Excess Molar Volume along with Viscosity, Flash Point, and Refractive

Jul 2, 2013 - Density, viscosity, flash point and refractive index for binary mixtures of cis-decalin or trans-decalin with ... Citing Articles; Relat...
0 downloads 0 Views 327KB Size
Article pubs.acs.org/jced

Excess Molar Volume along with Viscosity, Flash Point, and Refractive Index for Binary Mixtures of cis-Decalin or trans-Decalin with C9 to C11 n‑Alkanes Hai Chi, Guangqian Li, Yongsheng Guo,* Li Xu, and Wenjun Fang* Department of Chemistry, Zhejiang University, Hangzhou 310027, China S Supporting Information *

ABSTRACT: Density, viscosity, flash point and refractive index for binary mixtures of cisdecalin or trans-decalin with nonane, decane, and undecane have been determined at pressure p = 0.1 MPa and different temperatures ranging from (293.15 to 323.15) K. The calculated excess molar volumes give negative values over the whole composition range for these binary systems. With the increase of mole fraction of decalin, the values of viscosity and refractive index increase continuously. The viscosity deviation and refractive index deviation are calculated, showing negative from the corresponding linear additive values. A small additional amount of the component with lower flash point leads to marked changes of flash point values of these binary mixtures.

1. INTRODUCTION Decalin is a high-density bicyclic naphthene which is usually found in coal-derived and tar-sand-derived fuels.1 The addition of decalin can improve the energy density of hydrocarbon fuels. Because decalin has much higher thermal stability than many other hydrocarbon fuels such as normal alkanes, it can be used as surrogate of hydrocarbon fuels for jet and rocket.2−6 Decalin also acts as a hydrogen donor which can help to inhibit the formation of pyrolytic deposits.7 Hence, it serves as one candidate component of the endothermic hydrocarbon fuels for the advanced aircrafts.8 However, decalin is generally a geometrical mixture which contains cis-decalin and trans-decalin.9 Figure 1 shows the twisted structure of cis-decalin and the symmetric structure of transdecalin. These two isomers have some quite different physical properties.10 The volumetric properties are closely related to the energy density of hydrocarbon fuels. Viscosity is an important transport property, which influences the mass transfer characteristics of hydrocarbon fuels. The flash point is a significant safety index reflecting the volatile property of hydrocarbon fuels. The refractive index is an optical property which can reflect the purity of hydrocarbon fuels. To understand in detail the effects of each isomer of decalin on the physical properties of hydrocarbon fuels, in the present work, the density, viscosity, flash point, and refractive index for the binary mixtures of cis-decalin + nonane, decane, or undecane and trans-decalin + nonane, decane, or undecane are measured over the whole composition range at temperature T = (293.15 to 323.15) K and pressure p = 0.1 MPa. The excess molar volumes of these six binary systems are calculated. The stereoisomeric effects of isomers and molecular interaction in the binary mixtures are simply discussed. © XXXX American Chemical Society

Figure 1. Molecular structures of cis-decalin and trans-decalin.

2. EXPERIMENTAL SECTION Materials. cis-Decalin (CAS no. 493-01-6, mass fraction purity > 0.98) and trans-decalin (CAS no. 493-02-7, mass fraction purity > 0.98) are obtained from Tokyo Chemical Industry (TCI) Co. Ltd., Tokyo, Japan. Nonane (CAS no. 11184-2, mass fraction purity ∼ 0.99), decane (CAS no. 124-18-5, Received: March 14, 2013 Accepted: June 20, 2013

A

dx.doi.org/10.1021/je400250u | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

mass fraction purity ∼ 0.99), and undecane (CAS no. 1120-21-4, mass fraction purity ∼ 0.99) are supplied by J&K Chemical Reagent Company, Shanghai, China. The reagents are checked by GC−MS (7890A/5975C, Agilent) and used without further purification. The specifications of the chemicals are listed in Table 1.

Table 2. Comparison of Densities (ρ), Viscosities (η), Flash Points (TFP), and Refractive Indexes (nD) at Temperature T = 293.15 K and Pressure p = 0.1 MPa of Pure Liquidsa ρ/g·cm−3 compound

Table 1. Specifications of Chemicals in This Work chemical name cis-decalin

source TCI

provided mass fraction purity 0.98

purification method none

measured mass fraction purity 0.984

analysis method GC−MS

trans-decalin

TCI

0.98

none

0.997

GC−MS

nonane

J&K

0.99

none

0.990

GC−MS

decane

J&K

0.99

none

0.991

GC−MS

undecane

J&K

0.99

none

0.987

GC−MS

lit

exptl

lit

0.71794 0.73114 0.74028 0.89685 0.86978 TFP/K

0.7179b 0.7310c 0.7401d 0.8968e 0.8697f

0.724 0.916 1.167 3.355 2.112

0.720b 0.913c 1.174g 3.355e 2.118h

compound

exptl

lit

exptl

lit

nonane decane undecane cis-decalin trans-decalin

304.8 317.6 337.6 332.6 326.8

304.2i 318j 339.2k 331.0l

1.4054 1.4123 1.4170 1.4806 1.4691

1.4057m 1.4124n 1.4171n 1.4809o 1.4693o

nonane decane undecane cis-decalin trans-decalin

exptl

η/mPa·s

nD

a

Standard uncertainties u are u (T) = 0.01 K, u (p) = 0.00002 MPa. The combined expanded uncertainty is uc (ρ) = 0.00005 g·cm−3, uc (η) = 0.005 mPa·s, uc (TFP) = 0.5 K, uc (nD) = 0.0006 (level of confidence = 0.95). bReference 11. cReference 12. dReference 13. e Reference 14. fReference 10. gReference 15. hReference 16. i Reference 17. jReference 18. kReference 19. lReference 20. m Reference 21. nReference 22. oReference 23.

