22
Photon, Electron, and Ion Probes of Polymer Structure and Properties Downloaded from pubs.acs.org by UNIV OF MISSOURI COLUMBIA on 04/11/17. For personal use only.
ESCA and SEM Studies on Polyurethanes for Biomedical Applications B. D. RATNER Department of Chemical Engineering and Center for Bioengineering, BF-10, University of Washington, Seattle, WA 98195
Polyetherurethanes (PEU's) have long been considered for use in biomedical applications because of their excellent mechanical properties, their resistance to hydrolysis and degradation, and in some instances, their good biocompatibility. Assuming the absence of toxic, leachable, low molecular weight components, the biocompatibility (and, in particular, the blood compatibility) of PEU's w i l l be strongly influenced by the surface properties of the polymers. Techniques which have been used to study polyurethane surfaces include contact angle measurements (2), attenuated total reflectance IR (ATR-IR) (1, 2, 3), Auger spectroscopy (4), and electron spectroscopy for chemical analysis (ESCA) (5-9). One of the most important observations from previous characterization studies is that for solvent-cast PEU films, the air and the casting surface sides differ significantly in average chemical structure (3-7). The significance of differences in surface structure of polyurethanes on biological reactivity has received relatively little study. Many vena cava ring test studies were performed on PEU's (10), but no clear-cut structure-blood compatibility relationships were arrived at. Lyman, et al. (7), noted differences in the ratio of adsorbed albumin to other plasma proteins on two PEU's differing in polyether chain length. They also observed that platelet adhesion to these materials decreased with increasing albumin fractions at the surface. Stupp, et al. (2), found differences in the amount of adsorbed fibrinogen and possibly i n the conformation of the adsorbed fibrinogen on PEU's cast against glass and poly(ethylene terephthalate). They related this to differences in the aromatic and polyether contents of the surface as observed by ATR-IR. This study represents a preliminary investigation on the chemistry and morphology of polyurethane surfaces with long term goals directed toward relating these factors both to the bulk structure of the polyurethanes and to their blood and tissue 0097-6156/81/0162-0371 $05.00/ 0 © 1981 American Chemical Society
372
PHOTON, ELECTRON,
A N D ION PROBES
compatibility. The p r i m a r y a n a l y t i c a l t e c h n i q u e u s e d was ESCA b e c a u s e o f i t s s u r f a c e s e n s i t i v i t y ( 1 0 - 1 0 0 8) and b e c a u s e o f t h e h i g h i n f o r m a t i o n c o n t e n t from h i g h r e s o l u t i o n C i s s p e c t r a .
Photon, Electron, and Ion Probes of Polymer Structure and Properties Downloaded from pubs.acs.org by UNIV OF MISSOURI COLUMBIA on 04/11/17. For personal use only.
