(156) Proszt, J., Hegedus-Wein, I., Periodzca Polytech. 4, l(1960). (157) Rao, G. P., Murthy, A. R. V., Z . anal. Chem. 182.358 - - - (1961). (158) Rechnitz, G. A., Laitinen, H. A., AXAL.CHEM. 33,1473 (1961). (159) Reilley, C. E., Proc. Intern., Symposium Microchem., Birmingham Univ. 1958, 411, published (1959). (160) Reinmuth, W.H., in “Advances in Analytical Chemistry and Instrumentation,” vol. I, p. 241, C. 3. Reilley, ed., Interscience, hew York, 1960. (161) Reinmuth, K. H., J . Chem. Educ. 38, 149 (1961). (162) Rieger, P. H., Bernal, I., Fraenkel, G. K., J . Am. Chem. SOC.83, 3918 (1961’i. (163) Rbbson, H., Kuwana, T., ANAL. CHEM.32,567 (1960). (164) Ronnquist, A,, Acta Chem. Scand. 14, 1855 (1960). (165) Ruiii.ka, J., Collection Czechoslov. Chenz. Communs. 25,199 (1960). (166) Ruiifika, J., Bene.:, P., Zhid., 26, 1784 (1961). (167) Samartseva, A. G., Atomic Energy (C.S.S.X.) 7, 468 (1959). (168) Ibid., 8 , 324 (1960). (169) Santhanam, I 10, Cd may be separated from considerable quantities of Zn (465). Pyridylazonaphthol (PAN). An equilibrium study of the Cu-PAN chelate has shown it a 1: 1 complex whose K f is 10l6in 20% dioxane. I n this solvent the acid dissociation constants of PAN are 1.26 X low2and 6 X 10-’a (386). hlethods for determination of Zn, Cd, Mn, In, Ga, U, Co, Cu, Pd, and Ni have been described (42). The extractability and colors of PAN complexes of Ga, In, Cu, Bi, Ni, Zn, Fe, Hg, hln, Co, Cd, Pb, Ce, Y, and La for carbon tetrachloride, benzene, chloroform, ethyl ether, and isopentyl alcohol have been reported (467). Indium forms a 1 : 2 PAN complex that is extracted into chloroform a t p H 5.46.7 that permits its determination (468). Iron, Zn, Cu, and Ga interfere. Uranium may be determined in the presence of 22 metals, with only A1 and Sn interfering (69, 466); NaCl or Na2SO4 are necessary to obtain complete extraction. PAN has also been used to
66 R
ANALYTICAL CHEMISTRY
determine V by extracting with chloroform after a 4-hour reaction time (607). Trace levels of Zn or Cd may be determined in Ni (43). Oximes, Rhenium forms a stable chelate with 4-methyl cyclohexane-1,s dione dioxime (Cmethyl nioxime) that is extractable into chloroform from HCl solution (221). Nickel may be photometrically determined in pure In and A1 by a-furil dioxime extraction into chloroform (394). A modified method for Pd in tailings of Ni production involves extraction with dimethylglyoxime in chloroform followed by exchange with diantipyrinylmethane in the presence of K I (253). Rhenium upon SnClz reduction forms a complex with a-furil dioxime in strong acid solutions which may be extracted into chloroform or isopentyl alcohol (393).
Molybdate may be extracted into chloroform or ethyl acetate as its &-benzoin oxime complex from an acid solution (279, 293). Interference from V(V) and W(V1) is prevented by the addition of H2P04- and Fe(I1). A tracer study of the extraction of the W-a-benzoin oxime complex indicated that optimum conditions involved extracting into chloroform a maximum of 250 pg. of W in 100 ml. of a solution that is under 2M in HCl(4OO). 1-Nitroso-2-naphthol. I n a series of organic solvents including hexane, carbon tetrachloride, benzene, trichloroethylene, o-dichlorobenzene, chloroform, amyl acetate and methyl butyl ketone, the distribution ratio of the Co-1-nitroso-2-naphthol complex a t p H 2.9 varied from 0 in hexane, 10.35 in carbon tetrachloride, to “infinity” in the other solvents (,go). For the Xi-complex a t p H 6.2 in the same solvents, the values of distribution ratios varied from 0.26, 1.52, 1.01, 1.67, 2.03, 4.04, 7.00 to 8.08. Cobalt in ferroalloys can be determined by extraction of the chelate from 10M HC1 into benzene (424). A similar study of the distribution of the Co complex into a variety of solvents including ether, toluene, isopentyl alcohol, and carbon disulfide show them all to be satisfactory (526). Cobalt may be separated from its ores and alloys with 1-nitroso-2-naphthol by extraction into chloroform a t pH 3.5
(811.
