
2m32ma3
298.15323.15
2m13a4B
293.15303.15
1.013251.01325 50.00000 150.0000 0 1.013251.01325
2m13a4C6
293.15298.15
1.013251.01325
6-aC6
293.15298.16
1.013251.01325
1a7-eB 1a8-eB eB-Ba2 1a6-C6 t2a6-C6 c2a6-C6 t3a6-C6 C6-1a7 C6-1a8 C6-c4a8 C6-1a10 1a6-tet 1a7-tet 1a6-mC6 1a6-bcy 1a7-bcy a3-13a4 1a6-t2a6 1a6-t3a6 tt24a61a6 15a6-1a6 15a6t2a6 15a6t3a6 t3a6-t2a
273.15333.15
233.0000 294.0000 296.0000 344.0000 92.3000264.7000 60.0000302.3000 8.876012.1420 26.6540233.5800 97.0000208.6000 87.1000193.0000 61.7000165.2000 173.9000 241.4000 81.7000257.4000 89.0000174.0000 54.7000293.5000 105.0000 223.1000 90.7000235.6000 10.090056.4100 26.800067.0000 32.900064.0000
0.10480.6735 0.05000.9500 0.14630.7601 0.15530.7395
-79.990015.7100
0.02110.9810
3.40009.2000 4.100011.4000 21.600073.7000 25.000072.3000 42.4000177.9000 18.400072.0000 -2.70000.0000 150.0000 190.0000 5.3000214.1000 210.0000 210.0000 38.1000141.4000
0.10330.8711 0.10470.9102 0.11040.8911 0.10180.8941 0.10480.8966 0.12050.9101 0.10020.9129
Page 64 of 84
0.31000.8160
-
-
4
0
0
377
32.6
88.0
0.55
0.52500.6760
-
-
2
0
0
377
29.6
93.5
0.60
-
-
9
0
0
374
14.1
26.4
0.15
-
-
28
0
0
374,378
34.9
72.2
0.40
-
-
3
0
0
379
281.5
28.3
0.17
559.4
930.3
12.95
0.09010.8959 0.06150.9382 0.24900.7510 0.05000.9500 0.09880.7761 0.09930.7710 0.09860.8400
-
-
42
0
0
187,197 ,375
-
-
6
0
0
362
895.5
1375.3
18.82
-
-
6
0
0
362
992.6
1468.3
22.47
-
-
6
0
0
362
1150.7
1347.2
17.93
-
-
9
0
0
364
698.9
1526.1
18.33
-
-
21
0
0
55,362
533.7
1068.9
9.82
-
-
13
0
0
378
986.6
1431.6
14.60
-
-
18
0
0
223
506.9
1014.8
7.23
-
-
9
0
0
380
319.7
600.2
5.24
-
-
8
0
0
380
315.9
603.2
4.76
-
-
19
0
0
375
4549.5
1790.8
45.86
-
-
10
0
0
380
6351.2
3424.1
117.73
-
-
8
0
0
380
6378.7
3444.8
706.41
-
-
69
0
0
381
1992.0
46.5
0.42
-
-
9
0
0
382
723.6
48.2
0.28
-
-
9
0
0
382
564.2
46.0
0.26
-
-
9
0
0
382
145.6
71.8
0.42
-
-
9
0
0
382
5.9
2.5
0.02
-
-
10
0
0
382
42.0
49.4
0.30
-
-
9
0
0
382
264.5
128.8
0.77
-
-
10
0
0
382
101.2
2.0
0.01
0.50000.5000
-
-
2
0
0
24
124.1
205.1
1.40
0.00750.9545
-
-
25
0
0
24,383
108.8
157.4
0.99
0.50000.5000
-
-
2
0
0
24
144.9
304.3
1.78
0.21940.8933
-
-
34
0
0
37
435.7
427.4
1.73
5.4000100.5000
0.01510.9634
-
-
151
0
0
384
96.8
62.1
0.47
26.0000263.2000 305.0000 330.0000 45.0000235.3000
0.03820.9709
-
-
25
0
0
24,383
166.8
293.0
2.19
0.50000.5000
-
-
2
0
0
24
855.4
2692.9
95.40
0.04330.8898
-
-
36
0
0
24,197, 385
53.3
101.1
0.61
0.34400.8101 0.10790.8970 0.24400.8540 0.07180.9036 0.13990.7005
64 - Environment ACS Paragon-Plus
Page 65 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
6-13aC6
298.15298.15
1.013251.01325
6-14aC6
298.15298.15
1.013251.01325
298.16298.16 298.16298.16 298.16298.16
1.013251.01325 1.013251.01325 1.013251.01325
aC6-14
298.16298.16
1.013251.01325
aC6-16
298.16298.16
1.013251.01325
B-aC6
293.15298.15
1.010001.01325
298.15298.15 298.15298.15
1.013251.01325 1.013251.01325
aC6-8 aC6-10 aC6-12
B-13aC6 B-14aC6
229.7000 436.9000 100.9000 443.3000 58.0000247.0000 24.0000293.0000 55.0000323.0000 107.0000 408.0000 54.0000427.0000 153.0000 389.3000 42.4000129.0000 33.300086.7000
0.13470.8024
-
-
9
0
0
386
72.0
263.9
1.61
0.18370.9328
-
-
10
0
0
386
69.6
248.6
1.54
-
-
22
0
0
385
77.3
152.0
0.83
-
-
23
0
0
385
91.9
219.1
1.07
-
-
27
0
0
385
98.5
267.3
1.19
0.09570.9489
-
-
20
0
0
