Chem. Mater. 2010, 22, 2213–2218 2213 DOI:10.1021/cm902635j
Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid Jian Gao, Fang Liu, Yiliu Liu, Ning Ma, Zhiqiang Wang, and Xi Zhang* Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China Received August 26, 2009. Revised Manuscript Received December 27, 2009
Graphene sheets are of significance in fundamental and applied science for their exceptional electronic, mechanical, and thermal properties. Among the different methods for producing graphene sheets, chemical reduction is favorable, because it can be scalable in production and versatile in realizing abundant chemical functionalization. Here, we report an environment-friendly method to produce graphene that employs Vitamin C as the reductant and amino acid as the stabilizer. This study is the first example of the use of biocompounds for nontoxic and scalable production of graphene. The graphene produced in this way has unique electrical properties that are the same as those produced via other methods. Because this reduction method avoids the use of toxic reagents, it may allow the application of graphene not only for electronic devices but also for biocompatible materials. Introduction Graphene is defined as a single sheet of carbon atoms tightly packed into a two-dimensional (2D) honeycomb lattice.1 It is one of the three important nanoallotropes of elemental carbon; the other two are fullerene and carbon nanotubes. Many years ago, it was thought that such 2D crystals could not exist for their thermodynamical unstability. However, a groundbreaking work presented by Geim et al. on the effect of electric field in atomically thin carbon films has changed the minds of many people.2 Just like “tracing with a pencil”, they obtained a single layer of graphite, which was called graphene. Since then, great research interests from all over the world have been attracted to graphene for its unique electronic *Author to whom correspondence should be addressed. E-mail: xi@ mail.tsinghua.edu.cn.
(1) Geim, A. K.; Novoselov, K. S. Nature Mater. 2007, 6, 183. (2) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. (3) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 439, 197. (4) Zhang, Y.; Tan, J. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201. (5) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60. (6) Heersche, H. B.; Jarillo-Herrero, P.; Oostinga, J. B.; Vandersypen, L. M. K.; Morpurgo, A. F. Nature 2007, 446, 56. (7) Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Science 2006, 313, 951. (8) Westervelt, R. M. Science 2008, 320, 324. (9) Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379. (10) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282. (11) Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Nature 2007, 448, 457.
r 2010 American Chemical Society
properties,3-9 excellent mechanical properties,10-14 and superior thermal properties.15 For further applications, there is a big challenge for chemists to develop new effective and scalable approaches to prepare graphene.16 Currently, there are six different methods to prepare graphene: chemical vapor deposition,17-19 micromechanical exfoliation,2,20,21 epitaxial growth,22-24 cutting carbon nanotubes,25,26 direct sonication,27,28 and chemical (12) Li, D.; Kaner, R. B. Science 2008, 320, 1170. (13) Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. (14) Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Science 2007, 315, 490. (15) Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902. (16) Park, S.; Ruoff, R. S. Nature Nanotech. 2009, 4, 217. (17) Eizenberg, M.; Blakely, J. M. Surf. Sci. 1970, 82, 228. (18) Aizawa, T.; Souda, R.; Otani, S.; Ishizawa, Y.; Oshima, C. Phys. Rev. Lett. 1990, 64, 768. (19) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Nature 2009, 457, 706. (20) Lu, X.; Yu, M.; Huang, H.; Ruoff, R. S. Nanotechnology 1999, 10, 269. (21) Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K.; Rice, T. M. Proc. Natl. Acad. Sci., U.S.A. 2005, 102, 10451. (22) Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Science 2006, 312, 1191. (23) Sutter, P. W.; Flege, J.-I.; Sutter, E. A. Nature Mater. 2008, 7, 406. (24) Pan, Y.; Zhang, H.; Shi, D.; Sun, J.; Du, S.; Liu, F.; Gao, H.-J. Adv. Mater. 2009, 21, 2777. (25) Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. Nature 2009, 458, 877. (26) Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Nature 2009, 458, 872. (27) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. Nature Nanotech. 2008, 3, 563. (28) Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N. J. Am. Chem. Soc. 2009, 131, 3611.
Published on Web 02/18/2010
pubs.acs.org/cm
2214
Chem. Mater., Vol. 22, No. 7, 2010
reduction.10,16,29-40 Among them, the chemical reduction approach is favorable, because it can be scalable in production and is versatile in realizing abundant chemical functionalization.16 Ruoff et al. first observed that homogeneous colloidal suspensions of electrically conducting graphene could be produced via the chemical reduction of graphite oxide with dimethylhydrazine or hydrazine, in the presence of either a polymer or a surfactant.10,29 This line of research opened new avenues for the production of graphene using chemical methods. Different homogeneous colloidal suspensions of graphene have been successfully prepared by some groups. For example, Li et al. demonstrated that aqueous graphene dispersions were readily formed by controlled chemical conversion of graphite oxide colloids through electrostatic stabilization.32,34 Dai et al. successfully produced graphene nanoribbons with a width of