Methods. The densities (ρ) of pure liquids and binary mixtures are measured with an Anton Paar DMA 5000 M density meter at temperature T = (293.15 to 323.15) K and pressure p = 0.1 MPa. The apparatus has an installed thermometer with a precision of ± 0.01 K. The uncertainty of the density measurement is ± 5·10−5 g·cm−3. The dynamic viscosities (η) of pure liquids and binary mixtures are measured at temperature T = (293.15 to 323.15) K and pressure p = 0.1 MPa by using an Anton Paar AMVn viscometer. The precision of the efflux time is ± 0.001 s, and the apparatus has an installed thermometer with a precision of ± 0.01 K. The combined uncertainty of the viscosity measurement is ± 0.005 mPa·s. The flash points (TFP) of pure liquids and binary mixtures are measured by using an automatic closed-cup flash point tester (SYD-261A, China). The precision of the installed thermometer is ± 0.1 K. The combined uncertainty of the flash point measurement is ± 0.5 K. The refractometer (WAY-2S, China) is used to measure the refractive indexes (nD) at temperature T = (298.15, 308.15 and 318.15) K. A HAAKE circulator with circulating water is used to maintain the measurement temperatures, and the precision is ± 0.01 K. The measurements are taken three times to obtain the average values of refractive index, and the uncertainty of the measurement is ± 0.0006.

Vm E =

M1x1 + M 2x 2 ⎛ M1x1 Mx ⎞ − ⎜⎜ + 2 2 ⎟⎟ ρm ρ2 ⎠ ⎝ ρ1

(1)

where ρm is the density of the binary mixture, ρ1 and ρ2 are the densities, M1 and M2 are the molar masses, and x1 and x2 are the mole fractions of pure components, respectively. The values of VmE are listed in Table S1 of the Supporting Information. Empirically, the excess molar volumes (VEm ) are fitted to the Redlich−Kister type polynomial equation: k

VmE = x1(1 − x1)∑ Ai (2x1 − 1)i − 1 i=1

(2)

where x1 is the mole fraction of decalin (cis-decalin and transdecalin) in each binary mixture. The values of polynomial coefficients Ai obtained by using the least-squares regression method are summarized in Table S2 of the Supporting Information along with the standard deviation (σ), which is defined as E σ = [∑ (Vm E − Vm,cal )2 /(n − k)]1/2

3. RESULTS AND DISCUSSION The experimental data of density (ρ), viscosity (η), flash point (TFP), and refractive index (nD) of the pure liquids at T = 293.15 K and p = 0.1 MPa are compared with those from the references10−23 in Table 2. The values of each property show satisfactory agreement. The results for binary systems of cisdecalin or trans-decalin with C9 to C11 n-alkanes are provided in the following part. Volumetric Properties. The measured densities (ρ) of the binary mixtures over the whole composition range at temperature T = (293.15 to 323.15) K and pressure p = 0.1 MPa are summarized in Table 3. The densities of n-alkanes (nonane, decane, and undecane) are much lower than the corresponding values of decalin (cis-decalin and trans-decalin) at the same temperature. The excess molar volumes (VmE) are calculated from the following equation:

(3)

where VEm and VEm,cal imply the experimental

and calculated values of excess molar volumes for the binary mixtures, respectively; n is the number of experimental datum points, and k is the number of coefficients. The excess molar volumes (VEm ) of the binary systems at each temperature are visually shown in Figure 2 along with the data found in the literatures.24,25 It is indicated that all of the VEm values are negative and increase slightly with increasing temperature. The values of VEm exhibit a minimum at x1 ≈ 0.5. Figure 3 shows the variations of VEm as a function of x1 for the six binary systems at 308.15 K. It follows that the values of VEm become less negative with the increasing chain length of n-alkane. The mixtures of cis-decalin + n-alkane have less negative VEm values than those of trans-decalin + n-alkane at the same mole fraction. For example, at x1 ≈ 0.5, the VEm value of cis-decalin + nonane is B

dx.doi.org/10.1021/je400250u | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. Densities (ρ) at Different Temperatures (T) and Mole Fraction (x1) for the Binary Systems of Decalin(1) + nAlkane(2) at Pressure p = 0.1 MPaa ρ/g·cm−3 x1

293.15 K

298.15 K

0.0000 0.1031 0.2033 0.2973 0.3997 0.4978 0.6044 0.6961 0.8014 0.8976 1.0000

0.71794 0.73459 0.75110 0.76696 0.78454 0.80187 0.82102 0.83796 0.85786 0.87648 0.89685

0.71411 0.73075 0.74726 0.76314 0.78074 0.79810 0.81723 0.83418 0.85408 0.87272 0.89306

0.0000 0.1006 0.2055 0.3009 0.3965 0.5080 0.6026 0.7012 0.7763 0.8985 1.0000

0.73114 0.74489 0.75979 0.77395 0.78864 0.80655 0.82235 0.83960 0.85324 0.87648 0.89685

0.72743 0.74118 0.75608 0.77021 0.78490 0.80283 0.81862 0.83586 0.84949 0.87271 0.89306

0.0000 0.1086 0.2072 0.3066 0.4031 0.5028 0.5976 0.6835 0.7983 0.8954 1.0000

0.74028 0.75322 0.76562 0.77883 0.79239 0.80723 0.82217 0.83642 0.85682 0.87537 0.89685

0.73663 0.74955 0.76195 0.77516 0.78874 0.80355 0.81848 0.83271 0.85310 0.87162 0.89306