Cupferron and Its Analogs. Cupferron has been employed in the extraction of Fe into amyl acetate in nonferrous metals by using EDTA masking a t p H 3.0 (674); in the separation of V following neutron irradiation using chloroform (226); in the determination of V by flame spectrophotometry after extraction from dilute H2S04 into ethyl acetate (501); and in the systematic separation of fission products by extraction of Zr96 and Xb96 from 5M HC1 into chloroform and of Ce144,PmI47, and
YB’J from acetate buffer into chloroform (237). Both benzohydroxamic acid (267) and N-benzoyl-N-phenylhydroxylamine (407, 434) have been employed to extract V from acid solutions. Although the latter reagent gives a greater sensitivity, the former is evidently more stable. Caution is suggested in the use of hexanol which has not been freed of traces of HzOz which can decompose benzohydroxamic acid (31a). This advice would seem applicable to the use of alcohol solvents in many extraction procedures. Benzohydroxaniic acid also forms a U(V1) complex a t p H 6.2 which extracts into n-hexanol (313). 2-Aminobenzohydroxamic acid forms a complex with either Fe(I1) or Fe(II1) which a t p H 4.5 is extractable into isobutyl alcohol (120). Xanganese also forms a complex under these conditions but does not extract. Other Chelating Agents. 3-Hydroxyflavone forms a yellow complex with U which is extractable into tributyl phosphate a t p H 6.0 to 7.0 (219). Sodium 5-phenyl-Zpyrazoline-1-dithioformate forms a stable complex with MO that extracts into chloroform; Fe, CU, hln, and V interfere but W does not (68). To eliminate interference in the fluorimetric determination of A1 from quenching ions, the Al-Pontachrome Blue Black R is extracted into amyl alcohol a t p H 4.8 (199). Microgram quantities of Tc can be extracted into carbon tetrachloride with toluene-3,4-dithiol from 2.5X HC1 (526). I n the presence of EDTA Bismuthiol II(5-mercapto3-phenyl-l,3,4-thiadiazole-2-t hione) reacts selectively with Te, forming a chloroform-extractable complex below pH 5 (77, 213). Copper forms a benzene-soluble complex with 1.5-diphenylcarbohydrazide a t pH 11 to 12 which has a molecular absorptivity of 55,000 a t 540 mp (512). Ruthenium forms a chloroform-soluble complex from 5-11 HCl with 1,4-diphenylthiosemicarbazide which absorbs a t 560 mp; Os does not interfere (156). Salicylic acid in isopentyl alcohol has been used to selectively extract U a t pH 2.5 to 5.5, Sc a t p H 3.5 to 5 . 5 , Y a t pH values over 4, and La a t p H values over 4.5(624). Tin can be separated from h’b, V, and Si by extraction of its thioglycolic acid complex from acid solutions with chloroform (276). Thorium is quantitatively extracted a t pH values greater than 1.5 to 2.5 by cyclohexane solutions of a number of organic compounds obtained by diazo coupling of picramic acid or dinitroaniline Kith 2-naphthol, salicylic acid, 8-quinolinol, or other phenols; Zr is quantitatively extracted by some of these compounds a t pH values above 3 (260). Reagents having nitro groups mould seem of advantage not only in Th and Zr evtraction but with other ele-
ments which are hydrolyzed in acid solution as well. Dziomko (116) has studied the enhancement of chloroform extraction of Sc, Th, Zr, Y, and rare earths obtained by suitable combinations of chelating agents. For example, Th did not give a colored extract with an o-hydroxyazo dye and 5-methyloxine unless cupferron mas present; for Zr, enhanced color formation was seen in the combination of 8-quinolinol or 8-methyloxine with an o-hydroxyazo dye and cupferron. ION ASSOCIATION SYSTEMS
The effect of such factors as ionic radii, and the presence of hydrocarbon groups upon the extraction of ion association compounds shows t h a t best extraction is attained in the presence of minimum ionic charges a t a definite cation to anion radius ratio and in the presence of hydrophobic groups in one or both cations (606). A study of I n extraction into methyl isobutyl ketone (MIBK) and various diluents from 4M HC1 has shed light on the role played by solvation energies as determined by basicity and internal pressure of the solvent (195). This treatment led to an equation accurately relating the distribution ratio of In to such factors in solvents ranging from pure ZIIBK to various dilutions of this with a variety of inert solvents. Further evidence has been developed of the role played by the hydrated hydronium ion H 9 0 4 +as the cation in the extraction of ion-pair species such as the strong acids and the complex metal acids (546). Evidence of larger aggregates than pairs in ion association extraction has been described for some rare earth nitrates and for Bi in HI (873). I t was observed that the composition of the extracted species in the case of some metal halides and thiocyanates depends on the solvent since the more basic solvents can replace one of the ligands (497). These conclusions were arrived a t via a conductometric-extraction titration procedure which was developed to elucidate stoichiometry of extracted species (209, 210, 494, 496). A comprehensive study of the extraction of Tc(VI1) from a variety of classes of solvents containing either 0 or N donor atoms demonstrated that solvent basicity and dielectric constant are both important in obtaining good extraction (57). The extraction of Tc(VI1) decreased vith a homologous series on increasing the hydrocarbon character of the solvent n liich could be correlated with 0 to C atom ratio in alcohols, ketones, and ethers. A synergistic effect upon the extraction was obtained in mixtures of an alcohol and a ketone which might indicate that extensive molecular association may cause the low solvent extraction power of alcohols.
This effect had been noted previously in the extraction of Pa(V) from HC1 (73). Synergism of mixed solvents (not always alcohols) in the extraction of rare earth nitrates and of HNO, has been attributed to mixed solvate complexes (668).
