14
Industrial Experience in Applying the Redlich-Kwong Equation to Vapor-Liquid Equilibria
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
R. D. GRAY, JR. Exxon Research and Engineering Co., Florham Park, NJ 07932
This chapter provides a critical assessment of the strengths and weaknesses of methods which use the Redlich-Kwong equation of state to correlate and predict vapor-liquid equi libria. A brief review is given of well established strengths (effectiveness for high pressure and cryogenic light hydro carbon systems) and weaknesses (inability to represent de tails of density dependence, problems with some versions of the Redlich-Kwong method for supercritical gases, and difficulties with polar compounds). A more detailed dis cussion is given for (cryogenic H -containing systems as well as for certain problems in representing details of paraffinparaffin binaries for critical region behavior or for wide ranges of conditions and difficulties with heavy hydrocarbon systems). Based on this experience, a set of desirable criteria for the next generation of equation-of-state methods is provided. 2
^T^his c h a p t e r d r a w s o n over eight years experience i n u s i n g t h e R e d l i c h K w o n g ( R K ) e q u a t i o n of state to correlate a n d p r e d i c t v a p o r - l i q u i d equilibrium
( V L E ) behavior i n petroleum refining a n d petrochemical
a p p l i c a t i o n s . T h e p e r s p e c t i v e is that of a t h e r m o d y n a m i c d a t a d e v e l o p m e n t a n d i n t e r n a l c o n s u l t i n g g r o u p w h i c h takes r e s p o n s i b i l i t y f o r t h e a c c u r a c y of t h e p r e d i c t i o n s of t h e d a t a m e t h o d s i t r e c o m m e n d s . k i n d of experience often leads one to u n c o v e r weaknesses
This
i n a data
c o r r e l a t i o n . A t t h e same t i m e , one often is f o r c e d to e x t e n d a c o r r e l a t i o n far outside its i n t e n d e d r e g i o n of v a l i d i t y , sometimes u n c o v e r i n g u n e x p e c t e d c a p a b i l i t i e s . G e n e r a l l y , o n e discovers t h i n g s i r i a p p l i c a t i o n e x p e r i ence that are difficult to discover i n a n y other w a y . 0-8412-0500-0/79/33-182-253$05.00/l © 1979 American Chemical Society
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
254
EQUATIONS
OF
STATE
T h e objective of this c h a p t e r is to s u m m a r i z e the m a j o r patterns of s t r e n g t h a n d weakness w h i c h r e c u r i n the a p p l i c a t i o n of the R K e q u a t i o n of state to p r e d i c t phase b e h a v i o r . well
S o m e of these patterns a r e q u i t e
e s t a b l i s h e d i n p r e v i o u s l i t e r a t u r e , a n d so a r e s u m m a r i z e d
only
briefly. S o m e less w e l l - r e c o g n i z e d strengths a n d weaknesses are e x p l o r e d i n some d e t a i l . concerning
B a s e d o n this experience, some c o n c l u s i o n s a r e d r a w n
d e s i r a b l e features
of t h e next g e n e r a t i o n of m e t h o d s f o r
p r e d i c t i n g p h a s e - e q u i l i b r i u m b e h a v i o r . I t is h o p e d t h a t this synopsis o f i n d u s t r i a l experience w i l l p r o v e u s e f u l n o t o n l y t o t h e m a n y c u r r e n t l y u s i n g R K m e t h o d s , b u t also to those i n t h e a c a d e m i c w o r l d w h o a r e
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
engaged i n developing n e w methods. Chronology
of RK Application
to VLE
A n a b b r e v i a t e d c h r o n o l o g y of the d e v e l o p m e n t o f R K m e t h o d s is a u s e f u l w a y to b e g i n this d i s c u s s i o n . A l t h o u g h W i l s o n (1) first p r o p o s e d the i n t r o d u c t i o n of a t e m p e r a t u r e - d e p e n d e n t p a r a m e t e r to r e p l a c e one o f t w o constants i n 1964, m u c h of the p o p u l a r i t y of t h e R K m e t h o d stems f r o m the e x t r e m e l y s i m p l e t e m p e r a t u r e d e p e n d e n c e i n t r o d u c e d b y Soave (2)
i n 1972.
I n t h e i n t e r v e n i n g p e r i o d , Joffe a n d Z u d k e v i t c h
(3,4,5)
i n 1969 a n d 1970 a n d C h a n g a n d L u (6) i n 1970 h a d p r o p o s e d m a k i n g b o t h constants t e m p e r a t u r e d e p e n d e n t , i n s p i r e d i n p a r t b y a series o f p a p e r s b y C h u e h a n d P r a u s n i t z (7,8) w h i c h d e m o n s t r a t e d t h a t t h e R K e q u a t i o n c a n b e a d a p t e d to p r e d i c t b o t h v a p o r a n d l i q u i d p r o p e r t i e s . T h e m o r e c o m p l e x J o f f e - Z u d k e v i t c h ( J Z ) m e t h o d w a s n o t as w i d e l y a d o p t e d as the Soave p r o c e d u r e . T w o n o t e w o r t h y recent d e v e l o p m e n t s a r e t h e P e n g a n d R o b i n s o n equation
a n d t h e G r a b o s k i - D a u b e r t v e r s i o n of t h e Soave
(9,10,11)
m e t h o d (12).
T h e P e n g - R o b i n s o n w o r k is p a r t o f a systematic attack
o n phase b e h a v i o r of interest i n gas p r o c e s s i n g , w i t h e s p e c i a l l y i m p r e s s i v e t r e a t m e n t of c r i t i c a l r e g i o n effects, w h i l e t h e G r a b o s k i - D a u b e r t w o r k p r o v i d e s a c o m p r e h e n s i v e a p p l i c a t i o n of t h e Soave m e t h o d t o a l a r g e variety
of hydrocarbon
a n d related
systems
o f interest i n r e f i n i n g
applications. I n this c h a p t e r , most of t h e a p p l i c a t i o n experience is f o r t h e J Z method,
w h i c h has been
used
at E x x o n R e s e a r c h
a n d Engineering
C o m p a n y since before its p u b l i c a t i o n (see A c k n o w l e d g m e n t
Section).
H o w e v e r , most o f t h e c o n c l u s i o n s a p p l y to t h e Soave o r other f o r m s , w i t h m o d i f i c a t i o n s as n o t e d . Summary
of Procedures
Equation
to VLE
to Adapt
the RK
Prediction
T h e R K e q u a t i o n of state, r e l a t i n g pressure Ρ t o m o l a r v o l u m e V and temperature Τ is
P =
RT V
-6
aT'1/2 V(V + b)
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(1)
14.
The Redlich-Kwong
G R A Y
255
Equation
I n a d a p t i n g the R K e q u a t i o n for v a p o r - l i q u i d e q u i l i b r i u m c a l c u l a tions, p u r e - c o m p o n e n t p a r a m e t e r s are a d j u s t e d to m a t c h v a p o r a n d l i q u i d f u g a c i t y a l o n g the v a p o r pressure locus.