0.0000 0.1036 0.2018 0.3016 0.4042 0.4954 0.6009 0.6984 0.8001 0.8933 1.0000

0.71794 0.73272 0.74684 0.76145 0.77668 0.79042 0.80655 0.82169 0.83766 0.85253 0.86978

0.71411 0.72887 0.74300 0.75763 0.77288 0.78663 0.80278 0.81794 0.83393 0.84880 0.86607

0.0000 0.1035 0.2016 0.3001 0.3994 0.5036 0.6062 0.6989 0.7891

0.73114 0.74350 0.75554 0.76800 0.78101 0.79510 0.80953 0.82298 0.83646

0.72743 0.73974 0.75179 0.76427 0.77728 0.79138 0.80581 0.81926 0.83275

303.15 K

308.15 K

cis-Decalin (1) + Nonane (2) 0.71020 0.70629 0.72686 0.72296 0.74340 0.73952 0.75930 0.75544 0.77691 0.77307 0.79429 0.79046 0.81343 0.80961 0.83038 0.82658 0.85029 0.84649 0.86892 0.86513 0.88926 0.88546 cis-Decalin (1) + Decane (2) 0.72364 0.71984 0.73740 0.73361 0.75231 0.74853 0.76645 0.76268 0.78115 0.77738 0.79907 0.79531 0.81486 0.81110 0.83210 0.82833 0.84572 0.84196 0.86893 0.86515 0.88926 0.88546 cis-Decalin (1) + Undecane (2) 0.73293 0.72922 0.74585 0.74215 0.75826 0.75456 0.77147 0.76777 0.78505 0.78135 0.79985 0.79614 0.81477 0.81105 0.82899 0.82527 0.84936 0.84562 0.86786 0.86410 0.88926 0.88546 trans-Decalin (1) + Nonane (2) 0.71020 0.70629 0.72499 0.72109 0.73914 0.73526 0.75379 0.74994 0.76906 0.76523 0.78283 0.77901 0.79899 0.79519 0.81417 0.81039 0.83018 0.82641 0.84507 0.84133 0.86234 0.85861 trans-Decalin (1) + Decane (2) 0.72364 0.71984 0.73597 0.73217 0.74802 0.74424 0.76051 0.75674 0.77352 0.76976 0.78763 0.78388 0.80207 0.79832 0.81553 0.81179 0.82902 0.82529 C

313.15 K

318.15 K

323.15 K

0.70235 0.71905 0.73563 0.75156 0.76921 0.78662 0.80579 0.82276 0.84268 0.86133 0.88165

0.69840 0.71512 0.73173 0.74768 0.76535 0.78277 0.80195 0.81894 0.83888 0.85752 0.87785

0.69443 0.71117 0.72780 0.74378 0.76147 0.77890 0.79811 0.81511 0.83506 0.85371 0.87405

0.71603 0.72980 0.74474 0.75890 0.77360 0.79154 0.80733 0.82456 0.83818 0.86137 0.88165

0.71220 0.72599 0.74094 0.75510 0.76981 0.78776 0.80355 0.82078 0.83440 0.85758 0.87785

0.70836 0.72216 0.73712 0.75129 0.76601 0.78396 0.79976 0.81699 0.83061 0.85378 0.87405

0.72551 0.73844 0.75084 0.76405 0.77764 0.79242 0.80733 0.82153 0.84187 0.86033 0.88165

0.72178 0.73471 0.74712 0.76033 0.77391 0.78870 0.80360 0.81779 0.83811 0.85655 0.87785

0.71804 0.73098 0.74339 0.75660 0.77018 0.78496 0.79986 0.81405 0.83435 0.85277 0.87405

0.70235 0.71718 0.73137 0.74607 0.76138 0.77518 0.79138 0.80660 0.82264 0.83757 0.85488

0.69840 0.71325 0.72746 0.74218 0.75752 0.77134 0.78756 0.80280 0.81886 0.83381 0.85114

0.69443 0.70930 0.72354 0.73828 0.75364 0.76748 0.78373 0.79899 0.81508 0.83005 0.84740

0.71603 0.72837 0.74045 0.75295 0.76599 0.78011 0.79456 0.80804 0.82154

0.71220 0.72455 0.73664 0.74916 0.76220 0.77634 0.79080 0.80428 0.81779

0.70836 0.72072 0.73282 0.74535 0.75840 0.77255 0.78702 0.80051 0.81404

dx.doi.org/10.1021/je400250u | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. continued ρ/g·cm−3 x1

293.15 K

298.15 K

0.8949 1.0000

0.85280 0.86978

0.84909 0.86607

0.0000 0.1041 0.2052 0.3027 0.3999 0.4997 0.5991 0.6991 0.8019 0.8992 1.0000

0.74028 0.75102 0.76189 0.77286 0.78434 0.79676 0.80974 0.82347 0.83840 0.85335 0.86978

0.73663 0.74737 0.75822 0.76919 0.78066 0.79309 0.80606 0.81979 0.83472 0.84965 0.86607

303.15 K

308.15 K

trans-Decalin (1) + Decane (2) 0.84537 0.84164 0.86234 0.85861 trans-Decalin (1) + Undecane (2) 0.73293 0.72922 0.74367 0.73997 0.75453 0.75083 0.76550 0.76180 0.77697 0.77328 0.78940 0.78570 0.80237 0.79867 0.81609 0.81239 0.83102 0.82731 0.84594 0.84222 0.86234 0.85861

313.15 K

318.15 K

323.15 K

0.83790 0.85488

0.83416 0.85114

0.83041 0.84740

0.72551 0.73625 0.74711 0.75809 0.76957 0.78199 0.79496 0.80867 0.82359 0.83850 0.85488

0.72178 0.73253 0.74339 0.75437 0.76585 0.77827 0.79124 0.80495 0.81987 0.83477 0.85114

0.71804 0.72879 0.73966 0.75064 0.76212 0.77454 0.78751 0.80122 0.81614 0.83103 0.84740

a x1 is the mole fraction of decalin in binary mixtures. Standard uncertainties u are u(x) = 0.0001, u(T) = 0.01 K, u(p) = 0.00002 MPa. The combined expanded uncertainty is uc (ρ) = 0.00005 g·cm−3 (level of confidence = 0.95).

