3 Enzyme-Catalyzed Reactions in Unfrozen,
Downloaded via UNIV OF CALIFORNIA BERKELEY on August 3, 2018 at 21:33:51 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Noncellular Systems at Subzero Temperatures ANTHONY L. FINK Division of Natural Sciences, University of California, Santa Cruz, CA 95064 Methods used to determine the effects of both cryosolvents and low temperatures on the catalytic and structural properties of enzymes are detailed, along with representative results. Observed effects of subzero temperatures on the structure of enzymes include increased association of oligo mers, minor temperature-induced structural changes, and in most cases no detectable effects. Examples demonstrating the very good correspondence between the kinetics observed at subzero temperatures and those for the corresponding reaction techniques, are given. Systems illustrating changes in the rate-determining step and ΔΗ with a decrease in temperature, and the potential of cryoenzymology to provide details about individual intermediates and their interconversions during catalysis, are presented.
T V J " a n y b i o c h e m i c a l processes i n v o l v e v e r y r a p i d reactions a n d transient intermediates.
F r e q u e n t l y t h e r a p i d i t y of t h e r e a c t i o n causes m a j o r
t e c h n i c a l difficulties i n a s c e r t a i n i n g t h e details of t h e events o c c u r r i n g i n t h e process.
O n e approach
t o o v e r c o m e this i n h e r e n t p r o b l e m
u t i l i z e t h e fact t h a t most c h e m i c a l reactions are t e m p e r a t u r e
is t o
dependent.
T h i s r e l a t i o n s h i p is q u a n t i t a t i v e l y d e s c r i b e d b y t h e A r r h e n i u s e q u a t i o n , k = Ae~ */RT, E
w h e r e k represents t h e rate constant, A is a constant ( t h e
frequency factor), a n d E
a
is t h e energy of a c t i v a t i o n .
Consequently, b y
i n i t i a t i n g t h e r e a c t i o n at a sufficiently l o w t e m p e r a t u r e ,
interconversion
of t h e i n t e r m e d i a t e s m a y b e effectively s t o p p e d a n d t h e y m a y b e a c c u m u l a t e d a n d s t a b i l i z e d i n d i v i d u a l l y . A l t h o u g h t h e focus of this a r t i c l e i s o n the a p p l i c a t i o n of this l o w - t e m p e r a t u r e a p p r o a c h t o t h e s t u d y of e n z y m e catalysis, that i s , c r y o e n z y m o l o g y , t h e t e c h n i q u e is p o t e n t i a l l y o f m u c h wider biological application
(1,2,3).
0-8412-0484-5/79/33-180-035$5.00/0 © 1979 American Chemical Society Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
36
PROTEINS A T L O W
TEMPERATURES
B e c a u s e of t h e i r c a t a l y t i c f u n c t i o n , w h i c h p r o v i d e s
one
with
an
a d d i t i o n a l " h a n d l e " or p r o b e f o r d e t e c t i n g s t r u c t u r a l effects, e n z y m e s are p a r t i c u l a r l y w e l l s u i t e d f o r s t u d y i n g t h e b e h a v i o r of p r o t e i n s at
low
t e m p e r a t u r e s . I n this a r t i c l e t h e e m p h a s i s w i l l b e o n i l l u s t r a t i n g t h e effect of subzero t e m p e r a t u r e o n b o t h the s t r u c t u r a l a n d c a t a l y t i c p r o p e r t i e s of the e n z y m e s a n d the a b i l i t y to a c c u m u l a t e , s t a b i l i z e , a n d c h a r a c t e r i z e i n t e r m e d i a t e s o n the c a t a l y t i c r e a c t i o n p a t h w a y w i t h v e r y l o w t e m p e r a tures. B e c a u s e t h e l o w - t e m p e r a t u r e effects are i n t i m a t e l y r e l a t e d to t h e cryosolvents u s e d , a b r i e f d i s c u s s i o n of t h e effects of t h e o r g a n i c
cosol-
vents is i n c l u d e d . A l t h o u g h the examples u s e d to i l l u s t r a t e t h e p o i n t s of this a r t i c l e h a v e been d r a w n mostly from relatively simple hydrolytic enzymes studied i n t h e a u t h o r s l a b o r a t o r y , o v e r 25 different e n z y m e s h a v e c u r r e n t l y b e e n s u b j e c t e d to c r y o e n z y m o l o g i c a l i n v e s t i g a t i o n s at s e v e r a l laboratories
(6).
A l t h o u g h t h e first reports of e n z y m e - c a t a l y z e d reactions at s u b z e r o t e m p e r a t u r e s i n fluid aqueous o r g a n i c solvents a p p e a r e d 25 years ago, i t is o n l y since t h e p i o n e e r i n g studies of D o u z o u , b e g i n n i n g a b o u t 10 years ago, t h a t m o r e c o m p r e h e n s i v e investigations h a v e b e e n p e r f o r m e d .
Con-
s i d e r a b l e i m p e t u s to the d e v e l o p m e n t of t h e a p p r o a c h w a s g i v e n b y the elegant studies of D o u z o u a n d c o w o r k e r s (2)
o n the h o r s e r a d i s h p e r o x i -
dase system, w h i c h d e m o n s t r a t e d t h e f e a s i b i l i t y of " t e m p o r a l l y r e s o l v i n g " discrete e n z y m e - s u b s t r a t e i n t e r m e d i a t e s a n d the a c c u m u l a t i o n a n d c h a r a c t e r i z a t i o n of i n d i v i d u a l i n t e r m e d i a t e s . A enzyme
comprehensive
qualitative and
catalysis has b e e n
quantitative understanding
a l o n g - s t a n d i n g g o a l of
biochemistry.
of A
necessary r e q u i r e m e n t to a c h i e v e t h i s is a d e t a i l e d k n o w l e d g e of a l l t h e i n t e r m e d i a t e s a n d transition-state structures a l o n g t h e r e a c t i o n p a t h w a y . T h e t e c h n i q u e of c r y o e n z y m o l o g y has t h e p o t e n t i a l to p r o v i d e m u c h of this i n f o r m a t i o n . B e c a u s e several recent r e v i e w s c o v e r i n g v a r i o u s aspects of t h e t e c h n i q u e are a v a i l a b l e ( 2 , 4-9),
t h i s a r t i c l e w i l l e m p h a s i z e some
of t h e effects of s u b z e r o t e m p e r a t u r e s o b s e r v e d
on the catalytic and
s t r u c t u r a l p r o p e r t i e s of select e n z y m e s . C r y o e n z y m o l o g y u t i l i z e s the f o l l o w i n g features of e n z y m e c a t a l y s i s : t h e existence
o n the c a t a l y t i c r e a c t i o n p a t h w a y
of
several
enzyme-
substrate ( o r p r o d u c t ) i n t e r m e d i a t e species, t y p i c a l l y separated b y e n e r g y barriers w i t h enthalpies of a c t i v a t i o n of 7 to 20 k c a l m o l " ; a n d t h e f a c t 1
t h a t the energies
(enthalpies)
of a c t i v a t i o n f o r t h e i n d i v i d u a l steps i n
t h e o v e r a l l c a t a l y t i c p a t h w a y are u s u a l l y s i g n i f i c a n t l y different. F o r s u c h e l e m e n t a r y steps t e m p e r a t u r e s of — 1 0 0 ° C w i l l r e s u l t i n rate r e d u c t i o n s o n the o r d e r of 1 0
5
to 1 0
1 1
c o m p a r e d to those at 25 o r 3 7 ° C ( 5 ) .
t h e o r e t i c a l basis of c r y o e n z y m o l o g y w h e r e ( 5 , 7, 9, 1 0 ) .
The
has b e e n p r e s e n t e d i n d e t a i l else-
I f the r e a c t i o n is i n i t i a t e d b y m i x i n g e n z y m e a n d
substrate at a s u i t a b l y l o w t e m p e r a t u r e , o n l y the i n i t i a l n o n c o v a l e n t E S
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
3.