385
101.9
317.9
1.40
0.09620.9623
-
-
27
0
0
385
104.3
343.9
1.35
0.12470.8724
-
-
21
0
0
24,197, 376
118.1
367.0
2.67
-
-
11
0
0
386
332.3
340.1
2.50
-
-
11
0
0
386
485.1
313.4
2.33
257.5
185.0
1.31
278.9
737.9
5.73
0.16180.9476 0.07570.9864 0.13760.9662
0.09270.8643 0.20300.8661
24,197, 363,366 ,387 363,386 ,388
C6-aC6
293.15308.15
1.013251.01325
0.9400116.7000
0.04510.9980
-
-
36
0
0
13aC6C6
298.15308.15
1.013251.01325
0.07140.9241
-
-
24
0
0
C614aC6
298.15308.15
1.013251.01325
0.07790.8970
-
-
22
0
0
363,386 ,388
238.3
711.1
5.59
298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 298.15298.15 348.15348.15 293.15298.15 298.15318.15
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 8.000008.00000 1.013251.01325 1.013251.01325
-
-
10
0
0
389
248.1
319.9
1.88
-
-
9
0
0
389
76.0
29.4
0.18
-
-
9
0
0
389
6.6
1.2
0.01
-
-
9
0
0
389
1189.0
378.9
2.01
-
-
12
0
0
389
689.9
1720.0
14.69
-
-
9
0
0
389
727.9
1683.0
14.45
-
-
10
0
0
197
660.8
610.4
5.89
-
-
9
0
0
372
74.5
13.5
0.08
-
-
2
0
0
24
1439.4
1025.7
136.41
-
-
21
0
0
390
1571.5
157.2
0.73
H2-1
183.00298.00
11.1000102.3000
0.08500.7480
0.08000.7280
0
85
24
343,345
7.6
48.1
1.01
H2-N2
147.00298.00
5.6700135.7800
96.9000358.3000 115.0000 415.5000 76.1000150.8000 19.800048.4000 6.700024.8000 17.900037.2000 98.1000292.6000 90.2000282.1000 52.6000116.1000 5.998026.2400 60.000080.0000 7.000013.2000 28.00003296.000 0 11.0000793.0000
0
323
0
345,391
6.8
18.1
0.47
18254
4334
4848
aC6-tet 13aC6tet 14aC6tet aC6-bcy 13aC6bcy 14aC6bcy 1a6-aC6 1a63maC5 2m13a4aC6 ap-bp
0.17550.7462 0.12510.7507 0.11350.7707 0.17170.6685 0.13290.6842 0.12090.7105 0.12080.8632 0.08790.8864 0.50000.5000 0.20000.7998 -
0.08600.7940 Total number of points
65 - Environment ACS Paragon-Plus
Energy & Fuels
298.15-298.15
6-8
298.15-298.15
6-12
298.15-298.15
22m4-7
298.15-298.15
23m4-7
298.15-298.15
2m5-7
298.15-298.15
3m5-7
298.15-298.15
7-224m5
298.15-298.15
22m4-8
298.15-298.15
23m4-8
298.15-298.15
2m5-8
298.15-298.15
3m5-8
298.15-298.15
6-B
298.20-298.20
B-7
293.15-303.15
B-8
298.20-298.20
B-10
298.20-298.20
B-12
298.20-298.20
B-14
298.20-298.20
B-16
298.20-298.20
23m4-B
298.15-298.15
B-224m5
298.15-323.15
6-mB
298.15-313.15
7-mB
298.15-298.20
mB-8
298.20-298.20
mB-10
298.20-298.20
mB-12
298.20-298.20
mB-14
298.20-298.20
mB-16
298.20-298.20
6-14mB
298.20-298.20
14mB-16
298.20-298.20
7-eB
298.20-298.20
eB-10
298.20-298.20
eB-12
298.20-298.20
eB-14
298.20-298.20
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
Number of points (T,P,cPM,x)
x1 range (1st compound liquid mole fraction)
Heat capacity of mixing range (J/mol/K) -0.0980-0.0000
0.1246-0.9081
19
-0.2260-0.0000
0.0480-0.9780
30
-1.3720-0.0000
0.0564-0.9500
29
-0.6830-0.0000
0.0263-0.9713
45
-0.4920-0.0000
0.0311-0.9762
40
-0.2750-0.0000
0.0302-0.9467
28
-0.3190-0.0000
0.0322-0.9503
20
-0.3512-0.0000
0.0391-0.9620
24
-1.0850-0.0000
0.0522-0.9741
20
-0.7030-0.0000
0.0532-0.9532
17
-0.4530-0.0000
0.0748-0.9524
19
-0.5760-0.0000
0.0469-0.9285
21
-2.9100-0.0000
0.0953-0.9161
7
-3.6330-0.0000
0.0487-0.9317
43
-3.3800-0.0000
0.1110-0.8959
7
-4.1500-0.0000
0.0977-0.8999
7
-5.0900-0.0000
0.0916-0.8977
7
-5.9590-0.0000
0.2457-0.9237
5
-7.2700-0.0000
0.0884-0.9006
7
-2.9190-0.0000
0.1498-0.8584
12
-2.9000-0.0000
0.1036-0.8990
27
-1.6000-0.0000
0.1078-0.9041
13