−0.369 cm3·mol−1, while the trans-decalin + nonane is −0.401 cm3·mol−1. The Redlich−Kister correlations of VEm at different temperatures for trans-decalin + nonane are compared with the experimental values in Figure 4. The correlated results show satisfactory agreement with the experimental data. Other binary systems of decalin (cis-decalin and trans-decalin) + n-alkanes show the same trends. Considering molecular interactions and structural factors, the changes of VEm are discussed. As decalin (cis-decalin and transdecalin) + n-alkanes are nonpolar systems, there are no chemical intermolecular forces (i.e., hydrogen bond) and the physical intermolecular forces (i.e., van der Waals’ forces) are also quite weak. The main influence factor of the values of VEm should be ascribed to the structural factors. The space of decalin might be aggregated with n-alkanes molecules, since decalin is a cyclic compound and nonane, decane, and undecane are chain alkanes. Owing to the molecule bundling or intertwining, the intermolecular distance between these two compounds becomes much smaller. Therefore, the VEm of the binary mixtures exhibit negative values. As show in Figure 1, cis-decalin gives a twisted structure while the trans-decalin gives a symmetric structure. Because of less steric hindrance, trans-decalin can be aggregated with the same alkane much easier than cis-decalin. As a result, the binary mixtures containing trans-decalin have a bit higher absolute values of VEm than those containing cis-decalin. Viscometric Properties. The viscosities (η) for the binary systems at temperature T = (293.15 to 323.15) K and pressure p = 0.1 MPa are listed in Table 4. Either cis-decalin or transdecalin has a higher viscosity than each n-alkane (nonane, decane, or undecane). The experimental behaviors of viscosity for cis-decalin + nonane and trans-decalin + nonane are shown in Figure S1 of the Supporting Information. With rising temperature, the values of η for the binary systems decrease. The values of η for mixtures show clearly negative deviation from the linear addition of those for pure components. The kinematic viscosity (υ) can be calculated from the viscosity (η) and the density (ρ) υ = η/ρ

The kinematic viscosity (υ) is correlated with the McAllister three-body model, which is given by the following equation: ln νm = x13 ln ν1 + 3x12x 2 ln ν12 + 3x1x 22 ln ν21 + x 23 ln ν2 ⎡⎛ ⎛ M ⎞ M ⎞ ⎤ − ln⎜x1 + x 2 2 ⎟ + 3x12x 2 ln⎢⎜2 + 2 ⎟ /3⎥ ⎢⎣⎝ M1 ⎠ M1 ⎠ ⎥⎦ ⎝ ⎡⎛ ⎛M ⎞ M ⎞ ⎤ + 3x1x 22 ln⎢⎜1 + 2 2 ⎟ /3⎥ + x 23 ln⎜ 2 ⎟ ⎢⎣⎝ M1 ⎠ ⎦⎥ ⎝ M1 ⎠

(5)

where υm is the kinematic viscosity of the binary mixture, υ1 and υ2 are the kinematic viscosities of pure components. M1 and M2 are the molar masses, and x1 and x2 are the mole fractions of pure components. The interaction parameters υ12 and υ21 are determined by the least-squares method for the systems at each temperature level. The values of υ12 and υ21 are reported in Table S3 of the Supporting Information along with the standard deviation (σ), which is defined as σ = [∑ (νm − νm,cal)2 /(n − k)]1/2

(6)

where υm and υm,cal are the experimental and calculated kinematic viscosities of the binary mixtures, n is the number of experimental datum points, and k is the number of coefficients. The viscosity deviations (Δη) of the binary systems are calculated using the following equation: Δη = ηm − (x1η1 + x 2η2)

(7)

where ηm, η1, and η2 are the viscosity of the mixture, decalin, and n-alkane, respectively. The values of Δη are listed in Table S4 of the Supporting Information. It is indicated that all of the Δη values are negative and increase slightly with increasing temperature. The maximum negative values are observed at x1 ≈ 0.6. The values of Δη and VmE are all negative. Therefore, the addition of decalin not only increases the density but also decreases the viscous resistance for binary mixtures with reference to the corresponding linear addition. These are very useful for the preparation of hydrocarbon fuels.

(4) D

dx.doi.org/10.1021/je400250u | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 2. Excess molar volume (VEm) as a function of mole fraction of decalin (x1) for six binary systems (a, cis-decalin + nonane; b, cis-decalin + decane; c, cis-decalin + undecane; d, trans-decalin + nonane; e, trans-decalin + decane; f, trans-decalin + undecane) at different temperatures (T). This work: ■, T = 293.15 K; ●, T = 298.15 K; ▲, T = 303.15 K; ▼, T = 308.15 K; ⧫, T = 313.15 K; ◀, T = 318.15 K; ▶, T = 323.15 K; ref 24: □, T = 298.15 K; ○, T = 312.65 K; ref 25: Δ, T = 298.15 K.