Enzyme-Catalyzed
FINK
37
Reactions
c o m p l e x w i l l b e f o r m e d . T h i s is a r e s u l t of there b e i n g insufficient e n e r g y a v a i l a b l e to o v e r c o m e t h e e n e r g y b a r r i e r to t h e s u b s e q u e n t i n t e r m e d i a t e . If t h e t e m p e r a t u r e is g r a d u a l l y i n c r e a s e d , a p o i n t w i l l b e r e a c h e d w h e r e E S is t r a n s f o r m e d i n t o t h e f o l l o w i n g i n t e r m e d i a t e ( I i ) .
Maintenance or
r e d u c t i o n of the t e m p e r a t u r e w i l l a l l o w this i n t e r m e d i a t e to b e t r a p p e d . F u r t h e r r a i s i n g of the t e m p e r a t u r e w i l l r e s u l t i n t r a n s f o r m a t i o n of I i to a s u b s e q u e n t i n t e r m e d i a t e ( I ) , a n d so o n u n t i l t h e o v e r a l l r a t e - l i m i t i n g 2
step is r e a c h e d , at w h i c h p o i n t t u r n o v e r w i l l o c c u r .
A n y intermediate
w h o s e rate of f o r m a t i o n is m o r e r a p i d t h a n its rate of b r e a k d o w n m a y b e a c c u m u l a t e d i n this m a n n e r . T h e m a j o r advantages
u n i q u e to c r y o e n z y m o l o g y
stem f r o m
the
p o t e n t i a l to a c c u m u l a t e essentially a l l of t h e e n z y m e i n t h e f o r m of a p a r t i c u l a r i n t e r m e d i a t e . T h e l a r g e rate r e d u c t i o n s a l l o w t h e most specific substrates to b e u s e d a n d h e n c e p r o v i d e t h e most accurate m o d e l f o r t h e i n v i v o c a t a l y z e d reactions. V i r t u a l l y a l l t h e s t a n d a r d c h e m i c a l a n d b i o physical techniques used i n studying proteins a n d enzymes under n o r m a l c o n d i t i o n s m a y b e u s e d at s u b z e r o t e m p e r a t u r e s .
T h e m a i n limitations
of t h e t e c h n i q u e are t h e necessity to use a q u e o u s o r g a n i c
cryosolvent
systems to p r e v e n t the i n h e r e n t r a t e - l i m i t i n g e n z y m e - s u b s t r a t e d i f f u s i o n of f r o z e n solutions, a n d the p o s s i b i l i t y t h a t t h e p o t e n t i a l - e n e r g y
surface
for the reaction m a y be such that conditions i n w h i c h a n intermediate accumulates cannot be attained. The
general approach
laboratory for
t h a t has b e e n d e v e l o p e d
cryoenzymological
i n the
author's
studies i n v o l v e s t h e f o l l o w i n g :
(1)
S e l e c t i o n of a s u i t a b l e c r y o s o l v e n t a n d d e m o n s t r a t i o n t h a t i t causes no adverse
effects o n e i t h e r the c a t a l y t i c or s t r u c t u r a l p r o p e r t i e s of
enzyme
(e.g., 11);
perature b y enzyme,
(2)
T h e d e t e c t i o n of i n t e r m e d i a t e s at subzero t e m -
m o n i t o r i n g s u i t a b l e s p e c t r a l p r o b e s i n the
a n d the k i n e t i c a n d t h e r m o d y n a m i c
i n t e r m e d i a t e s (e.g., 12);
the
substrate
c h a r a c t e r i z a t i o n of
or the
a n d ( 3 ) T h e a c q u i s i t i o n of s t r u c t u r a l l y r e l a t e d
d a t a c o n c e r n i n g t h e t r a p p e d i n t e r m e d i a t e s , b y t e c h n i q u e s s u c h as X - r a y diffraction a n d n m r (nuclear magnetic resonance)
(e.g., J 3 ) .
Details
c o n c e r n i n g the e x p e r i m e n t a l m e t h o d o l o g y f o r e x p e r i m e n t s u s i n g p r o t e i n s at subzero temperatures m a y b e f o u n d i n t h e f o l l o w i n g references: 5, 6, 8 , 9 , I I , 12.
Cryosolvents A t present the most versatile m e t h o d of o b t a i n i n g a fluid s o l u t i o n of p r o t e i n at s u b z e r o
temperatures
seems to b e
t h a t of
using aqueous
o r g a n i c solvent m i x t u r e s . A n u m b e r of s u c h solvent systems are k n o w n w i t h f r e e z i n g p o i n t s i n t h e v i c i n i t y of — 1 0 0 ° C . 60-80%
of the o r g a n i c c o m p o n e n t .
These usually contain
T h e most u s e f u l cryosolvents
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
are
38
PROTEINS A T L O W T E M P E R A T U R E S
Table I.
Physical-Chemical Properties of Freez-
Cryosolvents"
pH*
at
™9 . Dielectric Constant at ζ ° , 2{ Point pH 4.75 (°C) 0° -50° -100°CAcetate* 2 (
Cryosolvent D i m e t h y l sulfoxide 50% 65% Methanol 50% 70% 80%
s.c/ s.c.
84 79
105 98
132 124
5.40 6.7
68 57 49
— 71 66
— — 88
5.45 5.95 6.1
67 59
88 79
—
5.60 6.20
-100
56
70
86
6.9
-44
72
93
—
5.25
d
-49 -85 -100
Ethylene glycolmethanol 40%:20% 10%:60%
-71 s.c.
e
T 7
.
Viscosity (cps)
38 @ 48 @
-40° -60°
420 @ - 6 0 ° 76 @ -60°
Dimethyl formamide 80% Ethylene glycol 50%
125 @
-40°
Based on Ref. 29 and 80. The apparent p H of the mixed aqueous organic solvent when the aqueous com ponent was p H 4.75. s.c. = super cooled. Fluid to < - 9 0 ° C . β
b
0
d
those b a s e d o n m e t h a n o l , e t h a n o l , d i m e t h y l s u l f o x i d e , d i m e t h y l f o r m a m i d e , a n d e t h y l e n e g l y c o l - m e t h a n o l . E x t e n s i v e p h y s i c a l - c h e m i c a l studies of these solvents h a v e b e e n c a r r i e d out b y D o u z o u a n d c o w o r k e r s 15).
(14,
I n g e n e r a l the v i s c o s i t y , the p H * ( t h e a p p a r e n t p H i n the c r y o s o l
v e n t ) , a n d the d i e l e c t r i c constant increase w i t h d e c r e a s i n g t e m p e r a t u r e . Representative data for some c o m m o n
c r y o s o l v e n t systems are
shown
i n T a b l e I. Cosolvent
Effects
Structural.
E x p e r i m e n t a l l y , one
of t h e m o s t n o t i c e a b l e
features
c a u s e d b y the presence of o r g a n i c cosolvents o n p r o t e i n s t r u c t u r e is t h e decrease i n the t e m p e r a t u r e at w h i c h d e n a t u r a t i o n occurs.
Interestingly,
f o r most of the e n z y m e s t h u s f a r s t u d i e d , at the 60 to 8 0 %
cosolvent
c o n c e n t r a t i o n r e q u i r e d i n t h e cryosolvents, t h e m i d p o i n t of the t h e r m a l d e n a t u r a t i o n t r a n s i t i o n is u s u a l l y i n t h e — 1 0 ° to + 1 0 ° C r a n g e i n the p H * r e g i o n of c a t a l y t i c a c t i v i t y . T h i s means t h a t i n s u c h solutions t h e enzymes
are u s u a l l y d e n a t u r e d at r o o m t e m p e r a t u r e , b u t are i n t h e i r
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
3.
Enzyme-Catalyzed
FINK
39
Reactions
n a t i v e states at subzero t e m p e r a t u r e s . T h e effect of i n c r e a s i n g c o s o l v e n t c o n c e n t r a t i o n o n the m i d p o i n t of t h e t h e r m a l d e n a t u r a t i o n of r i b o n u c l e a s e A is g i v e n i n T a b l e I I . A s t h e c o n c e n t r a t i o n of e t h a n o l increases the T m o v e s to i n c r e a s i n g l y l o w e r temperatures. typical
m
T h i s b e h a v i o r seems q u i t e
(3).
I n g e n e r a l the effect of cosolvent o n the s t r u c t u r e of a p r o t e i n m a y b e d e t e r m i n e d b y e x a m i n i n g t h e i n t r i n s i c u v s p e c t r a l p r o p e r t i e s of t h e p r o t e i n as the cosolvent c o n c e n t r a t i o n increases.