Methods The ESCA a n a l y s i s o f t h e p o l y m e r s was p e r f o r m e d on a H e w l e t t P a c k a r d M o d e l 5950B ESCA s y s t e m . A 0.8 kwatt monochromatized X r a y beam from an a l u m i n u m anode was u s e d f o r a l l s p e c t r a . An e m i s s i o n from an e l e c t r o n f l o o d gun was u s e d to n e u t r a l i z e c h a r g e build-up. C i s peaks a s s o c i a t e d w i t h h y d r o c a r b o n - l i k e e n v i r o n ments were a s s i g n e d a b i n d i n g e n e r g y o f 2 8 5 . 0 eV t o c o r r e c t f o r the e n e r g y s h i f t r e s u l t i n g f r o m the e l e c t r o n f l o o d g u n . Areas under the v a r i o u s o v e r l a p p i n g peaks i n t h e C i s s p e c t r a were d e t e r m i n e d u s i n g a Dupont 310 c u r v e r e s o l v e r . A l l p o l y u r e t h a n e m a t e r i a l s used i n t h i s s t u d y were e i t h e r i n t h e form o f e x t r u d e d t u b e s ( T y g o t h a n e , S u p e r t h a n e , P e l l e t h a n e ) o r as f i l m s c a s t on c l e a n g l a s s from r e a g e n t g r a d e d i m e t h y l a c e t a m i d e (DMAC). O n l y t h e l u m i n a l s u r f a c e s o f t h e t u b e s and t h e g l a s s f a c i n g s i d e s o f the c a s t f i l m s were o b s e r v e d by ESCA. Results
and D i s c u s s i o n
The a p p r o a c h i n t h i s s t u d y to the a n a l y s i s o f p o l y u r e t h a n e s u r f a c e s was b a s e d upon the i d e a t h a t the s u r f a c e properties r e p r e s e n t a summation o f t h e e f f e c t s o f a l l c h e m i c a l g r o u p s a t t h e surface. The v a r i o u s s t r u c t u r a l u n i t s w h i c h m i g h t be e x p e c t e d i n a p o l y u r e t h a n e were r e p r e s e n t e d by m o d e l compounds. ESCA s p e c t r a o f t h e s e m o d e l compounds r e v e a l e d the c h e m i c a l s h i f t s f o r e a c h t y p e o f g r o u p and the peak w i d t h s to be e x p e c t e d ( F i g u r e 1 ) . Unambiguous c u r v e r e s o l u t i o n c a n be p e r f o r m e d u s i n g t h e s e two pieces of information (11). I n i t i a l ESCA a n a l y s i s o f a s e r i e s o f c o m m e r c i a l l y a v a i l a b l e p o l y u r e t h a n e s r e v e a l e d a wide range o f s u r f a c e s t r u c t u r e s with l a r g e v a r i a t i o n s i n the p r o p o r t i o n s o f the v a r i o u s i m p o r t a n t s t r u c t u r a l g r o u p s at the s u r f a c e o f the m a t e r i a l s ( F i g u r e 2 ) . S i n c e the p o s s i b i l i t y o f s u r f a c e c o n t a m i n a n t f i l m s o b s c u r i n g t h e t r u e p o l y u r e t h a n e s u r f a c e was c o n s i d e r e d , and a l s o s i n c e l e a c h a b l e components f r o m p o l y m e r i c m a t e r i a l s f r e q u e n t l y i n d u c e u n d e s i r a b l e b l o o d and t i s s u e r e s p o n s e s , v a r i o u s e x t r a c t i o n p r o c e d u r e s were i n v e s t i g a t e d . F i g u r e 3 shows C i s ESCA s p e c t r a o f t h e p o l y e s t e r u r e t h a n e Tygothane (Norton P l a s t i c s ) a f t e r a s e r i e s o f washes and e x t r a c t i o n s . F i g u r e s 4 and 5 show s i m i l a r r e s u l t s w i t h the p o l y e t h e r u r e t h a n e s S u p e r t h a n e (Newage I n d u s t r i e s , I n c . ) and P e l l e t h a n e 2 3 6 3 - 8 0 A ( U p j o h n , I n c ) . D a t a on peak a r e a s and s h i f t s are t a b u l a t e d i n Table I for Tygothane. The I v o r y soap s o l u t i o n wash ( w i t h s o n i c a t i o n ) p r o b a b l y b e g i n s t o remove o n l y a s u r f a c e c o n t a m i n a n t f i l m . Evidence for t h i s i s s u g g e s t e d by t h e peak s h i f t t o h i g h e r b i n d i n g e n e r g i e s o f the h i g h e s t b i n d i n g e n e r g y component o f t h e C i s s p e c t r a f o r t h e
RATNER
Polyurethanes for Biomedical Applications
373
-CH; POLYETHYLENE
Photon, Electron, and Ion Probes of Polymer Structure and Properties Downloaded from pubs.acs.org by UNIV OF MISSOURI COLUMBIA on 04/11/17. For personal use only.