Flash Point. The experimental values of flash point (TFP) for the binary systems are listed in Table S5 of the Supporting Information. Nonane and decane have lower flash points than decalin, while undecane has a higher flash point. Figure 5 shows TFP as a function of the mole fraction of decalin for the binary systems. It can be observed that a small additional amount of the component which has the lower flash point makes an obvious decrease of the flash points of mixtures. Then, the continuous addition of nonane has a slight effect on the flash points. These results are useful for the composition adjustment of hydrocarbon fuels with appropriate storability as well as security assurance. Refractive Index. The experimental data of refractive index (nD) for the six binary systems at temperature T = (298.15, 308.15 and 318.15) K and pressure p = 0.1 MPa are presented

in Table 5. Decalin have higher values of nD than n-alkanes (nonane, decane, and undecane). The behaviors of nD versus composition for cis-decalin + decane and trans-decalin + decane are shown in Figure S2 of the Supporting Information along with the data found in the literatures.26,27 It is observed that the values of nD decrease with the rising temperature, and those for mixtures show only a slightly negative deviation from the linear addition from pure components. The refractive index deviations (ΔnD) of the binary systems are calculated from the following equation: ΔnD = n Dm − (x1n D1 + x 2n D2)

(8)

where nDm, nD1, and nD2 are the refractive index of the mixtures, decalin, and n-alkane, respectively. The ΔnD values, which show slightly negative deviation, are listed in Table S6 of the Supporting Information. E

dx.doi.org/10.1021/je400250u | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 4. Viscosities (η) at Different Temperatures (T) and Mole Fractions (x1) for the Binary Systems of Decalin (1) + n-Alkane (2) at Pressure p = 0.1 MPaa η/mPa·s x1

293.15 K

298.15 K

0.0000 0.1031 0.2033 0.2973 0.3997 0.4978 0.6044 0.6961 0.8014 0.8976 1.0000

0.724 0.788 0.899 1.020 1.139 1.268 1.507 1.769 2.111 2.526 3.355

0.681 0.737 0.826 0.956 1.064 1.171 1.385 1.624 1.919 2.288 3.011

0.0000 0.1006 0.2055 0.3009 0.3965 0.5080 0.6026 0.7012 0.7763 0.8985 1.0000

0.916 1.006 1.090 1.197 1.366 1.481 1.669 1.954 2.163 2.647 3.355

0.852 0.933 1.015 1.107 1.260 1.361 1.530 1.781 1.964 2.390 3.011

0.0000 0.1086 0.2072 0.3066 0.4031 0.5028 0.5976 0.6835 0.7983 0.8954 1.0000

1.170 1.240 1.310 1.415 1.542 1.690 1.829 2.021 2.368 2.726 3.355

1.086 1.148 1.208 1.300 1.415 1.554 1.670 1.840 2.139 2.458 3.011

0.0000 0.1036 0.2018 0.3016 0.4042 0.4954 0.6009 0.6984 0.8001 0.8933 1.0000

0.724 0.772 0.836 0.912 1.004 1.109 1.253 1.409 1.635 1.864 2.112

0.681 0.725 0.781 0.849 0.934 1.028 1.154 1.305 1.505 1.701 1.925

0.0000 0.1035 0.2016 0.3001 0.3994 0.5036 0.6062 0.6989 0.7891

0.916 0.980 1.035 1.099 1.175 1.272 1.388 1.514 1.649

0.852 0.910 0.958 1.019 1.087 1.174 1.280 1.394 1.514

303.15 K

308.15 K

cis-Decalin (1) + Nonane (2) 0.640 0.604 0.695 0.655 0.786 0.739 0.883 0.826 0.986 0.917 1.086 1.010 1.276 1.182 1.490 1.372 1.748 1.606 2.081 1.891 2.718 2.470 cis-Decalin (1) + Decane (2) 0.799 0.751 0.868 0.812 0.939 0.876 1.022 0.950 1.162 1.076 1.255 1.162 1.406 1.298 1.633 1.503 1.792 1.644 2.168 1.979 2.718 2.470 cis-Decalin (1) + Undecane (2) 1.004 0.931 1.062 0.977 1.112 1.034 1.201 1.111 1.326 1.215 1.424 1.307 1.530 1.410 1.682 1.546 1.949 1.818 2.233 2.035 2.718 2.470 trans-Decalin (1) + Nonane (2) 0.640 0.604 0.681 0.642 0.732 0.688 0.795 0.746 0.871 0.816 0.957 0.893 1.075 0.998 1.213 1.127 1.393 1.290 1.568 1.447 1.769 1.628 trans-Decalin (1) + Decane (2) 0.799 0.751 0.848 0.794 0.890 0.834 0.946 0.884 1.010 0.941 1.090 1.013 1.185 1.101 1.285 1.197 1.396 1.293 F

313.15 K

318.15 K

323.15 K

0.571 0.617 0.698 0.770 0.852 0.943 1.099 1.260 1.476 1.732 2.252

0.547 0.588 0.662 0.728 0.802 0.890 1.033 1.174 1.374 1.604 2.079

0.521 0.559 0.626 0.681 0.753 0.835 0.965 1.094 1.262 1.477 1.912

0.709 0.760 0.820 0.887 0.996 1.079 1.204 1.389 1.517 1.811 2.252

0.667 0.715 0.771 0.832 0.924 1.007 1.120 1.286 1.401 1.666 2.063

0.632 0.674 0.725 0.781 0.859 0.941 1.045 1.193 1.299 1.539 1.898

0.862 0.903 0.962 1.034 1.115 1.204 1.303 1.426 1.673 1.859 2.252

0.801 0.843 0.899 0.964 1.038 1.119 1.209 1.319 1.505 1.710 2.063

0.749 0.786 0.841 0.900 0.970 1.043 1.124 1.225 1.392 1.577 1.898

0.571 0.607 0.650 0.704 0.766 0.838 0.929 1.052 1.202 1.334 1.505

0.547 0.576 0.614 0.663 0.723 0.786 0.869 0.984 1.118 1.241 1.394

0.521 0.547 0.583 0.627 0.682 0.742 0.821 0.922 1.041 1.156 1.295

0.709 0.744 0.778 0.828 0.881 0.947 1.024 1.113 1.201

0.667 0.702 0.734 0.777 0.826 0.887 0.959 1.032 1.119

0.632 0.662 0.696 0.732 0.777 0.834 0.896 0.966 1.046

dx.doi.org/10.1021/je400250u | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 4. continued η/mPa·s x1