I n the Soave m o d i f i c a t i o n o n l y
the R K p a r a m e t e r a is t e m p e r a t u r e d e p e n d e n t , w h i l e for the J Z m o d i f i c a t i o n b o t h a a n d b are t e m p e r a t u r e d e p e n d e n t . U s i n g the n o m e n c l a t u r e i n t r o d u c e d b y C h u e h a n d P r a u s n i t z
(6,7),
p u r e - c o m p o n e n t p a r a m e t e r s are expressed i n terms of dimensionless p r e m u l t i p l i e r s Ω . a n d Ω .. α
&
τ>2Τ>
Ω
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
at =
p
α4
2.5
(2)
C i
i^aH e r e , Ω .° =
0.42747 . . . a n d Ω . ° =
α
δ
(3)
0.08664 . . . w i l l be u s e d to d e n o t e
the values of the p r e m u l t i p l i e r s u s e d i n the o r i g i n a l R K e q u a t i o n . I n terms of this n o m e n c l a t u r e , the Soave p r e m u l t i p l i e r , Ω . ° ,
gen
σ
e r a l i z e d i n terms of P i t z e r ' s a c e n t r i c f a c t o r ωι a n d the r e d u c e d t e m p e r a t u r e Tr., is Ω
σί
=
Ω ° T
1/2
RI
α
{1 +
(0.48 +
1-574
-
ω ί
0.176
ωί
2
) (1 -
T> ) } R
/2
(4)
2
T h e J o f f e - Z u d k e v i t c h ( R K J Z ) m o d i f i c a t i o n i n c l u d e s v a r i a t i o n s of b o t h Ω . a n d Ω&. w i t h t e m p e r a t u r e to fit l i q u i d d e n s i t y as w e l l as to m a t c h σ
v a p o r - t o - l i q u i d f u g a c i t y a l o n g the v a p o r pressure locus. method
proposed by
Z u d k e v i t c h a n d Joffe
(4)
(The
original
had matched
f u g a c i t y to a g e n e r a l i z e d v a p o r f u g a c i t y c o r r e l a t i o n , b u t the
liquid present
s t u d y f o l l o w s the m e t h o d t h e y a d o p t e d i n a later p u b l i c a t i o n ( 5 ) . )
By
c o m p a r i s o n w i t h the Soave p r o c e d u r e , this m e t h o d loses some a c c u r a c y i n s a t u r a t e d v a p o r densities
( a l t h o u g h this causes v e r y little loss
of
a c c u r a c y i n v a p o r f u g a c i t y ) , w h i l e g r e a t l y i m p r o v i n g the a c c u r a c y
of
saturated l i q u i d density. T h e p r i n c i p a l d i s a d v a n t a g e of
the R K J Z m e t h o d is the
t e m p e r a t u r e d e p e n d e n c e of Ω . a n d Ω .. σ
&
complex
A l t h o u g h H a m a n et a l .
(13)
p r o v i d e d a g e n e r a l i z e d c o r r e l a t i o n for Ω . a n d Ω&., these q u a n t i t i e s are n o t α
g e n e r a l i z e d i n the f o r m d e s c r i b e d here b u t are generated e a c h t i m e t h e y are n e e d e d f r o m l i q u i d densities a n d v a p o r pressures. V a r i o u s sources of l i q u i d d e n s i t y a n d v a p o r pressure are u s e d : versions of the R i e d e l c o r r e lations
(14,15);
A P I 44 A n t o i n e equations
(16);
petroleum
fraction
correlations; a n d c u r v e fits of e x p e r i m e n t a l i n f o r m a t i o n . A n a d v a n t a g e of the J Z p r o c e d u r e is that for s u b c r i t i c a l c o m p o n e n t s , Ω
α ί
and Ω
6 {
are u s e d o n l y as i n t e r m e d i a t e i n t e r n a l v a r i a b l e s . T h a t is,
s p e c i f y i n g v a p o r pressure a n d s a t u r a t e d l i q u i d d e n s i t y p r o v i d e s a l l of the
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
256
EQUATIONS
OF
STATE
i n f o r m a t i o n n e e d e d to c a l c u l a t e a a n d b; c r i t i c a l p r o p e r t i e s are not n e e d e d to c a l c u l a t e R e d l i c h - K w o n g parameters of h e a v y solvents or p e t r o l e u m fractions. F o r s u p e r c r i t i c a l c o m p o n e n t s , users of the Soave m e t h o d
generally
use E q u a t i o n 4 e x t r a p o l a t e d a b o v e the c r i t i c a l t e m p e r a t u r e , w h e r e a s the R K J Z m e t h o d uses the l i m i t i n g v a l u e of Ω„. a n d Ω . at the c r i t i c a l t e m &
p e r a t u r e . A l t h o u g h the R K J Z p r o c e d u r e i n t r o d u c e s a c o r n e r i n t o the Ω and Ω
&
α
t e m p e r a t u r e d e p e n d e n c e ( a n d thus i n t o the t e m p e r a t u r e d e p e n d
ence of f u g a c i t y ), it does h a v e the a d v a n t a g e of p r e s e r v i n g the p h y s i c a l l y reasonable h i g h - t e m p e r a t u r e l i m i t of the o r i g i n a l R K m e t h o d for s u p e r
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
c r i t i c a l gases.
T h a t is, the second v i r i a l coefficient tends a s y m p t o t i c a l l y
t o w a r d s b, a s m a l l p o s i t i v e n u m b e r . T h i s l i m i t i n g b e h a v i o r is significant for the v e r y w i d e t e m p e r a t u r e ranges i n r e f i n i n g a p p l i c a t i o n s . M i x i n g rules u s e d i n the present w o r k f o l l o w the u s u a l p r a c t i c e : the o r i g i n a l m o l a r average m i x i n g r u l e for b, w i t h a n adjustable i n t e r a c t i o n p a r a m e t e r ( C ) i n the m i x i n g r u l e for a: i ;
a=
Σ i
Σ
(5)
ViVjOàj
J
where du =
au-
di
(1 -
(aiajV*
C„)
i = j
(6)
i^j
(7)
T h e major a l t e r n a t i v e to E q u a t i o n 7 is to use the p r o c e d u r e s C h u e h a n d P r a u s n i t z to c a l c u l a t e a
ih
p e r a t u r e , pressure, a n d v o l u m e
of
by calculating pseudocritical tem-
i n a n i n t e r m e d i a t e step, w i t h the
fc
{;
p a r a m e t e r i n the c o m b i n i n g r u l e for p s e u d o c r i t i c a l t e m p e r a t u r e p e r f o r m i n g the f u n c t i o n of E q u a t i o n 7. T h i s has the a d v a n t a g e of p r o v i d i n g a c o n n e c t i o n w i t h the c o n s i d e r a b l e l i t e r a t u r e o n kq p a r a m e t e r s .