Smooth monotonie
l i n e a r c u r v e s reflect solvent effects o n the exposed
aromatic
or
residues,
w h e r e a s s h a r p breaks i n s u c h plots o c c u r i f a s t r u c t u r a l p e r t u r b a t i o n occurs
(Figure 1).
F o r e x a m p l e , i f the effect of i n c r e a s i n g d i m e t h y l
s u l f o x i d e c o n c e n t r a t i o n o n β-galactosidase is e x a m i n e d at 0 ° C , p H * 7.0, b y either
fluorescence
or a b s o r p t i o n spectroscopy,
smooth
curves
are
o b s e r v e d u p to a n d i n c l u d i n g 5 0 % d i m e t h y l s u l f o x i d e , w h e r e a s a sharp b r e a k i n these curves b e c o m e s a p p a r e n t at h i g h e r c o n c e n t r a t i o n s 1)
(IS).
T h e intrinsic
fluorescence,
(Figure
absorbance, a n d circular dichroism
s p e c t r a are most c o n v e n i e n t f o r s u c h studies (11, 16, 17, 18).
Additional
t e c h n i q u e s that c a n b e u s e d f o r this p u r p o s e i n c l u d e p r o t o n n m r [e.g., the n m r spectrum for subtilisin i n 6 5 % r i b o n u c l e a s e A i n 50 o r 7 0 % aqueous
solution under otherwise
unpublished observations)]
d i m e t h y l sulfoxide, a n d
for
m e t h a n o l , is essentially the same as i n similar conditions
(Fink
and Kar,
a n d X - r a y c r y s t a l l o g r a p h y , vide infra
(13).
B a s e d o n the a c c u m u l a t e d d a t a f o r s o m e 15 e n z y m e s e x a m i n e d i n t h e a u t h o r s l a b o r a t o r y , w e are a b l e to state t h a t for e a c h e n z y m e i n v e s t i g a t e d t h e r e is c o n s i d e r a b l e e v i d e n c e to i n d i c a t e t h a t f o r s u i t a b l e cryosolvents the cosolvent has l i t t l e detectable effect o n the s t r u c t u r e at a p p r o p r i a t e l y l o w t e m p e r a t u r e s a n d d e f i n i t e l y causes n o m a j o r changes i n t h e c o n f o r m a t i o n of t h e p r o t e i n . monomelic
T h e s e statements a p p l y to o l i g o m e r i c as w e l l as
enzymes,
for
example,
β-galactosidase, β-glucosidase,
Table II. Effect of Cosolvents on the Midpoint ( T ) Reversible Native *± Denatured Transition of Ribonuclease A at p H * 2.8 m
of
a
Solvent
T
(v/v)
re)
m
Aqueous
40.0 ±
0.5
Ethanol 15% 30% 45% 60%
38.5 31.5 20.5 9.0
0.5 0.5 0.5 0.5
Methanol 70%
15.0 db 1.0
"Determined by absorbance change at 286 nm
± ± ± ±
(5).
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
the
and
40
PROTEINS A T L O W T E M P E R A T U R E S
J Ο
I 10
I 20
1 30
1 40
ί50
%DMS0( / ) V
v
Biochemistry
Figure 1. The effect of dimethyl sulfoxide on the structure of β-gàlactosidase, as monitored by: (A) the intrinsic fluorescence; (B) the intrinsic uv absorption. Conditions: 0°C, pH* 7.0, excitation at 285 nm, χ = 300 nm, Δ = 290 nm, 0=280. (IS) g l u c o s e oxidase.
H o w e v e r , as n o t e d b e l o w , t e m p e r a t u r e - i n d u c e d
struc
t u r a l i s o m e r i z a t i o n s h a v e b e e n seen i n a f e w cases. T h e a b o v e statements a p p l y o n l y t o those e n z y m e - c r y o s o l v e n t
systems i n w h i c h t h e e n z y m e i s
a c t i v e . I t m u s t also b e n o t e d t h a t f o r m a n y e n z y m e s o n l y one o f s e v e r a l c r y o s o l v e n t s e x a m i n e d has b e e n f o u n d t o b e satisfactory.
F o r example,
m a n y e n z y m e s are p a r t i c u l a r l y sensitive t o m e t h a n o l . Catalytic.
T y p i c a l l y t h e effects o f t h e c r y o s o l v e n t o n t h e c a t a l y t i c
p a r a m e t e r s m a y b e d e t e r m i n e d b y e x a m i n i n g t h e effect o f i n c r e a s i n g concentration of t h e cosolvent
o n k i n e t i c p a r a m e t e r s , s u c h asfc at>^m> C
a n d rate constants c o r r e s p o n d i n g t o m o r e e l e m e n t a r y steps i n t h e o v e r a l l r e a c t i o n s u c h as fc yiation, fcdegaiactosyiation, as w e l l as i n h i b i t i o n aC
constants
( e . g . , K i ) a n d p H - r a t e profiles. I n g e n e r a l , o n l y t h e e x p e c t e d effects o n
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
3.
Enzyme-Catalyzed
FINK
fccat a n d p H d e p e n d e n c e
41
Reactions
are f o u n d (11,
H o w e v e r , for
16, 17, 18).
a n d Κι one f r e q u e n t l y finds a n e x p o n e n t i a l increase as t h e c o n c e n t r a t i o n increases
( I I , 17).
K
m
cosolvent
A l t h o u g h this w a s a t t r i b u t e d to
a
c o m b i n a t i o n of d i e l e c t r i c a n d c o m p e t i t i v e i n h i b i t i o n effects i n e a r l i e r p u b l i c a t i o n s (16, effect (18)
i t is m o r e l i k e l y d u e to a h y d r o p h o b i c
17, 19, 20),
i n w h i c h h y d r o p h o b i c substrates p a r t i t i o n m o r e f a v o r a b l y to
t h e b u l k c r y o s o l v e n t t h a n to the a c t i v e site, c o m p a r e d w i t h b u l k w a t e r as t h e solvent.
Effects of Low
Temperature
on
Structure
S i n c e m o s t p r o t e i n s are i n a d e l i c a t e l y b a l a n c e d e q u i l i b r i u m w i t h solvent w a t e r , l a r g e concentrations of o r g a n i c solvents m i g h t be
expected
to cause s u b s t a n t i a l p e r t u r b a t i o n s . W e a t t r i b u t e t h e d e m o n s t r a t e d sta b i l i t y of e n z y m e s a n d p r o t e i n s i n h i g h concentrations of o r g a n i c solvent at s u b z e r o t e m p e r a t u r e s to t h e f o l l o w i n g m a i n features: t h e increase of d i e l e c t r i c constant w i t h d e c r e a s i n g t e m p e r a t u r e hydrogen-bond
strength w i t h
t h e increase
(21);
decreasing temperature
of
opposing
(22);
effects o n h y d r o p h o b i c i n t e r a c t i o n s w h i c h t e n d to c a n c e l as t h e t e m p e r a t u r e d r o p s ( 5 ) ; a n d the " t r a p p i n g " of t h e n a t i v e state d u e to the h i g h a c t i v a t i o n energy for d e n a t u r a t i o n , as w e l l as the s t a b i l i z i n g influence of substrate or other b o u n d l i g a n d s ( 5 ) . B e c a u s e o u r c u r r e n t u n d e r s t a n d i n g of the i n t e r a c t i o n s b e t w e e n w a t e r a n d p r o t e i n s is r e l a t i v e l y p o o r i t is not p o s s i b l e to g i v e a d e t a i l e d , q u a n t i t a t i v e e x p l a n a t i o n of t h e a d d i t i o n a l effects a n d c o m p l i c a t i o n s c a u s e d b y a n a d d e d o r g a n i c cosolvent
a n d subzero temperatures.
I t is p o s s i b l e ,
h o w e v e r , to m a k e some q u a l i t a t i v e estimates of the a n t i c i p a t e d effects a n d to r a t i o n a l i z e to some extent t h e o b s e r v e d conditions.
stability under
such
A d v e r s e effects o n t h e e n z y m e structure c o u l d arise f r o m
d e s t a b i l i z a t i o n of t h e n a t i v e c o n f o r m a t i o n
or f r o m
non-native noncatalytically active (denatured) the f o r m e r is of p r i m e interest.