293.15 K

298.15 K

0.8949 1.0000

1.848 2.112

1.694 1.925

0.0000 0.1041 0.2052 0.3027 0.3999 0.4997 0.5991 0.6991 0.8019 0.8992 1.0000

1.170 1.214 1.258 1.315 1.369 1.444 1.529 1.625 1.752 1.899 2.112

1.086 1.120 1.159 1.212 1.260 1.326 1.406 1.492 1.606 1.741 1.925

303.15 K

308.15 K

trans-Decalin (1) + Decane (2) 1.555 1.436 1.769 1.628 trans-Decalin (1) + Undecane (2) 1.004 0.931 1.037 0.965 1.073 0.996 1.121 1.041 1.165 1.081 1.222 1.136 1.296 1.201 1.376 1.274 1.478 1.366 1.597 1.473 1.769 1.628

313.15 K

318.15 K

323.15 K

1.330 1.505

1.237 1.394

1.154 1.295

0.862 0.900 0.929 0.972 1.006 1.058 1.117 1.182 1.267 1.364 1.505

0.801 0.842 0.869 0.908 0.940 0.988 1.042 1.101 1.180 1.267 1.394

0.749 0.789 0.815 0.852 0.881 0.924 0.975 1.028 1.100 1.180 1.295

a

x1 is the mole fraction of decalin in mixtures. Standard uncertainties u are u(x) = 0.0001, u(T) = 0.01 K, u(p) = 0.00002 MPa. The combined expanded uncertainty is uc(η) = 0.005 mPa·s (level of confidence = 0.95).

Table 5. Refractive Index (nD) for the Binary Systems of Decalin (1) + n-Alkane (2) with Different Mole Fractions (x1) at Temperature T = (298.15, 308.15, 318.15) K and Pressure p = 0.1 MPaa nD x1 0.0000 0.1031 0.2033 0.2973 0.3997 0.4978 0.6044 0.6961 0.8014 0.8976 1.0000 0.0000 0.1006 0.2055 0.3009 0.3965 0.5080 0.6026 0.7012 0.7763 0.8985 1.0000 0.0000 0.1086 0.2072 0.3066 0.4075 0.5059 0.5920 0.6835 0.7983 0.8954 1.0000

298.15 K

308.15 K

cis-Decalin (1) + Nonane (2) 1.4026 1.3983 1.4095 1.4047 1.4168 1.4121 1.4232 1.4189 1.4311 1.4269 1.4380 1.4336 1.4459 1.4425 1.4533 1.4492 1.4613 1.4572 1.4688 1.4654 1.4776 1.4736 cis-Decalin (1) + Decane (2) 1.4098 1.4052 1.4150 1.4109 1.4210 1.4167 1.4270 1.4227 1.4326 1.4284 1.4403 1.4358 1.4464 1.4422 1.4539 1.4496 1.4594 1.4550 1.4688 1.4647 1.4776 1.4736 cis-Decalin (1) + Undecane (2) 1.4138 1.4095 1.4192 1.4151 1.4242 1.4198 1.4294 1.4251 1.4352 1.4310 1.4411 1.4366 1.4469 1.4426 1.4532 1.4487 1.4609 1.4565 1.4686 1.4640 1.4776 1.4736

nD x1

318.15 K 1.3937 1.4002 1.4077 1.4145 1.4223 1.4294 1.4379 1.4452 1.4533 1.4616 1.4696

0.0000 0.1036 0.2018 0.3016 0.4042 0.4954 0.6009 0.6984 0.8001 0.8933 1.0000

1.4000 1.4065 1.4127 1.4188 1.4251 1.4319 1.4384 1.4456 1.4515 1.4611 1.4696

0.0000 0.1035 0.2016 0.3001 0.3994 0.5036 0.6062 0.6989 0.7891 0.8949 1.0000

1.4058 1.4114 1.4160 1.4213 1.4275 1.4331 1.4383 1.4448 1.4536 1.4612 1.4696

0.0000 0.1041 0.2052 0.3027 0.3999 0.4997 0.5991 0.6991 0.8019 0.8992 1.0000

298.15 K

308.15 K

trans-Decalin (1) + Nonane (2) 1.4026 1.3983 1.4084 1.4038 1.4146 1.4105 1.4205 1.4163 1.4273 1.4230 1.4326 1.4286 1.4397 1.4350 1.4459 1.4418 1.4526 1.4486 1.4591 1.4550 1.4662 1.4618 trans-Decalin (1) + Decane (2) 1.4098 1.4052 1.4144 1.4099 1.4192 1.4153 1.4243 1.4204 1.4301 1.4256 1.4355 1.4317 1.4414 1.4371 1.4471 1.4431 1.4524 1.4484 1.4592 1.4553 1.4662 1.4618 trans-Decalin (1) + Undecane (2) 1.4138 1.4095 1.4188 1.4143 1.4230 1.4190 1.4272 1.4232 1.4319 1.4280 1.4367 1.4331 1.4421 1.4378 1.4476 1.4434 1.4535 1.4496 1.4594 1.4559 1.4662 1.4618