T h e dis-
a d v a n t a g e for the R K J Z m e t h o d is that it i m p o r t s c r i t i c a l p r o p e r t i e s i n t o m i x i n g rules even component
t h o u g h they are not r e q u i r e d to define
parameters for s u b c r i t i c a l c o m p o u n d s .
the
F o r systems
purewhere
c r i t i c a l p r o p e r t i e s are w e l l - d e f i n e d , one r e a d i l y c a n t r a n s f o r m f r o m set of m i x i n g rules to the other, as n o t e d b y K a t o , C h u n g , a n d L u Once
procedures
for
calculating pure-component
one
(17).
parameters
and
m i x i n g rules are e s t a b l i s h e d , the c a l c u l a t i o n of c o m p o n e n t f u g a c i t y coefficients φι for b o t h v a p o r a n d l i q u i d phases f o l l o w s s t a n d a r d p r o c e d u r e s (see
e.g.
(4)).
F o r V L E c a l c u l a t i o n s , the d i s t r i b u t i o n of
components
b e t w e e n phases is expressed g e n e r a l l y as the K - v a l u e — t h e v a p o r
mole
f r a c t i o n d i v i d e d b y the l i q u i d m o l e f r a c t i o n — r e l a t e d to f u g a c i t y
coeffi
cients for e a c h c o m p o n e n t
by:
Ki =
φι liquid/φι v a p o r
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(8)
14.
The Redlich-Kwong
G R A Y
Generally
Understood
257
Equation
Capabilities
of RK
Methods
F o r r e f i n i n g a n d gas-processing a p p l i c a t i o n s , the b e n c h m a r k g e n e r a l p u r p o s e V L E m e t h o d is that of C h a o a n d Seader (18), w i t h t h e m o d i f i c a t i o n s of G r a y s o n a n d S t r e e d (19).
generally used
B y comparison w i t h
the C h a o - S e a d e r m e t h o d f o r these a p p l i c a t i o n s , either t h e R K J Z o r Soave v e r s i o n has t h e f o l l o w i n g c a p a b i l i t i e s , w h i c h are r e l a t i v e l y w e l l u n d e r stood:
(a)
scope—wider-than
Chao-Seader,
e x t e n d i n g closer
to the
m i x t u r e c r i t i c a l a n d to c r y o g e n i c t e m p e r a t u r e s ; ( b ) a c c u r a c y — g e n e r a l l y better t h a n C h a o - S e a d e r , even w i t h a r o u g h estimate of t h e C
i}
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
( o r w i t h dj =
0 for light hydrocarbons); a n d ( c )
parameter
flexibility—the
inter-
a c t i o n p a r a m e t e r s p r o v i d e easy adjustment of t h e m e t h o d for specific systems. O n e e x a m p l e w i l l serve to u n d e r s c o r e t h e reason f o r t h e a d v a n t a g e over C h a o - S e a d e r at h i g h pressure. F i g u r e 1 shows t h e c o n v e r g e n c e of R K J Z K - v a l u e s to u n i t y as t h e m i x t u r e c r i t i c a l pressure is a p p r o a c h e d , f o r a temperature a n d composition
o n the m i x t u r e c r i t i c a l locus f o r t h e
m e t h a n e - e t h a n e - b u t a n e t e r n a r y (20).
T h i s m i x t u r e w a s chosen i n o r d e r
to c h e c k R K J Z a p p a r e n t c r i t i c a l pressure vs. t h e 1972 corresponding-states c o r r e l a t i o n of T e j a a n d R o w l i n s o n (21),
w h i c h p r e s u m a b l y has a better
t h e o r e t i c a l basis t h a n t h e R K J Z m e t h o d . I n these c o m p a r i s o n s , t h e T e j a and
R o w l i n s o n c o r r e l a t i o n uses t w o i n t e r a c t i o n p a r a m e t e r s p e r b i n a r y
p a i r , b a s e d p r i m a r i l y o n fits to b i n a r y c r i t i c a l l o c i ; the R K J Z m e t h o d uses dj =
0 for a l l binaries, based o n binary V L E data.
N o t e that t h e R K J Z
method
not only predicts qualitatively the
a p p r o a c h to m i x t u r e c r i t i c a l c o n d i t i o n s ; i t is also q u a n t i t a t i v e l y s u p e r i o r to t h e T e j a a n d R a w l i n s o n p r o c e d u r e i n this instance. T h e a b i l i t y of t h e R K J Z m e t h o d to sense t h e a p p r o a c h to m i x t u r e c r i t i c a l c o n d i t i o n s has b e e n a great a d v a n t a g e i n its a p p l i c a t i o n , b y c o m p a r i s o n w i t h t h e C h a o Seader m e t h o d , w h i c h has a stated l i m i t a t i o n of pressure less t h a n 0.8 times t h e true c r i t i c a l pressure.
Generally
Understood
Limitations
of RK
Limitations of the R K methods assumed)
Methods
w h i c h have been mentioned
i n p r e v i o u s l i t e r a t u r e i n c l u d e : ( a ) p o o r second v i r i a l
(or
coeffi-
c i e n t p r e d i c t i o n , e s p e c i a l l y f o r c o m p o u n d s h a v i n g n o n z e r o a c e n t r i c factors; ( b ) p o o r p r e d i c t i o n of c o m p o n e n t l i q u i d densities ( t h i s is a d i s a d v a n t a g e o n l y of t h e Soave f o r m ; t h e R K J Z m e t h o d is fit to c o m p o n e n t
liquid
d e n s i t i e s ) ; a n d ( c ) i n a b i l i t y to represent a l l P V T p r o p e r t i e s at t h e c o m ponent
c r i t i c a l s i m u l t a n e o u s l y ; t h e Soave f o r m fails to r e p r o d u c e t h e
c r i t i c a l d e n s i t y w h i l e t h e R K J Z f o r m gives n o n z e r o values of a n d (d P/dV ) 2
2
T
at t h e c r i t i c a l p o i n t .
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(dP/dV)
T
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
,β
CATM)
1
4
3
^
Ί
Δ
5
1
G
c
of RKJZ to P using expenmental
PRESSURE
PRESSURE
2
PRES
CALCULATED
Convergence
CRITICAL
ROWLINSON
CRITICAL
0.337
0.470
0.193
MOL F R A C
EXPERIMENTAL TEJA
Figure 1.
-
-
BUTANE
Π
Ά'
ETHANE
Δ
X
METHANE
DEG F
O
178
O
6
1
•
Δ
O
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
T
A
0
7
1
G>p>
1
8
Γ
9
1
0
14.