A
more
s t a b i l i z a t i o n of
a
state. I n t h i s d i s c u s s i o n
d e t a i l e d d i s c u s s i o n of
the
a n t i c i p a t e d effects of l o w t e m p e r a t u r e s a n d o r g a n i c cosolvents o n p r o t e i n structure has b e e n g i v e n elsewhere
(5).
W e h a v e o b s e r v e d three types of effects o n t h e structures of e n z y m e s as the t e m p e r a t u r e is l o w e r e d i n c r y o s o l v e n t s : ( 1 ) no a p p a r e n t c h a n g e i n the protein conformation, mobility
of
the
surface
usually marked by
w i t h the possible
side
chains;
(2)
exception
of
decreased
conformational transitions,
l i t t l e effect o n the c a t a l y t i c p r o p e r t i e s ; a n d
(3)
i n c r e a s e d association of s u b u n i t s . I n most cases n o d e t e c t a b l e effects of d e c r e a s i n g t e m p e r a t u r e o n t h e enzyme's structure h a v e b e e n b y such procedures
as m o n i t o r i n g t h e i n t r i n s i c
i n t r i n s i c v i s i b l e absorbance
i n t h e case of
flavin
fluorescence enzymes
detected (16),
or
(Fink
and
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
42
PROTEINS A T L O W T E M P E R A T U R E S
A h m e d , i n p r e p a r a t i o n ) , or i n t h e p r o t o n n m r s p e c t r u m (e.g., s u b t i l i s i n ) ( F i n k a n d Tsai, i n preparation). I n addition, the structure of crystalline elastase has b e e n c o m p a r e d a t 25 ° C i n aqueous
solution w i t h that at
— 5 5 ° C i n 7 0 % m e t h a n o l . E x c e p t f o r changes o n t h e p r o t e i n s surface, due t o decreased
m o b i l i t y o f surface s i d e c h a i n s , t h e structures a r e
identical (13). W h e n β-galactosidase i s c o o l e d i n e i t h e r d i m e t h y l s u l f o x i d e , m e t h a n o l , o r e t h y l e n e g l y c o l - m e t h a n o l cryosolvents, u n d e r c e r t a i n c o n d i t i o n s of e n z y m e c o n c e n t r a t i o n a n d i o n i c e n v i r o n m e n t , a n increase i n t h e u v a b s o r p t i o n o f the e n z y m e is n o t e d at t e m p e r a t u r e s b e l o w — 3 0 ° C . T h e k i n e t i c s o f this r e a c t i o n are
first-order
a n d t h e rates are s i m i l a r i n a l l
t h r e e cryosolvents ( I S ) . T h e c a t a l y t i c a c t i v i t y r e m a i n s u n c h a n g e d d u r i n g t h e progress o f t h i s r e a c t i o n . T h e increase i n a b s o r b a n c e is a t t r i b u t e d t o a
temperature-induced conformational
change
i n t h e /?-galactosidase
s u b u n i t s , w h i c h does n o t affect the active-site o r c a t a l y t i c a c t i v i t y . A similar phenomenon
has b e e n n o t e d also w i t h a - c h y m o t r y p s i n
(Fink
and Good, unpublished observations). B e c a u s e m a n y m e t a b o l i c a l l y significant e n z y m e s are o l i g o m e r i c i t is of p a r t i c u l a r interest t o d e t e r m i n e the effects o f cryosolvents a n d s u b z e r o t e m p e r a t u r e s o n t h e state o f association o f m u l t i s u b u n i t e n z y m e s . A t appropriately l o w temperatures ( b e l o w the denaturation transition) w e find n o e v i d e n c e o f s u b u n i t d i s s o c i a t i o n i n t h e case o f β-galactosidase i n a q u e o u s d i m e t h y l s u l f o x i d e ( 1 8 ) , glucose oxidase i n aqueous m e t h a n o l ethylene glycol ( F i n k a n d A h m e d , i n preparation), a n d liver alcohol dehydrogenase formamide
(LADH)
i n aqueous
d i m e t h y l sulfoxide o r d i m e t h y l
( F i n k a n d Geeves, u n p u b l i s h e d observations).
However i n
the case of β-glucosidase ( a l m o n d ) t h e t e t r a m e r i c e n z y m e dissociates a t 25°C i n 5 0 %
d i m e t h y l s u l f o x i d e , as d e t e r m i n e d b y loss o f c a t a l y t i c
activity, a n d gel-filtration chromatography
(24).
A s t h e temperature
decreases the degree o f association increases: f r o m 1 3 % a t 2 5 ° C , p H * 7.0 to 1 0 0 % a t - 1 7 ° C (see T a b l e I I I ) (24). C o n f i r m a t i o n t h a t i n a c t i v e m o n o m e r s p r e d o m i n a t e at h i g h e r temperatures i n this c r y o s o l v e n t comes Table I I I .
T h e Effect of Temperature on the Dissociation of β-Glucosidase i n 5 0 % Dimethyl Sulfoxide 0
Solvent
(v/v)
Aqueous 5 0 % D i m e t h y l sulfoxide
Temperature 25 25 0 -17
(°C)
%
Tetramer
b
100 13 ± 5 76 ± 7 100
pH*7.0. * Using exclusion chromatography on CPG-glycophase porous glass beads, 100 X 1 cm column . Biochemistry e
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
3.
Enzyme-Catalyzed
FINK
f r o m measurements
43
Reactions
of t h e a m o u n t
of p - n i t r o p h e n o l l i b e r a t e d i n
r e a c t i o n w i t h p - n i t r o p h e n y l - / ? - D - g l u c o s i d e (24, 29), active
tetramer
-5°C
at
— 25 ° C
and
below,
and
the
w h i c h indicate 100%
only
30%
tetramer
at
(24).
Effects of Low
Temperature
on the Kate of
Catalysis
T h e effect of t e m p e r a t u r e o n t h e c a t a l y t i c r e a c t i o n is m o s t d e t e r m i n e d w i t h A r r h e n i u s plots. t h e r a t e of
individual
steps
easily
S u c h plots of the t u r n o v e r rate, or of
i n the
catalytic reaction
^-deglycosylation ) c a n b e v e r y u s e f u l i n c o m p a r i s o n s
(e.g., fcacyiation,
between the catalytic
r e a c t i o n i n the c r y o s o l v e n t at subzero t e m p e r a t u r e a n d t h e r e a c t i o n u n d e r n o r m a l conditions. T y p i c a l effects of t e m p e r a t u r e o n catalysis w i l l b e i l l u s t r a t e d w i t h t h e r e a c t i o n of β-galactosidase a n d o- a n d p - n i t r o p h e n y l galactosides T h e m i n i m u m reaction pathway m a y be represented b y
(18).
Scheme
1 in
w h i c h E S is t h e n o n c o v a l e n t M i c h a e l i s c o m p l e x , a n d E G represents a n enzyme-galactose intermediate (25,
26).
Scheme 1 E + S « ± E S - * E G - » E + + Pi From
k i n e t i c considerations
g a l a c t o s i d e substrate, a n d k
3
G
is r a t e - l i m i t i n g f o r
k
2
the
p-nitrophenyl
is r a t e - d e t e r m i n i n g f o r t h e o-nitro-substrate
at 2 5 ° C , a q u e o u s s o l u t i o n (27).
F o r b o t h substrates t h e A r r h e n i u s p l o t s
at s u b z e r o t e m p e r a t u r e s w e r e f o u n d to b e l i n e a r ( F i g u r e s 2 A a n d
B)
i n d i c a t i n g n o c h a n g e i n the r a t e - l i m i t i n g step, a n d no significant s t r u c t u r a l p e r t u r b a t i o n of
the protein
substrates w o u l d b e e x p e c t e d
(18).
The
affinity of
enzymes
to increase w i t h d e c r e a s i n g
for
their
temperature
b e c a u s e t h e r e a c t i o n i n t h e f o r w a r d d i r e c t i o n is d i f f u s i o n c o n t r o l l e d , a n d h e n c e has a l o w e n e r g y of a c t i v a t i o n c o m p a r e d to t h e d i s s o c i a t i o n r e a c tion.