-1.3780-0.0000
0.1013-0.9097
13
-1.3200-0.0000
0.0999-0.9069
7
-1.8200-0.0000
0.0989-0.8966
7
-2.4700-0.0000
0.0870-0.9054
7
-3.7460-0.0000
0.1955-0.8608
5
-4.2400-0.0000
0.0872-0.9034
7
-0.4800-0.0000
0.1032-0.9039
7
-2.2000-0.0000
0.1002-0.9021
7
-1.6500-0.0000
0.1313-0.8699
8
-2.5220-0.0000
0.2053-0.8222
5
-3.0560-0.0000
0.1261-0.8879
5
-4.4540-0.0000
0.1836-0.8227
5
66 - Environment ACS Paragon-Plus
References
6-7
Pressure range (bar)
Temperature rage (K)
Table 3. Binary system (1st compound2nd compound)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 66 of 84
∆c M P %
392-393
36.8
0.0
394
28.8
0.0
395
15.3
0.2
392
489.6
2.2
392
482.6
1.5
392
241.5
0.4
392
162.9
0.4
396-397
1235.1
2.6
394
317.8
2.4
394
393.9
1.9
394
187.1
0.6
394
126.0
0.5
398
69.5
1.5
399-400
72.6
1.9
398
66.7
1.7
398
63.0
1.9
398
62.0
2.3
401
60.0
2.7
398
64.1
3.4
402-403
13.8
0.3
404-406
228.5
4.7
407
1530.9
14.6
401,404
1990.6
20.8
398
2319.9
22.9
398
1943.8
27.3
398
1709.3
30.6
401
1149.9
35.3
398
1148.3
36.1
398
9398.4
34.8
398
4636.8
75.8
401
1237.5
16.8
401
1167.1
24.3
401
1116.6
24.7
401
836.3
30.4
∆c M P (J/mol/K)
Page 67 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
7-124mB
298.15-298.15
10-124mB
298.15-298.15
124mB-14
298.15-298.15
7-prB
298.20-298.20
prB-14
298.20-298.20
7-buB
298.20-298.20
buB-14
298.20-298.20
23m4-mB
298.15-298.15
224m5-mB
298.15-323.15
23m4-eB
298.15-298.15
23m4-buB
298.15-298.15
B-mB
298.15-298.15
B-12mB
298.15-298.15
B-13mB
298.15-298.15
B-14mB
298.15-313.15
B-eB
298.15-298.15
B-prB
298.15-298.15
B-buB
298.15-298.15
mB-12mB
298.15-298.15
mB-13mB
298.15-298.15
mB-14mB
298.15-298.15
mB-eB
298.15-298.15
13mB-12mB
298.15-321.65
14mB-12mB
298.15-321.65
eB-12mB
298.15-321.65
14mB-13mB
298.15-321.65
eB-13mB
298.15-321.65
eB-14mB
298.15-321.65
6-C6
298.15-298.20
C6-7
293.15-338.15
C6-12
298.15-323.15
C6-14
288.15-308.15
C6-224m5
298.15-323.15
C5-B
298.15-298.15
B-C6
293.15-318.15
B-C8
298.15-298.15
C6-mB
298.15-298.15
C6-12mB
298.15-323.15
C6-13mB
298.15-323.15
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
0.0750-0.3430
0.1174-0.9052
9
0.2220-0.6620
0.1142-0.9078
9
-0.1150-0.0000
0.0934-0.8734
9
-1.4180-0.0000
0.1408-0.8704
6
-4.0020-0.0000
0.2078-0.8525
5
-1.3870-0.0000
0.1721-0.8020
5
-4.4010-0.0000
0.1780-0.8388
5
-1.6710-0.0000
0.1369-0.8511
12
-1.2700-0.9000
0.1102-0.9015
30
-2.2840-0.0000
0.1600-0.8516
6
-1.5440-0.0000
0.2055-0.8384
5
-0.3150-0.0000
0.1127-0.8930
9
-1.4370-0.0000
0.1006-0.8931
9
-1.1090-0.0000
0.1045-0.8866
9
-0.8800-0.0000
0.1008-0.8772
15
-0.8710-0.0000
0.0962-0.8968
17
-0.9410-0.0000
0.1936-0.8677
5
-1.4510-0.0000
0.1349-0.8752
7
-0.4620-0.0000
0.1096-0.8891
9
-0.2100-0.0000
0.0949-0.8963
9
-0.0340-0.0020
0.1159-0.8829
9
0.0160-0.0560
0.0932-0.9002
9
-0.1420-0.0000
0.0504-0.9464
79
-0.2200-0.0000
0.0499-0.9607
79
-0.2820-0.0000
0.0502-0.9498
79
0.0030-0.0260
0.0490-0.9517
79
-0.0350-0.0000
0.0505-0.9499
86
0.0400-0.3510
0.0526-0.9516
79
-1.4190-0.0000
0.0394-0.9533
34
-2.7440-0.0000
0.0882-0.9604
49
-3.9300-0.0000
0.0473-0.9630
234
-6.1012-0.0000
0.0500-0.9502
52
-0.6000-0.0000
0.2496-0.7497
9
-2.6640-0.0000
0.0933-0.8778
9
-2.9810-0.0000
0.0955-0.9148
95
-3.3760-0.0000
0.1235-0.9084
9
-1.9200-0.0000
0.0250-0.9750
21
-1.1023-0.0000
0.2503-0.7498
9
-1.7294-0.0000
0.2495-0.7520
9