Phosphorus-Containing Extractants. TRI-N-BUTYL PHOSPHATE (TBP). A compilation of T B P extraction data through August 1959 has been made (127). Tributyl phosphate has been used to extract mineral acids as well as metal nitrates and halides. Nitric acid extraction varies with acid and T B P concentration (442) as does that of HBr (930). The acids HC1, "03, HSO4- have pK, values of -4 in T B P and are monosolvated whereas HClO4 is a strong acid in T B P and may form higher solvates (166, 226). Evidence of other than monosolvation for nitric acid includes indication of such species as T B P . 2 H N 0 3 and T B P . 4 H N 0 3 (3, 4, 88, 449). -4 thermodynamic analysis of the extraction data of HClO4 into T B P in benzene, including organic phase activity coefficients of HC1O4, has been made (480). The distribution of mono- and dibutyl phosphoric acids between aqueous solutions and T B P has been evaluated (190). These are common impurities in T B P which markedly affect T B P extractions. The effect of the polarity of the organic diluent used in T B P extractions has been studied with U, Np, Pu, Zr, and Ce (464, 533). Increasing polarity and dipole moment promote solvation and extraction. When kerosine is used to dilute T B P in UC14-HCl extraction, two organic layers are formed a t higher acid concentrations due to the lower solubility of the TBP-acid complex in kerosine (207). The extraction of U, Pu, Ru, and Zr nitrates with T B P has been found to decrease generally nith increasing temperature, possibly due to the exothermic reaction of the metal nitrate with T B P (459). When larger alkyl groups are substituted in trialkyl phosphates the extractability of U, Np, and P u nitrates increases, that of T h is depressed by bulky alkyl groups since three rather than two moles of the alkyl phosphate are required for formation of the extractable species (477). A study of a variety of phosphorus-containing reagents on the extraction of uranyl nitrate showed the effect of baseweakening substituents on the phosphoryl group was to reduce extractability (162); U was shown to be disolvated by TBP, whereas Co and Na were shown to form trisolvates (163). Previous work which suggested that branched secondary alkylphosphates and alkylphenyl phosphonates would generally give higher separation factors from T h and fission products than T B P and that the phenyl phosphonates would afford higher U extractability has
been substantiated (160). Formation of mixed complexes of U(V1) with T B P and dibutyl phosphate are responsible for the synergistic effect of using combined reagents (116). Equilibrium calculations for the U O r ( N 0 3 ) r T B P system have been carried out by several investigators (84, 216, 324, 363,696). The changes in infrared spectra in this system confirm the earlier conclusions that there is competitive extraction between UOz(N03)s and HNO, from water by T B P (368). The presence of nitrate salting-out agents is most effective for enhancement of U extraction into T B P a t low acidities ( 4 1 ) . The presence of sulfate reduced the extraction of U but this could be overcome with HNOa as salting-out agent rather than nitrates (248). Trivalent actinide nitrates extract with T B P like the lanthanides (44). I n the absence of U, the extraction of Pu(1V) out of nitric acid solutions into T B P decreases with increasing temperature up to 5M HNOa but increases a t higher concentration; the first effect being caused by the decrease in the distribution coefficient, the second to the increase in activity coefficient (326). The distribution of N'p between T B P and mineral acids has been studied as a function of K p oxidation state, acid, and T B P concentrations (202). Neptunium(V) may be isolated from irradiated U02(N03)2in high yield from T B P by back-extracting with 2M HC104. The preferential extraction of Ye0 by T B P from Hxo3 provides the basis for a determination of SrgO (133, 662). A thermodynamic analysis has been made of the extraction of Zr from HTu'O3 solutions into T B P ( 3 ) . A study of the nature of the solvates of iTp(1V) and Np(V1) perchlorate solvates with T B P (223) as well as that of Pu(1V) perchlorate (489) has been made. Equilibria in the T B P extraction of U(1V) from HC1 solutions have also been studied (206, 829, 462). The extraction of UOZ(ClO4),is similar to the nitrate but spectra of T B P solutions show anomalous changes (167). Distribution ratios for Zr, Th, Ce, Pm, and Y from HC104 solutions into T B P have been measured and indicate good extraction from concentrated HClO4 solutions (479). Care is indicated in interpreting extraction of Zr (and probably other elements) from T B P out of acid solutions since T B P partially hydrolyzes to give dibutylphosphoric acid which is a better extractant for Zr than T B P (432). Rare earth and Y nitrates extract best into T B P from solutions containing 4 to 7 M "03 and 5 to 8M "4NO3 (382). Rhenium(VI1) extracts from "03 with T B P to give a tetrasolvated HRe04 (227); Cr(V1) gives a trisolvated species with T B P (460); Nb(V) into sub-lO-7M concentrations is partially extracted by T B P out of VOL. 34, NO. 5, APRIL 1962
67 R
as hydroxonitrate complex (159). fluoboric-HC1 media and be directly most bivalent cations [except Sn, determined in the organic phase as the V(IV), U(VI)] from strong acid soluT B P has been used for the systematic extraction of over 70 elements from HCl PAN complex (423). Copper, Co, and tions (141). solutions (206). For most elements the Ni are extracted into di-2-ethylhexyl TRIALPYLPHOSPHINE OXIDES.A comcurves of D us. HC1 concentration are pilation of available data on the solvent phosphate in kerosine as simple comsimilar to those obtained in anion exextraction properties of tri-n-octylplexes; Na is transferred in a micellar change indicating the extractable species phosphine oxide (TOPO) has been precomplex (288). Iron may be extracted from HC1O4 with di-2ethylhexyl phoscontain the metal as a chloro anion. pared by White and Ross (594). Distribution data from various mineral Extraction of C O + ~ a t HC1 concentraphate in octane (29). Cerium can be acid solutions for essentially all the separated from all other important fistions up to 4Jf is as the dichloride but as metals in the periodic table are included. the chloroanion a t higher acidity (333). sion products by extraction with di-2I n a comparative study of the extraction Other studies of T B P from HCl solution ethylhexyl phosphate from a KNOT of Kp(1V) and Pu(1V) from "01 the include the extraction of Fe, Co, Zn, In, KBr03 solution (286). This extractant relative extractability order was dialkyl Xi, Cu, and UOz (193), Fe (297, 493), was investigated for over 50 elements in Fe, Co, and Ni (20, f 7 5 ) , V(V) (296), phosphate > oxide >> trialkyl phosHC1 solutions (238); with it, Be may be phate (586). Both Th(xo3)4 and H K 0 3 and Ir (599). Niobium and T a have extracted out of HC1 and H F solutions are extracted with tri-n-octylphosphine been extracted out of HF-H2S04 mix(158). Dibutyl phosphate forms a oxide in cyclohexane as solvates (622). tures as complex fluoroacids into T B P kerosine-extractable complex with (1.29). The complex formed by Te(1V) Zirconium may be separated from IC'b H3P04 (536) and with H K 0 3 (388). and thiourea in 0.1M HCl is extracted by its extraction into 0.005X tri-nUranium(1V) and U(V1) may be exinto T B P in the presence of a large exbutylphosphine oxide in carbon tetratracted from H3P04 solutions with cess of KSCN (174). chloride from 2M HNOs (547). (CsH17)2H,P20, followed by more selecTrialkylphosphine oxides have been Recent work with tri-isoctyl and tive reagent such as trioctylphosphine used in extractions from hydrochloric