Because
the
enzyme-substrate
c o m p o n e n t of the K
m
dissociation
constant
is a
major
t e r m , o n e w o u l d e x p e c t t h a t K , i n m a n y cases,
w o u l d also decrease w i t h d e c r e a s i n g t e m p e r a t u r e .
m
T h i s is i n d e e d
s e r v e d , for e x a m p l e , i n t h e a b o v e - m e n t i o n e d β-galactosidase case
ob
(18).
W e h a v e n o t i c e d for s e v e r a l systems e x a m i n e d t h a t extrapolations of t h e A r r h e n i u s plots f o r i n t e r m e d i a t e f o r m a t i o n to a m b i e n t t e m p e r a t u r e s suggest that the rates of i n t e r m e d i a t e i n t e r c o n v e r s i o n w i l l b e of t h e same o r d e r of m a g n i t u d e at t h e t e m p e r a t u r e s at w h i c h the e n z y m e s n o r m a l l y operate
(12).
T h e c o n v e r g e n c e o f A r r h e n i u s p l o t s is s h o w n
for
the
p a p a i n - c a t a l y z e d h y d r o l y s i s of N - c a r b o b e n z o x y - L - l y s i n e p - n i t r o a n i l i d e i n Figure 3
(28).
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
44
PROTEINS A T L O W T E M P E R A T U R E S
/
{
T
(°Κ'
1
Χ ΙΟ ) 3
Biochemistry
Figure 2A. Arrhenius plot for the reaction of β-galactosidase with p-nitrophenyl^-O-galactoside in 60% aqueous dimethyl sulfoxide, pH* 7.0. Ratelimiting step is degalactosylation. (18)
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
3.
FINK
Enzyme-Catalyzed
3.8
3.9
45
Reactions
4.0
4.1 l
/
T
4.2
(°K
4.3
4.4
4.5
4.6
X I0 ) 3
Biochemistry
Figure 2B. Arrhenius plot for the reaction of β-galactosidase with p-nifrophenyl-fi-O-gahctoside in 60% dimethyl sulfoxide, pH* 7.0. Rate-determining step is formation of the galactose-enzyme intermediate. (IS)
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
46
PROTEINS A T L O W T E M P E R A T U R E S 0
-10
3.7
3.8
-20
3.9
-30
40
4.1
-40
4.2
°C
4.3
'/j X I 0 ° K " ' + 3
Figure 3. Arrhenius plots for the rates of formation of intermediates in the reaction of papain with N -carbobenzoxy-i.-lysine p-nitroanilide. The solvent was 60% dimethyl sulfoxide, pH* 6.1, E = 3.0 Χ ΙΟ M, S = 3.0 X 10 M (32). Reactions 2 and 3 correspond to enzyme isomerization (32), Reaction 4 corresponds to the formation of the tetrahedral intermediate (32). a
6
0
Table I V . Enzyme Elastase Trypsin Papain Lysozyme β-Glucosidase Subtilisin Ribonuclease A
Substrate* AcAlaProAlaPNA CBZ-AlaPNP CBZ-LysPNP CBZ-LysPNA CBZ-LysPNP NAG PNPGlu BzPheValArgPNA 2'3'CMP 6
s
0
Conditions Necessary Cryosolvent^ 70% 70% 65% 60% 60% 70% 50% 70% 50%
MeOH MeOH DMSO DMSO DMSO MeOH DMSO MeOH MeOH
P N A = p-nitroanilide; P N P = p-nitrophenyl ester; N A G e = hexamer of Nacetyl-glucosamine; C B Z = 2V -carbobenzoxy-; G l u = glucoside; Bz = benzoyl; 2'3' cyclic cytidine monophosphate. e
a
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
3.
Enzyme-Catalyzed
FINK
Conditions
47
Reactions
Necessary to Stop
Turnover
T h e t e m p e r a t u r e necessary t o effectively stop t h e t u r n o v e r r e a c t i o n varies g r e a t l y d e p e n d i n g o n t h e p a r t i c u l a r e n z y m e - s u b s t r a t e s y s t e m , t h e cryosolvent, t h e p H * , a n d t h e enzyme concentration.
I n some cases,
w h e r e t h e e n e r g y o f a c t i v a t i o n o f t h e r a t e - d e t e r m i n i n g step i s l a r g e , as i n t h e glycosidases, t e m p e r a t u r e s as h i g h as — 2 0 ° C a t t h e p H o p t i m u m are sufficient (24, 29, 30, 31). B y c h o o s i n g a n o n o p t i m a l p H * t h e t u r n o v e r r e a c t i o n f o r m o s t e n z y m e s c a n b e b r o u g h t t o a h a l t a t — 50° C o r higher.
Some representative data are given i n T a b l e I V . I n general the
o f t e n l a r g e effect o f t h e cosolvent o n K
m
means that substantial a d d i
t i o n a l r a t e r e d u c t i o n s c a n b e effected b y w o r k i n g w i t h n o n s a t u r a t i n g substrate c o n c e n t r a t i o n s ( 5 ) . F o r reactions i n w h i c h a c h r o m o p h o r i c p r o d u c t i s r e l e a s e d p a r t w a y t h r o u g h t h e c a t a l y t i c r e a c t i o n — f o r e x a m p l e , i n protease c a t a l y s i s w h e r e a n a c y l - e n z y m e i n t e r m e d i a t e i s f o r m e d — i t i s o f t e n p o s s i b l e t o see t h e release of a n e q u i v a l e n t a m o u n t o f t h e p r o d u c t f o r m e d c o n c u r r e n t l y t o t h e f o r m a t i o n of t h e e n z y m e - s u b s t r a t e i n t e r m e d i a t e . F o r e x a m p l e , as s h o w n i n F i g u r e 4, i n t h e r e a c t i o n o f p a p a i n w i t h N - c a r b o b e n z o x y - L a
l y s i n e p - n i t r o p h e n y l ester i n 6 0 % d i m e t h y l s u l f o x i d e at p H * 6.1 ( t h e p H o p t i m u m ) a stoichiometric "burst" of p-nitrophenol is observed at t e m p e r a t u r e s b e l o w — 40 ° C as t h e a c y l - e n z y m e i s f o r m e d , f o l l o w e d b y n o f u r t h e r release o f p - n i t r o p h e n o l , i n d i c a t i n g t h a t n o t u r n o v e r i s o c c u r r i n g (12).
to Effectively Stop T u r n o v e r pH*
Ε · (M)
9.2 7.2 7.7 6.1 7.0 5.8 7.1 9.5 2.1
3.8 X 1 0 1.3 Χ 10" 2.8 Χ 10" 3.0 X 1 0 1.4 χ 10" 3.6 Χ 10" 4.7 Χ 10" 2.4 X 10" 8.0 Χ 10"
'MeOH
Temperature e
5
5
e
5
7
5
e
5
5.0 3.2 1.0 3.0 1.0 2.0 1.0 6.9 3.2
Χ 10" Χ 10" X 10" X10 X 10" Χ 10" X 10" Χ 10" Χ 10"
4
3
3
s
3
5
2
5
4
-60 -40 -45 -15 -70 -20 -20 -21 -40
methanol; D M S O = dimethyl sulfoxide.
American Chemical Society Library 1155 16th St. N. W.
Fennema; Proteins at Low Temperatures Advances in Chemistry; Washington. American Chemical D. C. Society: 20036Washington, DC, 1979.
(°C)
PROTEINS A T L O W T E M P E R A T U R E S
48
1.0
ο χ Ο 5
0
8
0.4 0.2
Oh 0
100
200
300
400
500
600
700
Time (secs) Figure 4. The acylation of papain by N -carbobenzoxy-^lysine ester under nonturnover conditions in 60% dimethyl sulfoxide, (See Ref. 11) a
Correspondence
Between Subzero and Normal
\>-nitrophenyl —70°C, pH* 6.8.
Temperature
Data
I n order for cryoenzymology experiments t o p r o v i d e mechanistically significant i n f o r m a t i o n , i t i s i m p o r t a n t t h a t t h e r e a c t i o n a t l o w t e m p e r a t u r e b e analogous
t o t h a t u n d e r n o r m a l c o n d i t i o n s , that i s , a q u e o u s
solution and ambient temperature.