The Redlich-Kwong
G R A Y
259
Equation
O t h e r l i m i t a t i o n s i n c l u d e : ( d ) p o o r l y d e f i n e d basis for e x t r a p o l a t i n g a a n d b parameters above component critical; (e)
i n a b i l i t y to represent
p o l a r / n o n p o l a r systems i n d e t a i l ; e.g., u s i n g a n average C
xj
to represent a
l o w - p r e s s u r e i s o t h e r m for a n a l c o h o l / h y d r o c a r b o n system gives m a x i m u m errors of p e r h a p s a factor of t w o i n K - v a l u e , w h e r e a s a m e t h o d b a s e d o n a c t i v i t y coefficients w o u l d fit the same d a t a w i t h i n a f e w p e r c e n t ; a n d ( f ) a n i n a b i l i t y to represent other d e r i v e d p r o p e r t i e s ( e n t h a l p y , etc.)
for
n o n p o l a r systems to the same degree of a c c u r a c y as V L E .
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
Some General
Observations
on Redlich—Ktvong
Methods
T h e t h e r m o d y n a m i c s c o m m u n i t y w a s r a t h e r s l o w to a c c e p t the e a r l y m o d i f i e d R K m e t h o d s for V L E p r e d i c t i o n . T h i s w r i t e r , d e s p i t e b e i n g a n interested observer d u r i n g the d e v e l o p m e n t of the R K J Z m e t h o d , o n l y b e c a m e a n enthusiast for the m e t h o d experience.
after c o n s i d e r a b l e
applications
T h e reason for this e a r l y s k e p t i c i s m w a s t h e f e e l i n g t h a t it
w a s a s k i n g too m u c h of the s i m p l e v o l u m e d e p e n d e n c e of the R K e q u a t i o n to represent the f u g a c i t y f u n c t i o n a l i t y i n b o t h phases w i t h
sufficient
accuracy. It is w o r t h w h i l e to ask the q u e s t i o n : " W h y is the R K J Z ( o r the Soave m e t h o d ) better t h a n one w o u l d e x p e c t ? " A n s w e r i n g this q u e s t i o n i n a n y d e p t h is b e y o n d the scope of this c h a p t e r , a l t h o u g h i t is e x p l o r e d specific systems b e l o w .
H o w e v e r , there are t w o g e n e r a l
for
observations
one c a n m a k e . T h e first o b s e r v a t i o n is that, because of c o m p e n s a t i n g errors, t h e v a p o r f u g a c i t y p r e d i c t i o n s of the R K e q u a t i o n are r e l a t i v e l y i n s e n s i t i v e to the adjustment of the constants necessary to fit v a p o r pressure. T h u s , o n c e c o m p o n e n t f u g a c i t y is m a t c h e d a l o n g the v a p o r pressure locus, the effect of pressure a n d t e m p e r a t u r e o n v a p o r f u g a c i t y is r e a s o n a b l y w e l l represented.
F u r t h e r , the effect of pressure o n l i q u i d f u g a c i t y u s u a l l y
does n o t d e p e n d o n h i g h l y a c c u r a t e l i q u i d densities. H o w e v e r , the R K J Z m e t h o d is g e n e r a l l y m o r e a c c u r a t e t h e n the Soave m e t h o d i n r e p r e s e n t i n g the effect of pressure for l i g h t g a s - h e a v y solvent systems because of its better r e p r e s e n t a t i o n of l i q u i d v o l u m e t r i c b e h a v i o r . T h e second o b s e r v a t i o n is t h a t the success of the R K J Z a n d Soave m e t h o d s m a y b e a t t r i b u t e d to t h e m i x i n g rules ( w h i c h are so i m p o r t a n t i n f u g a c i t y p r e d i c t i o n ) . T h e s e m i x i n g rules essentially i n c o r p o r a t e the v a n der W a a l s one-fluid ( V D W - 1 ) sponding-states w o r k ( 2 1 ) .
a p p r o x i m a t i o n f a v o r e d i n recent
corre-
T h a t is, i f one i n t e r p r e t s t h e b p a r a m e t e r
as p r o p o r t i o n a l to the c r i t i c a l v o l u m e V , t h e n the a p a r a m e t e r is p r o p o r c
t i o n a l to T V , a n d the m i x i n g rules for a a n d b are e q u i v a l e n t to d e t e r C
mining T V
C
C
C
and V
c
for the reference substance ( a l t h o u g h i t s h o u l d b e
n o t e d that the v a l u e of b for the R K J Z m e t h o d is m o r e closely p r o p o r -
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
260
EQUATIONS
OF
STATE
t i o n a l to c r i t i c a l v o l u m e t h a n i t is for the Soave m e t h o d ). I n a sense, one m i g h t r e g a r d the R K m e t h o d s as a g o o d m i x i n g r u l e c o u p l e d w i t h o n l y the most r u d i m e n t a r y reference substance. N e v e r t h e l e s s , the a c c u r a c y of V L E p r e d i c t i o n s w i t h these m o d e l s is q u i t e c o m p e t i t i v e w i t h those of sponding-states
models
incorporating m u c h
more
elaborate
corre-
reference
fluids. Some Surprising
Successes
with
RK
Methods
O u r e a r l y a p p l i c a t i o n experience w i t h the R K J Z m e t h o d , a p a r t f r o m Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
h i g h - p r e s s u r e systems, t e n d e d to be for systems w h e r e it w a s the m e t h o d of last r e s o r t — w h e r e n o t h i n g else t h e n a v a i l a b l e i n o u r c o l l e c t i o n computer programs could work.
T h u s , often its successes w e r e
of
doubly
surprising. One
of
the most
s u r p r i s i n g e a r l y successes w a s
with
cryogenic
H o - h y d r o c a r b o n systems. H e r e w h a t w a s so s u r p r i s i n g w a s not just that the m e t h o d c o u l d be m a d e to w o r k , b u t that it w o r k e d so easily once the p r o c e d u r e for i n c o r p o r a t i n g H was adopted. more
2
developed by C h u e h and Prausnitz (7)
Results for H - h y d r o c a r b o n systems h a v e b e e n e x p l o r e d i n 2
d e t a i l i n a recent
study
sufficient to note that a single C
(22); t J
for the present
v a l u e correlates H
2
d i s c u s s i o n i t is and hydrocarbon
K - v a l u e s over s u b s t a n t i a l ranges of t e m p e r a t u r e a n d pressure for c r y o g e n i c systems. A n o t h e r system for w h i c h success is better t h a n m i g h t b e
expected
is the C 0 - m e t h a n e b i n a r y s h o w n i n F i g u r e 2. H e r e v e r y a c c u r a t e d a t a 2
over a w i d e r a n g e of c o n d i t i o n s h a v e r e c e n t l y b e c o m e a v a i l a b l e
(23,24),
for w h i c h Professors K i d n a y a n d K o b a y a s h i a n d t h e i r students
deserve
s p e c i a l praise. T h i s system is v e r y n o n i d e a l ( o w i n g to the C 0
2
quadru-
p o l e ) , a n d is s h o w n o n a v e r y e x p a n d e d scale; r m s errors i n K - v a l u e at e a c h t e m p e r a t u r e , except for the lowest, w e r e less t h a n 3 % , s m o o t h t r e n d i n dj
a n d the
e x h i b i t e d for d a t a f r o m t w o different sources
demon-
strates r e a l l y r e m a r k a b l e consistency of results b e t w e e n t w o laboratories. T h e points below
— 89 ° C are essentially for C 0
p o i n t near infinite d i l u t i o n i n m e t h a n e .