tri-n-butyl thiophosphates has shown oxide (272). acid media. A radiochemical survey great extraction selectivity for Ag and A series of monalkyl (from propyl on the extraction behavior of about Hg from nitric acid solutions (154). through octyl) phosphates has been in60 elements was performed in 1% triTRIPHENYLPHOSPHITE.Triphenylvestigated for the extraction of Sc, Y, n-butylphosphine oxide-toluene soluphosphite dissolved in carbon tetraand La into pentyl alcohol; the extractwith chloride selectivity extracts Cu(1) from able species formed are S C ( H R P O ~ ) ~ , tion (204). Interference of "03 the tri-n-octylphosphme oxide extracvarious halide systems (156). HY(HRP04)4,and HLa(HRPO& (583). MONO-AND DIALKYLPHOSPHATES. Octylpyrophosphoric acid in MIBK tion of Fe from HC1 has been observed Acid esters of phosphoric acid have (170). Tin may be extracted from a extracts U from solutions (162). elicited much interest as metal extracmixture of HCl-HzS04 into a cycloKickel diethyldithiophosphate has been tants since they have proved to be more hexane solution of tri-2-ethylhexylphosused to extract traces of Cu into carbon efficient than the trialkyl phosphates. phine oxide and spectrophotometrically tetrachloride from 1M acid solutions of Mono- and di-(a-ethylhexyl) phosphates determined therein ~ 7 i t hcatechol violet A1 and In (67). in inert solvents have proved successful ALKYLPHOSPHONATES [ (RO)zR'PO]. (426). In analogous fashion Y may be for the extraction and separation of the determined with catechol violet followA systematic thermodynamic study of trans-actinides from HC1 solutions (390, ing its extraction with TOPO away from the extraction of U0z(N03)2and H K 0 3 592). Extraction of T h with di-2Fe, No, U, Zr, and Th in 7 X HC1 (609). by 21 compounds of the types ( R 0 ) 3 P 0 ethylhexyl phosphate and with octylOther Ion Association Systems. and ( R 0 ) 2 P R 0 show an increase of U phenyl phosphate from aqueous mineral HIGH MOLECULdR WEIGHT AMINES. and "03 extractability as the subacids provides evidence of hexacoordiInterest in the use of primary through stituents on the P atom became less nated T h complexes with combined quaternary ammonium ions to form electronegative (Le.) the extractant beextractable ion-pairs with various monomer and dimer of the extractants came more basic) (476). Similar consuch as ThXz ( H X Z )and ~ T h X ( H X 2 ) 2 Y , clusions can be drawn from the fact metal-containing anions continues. Moore (331) has written a comprehenwhere H X is the extractant and Y the that H N 0 3 is extracted progressively aqueous anion (391). The rare earths better from TBP, (C4Hg0)2C4HgP0, sive monograph on liquid-liquid extraction with high molecular weight also form chelate complexes with the (C4H90) (CdH&PO, and tributylphosamines including a collection of selected dimer of dibutyl phosphate (111). phine oxide (363, 364, 397). Nitric procedures. Arnold and Crouse (18) Similar complexes of U with dibutyl acid is extracted with diisopentyltested about 60 amines for their ability phosphate in chloroform or MIBK methyl phosphonate as a trihydrate to extract U from acid sulfate solution. have been observed (114). Dibutyl ("03. 3H30 DPMP) (487). DiamylThe extraction of H2S04 using triphosphate forms a dimer in butyl ether amyl phosphonate extracts U and P u n-octylamine (TOA) was examined a t higher concentrations (102); there is better than does T B P from 1M "03 under various conditions (60); in a partial trimerization of the dioctyl but carries along more of other elements benzene the [ (CsHli)&HIzS04 species phosphate dimer in octane (29). Pluas well (92, 478). Diisopentylmethyl forms aggregates containing somewhat tonium(1V) is extracted by both mono phosphonate has been studied for more than 3 units (122). Optimum and dibutyl phosphate as a 4 :1 extractpossible use in the separation of Zr conditions for the extraction and sepant to metal ratio (463). I n the exand H i ; separation factors as high as aration of Th and U(V1) from sulfate traction of rare earths by dibutyl phos40 are obtained from H x 0 3 solutions solutions by long chain amines have phate increasing the acid concentration (602) and as high as 50 from NH4SCN been determined (61). Both macro decreases extraction in contrast to T B P solutions (601). The influence of alkali and micro amounts of V can be rapidly and alkaline earth nitrates as saltingextractions (255,383). Oxalic acid is an separated from many elements by effective masking agent for Zr and Pa in out agents for the extraction of UOzextraction from 0.5M acetic acid with a the di-2-ethylhexyl phosphate extraction (NO& with this extractant has been 5% tri-iso-octylamine solution in xylene of U from H N 0 3 solutions (239). The systematically studied (488). containing 3% 2-butoxyethanol; PU extractability of Zr with dibutyl phosDi-n-octyl dihydrogen methylenebehaves similarly (329). phate increased with increasing U conbisphosphonate and similar alkylPlutonium(1V) extracts better than solutions (89). phosphonic acids may be used to centrations in "03 Pu(V1) and still better than Pu(II1) Zirconium may be extracted with diextract most quadrivalent and trivalent from nitrate or sulfate solutions with cations (except Al3f and CrS+) and butyl phosphate in chloroform from "03
68R
ANALYTICAL CHEMISTRY
various long chain amines; primary amines were better for extracting Pu from sulfate solutions, extraction from nitrates being favored with other amines (181). Uranium, Pa, and T h in HC1 solution can be separated from each other by extraction with a long chain secondary amine (Amberlite LA-1) in kerosine. Since the amine suffers little radiation damage this can be applied to recovery of U235from reactor blanket fuel (188). The extraction of U from H N 0 3 solutions into TOA in xylene evidences formation of (T0A.H)UOz(N03)a (461). Actinide metal ion extraction from "03 solution into TOA in xylene has been studied; Np(1V) and Pu(1V) extracted best, probably forming nitrato anions (224). Plutonium may be purified by extraction out of HXOJ by trilaurylamine in a paraffinic solvent (96). The extraction of rare earth nitrates by kerosine solution of a primary, secondary, or a tertiary amine showed a trend in extractability with atomic number similar to but less pronounced than that observed with the exchange behavior on anion exchange resins (187). Some long chain primary, secondary and tertiary amines were applied to the extraction and separation of Zr and Hf from HC1 solutions (74). With 0.1M TOA in ligroine, separation factors of the order of 20 were obtained in 7 to 9111HCl(75). Various trialkylamines diluted with carbon tetrachloride or a paraffinic solvent served to separate U from Th at pH 0.5 and Th from Zr and Mo in 1.5M HzS04 (151). The extractability of Fe, Ti, and separaMon of Fe from Ti