O n e definitive w a y t o demonstrate
this i s t o t a k e t h e k i n e t i c d a t a f o r a p a r t i c u l a r i n t e r m e d i a t e a t s u b z e r o t e m p e r a t u r e s a n d t o c a l c u l a t e t h e e x p e c t e d rates o f f o r m a t i o n a n d b r e a k d o w n under normal conditions. m e n t (e.g., b y s t o p p e d - f l o w
I f these rates are accessible t o m e a s u r e
techniques)
then comparison can b e made
between the low-temperature and high-temperature data. I n t h e reaction of p a p a i n w i t h 2V -carbobenzoxy-L-lysine p-nitroa
a n i l i d e , s t u d i e d at s u b z e r o t e m p e r a t u r e s i n 6 0 % d i m e t h y l s u l f o x i d e , t h e slowest step p r e c e d i n g t h e o v e r a l l r a t e - l i m i t i n g step corresponds
to t h e
f o r m a t i o n o f a t e t r a h e d r a l i n t e r m e d i a t e (28). T h e r e a c t i o n appears as a n increase i n a b s o r b a n c e i n the 3 6 0 - 4 0 0 n m r e g i o n ( F i g u r e 5 ) , a n d at h i g h p H * ( a b o v e 9 ) essentially a l l t h e e n z y m e c a n b e t r a p p e d i n the f o r m o f t h i s i n t e r m e d i a t e . B y c o r r e c t i o n f o r the effect o f cosolvent o n t h e r a t e , a n d e x t r a p o l a t i o n t o 25 ° C u s i n g the A r r h e n i u s p l o t , a v a l u e o f 6 5 db 10 s" w a s e s t i m a t e d f o r the o b s e r v e d r a t e o f f o r m a t i o n u n d e r a g i v e n set 1
of e n z y m e a n d substrate c o n d i t i o n s . readily observable u s i n g stopped-flow
T h e r e a c t i o n s h o u l d therefore b e spectrophotometry,
b e t h e case. T h e m e a s u r e d rate w a s f o u n d t o b e 7 0 ±
as p r o v e d t o 4 s" (32). I n 1
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
3.
Enzyme-Catalyzed
FINK
49
Reactions
addition, at the l o w temperatures the concentration of the tetrahedral intermediate that could b e accumulated was p H * - d e p e n d e n t , increasing to a m a x i m u m at h i g h p H * . E x a c t l y the same r e l a t i o n s h i p w a s f o u n d i n t h e stopped-flow
studies.
S i m i l a r l y the rate o f f o r m a t i o n o f t h e i n t e r -
mediate was p H * - d e p e n d e n t tures
b o t h at subzero
and ambient
tempera-
(32).
S u c h correlations are n o t a l w a y s p o s s i b l e b e c a u s e t h e e s t i m a t e d rates at 2 5 ° C m a y b e too fast t o m e a s u r e w i t h r a p i d - m i x i n g t e c h n i q u e s a n d b e c a u s e t h e rates o f f o r m a t i o n o f m o r e t h a n one i n t e r m e d i a t e m a y b e o f t h e same o r d e r o f m a g n i t u d e at t h e h i g h e r t e m p e r a t u r e
300
320
340
360
380
400
420
440
(12).
460
480
500
WAVELENGTH nm Biochemistry
Figure S. Formation of the tetrahedral intermediate in with N -carbobenzoxy^-lysine p-nitroanilide in 60% —3°C, pH 9.3. The kinetics were followed by repetitive the intermediate is at 361 nm. The value of k is 2.4 X Χ ΙΟ- M , S = 2.7 X 10' M (32;. a
o 6 s
5
0
the reaction of papain dimethyl sulfoxide at spectral scans, X of 10' sec' for Ê = 7.5 maw
5
1
5
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
0
50
PROTEINS A T L O W T E M P E R A T U R E S
Change in Rate-Determining
Step at Low
Temperature
A n a d d i t i o n a l p o t e n t i a l a d v a n t a g e of c r y o e n z y m o l o g y is t h a t reactions i n w h i c h intermediates
cannot
be
detected
at a m b i e n t
temperature,
b e c a u s e t h e y b r e a k d o w n m o r e r a p i d l y t h a n t h e y are f o r m e d , m a y u n d e r g o changes i n t h e r a t e - d e t e r m i n i n g step s u c h t h a t t h e i n t e r m e d i a t e b r e a k d o w n b e c o m e s s l o w e r t h a n its rate of f o r m a t i o n at l o w t e m p e r a t u r e s . T h e m i n i m u m reaction p a t h w a y for most h y d r o l y t i c enzymes c a n be represented
b y S c h e m e 2 i n w h i c h E S ' is a n e n z y m e - s u b s t r a t e
inter
m e d i a t e s u c h as a n a c y l - , p h o s p h o r y l - , or g l y c o s y l - e n z y m e . Scheme 2 ki k Ε + S *± E S - » 2
If k
2
ks ES' -» E + + Pi
P
2
is less t h a n fc at a m b i e n t t e m p e r a t u r e s E S ' c a n n o t b e a c c u m u l a t e d . 3
H o w e v e r , i f t h e energies o f a c t i v a t i o n ( E ) o f steps 2 a n d 3 are different a
and i n particular such that E
a
f o r fc is greater t h a n E 3
a
f o r k , t h e n as t h e 2
t e m p e r a t u r e is decreased t h e r e w i l l c o m e a p o i n t at w h i c h k
2
is greater
than k and E S ' w i l l accumulate. 3
A t least t w o s u c h examples are k n o w n . I n t h e r e a c t i o n of p a n c r e a t i c carboxypeptidase
w i t h a n ester substrate a c h a n g e i n r a t e - d e t e r m i n i n g
step f r o m f o r m a t i o n to b r e a k d o w n of a p o s t u l a t e d a c y l - e n z y m e i n t e r m e d i a t e occurs at — 1 0 ° C ( 3 3 ) .
T h u s the i n t e r m e d i a t e is d e t e c t a b l e
s u b z e r o t e m p e r a t u r e s b u t not u n d e r n o r m a l c o n d i t i o n s . of β-glueosidase ( a l m o n d )
at
I n the r e a c t i o n
w i t h p-nitrophenyl-£-D-glucoside a glucosyl-
e n z y m e i n t e r m e d i a t e c a n be r e a d i l y d e t e c t e d a n d s t a b i l i z e d at s u b z e r o t e m p e r a t u r e s (24, 29).
T h e i n t e r m e d i a t e has also b e e n d e t e c t e d at 2 0 ° C
u s i n g stopped-flow t e c h n i q u e s b y T a k a h a s i (34).
However, Legler
f a i l e d to d e t e c t the i n t e r m e d i a t e at 37° u s i n g s t o p p e d - f l o w
(35)
experiments.
T h e reason for these a p p a r e n t l y c o n t r a d i c t o r y results b e c o m e s c l e a r f r o m a n e x a m i n a t i o n of F i g u r e 6, w h i c h shows t h e A r r h e n i u s p l o t s o b t a i n e d f o r the g l u c o s y l a t i o n a n d d e g l u c o s y l a t i o n reactions
in 50%
dimethyl
s u l f o x i d e at s u b z e r o t e m p e r a t u r e s . T h e energies of a c t i v a t i o n f o r t h e t w o steps are q u i t e different a n d are s u c h t h a t g l u c o s y l a t i o n is faster at h i g h e r t e m p e r a t u r e s , w h e r e a s h y d r o l y s i s of the g l u c o s y l - e n z y m e is r a t e l i m i t i n g at t e m p e r a t u r e s b e l o w 0 ° C Temperature-Dependent
Changes in
(24). ΔΗ
A l t h o u g h t h e A r r h e n i u s plots at s u b z e r o t e m p e r a t u r e s f o r m a n y of t h e reactions i n v e s t i g a t e d h a v e b e e n l i n e a r (e.g., F i g u r e s 2 a n d 3 ) , some cases h a v e b e e n o b s e r v e d i n w h i c h changes i n t h e e n t h a l p y of a c t i v a t i o n
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
3.