318.15 K 1.3937 1.3993 1.4060 1.4122 1.4187 1.4249 1.4312 1.4379 1.4445 1.4509 1.4581 1.4000 1.4055 1.4112 1.4162 1.4211 1.4271 1.4336 1.4389 1.4448 1.4518 1.4581 1.4058 1.4099 1.4146 1.4191 1.4236 1.4281 1.4332 1.4390 1.4452 1.4515 1.4581

a

x1 is the mole fraction of decalin in mixtures. Standard uncertainties u are u(x) = 0.0001, u(T) = 0.05 K, u(p) = 0.00002 MPa, the combined expanded uncertainty is uc(nD) = 0.0006 (level of confidence = 0.95). G

dx.doi.org/10.1021/je400250u | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

4. CONCLUSIONS Experimental data for density, viscosity, flash point, and refractive index of binary mixtures of decalin (cis-decalin or trans-decalin) + n-alkane (nonane, decane or undecane) at different temperatures and atmospheric pressure are reported. The measured densities are used to calculate the excess molar volumes (VEm), and the Redlich−Kister type polynomial equation is used to correlate VEm values with composition. The VEm values of all the binary mixtures are negative, and the minimum values occurs at the mole fraction x ≈ 0.5. The variations of molecular interaction and structural factor lead to the differences of VEm. Because of less steric hindrance, the binary mixtures containing trans-decalin have more negative values of excess molar volume than those containing cis-decalin. With the increase of mole fraction of decalin, the values of viscosity show an exponential rise and the refractive index shows a nearly linear change. The calculated values of the viscosity deviation (Δη) are negative, and the addition of decalin decreases the viscous resistance for binary mixtures. With a small additional amount of the component which has a lower flash point, the values of the flash point for the binary mixtures change obviously. Generally speaking, the chain length of n-alkanes and steric configuration of decalin have clear effects on the physical properties of the investigated mixtures.

Figure 3. Excess molar volume (VEm) as a function of mole fraction of decalin (x1) at the temperature T = 308.15 K: ■, cis-decalin + nonane; ●, cis-decalin + decane; ▲, cis-decalin + undecane; □, trans-decalin + nonane; ○, trans-decalin + decane; Δ, trans-decalin + undecane.



ASSOCIATED CONTENT

S Supporting Information *

The values of excess molar volumes, estimated parameters (Ai) of the Redlich−Kister equation, interaction parameters (υ12 and υ21) in the McAllister three-body model, viscosity deviations (Δη), flash points (TFP) and refractive index deviations (ΔnD). The figures of viscosities and refractive index for cis-decalin + decane and trans-decalin + decane. This material is available free of charge via the Internet at http://pubs.acs.org.



AUTHOR INFORMATION

Corresponding Author

*W. Fang: Tel.: 86−571−87951895. Fax: +86−571−87951895. E-mail: [email protected]. Y. Guo: Tel.: 86−571−88981416. Fax: +86−571−88981416. E-mail: [email protected].

Figure 4. Excess molar volume (VEm) as a function of mole fraction of decalin (x1) for trans-decalin + nonane at different temperatures (T). Experimental data: ■, T = 293.15 K; ●, T = 298.15 K; ▲, T = 303.15 K; ▼, T = 308.15 K; ⧫, T = 313.15 K; ◀, T = 318.15 K; ▶, T = 323.15 K; , the Redlich−Kister correlations.

Funding

This work was financially supported by the National Natural Science Foundation of China under No. 21273201. Notes

The authors declare no competing financial interest.



REFERENCES

(1) Matthew, A. O.; Hsi-Ping, S. S.; Alessio, F.; Sauro, P.; Eliseo, R. Experimental and Kinetic Modeling Study of the Pyrolysis and Oxidation of Decalin. Energy Fuels 2009, 23, 1464−1472. (2) Huber, M. L.; Lemmon, E. W.; Diky, V.; Smith, B. L.; Bruno, T. J. Chemically Authentic Surrogate Mixture Model for the Thermophysical Properties of a Coal-Derived Liquid Fuel. Energy Fuels 2008, 22, 3249− 3257. (3) Tim, E. Surrogate Mixtures to Represent Complex Aviation and Rocket Fuels. J. Propul. Power 2001, 17, 311−316. (4) Gollis, M. H.; Belenyessy, L. I.; Gudzinowicz, B. J.; Koch, S. D.; Smith, J. O.; Wineman, R. J. Evaluation of Pure Hydrocarbons as Jet Fuels. J. Chem. Eng. Data 1962, 7, 373−390. (5) Stewart, J.; Brezinsky, K.; Glassman, I. Supercritical Pyrolysis of Decalin, Tetralin, and n-Decane at 700−800 K. Product Distribution and Reaction Mechanism. Combust. Sci. Technol. 1998, 136, 373−390.