67 - Environment ACS Paragon-Plus
129
26779.7
61.0
129
17180.0
82.3
129
138259.1
111.5
401
1235.4
13.2
401
801.4
25.6
401
964.0
11.4
401
554.0
20.7
402-403
68.6
0.9
404-406
1057.3
8.9
402
140.1
2.5
402
411.7
5.4
408
49.6
0.1
408
64.5
0.7
408
58.4
0.5
408-409
32.9
0.2
408,410
506.5
3.1
410
688.9
5.2
410
601.6
6.7
408
76.0
0.3
408
57.7
0.1
408
431.5
0.1
408
1361.1
0.5
411-412
96.0
0.1
411-412
97.3
0.1
411-412
676.5
0.9
411-412
99.9
0.0
411-412
7240.9
1.0
411-412
704.3
1.3
393,399
14.6
0.1
218,393
33.6
0.5
413
55.4
1.3
414
63.8
2.3
415
2145.2
6.1
416
35.3
0.7
417-420
31.1
0.7
416
38.0
0.9
421
146.5
1.9
422
665.6
3.9
422
434.3
3.7
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
C6-14mB
298.15-323.15
C6-eB
298.15-298.15
C6-prB
298.15-298.15
C6-iprB
298.15-298.15
mC5-10
293.15-293.15
7-tCC6
298.15-298.15
7-cCC6
298.15-298.15
22m4-tCC6
298.15-298.15
23m4-tCC6
298.15-298.15
2m5-tCC6
298.15-298.15
3m5-tCC6
298.15-298.15
224m5-tCC6
298.15-298.15
22m4-cCC6
298.15-298.15
23m4-cCC6
298.15-298.15
2m5-cCC6
298.15-298.15
3m5-cCC6 224m5cCC6
298.15-298.15
B-mC6
298.15-298.15
B-tCC6
298.15-298.15
B-cCC6
298.15-298.15
mC6-mB
298.15-298.15
mB-tCC6
298.15-298.15
mB-cCC6
298.15-298.15
C5-mC5
293.15-293.15
C5-mC6
293.15-293.15
mC5-C6
293.15-293.15
C6-mC6
298.15-298.15
C6-tCC6
298.15-298.15
C6-cCC6
298.15-298.15
C8-tCC6
298.15-298.15
C8-cCC6
298.15-298.15
mC5-mC6
293.15-293.15
mC6-tCC6
298.15-298.15
mC6-cCC6
298.15-298.15
298.15-298.15
1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325 1.013251.01325
Page 68 of 84
-1.1914-1.2102
0.2537-0.7415
9
-2.2300-0.0000
0.0250-0.9750
21
-2.1900-0.0000
0.0250-0.9750
21
-2.0300-0.0000
0.0250-0.9750
19
-1.5440-0.0000
0.0862-0.8990
10
-0.7650-0.0000
0.0500-0.9500
19
-1.4580-0.0000
0.0500-0.9500
19
-1.1720-0.0000
0.0500-0.9500
11
-0.9530-0.0000
0.0500-0.9500
11
-0.8270-0.0000
0.0500-0.9500
11
-0.7660-0.0000
0.0500-0.9500
11
-0.7430-0.0000
0.0500-0.9500
19
-1.3340-0.0000
0.0500-0.9500
11
-1.2150-0.0000
0.1000-0.9500
10
-1.3980-0.0000
0.0500-0.9500
11
-1.2350-0.0000
0.0500-0.9500
11
-1.2610-0.0000
0.0500-0.9500
19
-2.7100-0.0000
0.0500-0.9750
29
-2.7990-0.0000
0.0500-0.9500
19
-3.0960-0.0000
0.0500-0.9500
19
-1.7500-0.0000
0.0250-0.9750
20
-1.6930-0.0000
0.0500-0.9500
19
-2.0460-0.0000
0.0500-0.9500
19
-0.0270-0.0160
0.1252-0.9009
11
0.0520-0.2900
0.0402-0.9117
12
-0.2740-0.0000
0.0712-0.8951
14
-0.2800-0.2800
0.0500-0.9750
20
-0.5290-0.3720
0.0500-0.9500
11
-0.5130-0.5450
0.0500-0.9500
11
-0.2820-0.0680
0.0500-0.9500
11
-0.4650-0.0000
0.0500-0.9500
11
0.0730-0.2400
0.0608-0.9079
11
-0.5850-0.0000
0.0500-0.9500
11
-0.8170-0.0000 0.0500-0.9500 Total number of points:
11 2251
68 - Environment ACS Paragon-Plus
422
611.9
4.2
295
67.7
1.0
295
193.6
2.9
295
119.9
1.7
423
8138.5
85.0
424
16871.3
98.2
424
9281.8
99.0
304
12232.6
91.4
304
13784.7
90.4
304
16154.0
86.5
304
18895.5
85.6
424
22822.8
117.6
304
10105.2
92.4
304
11117.8
98.0
304
9093.0
87.2
304
10045.5
86.3
424
12680.7
118.7
416,425
2584.1
49.1
424
3471.6
69.6
424
3172.0
70.5
424
1981.1
22.9
424
2413.1
29.7
424
2085.3
30.3
423
201291.6
29.0
423
15086.9
20.2
423
17402.9
33.1
425
21471.9
18.7
316
98235.3
19.7
316
7896.1
19.7
316
14615.3
23.6
316
9047.3
24.0
423
327.3
0.6
316
626.0
2.7
316
485.5
2.6
Page 69 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Table 4.