Enzyme-Catalyzed
FINK
51
Reactions
V
T
(°KXI0 ) 3
Figure 6. Change in the rate-determining step in the reaction of β-glucosidase with p-nitrophenyl^-O-glucoside in 50% dimethyl sulfoxide, pH* 7.1. The rate constant k is that for formation of the enzyme-glucose intermediate; k corresponds to the rate constant for deglucosylation at temperatures below 0°C. 0l)S
cat
o c c u r (e.g., F i g u r e 6 ) . L y s o z y m e ( h e n e g g - w h i t e ) is a n o t h e r s u c h case, a n d represents s o m e i n t e r e s t i n g features ( 3 1 ) . solvents
Aqueous methanol cryo
a r e s u i t a b l e f o r l o w t e m p e r a t u r e i n v e s t i g a t i o n s of
lysozyme
catalysis (31). T h e i n t e r a c t i o n b e t w e e n l y s o z y m e a n d t h e h e x a s a c c h a r i d e of I V - a c e t y l - g l u c o s a m i n e , o r t h e c o r r e s p o n d i n g t r i s a c c h a r i d e i n h i b i t o r , c a n be f o l l o w e d b y changes i n t h e i n t r i n s i c
fluorescence
of the enzyme.
Three
i n t e r m e d i a t e i n t e r c o n v e r s i o n s c a n b e d e t e c t e d w i t h t h e substrate p r i o r to t h e r a t e - l i m i t i n g step, a n d t w o i n t e r c o n v e r s i o n s c a n b e seen i n t h e case o f t h e i n h i b i t o r (31).
B o t h t h e rate constants f o r e a c h i n d i v i d u a l
t r a n s f o r m a t i o n a n d t h e d i s s o c i a t i o n constants f o r t h e o v e r a l l n o n t u r n o v e r process
h a v e b e e n d e t e r m i n e d as a f u n c t i o n of t e m p e r a t u r e , b o t h a t
subzero temperatures conditions
(36).
(31) a n d at h i g h e r t e m p e r a t u r e s u n d e r n o r m a l
C o m p a r i s o n o f t h e t w o sets o f d a t a i n d i c a t e t h a t a
b r e a k occurs i n t h e A r r h e n i u s a n d V a n t H o f f plots i n t h e v i c i n i t y o f 15-20°C.
L y s o z y m e is k n o w n t o u n d e r g o a s t r u c t u r a l r e a r r a n g e m e n t i n
this t e m p e r a t u r e r e g i o n (37). S o m e other systems i n w h i c h n o n l i n e a r A r r h e n i u s p l o t s h a v e f o u n d at subzero
temperatures have been
been
reported b y D o u z o u ( 2 ) .
T h e r e is n o r e a s o n a t p r e s e n t t o assume t h a t t h e o b s e r v e d changes i n
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
52
PROTEINS A T L O W
TEMPERATURES
e n e r g y of a c t i v a t i o n at temperatures a b o v e — 1 0 0 ° C are not d u e to the same p h e n o m e n a
as cause s u c h d e v i a t i o n s at h i g h e r t e m p e r a t u r e s i n
aqueous solutions (e.g., c h a n g e i n r a t e - d e t e r m i n i n g step a n d t e m p e r a t u r e i n d u c e d c o n f o r m a t i o n a l c h a n g e i n t h e p r o t e i n ) . H o w e v e r , at t e m p e r a t u r e s closer to a b s o l u t e zero F r a u e n f e l d e r s observations r e g a r d i n g t h e k i n e t i c s of l i g a n d r e c o m b i n a t i o n w i t h h e m e p r o t e i n s suggest t h a t a d h e r e n c e t h e s i m p l e A r r h e n i u s expression is n o l o n g e r v a l i d
to
(38).
Conclusions F r o m o u r investigations of several different e n z y m e - c a t a l y z e d tions at subzero t e m p e r a t u r e s i n aqueous
reac-
o r g a n i c solvent systems
we
h a v e b e e n a b l e to m a k e a n u m b e r of g e n e r a l i z a t i o n s . T h e first is t h a t , i n m a n y cases, the r e a c t i o n p a t h w a y a n d c a t a l y t i c m e c h a n i s m seem to be u n c h a n g e d u n d e r these c o n d i t i o n s , c o m p a r e d to t h e r e a c t i o n u n d e r n o r m a l c o n d i t i o n s . T h e s e c o n c l u s i o n s are b a s e d o n a v a r i e t y of e v i d e n c e , i n c l u d i n g k i n e t i c a n d t h e r m o d y n a m i c p r o p e r t i e s , types of i n t e r m e d i a t e detecta b l e , a n d l a c k of s t r u c t u r a l changes i n t h e p r o t e i n . S e c o n d l y , i t appears t h a t i n most, i f n o t a l l , cases t h e i n i t i a l b i n d i n g of substrate to the e n z y m e is f o l l o w e d b y a n i s o m e r i z a t i o n step i n v o l v i n g at least some of t h e a c t i v e site c a t a l y t i c groups.
F u r t h e r m o r e i t seems, b a s e d o n a l i m i t e d n u m b e r
of systems, t h a t t h e e x t r a p o l a t e d rates f o r e a c h i n t e r m e d i a t e t r a n s f o r m a t i o n t o 2 5 - 3 7 ° i n d i c a t e s t h a t u n d e r n o r m a l c o n d i t i o n s t h e rates of most of the i n t e r m e d i a t e interconversions are v e r y s i m i l a r .
T h i s is e n t i r e l y
consistent w i t h t h e ideas of e n z y m e e v o l u t i o n ( c a t a l y t i c ) as e n u n c i a t e d b y K n o w l e s a n d coworkers
(39).
I m p l i c i t i n the a b o v e
findings
is t h e
f a c t t h a t the s t r u c t u r e of t h e e n z y m e at subzero t e m p e r a t u r e s , i n t h e a p p r o p r i a t e c r y o s o l v e n t , is n o t s i g n i f i c a n t l y different f r o m t h a t i n aqueous solution a n d ambient temperatures. A l t h o u g h the e n z y m e s u s e d i n this a r t i c l e to i l l u s t r a t e v a r i o u s features of c r y o e n z y m o l o g y
have been relatively simple and w e l l characterized,
t h e r a t h e r g e n e r a l a p p l i c a b i l i t y of t h e t e c h n i q u e to p r o t e i n - l i g a n d i n t e r actions is i n d i c a t e d b y successful investigations of m u c h m o r e c o m p l i c a t e d systems.
S e v e r a l b i o c h e m i c a l systems i n v o l v i n g e l e c t r o n t r a n s p o r t h a v e
b e e n s u b j e c t e d to d e t a i l e d e x a m i n a t i o n at s u b z e r o temperatures i n solvents.
F o r e x a m p l e , chloroplasts a n d some of t h e i r i n d i v i d u a l
ponents i n the photosynthetic electron-transport c h a i n have been by
Cox
(40,
41)
to b e f u n c t i o n a l , i n d i c a t i n g t h a t
fluid comfound
cryoenzymological
t e c h n i q u e s are a p p l i c a b l e to m e m b r a n e - b o u n d e n z y m e s .
I n fact D o u z o u
a n d c o w o r k e r s h a v e c a r r i e d o u t extensive i n v e s t i g a t i o n s of l i v e r m i c r o s o m a l , a n d b a c t e r i a l , oxidase chrome P o 4 5
(hydroxylating)
systems
i n v o l v i n g cyto-
(42-44).
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
3.
FINK
Enzyme-Catalyzed
53
Reactions
E l e c t r o n t r a n s p o r t i n m i t o c h o n d r i a l systems h a s b e e n
studied b y
C h a n c e i n some l o w - t e m p e r a t u r e ( t o 7 7 ° K ) e x p e r i m e n t s i n v o l v i n g i n t e r m e d i a t e s i n t h e o x i d a t i o n o f c y t o c h r o m e oxidase ( 4 5 , 46).
Flash photo-
lysis w a s u s e d t o dissociate t h e C O c o m p l e x u n d e r c o n d i t i o n s w h e r e t h e r e a s s o c i a t i o n w i t h o x y g e n is f a v o r e d . I n t r a m o l e c u l e e n z y m e - l i k e r e a c t i o n s , w h i c h c a n b e c a r r i e d o u t i n n o n f l u i d (i.e. glass) solvents h a v e also b e e n probed
successfully
at very l o w temperatures
(e.g., r h o d h o p s i n a n d
b a c t e r i o r h o d o p s i n (47) a n d t h e reassociation o f l i g a n d s t o h e m e p r o t e i n s i n w h i c h Fraeunfelder and coworkers very intriguing phenomena
(38, 48, 49) h a v e o b s e r v e d
some
over t h e temperature range 20 to 3 0 0 ° K ) .