1
[•
-*CH CH f 2
2 n
POLYETHYLENE • POLY (ETHYLENE GLYCOL) -tCHjCH^-tCHjCHjOf,
DIETHYL UREA 0 CHjCH NCNCH CH, I I H H 0 2
NI C=0 N
2
CH, 40% 40% 20% 43% 41% 16%
N
C=0
t- BUTYLCARBAMATE
,
0 NH -C-0-t-Bu 2
CH.-CO- NCO Expected
60% 20% 20% 67% 12% 21%
N N ' ' C=0 C=0 0
287' "C0--CH3 285eV
283eV
N —
BINDING ENERGY (eV)
Figure 1. The C-ls ESCA spectra of model compounds used to obtain peak widths and peak shifts for functional groups expected in polyurethanes
P H O T O N , E L E C T R O N , A N D ION
Photon, Electron, and Ion Probes of Polymer Structure and Properties Downloaded from pubs.acs.org by UNIV OF MISSOURI COLUMBIA on 04/11/17. For personal use only.
SRI 3-1000-IE
289
287
285
ESTANE 58409
283
289
287
PELLETHANE
285
binding energy
Figure 2.
PROBES
283
289
287
285
283
(eV)
The C-ls ESCA spectra of three polyurethanes showing the variation in peak shapes that can be expected for polyurethanes
\ \ \ MEOH/ACETONE
1 \ \ MeOH-2 WEEKS
Ld 1 \ MeOH-l WEEK
\ \ l V O R Y SOAP X^UNWASHED 291
289 -*
Figure 3.
287
285
283
281
Binding Energy (eV)
The C-ls spectra for Tygothane after a series of washes and extractions
Polyurethanes for Biomedical Applications
RATNER
Photon, Electron, and Ion Probes of Polymer Structure and Properties Downloaded from pubs.acs.org by UNIV OF MISSOURI COLUMBIA on 04/11/17. For personal use only.
MEOH + ACETONE
289
287
285
283
289
287
UNWASHED
3 DAYS - MEOH
I WEEK MEOH
285
289
287
375
285
283 289
287
285
283
binding energy (eV)
Figure 4.
The C-ls spectra for Superthane after a series of extraction procedures
MEOH + ACETONE
289
287
UNWASHED
3 DAYS-MEOH
285
283 289
287
285
283 289
287
285
283
binding energy
Figure 5.
The C-ls spectra for Pellethane after a series of extraction procedures
376
P H O T O N , E L E C T R O N , A N D ION PROBES
Table
I
Relative Concentrations o f C a r b o n S p e c i e s at the Tygothane Tubing A f t e r V a r i o u s C l e a n i n g Procedures Percent
Photon, Electron, and Ion Probes of Polymer Structure and Properties Downloaded from pubs.acs.org by UNIV OF MISSOURI COLUMBIA on 04/11/17. For personal use only.