and A1 by extraction with dodecenyl(trialkylmethy1)amine from HCl and HzS04 solutions have been studied (356). This extractant can be used for As, Sb, and Bi in HCl solutions (357) and for Ni, Co, Zn (354) as well as Te (355). A general study of Fe extractability with long chain amines from HC1 indicates efficiency increase as primary > secondary > tertiary amines and that benzene is a better diluent than chloroform (140). TOA extraction used to study chloro complexes of Fe and I n gives evidence of FeC16- and InCls(593). I n nitric acid medium, Re is extracted as HRe04 (228). Triisodecylamine in toluene extracts 12molybdosilicic acid which can serve as the basis for colorimetric silica determination (698). Pure Tc and R h can be extracted by pyridine or methylpyridines from alkaline media (482). Copper, Ni, Co, Fe(II), and M n react with pyridine and thiocyanate to form water-insoluble compounds which are extracted with chloroform (23). An exhaustive systematic study of the extraction of the elements by quaternary ammonium salt formation into methyl isobutyl ketone from
"03, H2S04, HCl, HF, and NaOH media has been carried out (291). Tetra propyl-, butyl-, and hexyl ammonium ions mere investigated. Tetrapropylammonium nitrate in an aciddeficient Al(NO& salting solution aids the extraction of N p into methyl isobutyl ketone (289). Tetrabutylammonium nitrate (TBAN) can be used to extract Pu(1V) from nitric acid solutions into hydrocarbons and chlorohydrocarbons (634). TBAN can be used to extract Ce(1V) from HNO, solution into nitromethane (590). The anion of dipicrylamine forms extractable complexes with quaternary ammonium ions from basic solution into chloroform or dichloromethane (445, 446). Cesium may be extracted from alkaline solutions as the dipicrylamine salt into nitrobenzene ($69). Metal-containing oxyanions (Cr04-2, ;LIoO~-~,VOS-, W 0 4 - 2 ) can be extracted with aniline in benzaldehyde (264). Thalium(II1) is quantitatively extracted as TIL- from 2M HCl with molten diphenylamine (387). Rhodamine B can extract Ga from 6'11 HCl into benzene (265). Butylrhodamine is superior in extraction to rhodamine B (259). Protonated antipyrine and diantipyrinylmethane form extractable salts with metal-containing anions (26). Monomethylthionine (Azure C) is superior to methylene blue in boron (as BF4-) extraction (379). Antimony is extracted from 81M HC1 with crystal violet into trichloroethylene; only Au, Hg, and T1 interfere
(518).
The tributylammonium ion forms a CH2Cl2-soluble salt with the silversaccharin anion (621) and a n isoamyl acetate-soluble salt with niobium thiocyanate anion (618). Anionic thiocyanates of Fe, Bi, Co, Pd, UOZ, Hg, Cu, and Cr form salts with tributylammonium ion extractable into dichloromethane; polysulfide, thiocarbonate, and thiomolybdate ions behave similarly (612). Tributylammonium ion has also been employed in the extraction of Pd, Ag, Pb, V, and U thiosulfates (613) and in the extraction of Pd, V, U, Fe, Bi, Au, Rh, Zr, and Ce citrates and tartrates (614). NITRATES.Nitric acid is extracted into benzene and toluene as a monohydrated dimer (157). A maximum in ( B = 0.54) into extraction of "03 diethylene glycol dibutyl ether occurs a t 6 M HKO, (656). Nitric acid extraction into dibutyl ether has been studied with various diluents (567). The extraction equilibria of Th(NOs)a with various oxygenated solvent mixtures has been studied (362). The relation between the extent of hydration, molar volume, and ionic forces in solution of various nitrates used as salting-out agents was used successfully to predict their effect on U02(N03)2 extraction ( 2 ) . The
effect of salting-out agents is to reduce the extent of hydration of the U02(NO3)2 species extracted into ethyl ether (560). Irradiated U may be extracted from 3144 HNO, with methyl isobutyl ketone with larger decontamination factors than from mildly "acid-deficient" solution (563). Various amounts of Cs, Ca, Sr, and La may extract with UOz(N03)za t higher U concentrations (659). as M(U02)(NOa)3 The extraction of Ru from nitrate solutions is improved by the addition of nitrites (186) and by persulfate a-ith silver ion (366). Complete ternary equilibrium diagrams have been determined for Cu, Co, Ni, and Zn nitrates, water, and the solvents, butanol and pentanol (287). HALIDES,Protactinium-233 may be separated from T h by extraction out of HF-"0, solution into 2,4-dimethylpentan-2-01 (285). Carrier-free T a isotopes can be isolated from W,Re, and l i b by extracting the Ta into either diisopropyl ketone or diisobutyl ketone from HF-HC1 solutions (94). I n a comparison of the effectiveness of seven ethers in the extraction of Ga and I n from HC1 solutions, it was concluded that asymmetric ethers are more efficient but that dielectric constant had only slight influence (60). A thermodynamic study has been made of the extraction of CoC12, CaCL, and HC1 with isopentyl alcohol (132, 4 B ) . A study of the extraction of Fe by various solvents from HC1 shows that the solubility of the organic solvent in HC1 limits the extractability of Fe (543). Tantalum and Nb can be extracted into diisobutylcarbinol out of 6M HCl; P a is also extracted if the aqueous phase is saturated with AlCls but Zr is not (444). The extraction of Fe, Sb, As, Se, Te, Ge, Cr, V, Mo, and M n out of HCl solutions into methyl isobutyl ketone was examined and the most suitable conditions for extraction were described (14.4). Arsenic(II1) can be selectively extracted from 8 to 10M HC1 with benzene and be thus separated from Sb and Bi (38). Antimony extracts well from HC1 into a variety of alcohols, esters, and ethers; the ethers, particularly diisopentyl ether, will extract Sb(V) but not Sb(II1) (433, 519), Polonium-288 may be quantitatively extracted into 2,4-dimethylpentan-3-01 or 2,6-dimethylheptan-4-01 from 6144 HCl containing under 1X H N 0 3 (328). Gallium can be extracted as the chloro complex into butyl acetate from H2SOrPJaC1 sohtions (247). Indium is quantitatively extracted from 4.5M HBr with 2-pentanone which is superior to ethyl ether (375). Indium may also be extracted into isopropyl ether from 6M HBr (83). Extraction equilibria for the 11-113VOL 34, NO. 5, APRIL 1962
69 R
HI-ethyl ether system (670) and the CdIrHI-ethyl ether systems (436) have been determined. Tin(1V) may be effectively extracted as SnIl from high HI concentration into benzene (130). The addition of KI to a dilute "01 solution of Hg, Bi, Cd, In, and Zn serves successively to extract these elements into cyclohexanone or TBP; similarly anions such as I-, Br-, and C1- can be extracted with HgIz (211). Paladium can be separated from Zr and K b as Pd14- from H2S04-KI media into methyl isobutyl ketone (107). Interhalogen compounds of At extract into carbon tetrachloride to permit a study of their formation constants (16).