Families Alkanes Aromatic compounds Naphthenes CO2 N2 H2 S Mercaptans Alkenes H2 Total
Number of experimental data
Relative mean deviation
3,405 5,544 8,368 4,940 883 39 246 3,579 432 27,436
628.7 % 88.20 % 1490. % 64.96 % 16.34 % 56.42 % 362. 9 % 227.6 % 6.978 % 595.6 %
∆h M %
Absolute mean deviation
∆h M
69 - Environment ACS Paragon-Plus
( J ⋅ mol ) −1
88.64 145.9 324.5 175.9 52.18 48.73 395.5 173.0 25.69 199.4
Deviation expressed in terms of temperature ∆Th K 0.51 0.77 2.3 1.3 0.99 1.3 29 3.4 0.61 1.9
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 70 of 84
Table 5.
Families
Number of experimental data
Relative mean deviation
Alkanes Aromatic compounds Naphthenes Total
312 907 1,032 2,251
327.7 % 3001 % 7038 % 4481 %
∆c M P %
70 - Environment ACS Paragon-Plus
Absolute mean deviation ∆c M P
( J ⋅ mol
−1
0.3746 7.125 25.03 14.50
⋅ K −1
)
Page 71 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
List of Figures Fig. 1. Phase behavior prediction of the binary system n-hexane(1) + n-octane(2) at 403.2 K. (a) pressure-composition phase diagram at T. (b) enthalpy of mixing-composition curves (i.e., hM-curves) plotted at T and {P = 1 bar, P = 3 bar, P = 5.5 bar}. (c) Enlargement of (b). Fig. 2. Phase behavior of the binary system CO2(1) + ethane(2) at 273.15 K (showing homogeneous azeotropy) and 293.15 K (showing homogeneous azeotropy and criticality), predicted with the PPR78 model. (a) and (d): isothermal phase equilibrium diagrams in the Pxy plane. (b) and (e): isothermal and isobaric hM-curves associated to the horizontal lines in subfigures (a) and (d) respectively. (c) hM-curve plotted at 273.15 K and the corresponding azeotropic pressure; Laz and Vaz = azeotropic liquid phase and azeotropic gas phase in equilibrium; zaz = mole fraction of component 1 at the azeotropic point. Fig. 3. Phase behavior of the binary system H2O(1) + 1,3,5-trimethylbenzene(2) at 552 K (showing heteroazeotropy) predicted with the Peng-Robinson EoS using Van der Waals mixing rules and a binary interaction parameter k12 = 0.0284. (a) isothermal phase equilibrium diagram in the Pxy plane. (b) isothermal and isobaric hM-curves associated to the horizontal lines in subfigure (a). (c) hM-curve plotted at 552 K and the corresponding VLLE pressure; Lα*, Lβ*, and V* = liquid phases and gas phase involved in a 3-phase equilibrium. Fig. 4. Prediction of hM (a) and cPM (b) curves for the binary system: benzene(1) + isooctane(2) at T = 298.15 K and P = 1.0 atm. () experimental hM and cPM points (references provided in Tables 2 and 3). Solid line: calculated curves (Peng-Robinson EoS with Van der Waals mixing rules). Fig. 5
Prediction of enthalpies of mixing by the PPR78 model: overall statistical results per chemical family. (a) relative mean deviations. (b) absolute mean deviations. (c) absolute deviations expressed in terms of temperature. Dashed lines: average values.
Fig. 6
Prediction of mixing enthalpies of three binary systems (two alkane + alkane systems and one H2 + alkane system) in or near domains of two-phase equilibria, by the PPR78 EoS. Left-hand side subfigures (a,c,e): isothermal or isobaric projections of phase-equilibrium diagrams. Right-hand side subfigures (b,d,f): isothermal and isobaric (hM vs. composition) curves. Continuous curves: calculated with the PPR78 model. () experimental data.