-NH
Unwashed Ivory 1 Week - MeOH 2 Week - MeOH 2 Week - MeOH - Acetone
of
o f C i s Spectrum 0
I -0-C=0 Tygothane: Tygothane: Tygothane: Tygothane: Tygothane: + 3 Days
Surface
II -C-N-
— — 16 16 9
5 5 -
-C-0
-C-H
26 11 25 25 20
69 84 59 59 71
unwashed and I v o r y soap washed T y g o t h a n e s ( T a b l e I ) a f t e r s o l v e n t treatment. The peak p o s i t i o n p r i o r to s o l v e n t t r e a t m e n t i s i n d i c a t i v e o f an amide group (288 eV) r a t h e r t h a n the expected c a r b a m a t e l i n k a g e ( 2 8 9 . 2 e V ) . T h u s , t h e s u r f a c e o b s e r v e d may be t h a t o f a r e l a t i v e l y low m o l e c u l a r w e i g h t s u r f a c t a n t / a m i d e o f t h e type frequently used as an e x t r u s i o n l u b r i c a n t . After the m e t h a n o l e x t r a c t i o n ( i n a s o x h l e t e x t r a c t o r ) i n c r e a s e s i n compone n t s a s s o c i a t e d w i t h h i g h e r b i n d i n g e n e r g y peaks a r e o b s e r v e d . A c e t o n e e x t r a c t i o n o f the m e t h a n o l - e x t r a c t e d T y g o t h a n e r e s u l t s i n a p a r t i a l l o s s o f t h e s e h i g h e r b i n d i n g e n e r g y components a t t h e surface. Upon c o o l i n g , t h e m e t h a n o l and a c e t o n e u s e d i n the e x t r a c t i o n were found to c o n t a i n w h i t e , f l o c u l a n t p r e c i p i t a t e s . The amount o f p r e c i p i a t e was a l w a y s g r e a t e r w i t h a c e t o n e . Gravim e t r i c e x t r a c t i o n data is l i s t e d i n Table I I . Table E x t r a c t i o n Data For
Tygothane Pellethane Superthane
II Polyurethanes
% Wt. L o s s A f t e r Methanol E x t r a c t i o n
% Wt. Loss A f t e r M e t h a n o l + Acetone E x t r a c t i o n
1.31 + 0 . 0 1 1.24 + 0 . 0 2 1.56+0.03
2.54 + 0.08 2.49 + 0.12 5.25+0.14
F o r S u p e r t h a n e , t h e e x t r a c t p r e c i p i t a t e from m e t h a n o l had a C / 0 r a t i o ( a s d e t e r m i n e d by ESCA) o f 3 . 7 1 . T h i s v a l u e s h o u l d be compared t o C / 0 v a l u e s f o r t h e l u m i n a l s u r f a c e o f t h e t u b i n g a f t e r methanol e x t r a c t i o n (3.39-3.83) and a f t e r acetone e x t r a c t i o n (4.47). The a n a l y s i s o f the C i s s p e c t r u m o f the Superthane e x t r a c t ( F i g u r e 6) i n d i c a t e s t h e p o s s i b i l i t y o f a h i g h p r o p o r t i o n
Photon, Electron, and Ion Probes of Polymer Structure and Properties Downloaded from pubs.acs.org by UNIV OF MISSOURI COLUMBIA on 04/11/17. For personal use only.
22.
RATNER
Polyurethanes for Biomedical Applications
—i
291
1
1
1
289
287
285
377
1—
283
binding energy (eV)
Figure 6. The C-ls spectrum of the precipitate from the methanol used to extract Superthane. The component peaks were resolved using a peak width at half height of 1.2 eV.
378
P H O T O N , E L E C T R O N , A N D ION PROBES
o f C-0 t y p e bonds. The e x t r a c t has b e e n found by GPC t o be o f s u b s t a n t i a l l y lower m o l e c u l a r weight than the o r i g i n a l polymer (Table I I I ) . Table
Photon, Electron, and Ion Probes of Polymer Structure and Properties Downloaded from pubs.acs.org by UNIV OF MISSOURI COLUMBIA on 04/11/17. For personal use only.
Gel Permeation tracts
Chromatographic
III Data
for
Polyurethanes
RETENTION TIME with LiBr Untreated Pellethane Extracted Pellethane Methanol E x t r a c t o f Pellethane Acetone E x t r a c t o f P e l l e t h a n e P o l y s t y r e n e (MW = 3 , 0 0 0 ) P o l y s t y r e n e (MW = 3 7 , 0 0 0 ) P o l y s t y r e n e (MW = 8 0 , 0 0 0 ) P o l y s t y r e n e (MW = 2 3 3 , 0 0 0 ) * DMF, F l o w r a t e = 0 . 7 5 m l / m i n , c olumns.