Table I.
THIOCYANATES. Cyclohexanone is superior to M I B K or ethyl ether in the separation of Hf from Zr as thiocyanates giving separation factors as high as 120 and high D values (182). For the extraction of Co from HC104-NaSCS solutions, ketones were superior to ethers and chain branching in either class of solvent decreased effectiyeness (62). The results were interpreted in terms of solvent electron-donor properties and steric factors. +An equilibrium study of the extraction of Zn(SCN)2by methyl isobutyl ketone indicates that under 0.1M thiocyanate, the neutral species is extracted; the extraction constant was determined (542). Polyethylene glycol 400, 1000, or
Common Masking Agents (76)
Element
Masking Agents
Ag
CN-, N H , S203-2, Br-, I-, C1F- C20a-2, OAc-, cit, tar, hDTA. OH-. BAL. NTE ~ ~ - 2OH-, , BAL CN-l, Br-, SZO*-~ F-, hydroxy acids, glycols EDTB, cit, tar, NTA, DHG,
Element
6000 can be used to extract thiocyanates of the transition metals into methyl chloride, methyl bromide, or methyl iodide (615). Parts per million of Fe in Bi may be spectrophotometrically determined after extraction of the thiocyanate complex into isobutyl alcohol (481). The W(V1)-SCN complex extracts readily into isopentyl alcohol accompanied by N o ; fluoride and Fe interfere (598). CATIONICCHELATES.Indium may be separated from other metals a t a pH of 3 in the presence of EDT-4 by adding ?;H4SCN and extracting with phenanthroline into butanol; Cd, Zn, Cu, and other ions form extractable phenanthroline complexes whereas I n remains as a water-soluble EDTA complex ($43). Iron(I1) may be best extracted into chloroform as the phenanthroline complex using I - as counter ion (678). The use of metal-phenanthroline complexes in extraction has been reviewed (108).
Masking Agents
ANIONICCHELATES. Anionic chelates formed by Ti(1V) and various polyA1 phenols such as pyrogallol and sulfoNi salicylic acid may be extracted as the As tetraphenylarsonium salt into chloroOs Au (490). Titanium(1V)-salicylate form Pb B complex can be paired with pyridmium Ba to give an ion-pair extractable by so,- 2 Be F-, cit, tar chloroform (68). Molybdenum may be Cit, tar, EDTA, I-, C1-, NTA, Bi separated from V in a mixture of their Pt DHG, TU, NTE thioglycollate complexes at p H 2 as EDTA, cit, tar, P207-', NTA, Ca cit, tar the tributylammonium salt by extracDHG Ir SCN-, cit, tar, TU tion into dichloromethane (619). EDTA, CN-, SzOa-', SCN-, Cd Rh TU, cit, tar CARBOXYL~C ACIDS. Naphthenic I-, cit, tar, NTA, DHG CN-, S-', S F-, NTA, EDTA, DHG, cit, Ce acid has been applied to the extraction of S2S tar, Tiron various metals (160). Copper proso3- Hg+Z, HCHO "3, NOz-, SCN-, CN-, H202, co pionate appears to extract as an unS-2, SOa-2, DAB, ACT, reducS,ZO~-~, NTA, EDTA, DHG, Se solvated dimer into chloroform (14'7). ing agents, tar, cit, I-, Fcit, tar, En, BBL, tren, Penten Beryllium may be separated from all I-, F-, ACB, reducing agents, Cr EDTA,NTA, cit, tar, NTE Te tar, cit, S-2, S0s-l metals by extraction into chloroform cu "3, I - , SCN-, CN-, S ~ O S - ~ , Cit, tar, BAL, I-, S-*, OH-, FTU, EDTA, S -*,DTC, DHG, Sb as the butyrate when EDTA is present BAL, cit, tar, NTA, TG, Cit, tar, BAL, F-, I-, C Z O ~ - ~ , in the aqueous phase (166). Sn NTE, tren, penten OH-, NTE HETEROPOLY ACIDS. Both W and N b F HB03, Al, Be, Zr, Hf, Ti, Nb, S04-2, NTA, EDTA, DHG, cit, Sr form heteropoly acids with molybdates Ta, Fe tar and vanadates which can be extracted F-, Podd8, PzOT-~, NTA, Fe Ta EDTA, DHG, DTC, cit, (663). Phosphate is extracted as heterTh tar, BAL, SCN-, SZOB-~, opoly molybdate or vanadate with C204-2, Tiron, ACB, TU, PH, Ti MIBK (240). 5-2, TG, XTE MISCELLANEOUS.Osmium may be C ~ o r ' F' ~ , Ge T1 determined in uranyl sulfate solutions by F, HzOs S04-2,DHG, cit, tar, Hf NTA,' EDTA, Pz07-', W formation of OsOl and its extraction cz04-', NTE U into chloroform (155, 136). A solvent I-, SO&-2,CN-, NTA, EDTA, tar mixture of methyl isopropyl ketone DHG, C1-, cit, tar, NTE, CN-, Hz02, F-, EDTA, Tiron, V and a n azine such as methyl isobutyl tren, penten NTE ketazine extracts Th from rare earth CN-, NTA, EDTA, DHG, cit, Zn Mg NTA, DHG, EDTA, C ~ o r - ~ , cit,, tar,. OH-, Pz07-', . gl~cols tar. SCN-. BAL. OH-. "3. nitrate mixtures better than M I B K or glycols, tren, penten Mn F-, C204-', 'PzOr-', NTA, T B P alone (625). A 4 to 1 mixture Zr EDTA, DHG, cit, tar, BAL, F-, cit, tar, NTA, of butanol and chloroform can selecEDTA, DHG, H ~ o ~ pPo7-4, , NTE, oxid. agents tively extract phosphate away from Par-'. czar, NTE Mo SCN-, . Cz04-2,- HzOZ, cit, tar, arsenate (4.26). Selenium reacts with CN- HCHO, transition metals EDTA, NTA, Tiron 3,3-diaminobenzedine to form monopiazselenole which extracts into toluene C204-2 = oxalate; OAc- = acetate; cit = citrate; tar = tartrate; B.4L = 2,3( 17,378). dimercapto-1-propanol; DHG = N,N-(2-hydroxyethyl)glycine; NTA = nitrilotriacetate Organic Systems. General features En = ethylenediamine; TU = thiourea; P H = o-phenanthroline; TG = thioglycolic acid; NTE = 2,2',2"-nitrilotriethanol; ACB = ascorbic acid; DTC = diethyldithiocarof extractive analysis are developed in bamate; tren = tetramine; penten = hexamine; DAB = diaminobenzidine. terms of t h e distribution coefficients and phase volume ratios (64). The Nb
F-, OH-, cit, tar, C Z O ~ - ~ , HlO2, Tiron CN-, SCN-, NTA, EDTA, NHI, cit, tar, tren, penten CN-. SCNI-, OAc-, 5 2 0 2 - 2 , cit, tar, NTA, EDTA, DHG, SOA-'
I
70R
ANALYTICAL CHEMISTRY
-I
Table II.