2
w e l l b e l o w its t r i p l e
Although C 0
2
l i q u i d properties
w e r e e x t r a p o l a t e d c a r e f u l l y i n t o this r e g i o n to o b t a i n R K J Z p a r a m e t e r s , the a p p a r e n t S-curve i n dj
m a y be a n a r t i f a c t of the e x t r a p o l a t i o n .
W a t e r - h y d r o c a r b o n systems, s h o w n i n F i g u r e 3, c o m p r i s e
another
class of systems w h i c h , r a t h e r s u r p r i s i n g l y , c a n b e h a n d l e d a c c u r a t e l y e n o u g h for m a n y purposes.
T h i s w o r k w i t h the R K J Z m e t h o d p a r a l l e l s
s i m i l a r studies b y H e i d e m a n n (25)
w i t h the Soave m e t h o d a n d b y P e n g
a n d R o b i n s o n w i t h t h e i r e q u a t i o n (10).
A s i n t h e i r w o r k , o n l y fugacities
i n the h y d r o c a r b o n - r i c h l i q u i d phases are fit b y the m o d e l d i r e c t l y ; i f l i q u i d w a t e r is present, i t is a s s u m e d to b e p u r e , since the Cy
fitting
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
the
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979. 2
RKJZ interaction parameters for the methane-C0 binary: (X), Ref. 24; (A), Ref. 23. rms deviation uptol% above minimum.
0.04
0.06
0.08
Figure 2.
Ci j
0.10
0.12
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
Range
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
C ij
4.
0.2-
0.3-
0
0.5-
O
Figure 3.
3
O
TYPE
2
AROMATIC
PARAFIN
4
CARBON
HYDROCARBON
9
6
2
NUMBER
1
RKJZ interaction parameters for the H 0-hydrocarbon
o Δ
V/LH L / L
PATA
V/LW
8
8
systems
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
5!
C5/
O
ce
o
H
α >
W
to
14.
The Redlich-Kwong
G R A Y
Equation
263
w a t e r f u g a c i t y i n the h y d r o c a r b o n - r i c h phases y i e l d s h y d r o c a r b o n s o l u b i l i t i e s i n l i q u i d w a t e r w h i c h are i n error b y m a n y orders of m a g n i t u d e . F i g u r e 3 shows C sources
d a t a vs. c a r b o n n u m b e r b a s e d o n the d a t a f r o m several
i ;
(26-31).
W h a t is s t r i k i n g here is not just that one c a n " f u d g e " the
RKJZ
m e t h o d to i n c l u d e w a t e r b y i n t r o d u c i n g l a r g e C y values of a b o u t
0.4.
M o r e i m p o r t a n t l y , if one looks at C / s f o r a v a r i e t y of systems, t h e y f a l l {
i n t o r e c o g n i z a b l e patterns. N o t e that C^/s for paraffins, t a k e n f r o m v a p o r l i q u i d a n d l i q u i d - l i q u i d d a t a , are r e a s o n a b l y consistent, b u t t h a t c o r r e l a t i n g d a t a for a r o m a t i c s r e q u i r e s s h a r p l y l o w e r Cy's
because of
the
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
higher water solubility. O n e s h o u l d , of course, be c a u t i o u s i n e x t r a p o l a t i n g p r e d i c t i o n s b a s e d o n C / s f r o m a n a r r o w t e m p e r a t u r e range. {
some t e m p e r a t u r e d e p e n d e n c e i n C
t ;
T h e available data indicate
for w a t e r , b u t the d a t a are not
a c c u r a t e e n o u g h or a v a i l a b l e over a w i d e r a n g e of c o n d i t i o n s to s u p p o r t t e m p e r a t u r e d e p e n d e n c e for most systems. I n g e n e r a l , w i t h i n the sometimes stringent l i m i t a t i o n of t e m p e r a t u r e d e p e n d e n c e of C
i}
compound
one c a n m a p the infinite d i l u t i o n f u g a c i t y of a n y p o l a r
i n t o h y d r o c a r b o n systems.
F u r t h e r , i f the infinite
dilution
b e h a v i o r f o l l o w s k n o w n patterns w i t h h y d r o c a r b o n t y p e , this c a n b e m a d e the basis for a c o r r e l a t i o n of Cq.
T h i s a b i l i t y to i n c o r p o r a t e p o l a r c o m -
p o u n d s over n a r r o w ranges of c o n c e n t r a t i o n is e x t r e m e l y u s e f u l i n r e f i n i n g and hydrocarbon processing applications. Some Unexpected
and/or
Unexplored
Limitations
A l t h o u g h R K m e t h o d s are s u r p r i s i n g l y v e r s a t i l e , t h e y h a v e a v a r i e t y of l i m i t a t i o n s . T h i s d i s c u s s i o n w i l l concentrate o n those w h i c h m i g h t be c o n s i d e r e d u n e x p e c t e d , or w h i c h serve to define the b o u n d a r i e s of the k n o w n r e g i o n of v a l i d i t y . T h e r e is one k i n d of l i m i t a t i o n w h i c h , a l t h o u g h difficult to s u m m a r i z e c o n c i s e l y , s h o u l d be m e n t i o n e d , since i t m i g h t c o m e as a n u n p l e a s a n t surprise to the u n i n i t i a t e d . T h a t is that the R K J Z or Soave m o d e l s c a n n o t represent c e r t a i n details of l i g h t h y d r o c a r b o n
systems at
t e m p e r a t u r e s to a n y t h i n g close to e x p e r i m e n t a l a c c u r a c y .
subambient T h i s k i n d of
l i m i t a t i o n w a s difficult to d i s t i n g u i s h f r o m systematic e x p e r i m e n t a l error before
the
development
of
more
accurate
experimental
techniques,
notably b y K o b a y a s h i and co-workers a n d K a h r e , w h o have measured l o w - t e m p e r a t u r e phase b e h a v i o r for m e t h a n e b i n a r i e s (32,33,34,
35,36).
If one looks at d e v i a t i o n trends for these systems, i t is a p p a r e n t t h a t no adjustment of C
i ;
w i l l a l l o w one to fit the h e a v y - c o m p o n e n t K - v a l u e ,
w h i l e m a i n t a i n i n g reasonable a c c u r a c y for m e t h a n e at t e m p e r a t u r e s less t h a n 50° to 7 5 ° C a b o v e the m e t h a n e c r i t i c a l t e m p e r a t u r e ( t h a t is, b e l o w
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
264
EQUATIONS
OF
STATE
a b o u t — 5 0 ° C ) at m o d e r a t e to h i g h pressures (say, a b o v e 10 or 20 a t m ) . T h e s e systematic d e v i a t i o n s ( o f 15 to 4 0 % ) seem to i n d i c a t e p r o b l e m s i n c h a r a c t e r i z i n g s i m u l t a n e o u s l y the extremes of m i x i n g effects ( or p o s s i b l y , systematic e x p e r i m e n t a l e r r o r ) i n e x p a n d e d solvents a n d dense v a p o r , i n the r e g i o n w h e r e the lightest c o m p o u n d is o n l y s l i g h t l y s u p e r c r i t i c a l or is subcritical.