(Minutes)* without
32.4 31.3 44.1 35.0 — — — — 10
X , 10
and E x -
LiBr
31.7 32.3 44.2 36.0 54.7 43.5 40.5 34.2 8,
and 10
8 Styragel
A h y p o t h e s i s c o n c e r n i n g the s u r f a c e s t r u c t u r e o f t h e s e m a t e r i a l s has b e e n c o n s t r u c t e d b a s e d upon t h i s d a t a . I t would appear t h a t the p o l y u r e t h a n e s o b s e r v e d c o n t a i n p o l y e t h e r or p o l y e s t e r e n r i c h e d o l i g o m e r s . These have r e l a t i v e l y l o w s o l u b i l i t y i n warm m e t h a n o l and m i g r a t e t o t h e s u r f a c e o f t h e p o l y m e r t u b e where t h e y slowly leach into s o l u t i o n . In acetone, these low m o l e c u l a r w e i g h t components a r e r a p i d l y removed. Thus, the s u r f a c e o f the tube observed a f t e r ( i n c o m p l e t e ) methanol e x t r a c t i o n i s r i c h i n t h e o l i g o m e r phase ( i . e . , t h e C / 0 r a t i o o f t h e e x t r a c t i s a p p r o x i m a t e l y e q u a l to t h a t o f the t u b i n g s u r f a c e ) , w h i l e a f t e r a c e t o n e e x t r a c t i o n , the C / 0 r a t i o i s h i g h e r i n d i c a t i n g l o s s o f m a t e r i a l high i n oxygen. The d i s a p p e a r a n c e o f C - 0 t y p e bonds i n t h e C i s s p e c t r a a f t e r acetone e x t r a c t i o n a l s o supports t h i s h y p o t h e s i s . Experiments with p r e c i p i t a t i o n - p u r i f i e d polyetherurethanes of known s t r u c t u r e p r e p a r e d by c a s t i n g on g l a s s f u r t h e r s u p p o r t t h e hypothesis. These p o l y m e r s , p r e p a r e d b y S R I I n t e r n a t i o n a l and containing poly(oxypropylene glycol) blocks of various molecular w e i g h t s a l w a y s showed, b y ESCA, a s u r f a c e e n r i c h m e n t o f the p o l y e t h e r component compared t o what w o u l d be e x p e c t e d b a s e d upon t h e s t o i c h o m e t r y . O t h e r i n v e s t i g a t o r s have a l s o r e c e n t l y r e p o r t ed p o l y e t h e r s u r f a c e e n r i c h m e n t or d e p l e t i o n f o r P E U ' s (_12, 1 3 ) . D e t a i l e d r e s u l t s w i t h t h e s e p o l y m e r s w i l l be r e p o r t e d e l s e w h e r e . D i s t i n c t m o r p h o l o g i c a l changes i n the s u r f a c e s t r u c t u r e at each s t a t e o f t h e w a s h i n g / e x t r a c t i o n p r o c e s s a r e o b s e r v e d by scanning electron microscopy. F i g u r e 7 shows r e s u l t s f o r T y g o -
Photon, Electron, and Ion Probes of Polymer Structure and Properties Downloaded from pubs.acs.org by UNIV OF MISSOURI COLUMBIA on 04/11/17. For personal use only.
22.
RATNER
Polyurethanes for Biomedical Applications
379
Figure 7. Scanning electron micrographs of Tygothane surfaces: (a) unwashed, 1500X; (b) Ivory soap washed with sonication, 750X; (c) extracted one week in methanol, 750X; (d) after methanol extraction, 3 days acetone extraction, 750X •
Photon, Electron, and Ion Probes of Polymer Structure and Properties Downloaded from pubs.acs.org by UNIV OF MISSOURI COLUMBIA on 04/11/17. For personal use only.
380
PHOTON,
ELECTRON,
A N D ION PROBES
^ 3C-,
Percent of surface carbon atoms forming hydrocarbon (C-H) bonds
Figure 8.
Platelet consumption of polyurethanes as a function of percent hydrocarbon component in the C-ls spectra (from Ref. 9)
22.