Al
Pb, Bi, Cu, Fe Rare earths, Si, U
Extraction Procedures Solvent System (before Mixing) Organic phase Aqueous phase CHCls or CCL Dithisone in HzS04, HNO, CHzCli pH 3, isopropenylacetylene in MeOH and BusNHOAc BusN-CHzClz pH 4, saccharin 8-Quinolinol in CHCb pH 5, Na acetate
Am
La, Th, Fe
pH 3.23
Rare earths Zn,P b Sb, Bi
11.7M LiC1-0.1M HC1
As
Au
Many elements
Element Extracted Ag
Separated from Pb
cu B
Steel Si Steel
Be Bi
Al alloya, fiesion prod-
ucts, natural waters Ores Many elements
HzSO,, KI, NasSOs, EtOCS2K $-ION HCl, NHJ HC1, CuCl pH 5, KI, Na2SOs, Na diethyldithiocarbamate pH 3-6, EDTA phenyl 2-pyridyl ketoxime in E t 6 H 2N HC1 HydrazLe hydrochloride, SOz, rhodamine B, TeCL “03-HCl HC1, (CsH,)&Cl, XH4F F; methylene blue, N-meth lthionine, and many other thionine Arivatives CH,OH, Brt pH 3-5, H202,H2SOa,NH4F, brilliant green pH 7-8, EDTA, NaCl, acetylacetone pH 9-10, PrCOOH
Pb Ca Cd
Alkali and N& + salts Other elements Be, U, and other elements Ni
Al alloys Ce
Fission products
Cf Cm
Several elements Many elements Rare earth8 Pu Pu Many elements Many elements
Go
NT Steel Cu, Fe, Ag, Zn Ni Zr
Cr
U Fe
cs cu
U Sb Th, Be, U
Y , W, Be
pH 11.3 Glyoxal bis(2-hydroxyanil) “3, citrate or carbonate pH 10, NH3-NH4C1, KCN, alc. PAN, HCHO 8-Q~holinol Na acetate, Na diethyldithiocarbamate
pH 5 . 4 Methylene blue, pH > 9.6 5N HNOa 12N HCl 12N HCl 1-Nitroso-2-naphthol 2-Nitroso-1-naphthol acid mixture p H 8, “3-citric 8-10.5N HCl SCN Antipyrine-SCK Dithizone HC1, CaClz EtOCS2K pH 7-9, 2-(2-hydroxy-5-methoxyphenylazo)-4-methylthiasole pH 1-7, N,N’-ethylenebis-4-methoxy1,2-bensoquinone-l-oxime2-imine DH 6 PH 5.3-6.0, 2-methyl-&quinolinol &9M HC1, SO2 Dipicrylamine p H 3.1-3.3, 8-quinolinol p H 5, 6-methylpyridine 2-aldoxime Comdexon 111. NHd citrate Mineral acid ’ pH 9, citrate, EDTA, Na diethyldithiocarbamate Hydroxylamine, neocuproine
TTA in backwash with HNOs Triiso-octylamine in xylene
CHClj ( BuO) 3PO
CeH6 Et0.4~ CHC1, C&4Cl2 and other solvents Iso-ProO CaHs CHC1, or CC1, CHCla CHC1, CHCla CHC13 Iso-AmOAc and iso-AmOH 8-Quinolinol and BuNHt in CHC13 (661) CHC13 (697) Dithisone in CCl, or CHCl3 ( 9 7 , 138, 678) CHCls
(43)
CHCls EtOAc. Cd is selectively stripped from Zn Bis(2-Ethylhexy1)phosphoric acid in n-heptane TTA in Ce& CeHe MeCOPr TBP TBP
(511) (663)
(886) ($31) (146, 618)
8-Quinolinol in CHCls TBP-toluene Furfural; iso-AmOH-EtOAc MIBK-CeH6 CCL
TTA in CeHE CHCl3 Iso-PrgO EtOAc CHCla BuOH EttNCSSNa in CHCls Pb diethyldithiocarbamate in CHCL _ ~ ~ _ ~ Iso-AmdAc, CHCl, BuOAc
(346, 617, 676)
CHC13, MIBK
(169, 418, 692)
(339, 341)
(160)
(414) (1)
(Continued)
VOL. 34, NO. 5, APRIL 1962
0
71 R
Table II. Element Extracted
Separated from Ni
Many elements Many metals U Fe U
Te, others Nil Co, Cu Many elements Co, others
Fe(I1) from Fe Fe(II1) from Fe(I1) Ni, Co, hln Be
Ni, Co
Fr Qa
Ti, A1 Ra Ge Many elements Many elements
Ge Hg
In
Zr, Zn, and others
Bi
Ores U, Th, Zn Cd Zn, Ga, Cd, T1
(Continued)
Solvent System (before Mixing) Aqueous phase Organic phase Diethyldithiophosphate in CC1, 1,5-Diphenylcarbohydrazidein NanHP04 CsH6 N,X’-bis( o-aminobenzy1idene)NHaOH ethylenediamine in C& pH 2.4-6 O.15M TTA in CsHa 1-Phenyl-4-o-tolylthiosemicarbazide in Iso-AmOH AcOH 2,2’-Diquinolyl in AmOH or npH 5-6, SOZ, FeC4 hexyl alcohol Dithizone in CHC13 pH 2.0-2.5 2-Furoyltrifluoroacetone in EtOH MIBK Bathophenanthroline n-Hexanol; nitrobenzene; CHC13iso-AmOH pH 5-6, 8-Quinolinol CHCla CHCls NKSCN, diantipyrinylmethane HNOI-HCl RIeCOEt-CHCl, Iso-AmOAc pH 3, EDTA, NKAc, cupferron