Fig. 7
Prediction by the PPR78 EoS of mixing enthalpies of three binary systems (one CO2 + alkane system; one CO2 + naphthene system and one N2 + alkane system) in or near domains of two-phase equilibria. Left-hand side subfigures (a,c,e): isothermal or isobaric projections of phase-equilibrium diagrams. Right-hand side subfigures (b,d,f): isothermal and isobaric (hM vs. composition) curves. Continuous curves: calculated with the PPR78 model. () experimental data.
Fig. 8
Prediction by the PPR78 EoS of mixing enthalpies of liquid binary systems containing alkanes, aromatic compounds and naphthenes. Continuous curves: calculated with the PPR78 model. () experimental data.
Fig. 9
Prediction by the PPR78 EoS of mixing enthalpies of liquid binary systems containing alkanes, alkenes and CO2. Continuous curves: calculated with the PPR78 model. () experimental data. 71 - Environment ACS Paragon-Plus
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Fig. 10 Prediction by the PPR78 EoS of mixing enthalpies of gaseous binary systems containing alkanes, alkenes, N2 and CO2. Continuous curves: calculated with the PPR78 model. () experimental data. Fig. 11 Prediction of isobaric heat capacity of mixing by the PPR78 model: overall statistical results per chemical family. (a) relative mean deviations. (b) absolute mean deviations.. Dashed lines: average values. Fig. 12 Prediction by the PPR78 EoS of isobaric heat capacities of liquid binary systems containing alkanes, aromatic compounds and naphthenes. Continuous curves: calculated with the PPR78 model. () experimental data.
72 - Environment ACS Paragon-Plus
Page 72 of 84
Page 73 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Figure 1. 5.00
(a)
P/bar
4.00
3.00
2.00
z1
1.00
y1
x1
0.0
1.0 z 2 ⋅ ∆ vap H 2
(b)
(c)
hM/(kJ/mol)
M h gas (T, P = 3 bar, z ) ≠ h E
M E h gas (T, P = 1 bar, z ) = h gas
0.
0. M E h liq (T, P = 5.5 bar, z ) = h liq
-0.04
−z1 ⋅ ∆ vap H1
hM VLE (T, P = 3 bar, z )
-10. 0.
M h liq (T, P = 3 bar, z ) ≠ h E
0.
0.4
z1 0.8
73 - Environment ACS Paragon-Plus
0.4
0.8
Energy & Fuels
Figure 2. 9000. P4 = 40 bar
40.0
(b)
P/bar
(a)
hM/(J/mol)
T = 273.15 K
7000.
P3 = 37 bar
P3 = 37 bar
T = 273.15 K
5000. P2 = 30 bar
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 74 of 84
P2 = 30 bar
30.0
3000.
P4 = 40 bar 1000.
P1 = 23 bar
P1 = 23 bar z1
x1,y1
-1000.
20.0 0.0
0.5
0.
1.0
0.4
0.8
10000.0
8000.0
hM/(J/mol)
Vaz
(c) T = 273.15 K
6000.0
4000.0
2000.0
P = azeotropic pressure
Laz
Liquid branch
z1 0.0 0.0
zaz
0.5
1.0
5500.
65.0 P5 = 64 bar
(e)
P/bar
P4 = 60 bar
4500.
P4 = 60 bar
(d)
P2 = 46 bar P3 = 56 bar
55.0
hM/(J/mol)
T = 293.15 K
3500. P5 = 64 bar 2500.
P2 = 46 bar
1500.
45.0
P3 = 56 bar
T = 293.15 K 500.
P1 = 36 bar P1 = 36 bar
x1, y1
35.0 0.0
0.5
1.0
z1 -500. 0.
74 - Environment ACS Paragon-Plus
0.4
0.8
Page 75 of 84
Figure 3. (a) 200.0
27000.
P/bar
P5 = 200 bar
(b)
hM/(J/mol) P3 = 70 bar
21000.
T = 552.00 K
150.0
T = 552.00 K
P4 = 100 bar
15000. P4 = 100 bar
100.0
9000.
P3 = 70 bar
50.0
P5 = 200 bar
P2 = 40 bar
P2 = 40 bar
3000.
P1 = 5 bar
x1,y1
P1 = 5 bar
z1
0.0
-3000.
0.0
0.5
1.0
30000.0
0.
0.4
(c)
hM/(J/mol)
V*
20000.0
T = 552.00 K P = three-phase equilibrium pressure
Lα*
3-phase region
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
10000.0
Lβ*
0.0 0.0
0.5
1.0
75 - Environment ACS Paragon-Plus
z1
0.8
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 76 of 84
Figure 4. 0.0
(i) dkij/dT = -1.7× ×10−4 K–1 (PPR78)
(a)
hM/(J/mol)
1200.0 (ii) dkij/dT = -5.7× ×10−5 K–1 (best fit)
(ii) d2kij/dT2 = 0.0
-4.0
800.0
(i) d2kij/dT2 = 2.0× ×10−6 K–2 (PPR78)
(iii) dkij/dT = 0.0
400.0
T = 298.15 K P = 1.00 atm kij = 0.002869
-8.0 x1
0.0 0.0
0.5
cPM/(J/mol/K)
(iii) d2kij/dT2 = -1.0× ×10−7 K–2 (best fit)
1.0
T = 298.15 K P = 1.00 bar kij = 0.002869 dkij/dT = -1.7×10-4 K–1 0.0
76 - Environment ACS Paragon-Plus
0.5
(b)
x1 1.0
Page 77 of 84
Figure 5. 1600.0
(a)
400.