O n c e this effect w a s r e c o g n i z e d as a source of c o n f u s i o n i n
c o r r e l a t i n g e x p e r i m e n t a l d a t a , it w a s not v e r y i m p o r t a n t i n the a p p l i c a t i o n e x p e r i e n c e r e p o r t e d here. T h e Soave m e t h o d is s l i g h t l y better t h a n the R K J Z m e t h o d i n r e p r e s e n t i n g this r e g i o n , a n d it appears that the P e n g R o b i n s o n m e t h o d is s u b s t a n t i a l l y better.
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
M o s t other w o r k e r s t r e a t i n g these d a t a h a v e a s s u m e d t h a t these d i s c r e p a n c i e s are s i m p l y manifestations of the c o m m o n p r o b l e m of syst e m a t i c e x p e r i m e n t a l error for h e a v y - c o m p o n e n t older
e x p e r i m e n t a l d a t a for
light hydrocarbons.
K - v a l u e f o u n d i n the F u r t h e r m o r e , these
d e v i a t i o n s are m a s k e d b y t h e c o m m o n p r a c t i c e of r e p o r t i n g d e v i a t i o n s i n b u b b l e - p o i n t pressure a n d i n absolute differences i n v a p o r m o l e f r a c t i o n , w h i c h are b o t h r e l a t i v e l y i n s e n s i t i v e to d e v i a t i o n s i n K-value.
heavy-component
N e v e r t h e l e s s , i f the h i g h p r e c i s i o n of the n e w e r e x p e r i m e n t a l
results is to be b e l i e v e d , there are systematic errors i n these
methods
w h i c h m i g h t b e i m p o r t a n t i n some a p p l i c a t i o n s . A r e l a t e d l i m i t a t i o n of the R K J Z or Soave m e t h o d s , w h i c h a g a i n is difficult to q u a n t i f y , is also w o r t h m e n t i o n i n g because i t is not o b v i o u s f r o m p u b l i s h e d results. T h e a c c u r a c y of these m e t h o d s deteriorates i f one attempts to fit too w i d e a r a n g e of c o n d i t i o n s e v e n for n o r m a l
fluids.
T h i s effect is often m a s k e d b y the g e n e r a l l y spotty q u a l i t y of the e x p e r i m e n t a l d a t a base, b u t one g e n e r a l l y c a n d i s c e r n s u b s t a n t i a l systematic d e v i a t i o n trends b y c a r e f u l e x a m i n a t i o n of a c c u r a t e d a t a . T h u s , u l t i m a t e l y the s i m p l i f i e d v o l u m e d e p e n d e n c e of the R K e q u a t i o n does p l a c e l i m i t a tions o n its a c c u r a c y .
C o n s e q u e n t l y , one s h o u l d k e e p i n p e r s p e c t i v e the
c l a i m s of Z u d k e v i t c h a n d Joffe ( 3 ) , to represent h y d r o c a r b o n
systems
b a s e d o n C,-/s d e t e r m i n e d f r o m one or t w o d a t a p o i n t s , or of Soave to represent h y d r o c a r b o n systems w i t h dj
=
(2)
0. T h e s e c l a i m s are q u i t e
t r u e i n the context i n w h i c h t h e y w e r e m a d e , d e m o n s t r a t i n g the g e n e r a l i t y of the R K methods. N e v e r t h e l e s s , w h e n h i g h e s t a c c u r a c y is r e q u i r e d , one s h o u l d be r e c o n c i l e d to different C i / s for different regions. A n o t h e r l i m i t a t i o n i n a r e g i o n of a p p a r e n t s t r e n g t h is i n the r e p r e sentation of c r i t i c a l - r e g i o n effects at v e r y h i g h pressures, s u c h as those o c c u r r i n g i n m i x t u r e s of m e t h a n e w i t h m o d e r a t e l y h e a v y h y d r o c a r b o n s . A n extreme e x a m p l e is s h o w n i n F i g u r e 4, w h i c h shows c a l c u l a t e d a n d e x p e r i m e n t a l phase b o u n d a r i e s at 1 0 0 ° F for the p s e u d o b i n a r y m i x t u r e of m e t h a n e w i t h K e n s o l - 1 6 , a n a r r o w - b o i l i n g o i l w i t h c a r b o n n u m b e r i n the C i 5 to C (37).
2 0
r a n g e . T h i s m i x t u r e w a s s t u d i e d i n 1950 b y R z a s a a n d K a t z
T h e c a l c u l a t e d - p h a s e envelopes
s h o w the extreme s e n s i t i v i t y of
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
1
οι
K)
δ*
ta -Ci
OS
ο
Ci"
g-
> ni
Ο
h-
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
0
-
I
%
•
&
A
l
Λ
TYPE
ι
5
ι
ι
ι
2
b /b,
1
CONSTANT
tz
TYPE B
•
•
ι DATA
HENRY'S
ι
I
I
w
Ο
10
•
Ο
1
10
+
t
1 1 1 1
1
RKJZ interaction parameters for methane-C
l
• •
Ο
I
Ν
Ρ
SOLVENT
t
Figure 5.
I
1
1
ι
1
ι
1
hydrocarbons
15
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
ι
I
1
•
ο
1
20
-
14.
The Redlich-Kwong
G R A Y
Equation
267
m i x t u r e c r i t i c a l pressure ( c a l c u l a t e d b y the R K J Z m e t h o d ) to C \ is
Cij =
for
0, the c a l c u l a t e d c r i t i c a l pressure is w e l l b e l o w the e x p e r i m e n t a l
v a l u e of a b o u t 12000 p s i a , w h i l e for C
i y
=
0.05, it is f a r a b o v e i t . T h i s
demonstrates that extreme care is necessary to represent c r i t i c a l - r e g i o n effects for m i x t u r e s w i t h l a r g e differences i n m o l e c u l a r size. I f m o l e c u l a r - s i z e differences are too l a r g e , i t is n o t o n l y the c r i t i c a l r e g i o n w h i c h s h o u l d be of c o n c e r n .