Figure 5. Flash point (TFP) as a function of mole fraction of decalin (x1): ■, cis-decalin + nonane; ●, cis-decalin + decane; ▲, cis-decalin + undecane; □, trans-decalin + nonane; ○, trans-decalin + decane; Δ, trans-decalin + undecane. H

dx.doi.org/10.1021/je400250u | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

(6) Yu, J.; Semih, E. Thermal Decomposition of Jet Fuel Model Compounds under Near-Critical and Supercritical Conditions. 2. Decalin and Tetralin. Ind. Eng. Chem. Res. 1998, 37, 4601−4608. (7) Kyungchan, C.; Angela, V. Thermal Decomposition of Decalin: An ab Initio Study. J. Org. Chem. 2007, 72, 3179−3185. (8) Yang, Y.; André, L. B. Oxidation Chemistry of Cyclic Hydrocarbons in a Motored Engine: Methylcyclopentane, Tetralin, and Decalin. Combust. Flame 2010, 157, 495−505. (9) Amanda, A. S.; Rodrigo, A. R.; Márcio, L. L. P. Density and Viscosity of Decalin, Cyclohexane, and Toluene Binary Mixtures at (283.15, 293.15, 303.15, 313.15, and 323.15) K. J. Chem. Eng. Data 2009, 54, 2067−2072. (10) Zéberg-Mikkelsen, C. K.; Baylaucq, A.; Barrouhou, M.; Boned, C. The Effect of Stereoisomerism on Dynamic Viscosity: A study of cisdecalin and trans-decalin versus Pressure and Temperature. Phys. Chem. Chem. Phys. 2003, 5, 1547−1551. (11) Iloukhani, H.; Rezaei-Sameti, M.; Basiri-Parsa, J.; Azizian, S. Studies of Dynamic Viscosity and Gibbs Energy of Activation of Binary Mixtures of Methylcyclohexane with n-Alkanes (C5−C10) at various temperatures. J. Mol. Liq. 2006, 126, 117−123. (12) Filipe, X. F.; Ana, C. R. C.; Tamires, B. C.; Hosiberto, B. D. Viscosity and Density of Binary Mixtures of Ethyl Alcohol with nAlkanes (C6, C8, and C10). J. Chem. Eng. Data 2009, 54, 2957−2963. (13) Peleteiro, J.; Troncoso, J.; González-Salgado, D. J.; Valencia, L.; Souto-Caride, M.; Romani, L. Excess Isobaric Molar Heat Capacities and Excess Molar Volumes for Ethanol + n-Decane and n-Undecane systems. J. Chem. Thermodyn. 2005, 37, 935−940. (14) Barrouhou, M.; Zebérg-Mikkelsen, C. K.; Baylaucq, A.; Boned, C. High-Pressure Viscosity and Density Measurements for the Asymmetric Binary System cis-Decalin +2,2,4,4,6,8,8-Heptamethylnonane. Int. J. Thermophys. 2003, 24, 937−952. (15) Wu, J.; Nhaesi, A. H.; Asfour, A. A. Viscosities of Eight Binary Liquid n-Alkane Systems at 293.15 and 298.15 K. J. Chem. Eng. Data 1999, 44, 990−993. (16) Tsierkezos, N. G.; Molinou, I. E. Relative Permittivities, Speeds of Sound, Viscosities, and Densities of Cyclohexanone + cis-Decalin and Cyclohexanone + trans-Decalin Mixtures at 283.15, 293.15, and 303.15 K. J. Chem. Eng. Data 2002, 47, 1492−1495. (17) Laurent, C.; Valérie, N. A Unique Equation to Estimate Flash Points of Selected Pure Liquids Application to the Correction of Probably Erroneous Flash Point Values. J. Phys. Chem. Ref. Data 2004, 33, 1083−1111. (18) Noorollahy, M.; Moghadam, A. Z.; Ghasrodashti, A. A. Calculation of Mixture Equilibrium Binary Interaction Parameters Using Closed Cup Flash Point Measurements. Chem. Eng. Res. Des. 2010, 88, 81−86. (19) Affens, W. A.; Mclaren, G. W. Flammability Properties of Hydrocarbon Solutions in Air. J. Chem. Eng. Data 1972, 17, 482−488. (20) Hanley, B. A Model for the Calculation and the Verification of Closed Cup Flash Points for Multicomponent Mixtures. Process Saf. Prog. 1998, 17, 86−97. (21) Pereira, S. M.; Rivas, M. A.; Real, J. N.; Legido, J. L.; Iglesias, T. P. Densities, Speeds of Sound, and Refractive Indices of the Mixture Nonane + Triethylene Glycol Dimethyl Ether at 288.15 K, 293.15 K, 298.15 K, and 308.15 K. J. Chem. Eng. Data 2002, 47, 919−922. (22) Kő rő si, G.; Kovlts, E. S. Density and Surface Tension of 83 Organic Liquids. J. Chem. Eng. Data 1981, 26, 323−332. (23) Camin, D. L.; Rossini, F. D. Physical Properties of 14 American Petroleum Institute Research Hydrocarbons, C9 to C15. J. Phys. Chem. 1955, 59, 1173−1179. (24) Gómez-Ibáñez, J. D.; Wang, T. C. The Excess Volume of Binary Mixtures of trans-Decalin with Cyclohexane and with n-Alkanes. J. Phys. Chem. 1966, 70, 391−395. (25) Chylinski, K.; Stryjek, R. Excess Molar Volumes of cis-Bicyclo [4.4.0] decane + Tetrachloromethane, + Benzene, + n-Octane, + nUndecane, + n-Hexadecane, and + trans-Bicyclo [4.4.0] decane + Tetrachloromethane and Benzene at 298.15 K. J. Chem. Thermodyn. 1984, 16, 153−157.

(26) Struck, R. T.; kinney, C. R. Efficiency of Packed Fractionating Columns. Ind. Eng. Chem. 1950, 42, 77−82. (27) Zuiderweg, F. J. Vacuum Distillation: I Test Mixtures for Evaluation of Low Pressure Columns. Chem. Eng. Sci. 1952, 1, 164−174.

I

dx.doi.org/10.1021/je400250u | J. Chem. Eng. Data XXXX, XXX, XXX−XXX