∆hM %
1200.0
(
(b)
∆hM J ⋅ mol−1
300.
800.0
200.
400.0
100.
∆Th K
24.0
16.0
8.0
H2
Alkenes
Mercaptans
H2S
N2
CO2
Naphthenes
Aromatic comp.
Families 0.0
77 - Environment ACS Paragon-Plus
H2
Alkenes
H2S
Mercaptans
N2
CO2
Naphthenes
Aromatic comp.
Alkanes
H2
Alkenes
Mercaptans
Families 0.
(c)
Alkanes
H2S
N2
CO2
Naphthenes
Aromatic comp.
Families
0.0
Alkanes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
)
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 78 of 84
Figure 6.
(b)
P/bar
(a)
140.0
hM/(J/mol) P3 = 150.00 bar
0.0
P2 = 100.00 bar 100.0
-1000.0
Ethane(1) + propane(2) T = 323.15 K
P1 = 50.00 bar -2000.0
60.0
x1,y1
20.0 0.0
0.5
Ethane(1) + propane(2) -3000.0 T = 323.15 K 0.0
1.0
z1
0.5
1.0
500.0
(c)
T/K
hM/(J/mol)
(d) 000.
Methane(1) + n-heptane(2) P = 138.0 bar
T2 = 310.90 K
300.0
-400.
Methane(1) + n-heptane(2) P = 138.0 bar
T1 = 255.40 K x1,y1
z1
-800.
100.0 0.0
0.5
0.
1.0
P/bar
(e)
0.4
0.8
hM/(J/mol)
(f)
P4 = 41.40 bar
3000.0
P5 = 51.60 bar
80.0
H2(1) + methane(2) T = 183.0 K
P6 = 61.70 bar P7 = 77.10 bar
2000.0
60.0
P8 = 91.30 bar
1000.0
40.0
H2(1) + methane(2) T = 183.0 K P3 = 36.40 bar P2 = 31.50 bar
x1,y1
20.0 0.0
0.5
1.0
x1,y1
P1 = 21.30 bar
0.0 0.0
78 - Environment ACS Paragon-Plus
0.5
1.0
Page 79 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Figure 7. 570.0
T1 = 293.15K T2 = 323.15K T3 = 363.15K T4 = 413.15K T5 = 470.15K T6 = 573.15K
T/K
CO2(1) + n-decane(2) P = 125.0 bar
530.0
(a) 2000.
490.0
hM/(J/mol)
(b)
450.0 410.0
0000.
370.0 330.0 x1,y1
290.0 0.0
0.5
(c) 540.0
CO2(1) + n-decane(2) P = 125.0 bar
-2000.
0.
1.0
0.4
0.8
(d)
T/K
CO2(1) + cyclohexane(2) P = 75.0 bar
z1
hM/(J/mol) T1 = 308.15 K T2 = 358.15 K T3 = 413.15 K T4 = 470.15 K T5 = 508.15 K T6 = 573.15 K
4000.0
460.0
0.0 380.0
x1,y1
300.0 0.0
0.5
CO2(1) + cyclohexane(2) P = 75.0 bar
0.0
1.0
(e)
80.0
-4000.0
P/bar
3000.0
(f)
0.5
hM/(J/mol)
P1 = 21.40 bar P2 = 31.30 bar P3 = 40.80 bar P4 = 55.50 bar P5 = 71.60 bar P6 = 82.10 bar
2000.0
40.0
1.0
N2(1) + methane(2) T = 183.0 K
N2(1) + methane(2) T = 183.0 K
60.0
z1
1000.0
x1,y1
20.0
z1 0.0
0.0
0.5
1.0
0.0
79 - Environment ACS Paragon-Plus
0.5
1.0
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 80 of 84
Figure 8. T1 = 283.15 K T2 = 293.15 K T3 = 298.15 K T4 = 303.15 K T5 = 308.15 K
80.0
hM/(J/mol)
(a)
240.0
hM/(J/mol)
(b)
T = 298.15 K P = 1.00 atm
3-methylpentane (1) + n-dodecane (2) n-decane (2) n-octane(2) n-heptane(2)
120.0
40.0
n-hexane(1) + n-dodecane(2) P = 1.00 atm
0.0 0.0
x1
0.5
1.0
0.0
hM/(J/mol)
(c)
1200.0
x1 0.0
T = 323.15 K P = 1.00 atm
0.5
1.0 hM/(J/mol)
(d) 40.0
800.0
20.0
Toluene(1) + p-xylene(2) P = 1.01 bar
400.0 Benzene(1)-eicosane(2) Benzene(1) + n-hexadecane (2) Benzene(1) + n-dodecane(2) Benzene(1) + n-octane (2) n-hexane + benzene(2)
0.0
T1 = 298.15 K T2 = 308.15 K T3 = 323.15 K T4 = 338.15 K
x1
x1
0.0
0.0
0.5
1.0
0.0
hM/(J/mol)
(e)
0.5
hM/(J/mol)
Cyclopentane(1) + cyclooctane(2) P = 1.00 atm T1 = 288.25 K T2 = 298.15 K T3 = 308.32 K
-10.0
800.0
1.0
-30.0
T = 298.15 K P = 1.00 atm
400.0
Benzene(1) + cyclohexane(2) Cyclohexane(1) + toluene(2) Cyclohexane(1)-ethylbenzene(2) Cyclohexane(1) + propylbenzene(2) Cyclohexane(1)+1-methylnaphthalene (2)
0.0 0.0
0.5
x1 1.0
(f)
-50.0
x1 0.0
0.5
80 - Environment ACS Paragon-Plus
1.0
Page 81 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Figure 9. hM/(J/mol)
(a)
80.0
hM/(J/mol)
(b)
1600.0
40.0
800.0
T = 298.15 K P = 1.00 atm
CO2(1) + ethane (2) T = 272.10 K P1 = 45. 00 bar P2 = 110.00 bar
Hex-1-ene(1) + 2,3-dimethylbutane(2) Hex-1-ene(1) + 2,2-dimethylbutane (2) Hex-1-ene(1) + 2-methylpentane (2) Hex-1-ene(1) + 2,2,4-trimethylpentane (2)
x1
0.0
0.0
0.0
0.5
1.0
0.0
100.0 hM/(J/mol)
(c)
4000.