N o t e i n F i g u r e 4 that the C
i ;
which
represents the c r i t i c a l p o i n t w o u l d not represent the d e w - p o i n t l i n e v e r y w e l l . M o r e s t r i k i n g is F i g u r e 5, i n w h i c h t h e C i / s necessary to correlate methane-heavy hydrocarbon behavior (recently measured by Prausnitz
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
a n d c o - w o r k e r s (38,39, b /bi 2
40) ) are p l o t t e d vs. the r a t i o of R K J Z p a r a m e t e r s
( w h e r e 2 designates the solvent a n d 1 the m e t h a n e ) ; this r a t i o is
essentially e q u i v a l e n t to the r a t i o of c r i t i c a l v o l u m e s . N o t e the d i v e r g e n t trends i n C
{j
necessary to correlate these h i g h l y a s y m m e t r i c systems: as
solvent m o l e c u l a r w e i g h t increases, d e c r e a s i n g C i / s are n e e d e d to c o r r e late H e n r y ' s constant for m e t h a n e ; b u t i n c r e a s i n g C i / s are n e e d e d to correlate s e c o n d v i r i a l cross-coefficients
( a n d thus d e w - p o i n t c o m p o s i t i o n
at h i g h p r e s s u r e ) . T h e s e trends are for the R K J Z m e t h o d ; s i m i l a r t r e n d s ( a l t h o u g h c o n s i d e r a b l y d i s p l a c e d ) o c c u r f o r the Soave v e r s i o n .
Clearly
the trends d e m o n s t r a t e d i n F i g u r e 5 i m p o s e l i m i t a t i o n s o n the use of R K m e t h o d s for a s y m m e t r i c systems at h i g h pressures. F o r m a n y a p p l i c a t i o n s , the m e t h o d w i l l be satisfactory p r o v i d e d one u n d e r s t a n d s the n a t u r e of the l i m i t a t i o n s . F i n a l l y , i t is w o r t h w h i l e n o t i n g t h a t t h e strengths of the
RKJZ
m e t h o d — i t s c a p a b i l i t y to represent c r i t i c a l - r e g i o n b e h a v i o r , as w e l l as nonideal m i x i n g — c a n i n practice impose limitations. A s noted by Deiters a n d S c h n e i d e r (41),
this c a p a b i l i t y makes i t p o s s i b l e to represent p h a s e
b e h a v i o r of r e m a r k a b l y c o m p l e x t o p o l o g y , e s p e c i a l l y for h i g h - p r e s s u r e systems. T h i s c o m p l e x phase b e h a v i o r is a l w a y s p o t e n t i a l l y present, e v e n t h o u g h flash or d i s t i l l a t i o n a l g o r i t h m s d o not a c c o u n t for i t . C o n s e q u e n t l y , a l g o r i t h m s w h i c h w o r k w e l l for the C h a o - S e a d e r m e t h o d ( w h i c h r e p r e sents n o n i d e a l m i x i n g b u t not c r i t i c a l p h e n o m e n a ) or one of the m e t h o d s b a s e d o n the B W R e q u a t i o n of state ( w h i c h represents c r i t i c a l p h e n o m e n a b u t is not u s e d u s u a l l y for systems e x h i b i t i n g n o n i d e a l m i x i n g ) , m a y develop new pathology w h e n used w i t h a R K method.
In practice,
m a i n t a i n i n g a R K m e t h o d c a n b e e x p e c t e d to r e q u i r e m o r e
advanced
expertise i n b o t h p r o g r a m m i n g a n d a p p l i e d t h e r m o d y n a m i c s . The
Next
Generation
of
Equation-of-State
Methods
A l o g i c a l c o n c l u s i o n for this c h a p t e r is, b a s e d o n t h i s a p p l i c a t i o n s experience, to reflect o n w h a t features i n a n e w g e n e r a t i o n of equations of state w o u l d represent d e s i r a b l e i m p r o v e m e n t s over the R K m e t h o d s for
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
268
EQUATIONS
phase-equilibrium calculations.
OF
STATE
S u c h reflections are of g e n e r a l interest
since the strengths a n d weaknesses of the R K m e t h o d s seem to b e s h a r e d b y a n y of the c o r r e s p o n d i n g states m e t h o d s u s i n g the V D W - 1 a p p r o x i m a t i o n . H e r e is a p e r s o n a l , b u t b y no means o r i g i n a l , list of features: ( a ) the a c c u r a c y ( a n d
flexibility)
of R K J Z or Soave m e t h o d s i n r e -
g i o n w h e r e these m e t h o d s are satisfactory; ( b ) g o o d r e p r e s e n t a t i o n of d e n s i t y of b o t h phases, i n c l u d i n g g o o d r e p r e s e n t a t i o n of second v i r i a l coefficients; ( c ) s i m u l t a n e o u s r e p r e s e n t a t i o n of p u r e - c o m p o n e n t ties ( , Pc
(dP/dT)
C9
T , F ); c
c
( d ) w e l l - d e f i n e d s u p e r c r i t i c a l e x t r a p o l a t i o n of Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
critical proper-
temperature-depend-
ent p a r a m e t e r s ; ( e ) w e l l - u n d e r s t o o d e x t r a p o l a t i o n to h i g h m o l e c u l a r w e i g h t s ; (f) independently
adjustable
infinite
d i l u t i o n fugacities
for
each
component i n a binary; ( g ) g r o u p c o n t r i b u t i o n features b u i l t into p u r e - c o m p o n e n t
and/or
mixture parameters; a n d ( h ) s p e c i a l m o d i f i c a t i o n s for p o l a r c o m p o u n d s i n a l l of the a b o v e . M a n y of these features are a l r e a d y i n some of the e m e r g i n g m e t h o d s , and
a l l are at least u n d e r s t u d y s o m e w h e r e .
ambitious enough
No
one
to i n c l u d e a l l i n a single m e t h o d .
has y e t Obviously,
cannot expect a n y m o d i f i c a t i o n s of the s i m p l e R K m e t h o d s to
been one
combine
a l l of these features, a l t h o u g h some of t h e m c a n be i n t r o d u c e d b y v a r i o u s a d d - o n artifices. T h u s , one c a n expect the R K m e t h o d s e v e n t u a l l y to b e l a r g e l y s u p p l a n t e d i n a p p l i c a t i o n w o r k w h e r e these features are i m p o r t a n t b y the m o r e elaborate m e t h o d s n o w u n d e r d e v e l o p m e n t . It is o u t s i d e the scope of this c h a p t e r to assess the p o t e n t i a l of these e m e r g i n g methods, except to c o m m e n t that for those of us i n t e r e s t e d i n a w i d e r a n g e of m o l e c u l a r size, t h e p e r t u r b e d h a r d - c h a i n m o d e l of D o n o h u e a n d P r a u s n i t z (42)
appears to c o m e closest to c o m b i n i n g a l l the
features of interest. R e g a r d l e s s of w h i c h of the n e w m e t h o d s u l t i m a t e l y find w i d e use i n i n d u s t r i a l a p p l i c a t i o n s , the process of s e l e c t i n g , a d a p t i n g , a n d testing t h e m for this p u r p o s e w i l l take years. D u r i n g this p e r i o d , t h e R K m e t h o d s w i l l p r o v i d e the b e n c h m a r k b y w h i c h the e m e r g i n g m e t h o d s are j u d g e d .
Glossary
of
Symbols
a,b = p a r a m e t e r s i n R e d l i c h - K w o n g e q u a t i o n of state, E q u a t i o n 1 dij = i n t e r a c t i o n p a r a m e t e r u s e d i n c a l c u l a t i n g m i x t u r e p a r a m e t e r i n Equation 5 Cq = b i n a r y i n t e r a c t i o n p a r a m e t e r defined b y E q u a t i o n 7
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
14.