RATNER
Polyurethanes for Biomedical Applications
381
thane. S i m i l a r o b s e r v a t i o n s were made f o r S u p e r t h a n e and P e l l e t hane. I n t h e e a r l i e s t wash s t a g e s , i n c l u s i o n s , w h i c h a p p e a r a l i g h t c o l o r , seem to be imbedded i n a d a r k e r m a t r i x . Extraction w i t h m e t h a n o l may remove t h i s " m a t r i x r e v e a l i n g t h e n a t u r e o f t h e substructure. One c a n e a s i l y s p e c u l a t e on t h e n a t u r e o f t h e s e m o r p h o l o g i c a l c h a n g e s b a s e d upon t h e c h e m i c a l e v i d e n c e p r e s e n t e d previously. H o w e v e r , f u r t h e r e x p e r i m e n t s must be p e r f o r m e d b e f o r e the p r e c i s e n a t u r e o f t h e s e m o r p h o l o g i c a l changes c a n be clarified. Photon, Electron, and Ion Probes of Polymer Structure and Properties Downloaded from pubs.acs.org by UNIV OF MISSOURI COLUMBIA on 04/11/17. For personal use only.
1 1
Conclusions U s i n g m o d e l compounds, t h e s u r f a c e c o m p o s i t i o n o f p o l y u r e t h a n e m a t e r i a l s o f unknown c o m p o s i t i o n c a n be i d e n t i f i e d . Large d i f f e r e n c e s i n surface s t r u c t u r e are observed for p o l y u r e t h a n e s . A l s o , the s u r f a c e s t r u c t u r e i s s e n s i t i v e to e x t r a c t i o n and c l e a n ing procedures. Some o f t h e s e changes may be r e l a t e d t o p r o c e s s i n g a d d i t i v e s i n the c o m m e r c i a l grade p o l y u r e t h a n e s used or to low molecular weight polyurethanes. F u t u r e e x p e r i m e n t s w i l l l o o k at c a r e f u l l y s y n t h e s i z e d p o l y e t h e r u r e t h a n e s o f known c o m p o s i t i o n t o r e l a t e b u l k and s u r f a c e s t r u c t u r e . A l s o , e x t r a c t s w i l l be f u r t h e r a n a l y z e d by E S C A , GPC and IR t o d e t e r m i n e t h e i r s t r u c t u r e . The b i o l o g i c a l s i g n i f i c a n c e o f t h i s work i s r e v e a l e d i n r e c e n t e x p e r i m e n t s i n w h i c h the s u r f a c e p r o p e r t i e s o f v a r i o u s p o l y u r e t h a n e s were d i v i d e d i n t o n o n - d i s p e r s i v e and d i s p e r s i v e f o r c e components by c o n s i d e r i n g , as a s i m p l e f i r s t - o r d e r a p p r o x i m a t i o n , t h a t the h y d r o c a r b o n - t y p e C i s peak r e p r e s e n t s c o n t r i b u t i o n s to o n l y t h e d i s p e r s i v e f o r c e component, and a l l o t h e r C i s peaks indicate contributions to non-dispersive-type surface forces. When p l a t e l e t c o n s u m p t i o n as m e a s u r e d i n a b a b o o n A - V s h u n t m o d e l i s p l o t t e d a g a i n s t the f r a c t i o n o f the C i s ESCA s p e c t r a r e p r e s e n t a t i v e o f hydrocarbon-type groups ( d i s p e r s i v e f o r c e component), a l i n e a r r e l a t i o n s h i p i s o b t a i n e d ( F i g u r e 8, reference 9 ) . R e c e n t l