O n e o t h e r i n v e s t i g a t i o n o f note is t h a t o f H a s t i n g s a n d c o w o r k e r s ( 5 0 , 51 ) i n w h i c h s e v e r a l i n t e r m e d i a t e s i n t h e r e a c t i o n o f b a c t e r i a l l u c i f erase have been trapped a n d characterized. m a y b e f o u n d elsewhere
R e v i e w s o f these
investigations
(2,8).
O n e of the u l t i m a t e goals of o u r c r y o e n z y m o l o g y studies i s t o o b t a i n detailed, high-resolution structural information about each intermediate on the reaction pathway.
T h e present m e t h o d o f c h o i c e t o a c c o m p l i s h
this g o a l is X - r a y c r y s t a l l o g r a p h y . O t h e r t e c h n i q u e s c a n p r o v i d e specific i n f o r m a t i o n i n t h e d e t a i l r e q u i r e d f o r o n l y l i m i t e d parts o f t h e s t r u c t u r e at best.
T h e first steps i n t h i s d i r e c t i o n h a v e n o w b e e n
accomplished.
F o r e x a m p l e , the f e a s i b i l i t y o f o b t a i n i n g X - r a y d i f f r a c t i o n d a t a o n t r a p p e d crystalline enzyme-substrate intermediates has been demonstrated 23)
as f o l l o w s .
(13,
C r y s t a l s o f elastase w e r e g r o w n i n t h e n o r m a l m a n n e r ,
t r a n s f e r r e d to 7 0 % m e t h a n o l c r y o s o l v e n t , a n d t h e substrate a l l o w e d to diffuse i n at — 5 5 ° C u n t i l t h e a c y l - e n z y m e w a s f o r m e d yield).
(in ^ 80%
Diffraction data were then collected, leading to t h e eventual
solution of the structure of t h e trapped acyl-enzyme
(13).
Based o n
experiments u n d e r w a y w e expect t h a t a set o f " t i m e - l a p s e " p i c t u r e s of t h e step-wise t r a n s f o r m a t i o n o f substrate to p r o d u c t w i l l b e c o m e a v a i l a b l e i n t h e near future.
Clearly the potential of cryoenzymology
i s just
b e g i n n i n g to b e c o m e a p p a r e n t . Literature Cited 1. Freed, S. Science 1965, 150, 576. 2. Douzou, P. "Cryobiochemistry"; Academic: Paris, 1977. 3. Fink, A. L . ; Gray, B. L . In "Biomolecular Structure and Function," Agris, P. F., Sykes, B., Loeppky, R., Eds.; Academic: New York, 1978, p 471. 4. Fink, A. L. Acc. Chem. Res. 1977, 10, 233. 5. Fink, A. L. J. Theor. Biol. 1976, 61, 419. 6. Fink, A. L.; Geeves, M. "Methods in Enzymol"; Academic: New York, 1979. 7. Makinent, M. W.; Fink, A. L . Ann. Rev. Biophys. Bioeng. 1977, 6, 301. 8. Douzou, P. Adv. Enzymol. 1977, 45, 157. 9. Douzou, P. Methods Biochem. Anal. 1974, 22, 401. 10. Douzou, P. Mol. Cell Biochem. 1973, 1, 15.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
54 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51.
PROTEINS AT LOW TEMPERATURES
Fink, A. L.; Angelides, K. J. Biochemistry 1976, 15, 5287. Fink, A. L. Biochemistry 1976, 15, 1580. Alber, T.; Petsko, G. Α.; Tsernoglou, D. Nature 1976, 263, 297. Douzou, P.; Hui Bon Hoa, G.; Maurel, P.; Travers, F. In "Handbook of Biochemistry and Molecular Biology," Fasman, G., Ed.; Chemical Rub ber Co: Cleveland, Ohio, 1976. Hui Bon Hoa, G.; Douzou, P. J. Biol. Chem. 1973, 248, 4649. Fink, A. L. Biochemistry 1973, 12, 1736. Fink, A. L. Biochemistry 1974, 13, 277. Fink, A. L.; Magnusdottir, K. Biochemistry 1979, submitted. Clement, G. E.; Bender, M. L. Biochemistry 1963, 2, 836. Mares-Guia, M.; Figueiredo, A. F. S. Biochemistry 1972, 11, 2091. Akerlöf, G. J. Am. Chem. Soc. 1932, 54, 4125. Kavanau, J. L. J. Gen. Physiol. 1950, 34, 193. Fink, A. L.; Ahmed, A. I. Nature 1976, 263, 294. Fink, A. L.; Weber, J. Biochemistry 1979, submitted. Fink, A. L.; Angelides, K. J. Biochem. Biophys. Res. Commun. 1975, 64, 701. Wallenfels, K.; Weil, R. The Enzymes 1972, 7, 618. Sinnott, M. L.; Souchard, I. J. L . Biochem.J.1973, 133, 89. Angelides, K. J.; Fink, A. L. Biochemistry 1978, submitted. Fink, A. L.; Good, N. Biochem. Biophys. Res. Commun. 1974, 58, 126. Hui Bon Hoa, G.; Douzou, P.; Petsko, G. A. J. Mol. Biol. 1975, 96, 367. Fink, A. L.; Homer, R.; Weber, J. Biochemistry 1979, submitted. Angelides, K. J.; Fink, A. L. Biochemistry 1979, in press. Makinen, M. W.; Yamamura, G.; Kaiser, Ε. T. Proc. Nat. Acad. Sci. U.S. 1976, 73, 3882. Takahashi, K. J. Sci. Hiroshima Univ. Ser. A. Phys. Chem. 1975, 39, 237. Legler, G. ActaMicrobiol.Acad. Sci. Hung. 1975, 22, 403. Banerjee, S. K.; Holler, E.; Hess, G. P.; Rupley, J. A. J. Biol. Chem. 1975, 250, 4355. Saint-Blanchard, J.; Clochard, Α.; Cozzone, P.; Berthou, J.; Jollès, P. Biochim. Biophys. Acta 1977, 491, 354. Alberding, N.; Austin, R. H.; Chan, S. S.; Eisenstein, L.; Frauenfelder, H.; Gunsalus, I. C.; Nordlund, T. M. J. Chem. Phys. 1976, 65, 5631. Albery, W. J.; Knowles, J. R. Biochemistry 1976, 15, 5631. Cox, R. Eur. J. Biochem. 1975, 55, 625. Cox, R. Biochim. Biophys. Acta 1975, 387, 588. Debey, P.; Hui Bon Hoa, G.; Douzou, P. FEBS Lett. 1973, 70, 2633. Debey, P.; Balny, C.; Douzou, P. Proc. Nat. Acad. Sci. U.S. 1973, 70, 2633. Debey, P.; Balny,C.;Douzou, P. FEBS Lett. 1973, 35, 86. Chance, B.; Graham, N.; Legallais, V. Anal. Biochem. 1975, 67, 552. Chance, B.; Saronio,C.;Leigh, J. S. J. Biol. Chem. 1975, 250, 9226. Hess, B.; Oesterhelt, D. In "Dynamics of Energy-Translucing Membranes", Ernster, Estabrook and Slater, Eds. Elsevier: Amsterdam, 1974; p 257. Austin, R. H.; Beeson, K. W.; Eisenstein, L.; Frauenfelder, H.; Gunsalus, I. C. Biochemistry 1975, 14, 5355. Austin, R.H.;Alberding, N.; Beeson, K.; Chan, S.; Eisenstein, L.; Frauenfelder, H.; Gunsalus, I. C.; Nordlund, T. Croat. Chem. Acta 1977, 49, 287. Hastings, J. W.; Balny, C. J. Biol. Chem. 1975, 250, 7288. Balny,C.;Hastings, J. W. Biochemistry 1975, 14, 4719.
RECEIVED June 16, 1978.
Fennema; Proteins at Low Temperatures Advances in Chemistry; American Chemical Society: Washington, DC, 1979.