The Redlich-Kwong
G R A Y
Equation
269
Ki = ratio of v a p o r m o l e f r a c t i o n to l i q u i d m o l e f r a c t i o n of C o m p o n e n t i for vapor and liquid i n equilibrium F = system pressure P = c r i t i c a l pressure of C o m p o n e n t i R = gas constant Τ = system t e m p e r a t u r e V = system v o l u m e V = critical volume T . = c r i t i c a l t e m p e r a t u r e of C o m p o n e n t i T . = T/T . = r e d u c e d t e m p e r a t u r e of C o m p o n e n t i il = p r e m u l t i p l i e r to d e t e r m i n e R e d l i c h - K w o n g a p a r a m e t e r Ω . = p r e m u l t i p l i e r to d e t e r m i n e R e d l i c h - K w o n g b p a r a m e t e r . = a c e n t r i c factor for C o m p o n e n t i $ = f u g a c i t y coefficient of C o m p o n e n t i i n m i x t u r e p = critical density Ci
c
c
c
r
ai
6
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
ω
{
c
Acknowledgments T h e author thanks E x x o n Research & E n g i n e e r i n g C o m p a n y for p e r m i s s i o n to p u b l i s h this w o r k .
J . Joffe a n d D . Z u d k e v i t c h
the o r i g i n a l v e r s i o n of t h e R K J Z p r o g r a m s .
developed
G . A . L y o n c o d e d most of
the adaptations u s e d i n this w o r k , a n d Η . E . N e w m a n s u p p l i e d t h e computer graphics. vided
M . S. G r a b o s k i a n d T . E . D a u b e r t generously
information concerning
pro
t h e i r v e r s i o n of t h e Soave m e t h o d i n
a d v a n c e of p u b l i c a t i o n .
Literature Cited 1. Wilson, G. M . Adv. Cryog. Eng. 1964, 9, 168. 2. Soave, G. Chem. Eng. Sci. 1972, 27, 1197. 3. Zudkevitch, D.; Joffe, J., paper presented at the New Orleans meeting of AIChE, March 1969. 4. Zudkevitch, D.; Joffe, J. AIChE J. 1970, 16(1), 112. 5. Joffie, J.; Schneder, G. M.; Zudkevitch, D. AIChE J. 1970, 16(3), 496. 6. Chang, S. D.; Lu, B.C.-Y. Can. J. Chem. Eng. 1970, 46, 21. 7. Chueh, P. L.; Prausnitz, J. M. Ind. Eng. Chem., Fundam. 1967, 6, 492. 8. Chueh, P. L.; Prausnitz, J. M. AIChE J. 1967, 13, 1099. 9. Peng, D.-Y.; Robinson, D. B. Ind. Eng. Chem., Fundam. 1976, 15, 59. 10. Peng, D.-Y.; Robinson, D. B. Can. J. Chem. Eng. 1976, 54, 595. 11. Peng, D.-Y.; Robinson, D. B. AIChE J. 1977, 23, 137. 12. Graboski, M. S.; Daubert, T. E. Ind. Eng. Chem., Process Des. Dev. 1978, 17, 443. 13. Haman, S. E. M.; Chung, W. K.; Elshaxal, I. M.; Lu, Β. C.-Y. Ind. Eng. Chem., Process Des. Dev. 1977, 16, 51. 14. Riedel, L. Chem.-Ing.-Tech. 1954, 26, 83. 15. Riedel, L. Chem.-Ing.-Tech. 1954, 26, 259. 16. Am. Pet. Inst. Proj. 44, loose leaf sheets extant 1977. 17. Kato, M.; Chung, W.K.;Lu, Β. C.-Y. Chem. Eng. Sci. 1976, 31, 733. 18. Chao, K. C.; Seader, J. D. AIChE J. 1961, 7, 598. 19. Grayson, H . G.; Streed, C. W. World Pet. Congr. Proceedings, 6th 1963, Sec.III,234. 20. Cota, H. M.; Thodos, G. J. Chem. Eng. Data 1962, 7, 62.
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
270
EQUATIONS OF STATE
21. Teja, A. S.; Rowlinson, J. S. Chem. Eng. Sci. 1973, 28, 529. 22. Gray, R. D., paper presented at the New York meeting of AIChE, 1977. 23. Davalos, J.; Anderson, W. R.; Phelps, R. E.; Kidnay, A. J. J. Chem. Eng. Data 1976, 21, 81. 24. Mraw, S. C.; Hwang, S. C.; Kobayashi, R. J. Chem. Eng. Data 1978, 23, 135. 25. Heidemann, R. A. AIChE J. 1974, 20, 847. 26. Olds, R. H.; Sage, B. H.; Lacey, W. N . Ind. Eng. Chem. 1942, 34(10), 1223. 27. Rigby, M.; Prausnitz, J. M. J. Phys. Chem. 1968, 72, 330. 28. Coan, C.R.;King, A. D. J. Am. Chem. Soc. 1971, 93(8), 1857. 29. Sage, Β. H.; Lacey, W. N . "Some Properties of Lighter Hydrocarbons in H S, and CO ," Monograph on API Research Project 32, 1955. 30. Kobayashi,R.;Katz, D. L. Ind. Eng. Chem. 1953, 45, 440. 31. Polak, J.; Lu, Β. C.-Y. Can. J. Chem. Eng. 1973, 51, 4018. 32. Wichterle, I.; Kobayashi, R. J. Chem. Eng. Data 1972, 17, 4. 33. Kahre, L. C. J. Chem. Eng. Data. 1974, 19, 67. 34. Elliot, D. G.; Chen, R. J. J.; Chappelear, P. S.; Kobayashi, R. J. Chem. Eng. Data 1974, 19, 71. 35. Chu, I.-C.; Chu, T.-C.; Chen, R. J. J.; Chappelear, P. S.; Kobayashi, R. J. Chem. Eng. Data 1976, 21, 41. 36. Kahre, L. C. J. Chem. Eng. Data 1975, 20, 363. 37. Rzasa, M . J.; Katz, D. L. Trans. Am. Inst. Min., Metall. Pet. Eng. 1950, 189, 119. 38. Chappelow, C.C.;Prausnitz, J. M. AIChE J. 1974, 20, 1097. 39. Cukor, P. M.; Prausnitz, J. M. J. Phys. Chem. 1972, 76, 598. 40. Kaul, Β. K.; Prausnitz, J. M. AIChE J. 1978, 24, 223. 41. Deiters, U.; Schneider, G. M. Ber. Bunsenges. Phys. Chem. 1976, 80, 1316. 42. Donohue, M. M.; Prausnitz, J. M. AIChE J. 1978, 24, 849. RECEIVED October 5, 1978.
Downloaded by CORNELL UNIV on December 6, 2012 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch014
2
2
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.