y , ESCA and p l a t e l e t c o n s u m p t i o n d a t a from e x t r a c t e d and u n e x t r a c t e d T y g o t h a n e have been found t o f i t t h i s trend. This i s p a r t i c u l a r l y i n t e r e s t i n g since i t i n d i c a t e s that b o t h p o l y e s t e r u r e t h a n e s and p o l y e t h e r u r e t h a n e s b e h a v e i n a m e c h a n i s t i c a l l y s i m i l a r f a s h i o n w i t h r e s p e c t to t h e i r r e a c t i o n w i t h blood. A l s o , f u r t h e r a n a l y s i s o f t h e ESCA d a t a has i n d i c a t e d t h a t p l a t e l e t consumption c o r r e l a t e s s t r o n g l y w i t h the c o n c e n t r a t i o n o f C-CK t y p e l i n k a g e s a t t h e s u r f a c e and n o t w i t h t h e c o n c e n t r a t i o n o f c a r b a m a t e - t y p e g r o u p s . These c o n c l u s i o n s do n o t a g r e e w i t h t h e c o n c l u s i o n s a r r i v e d a t by a n o t h e r r e s e a r c h g r o u p i m p l i c a t i n g the h a r d segment ( i . e . c a r b a m a t e - t y p e f u n c t i o n a l i t i e s ) as t h e i n i t i a t o r of blood r e a c t i o n (140. A d e t a i l e d s t u d y on t h e p l a t e l e t c o n s u m p t i o n o f p o l y u r e t h a n e s w i l l be p u b l i s h e d s h o r t l y . Acknowledgement This 22163.
work was
supported
by NHLBI
Program P r o j e c t
G r a n t HL
382
PHOTON, ELECTRON, AND ION PROBES
Photon, Electron, and Ion Probes of Polymer Structure and Properties Downloaded from pubs.acs.org by UNIV OF MISSOURI COLUMBIA on 04/11/17. For personal use only.
Literature Cited 1.
Boretos, J.W., Pierce, W.S., Baier, R.E., Leroy, A . F . , Donachy, H . J . , J . Biomed. Mater. Res., 1975, 9, 327.
2.
Stupp, S.I., Kauffman, J.W., Carr, S.H., J . Biomed. Mater. Res., 1977, 11, 237.
3.
Paik Sung, C.S., Hu, C.B., Merrill, E.W., ACS Polym. Preprints., 1978, 19(1), 20.
4.
Paik Sung, C.S., Hu, C.B., J. Biomed. Mater. Res., 1979, 13, 45.
5.
Paik Sung, C.S., Hu, C.B., J. Biomed. Mater. Res., 1979, 13, 161.
6.
Andrade, J.D., Iwamoto, G.K., McNeill, B., Shibatani, K., ACS Organ. Coatings Plastics Chem. Preprints, 1976, 36(1), 161.
7.
Lyman, D.J., Knutson, K., McNeill, B., Shibatani, K., Trans. Am. Soc. Int. Org., 1975, 21, 49.
8.
Lyman, D . J . , Albro, D., Jr., Jackson, R., Knutson, K., Trans. Am. Soc. Artif. Int. Org., 1977, 23, 253.
9.
Hanson, S.R., Harker, L . A . , Ratner, B.D., Hoffman, A.S., J . Lab. Clin. Med., 1980, 95, 289.
10.
Gott, S.R., Baier, R.E., "Evaluation of Materials by Vena Cava Rings in Dogs," NHLI Report PH 43-68-84-3-1, National Institutes of Health, Bethesda, MD, 1972.
11.
Clark, D.T., Thomas, H.R., J. Polym. S c i . , Polym. Chem. Ed., 1976, 14, 1671.
12.
Knutson, K., and Lyman, D.J., ACS Organic Coatings and Plastics Chemistry Preprints, 1980, 42, 621.
13.
Hu, C.B., Paik Sung, C.S., ACS Polymer Preprints, 21(1), 156.
14.
DaCosta, V.S., Brier-Russell, D., Trudel, G., Waugh, D.F., Salzman, E.W., and Merrill, E.W., J . Coll. Interf. S c i . , 1980, 76, 594.
RECEIVED
March 10, 1981.
1980,