0.5
x1 1.0
CO2(1) + n-hexane(2) T = 470.15K
(d)
hM/(J/mol)
P1 = 75.00 bar P2 = 105.00 bar
-50.0 2000.
Ethylene(1) + propane(2) T = 273.15 K P1 = 75.00 bar P2 = 100.00 bar P3 = 125.00 bar P4 = 150.00 bar
-200.0 0.0
0.5
P3 = 125.00 bar
x1
x1 0.
1.0
0.
81 - Environment ACS Paragon-Plus
0.4
0.8
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 82 of 84
Figure 10. hM/(J/mol)
(a)
6.0
Methane(1) + CO2(2) T = 293.15 K
(b)
hM/(J/mol)
400.0
4.0
P1 = 10.13 bar P2 = 20.27 bar P3 = 30.40 bar P4 = 40.53 bar P5 = 50.66 bar
200.0
2.0
Methane(1) + ethane(2) P = 1.00 atm T1 = 241.10 K T2 = 269.20 K T3 = 298.20 K
0.0
y1
y1 0.0
0.0
0.5
1.0
0.0
0.5
1.0
1200.0
(c)
hM/(J/mol)
N2(1) + CO2(2) T = 293.15 K
600.0
P1 = 50.66 bar P2 = 40.53 bar P3 = 30.40 bar P4 = 20.26 bar P5 = 10.13 bar
400.0
(d)
hM/(J/mol)
N2(1) + ethylene (2) T = 283.15 K
800.0 P1 = 10.36 bar P2 = 20.72 bar P3 = 34.54 bar P4 = 48.35 bar 400.0
200.0
y1
y1
0.0
0.0 0.0
2000.
0.5
Ethylene(1) + propane(2) T = 373.15 K
0.0
1.0
hM/(J/mol)
(e)
1600.0
P1 = 75.00 bar P2 = 100.00 bar P3 = 125.00 bar P4 = 150.00 bar
1000.
0.5
1.0
P1 = 11.10 bar P2 = 21.30 bar P3 = 31.80 bar P4 = 41.70 bar P5 = 51.30 bar P6 = 61.50 bar P7 = 81.50 bar
(f)
hM/(J/mol)
H2(1) + methane(2) T = 201.00 K
800.0
0.0 y1 0.0
0.5
1.0
y1
0.0 0.0
82 - Environment ACS Paragon-Plus
0.5
1.0
Page 83 of 84
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Figure 11. ∆cM P%
(a)
24.0
∆cPM
(b)
( J ⋅ mol
6000.0
16.0
4000.0
8.0
2000.0
Families 0.0
Alkanes
Aromatic comp.
Naphthenes
Families 0.0
Alkanes
Aromatic comp.
83 - Environment ACS Paragon-Plus
Naphthenes
−1
⋅ K −1
)
Energy & Fuels
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 84 of 84
Figure 12. 0.0
cPM /(J/mol/K)
T = 298.15 K P = 1.00 atm -2.0
n-hexane(1) + n-heptane(2) 2-methylpentane(1) + n-heptane(2) 2,3-dimethylbutane(1) + n-heptane(2) 2,2-dimethylbutane (1) + n-heptane(2)
(a)
-4.0
x1
0.0
0.5
1.0 0.0
0.0
T = 298.15 K P = 1.00 atm
-2.0
Cyclohexane(1) + n-heptane(2) P = 1.00 atm
cPM /(J/mol/K)
Cyclopentane(1) + benzene(2) Benzene(1) + cyclohexane(2) Benzene(1) + cyclooctane(2)
-1.0
T1 = 298.15 K T2 = 308.15 K T3 = 318.15 K T4 = 328.15 K T5 = 338.15 K
-2.0
-4.0
(b) 0.0
(c)
x1 0.5
cPM /(J/mol/K)
1.0
0.0
84 - Environment ACS Paragon-Plus
0.5
x1 1.0