Isopentyl alcohol 1-Nitroso-2-naphtho1, Na2S208 TBP; TBP in isooctane; furfural SCN TBP HC1 4-Methyl-2-pentanone; EtOAc; HC1 BuOAc pH 7-8, EDTA, Hz02,1,lO-phenanCHCla throline Tribenzylamine in CHCla 8 N HC1 Iso-AmOH Alkaline, phenyl 2-pyridyl ketoxime CC1, NHaOAc. bipyridine, NH40Ac, bbvridine. acetylacetone acetvlacetone CHCl, aceiflacetone ” pH 4-9, acetylacetone Tri-n-octylphosphine oxide in 6M HC1, Br? cyclohexane pH 2.5-3.5, dibenzoylmethane in aceBuOAc tone 150-BuOH pH 7-9, quinaldinohydroxamic acid Ethyl acetoacetate-CHCls Na acetate N-benzoylphenylhydroxylamine in CHC13 alcohol CHCl3 HC1, diantipyrinylmethane Xitrobenzene pH 9, EDTA, Na tetraphenylborate CHClr pH 3.9, HC1, 2-methyloxine, AcONH, 6N HC1, TiCls, malachite green or C6Hs rhodamine B 6N HCl, methylene blue in MezCO C6Hs 0-containing organic solvents pH 4, quercetin Benzyl alcohol O.5N HCl, phenylfluorone CCl,, MIBK HC1
Many elements Re Many elements Steel Zr, U
U
(612)
(306)
(294) ( 249) ( 6 6 , 277)
(119, 321, 409) (40) (82, 242, 429, 455) (161, 348
( 177)
( 6 3 , 149, 880,
458)
KI pH 9.3-10.0, KCN, EDTA, diethyldithiocarbamate pH 3.5-6.5, SCNEDTA, citric acid, chloroacetate, dithizone 1.5N, HZS04, 0 . 4 N HI, crystal violet 5LV HBr BrNa&Oa, dithizone Benzoylacetone pH 2 . 5 oH 4
Al
Rh Ca, Ba, Sr
Reference (70)
HCl Tartrate, quaternary ammonium salts 8-Quinolinol pH 10 KCN, borate buffer NaB& ( C6H&AsC1 HC1, 8-mercaptoquinoline NH4SCN, dihydroxymaleic acid 2N HBO,, KSCN, Hg,(N03)$ SCN SCN- (CsHsCH2)(CsH6)3PC1 or Cl?dsHs)(CsHb)aPCl Dithiol ~~~.~ a-Benzoin oxime pH 5.1,NaF, 8-quinolinol ~
~
Cyclohexane CCla EtOAc, n-BuOH, iso-AmOH CC1, C6HU BuOAc EtnO, pentan-2-one CHCls Ce&, CHCla, Ccl, TTA in C6&, 8-Quinolinol in CHCls CHCL 0-containing organic solvents CHzClz TBP 8-Quinolinol in CHCla MIBK 8-Mercaptoquinoline in CCl, Nitrobenzene
AmOAc EtOAc CHCla (Continued)
72 R
ANALYTICAL CHEMISTRY
Table II. (Continued) Element Extracted
Separated from V Steel U U U
w Nb
Fission products Ta, Ti Ta Bi U, Ta Ta
Ni
Fe, Co Many elements
U, Zr, Be, and others
Solvent System (before Mixing) Aqueous phase Organic phase CHzClz pH 2, thioglycolic acid, Bu3NHC1 Diphenylcarbazone in iso-AmOAc HzSOi HC1 Morin in n-BuOH HC1, dithiol, hydrazine sulfate cc4 Hexanol pH 2 beneohydroxamic acid CHCL Et06S9K HCl, HzOz BuOAc Na 5-phenyl-2-pyraeoline-1-dithioCHC13 formate TBP in toluene 8-10N HC1 MIBK HC1-HF, HzSOcHF Iso-A~OAC HC1, SCN- SOZ, B u ~ N H + Et20 4M HC1, S h - , tartrate CHClL pH 2-5 CHCla pH 4-6, HzSO., N-benzoylphenylhydroxylamine 1,2-Dichloroethane K2S2O6,1,lO-phenanthroline, Ce( SO4)* Ethylphosphono- and diethylphosphino- Et.20 dithioic acids pH 7-9, 2-( 2-hydroxy-5-methoxyphenyl- iso-AmOH azo)-4-methylthiazole CHCl,, C6H6-AmOH Dimethylglyoxime
Many elements
NP
pH 3.5, nioxime >pH 9.6, N,N'-bis(o-aminobenzylidene) ethylenediamine pH 4-10, PAN U fission mixtures "08, KMn04, tetrapropylammonium nitrate Pu, U, fission products HNO, Mineial acid U fission products HNO, Ca(NO&, NaBiO, NpZ3?from fission products HC1, K I Pu
Reference
Pu,
u
pH 9-10, 1-nitroso-2-naphthol
os
0804
P
(N&)zhlO04 or NazilIoOd
Pa
Pb
U
Bi, Zr, Pb, Nb Th
'
Th Alloys Zr and other elements
Pd
hlany elements Many elements
Many elements Many elements
Pm
Fission products
Po
Fission products Bi, Zr, Pb, Nb
Pt
Bi Rh
NnOz, cupferron 5 N HC1 8N nitrate salting out agent, "03
MIBK. Strip, reduce and extract with TTA-xylene TTA in xylene TBP Eh0. Strip with hydrazine nitrate Mono(2-ethylhexyl) o-phosphate in toluene n-BuOH, iso-AmOH CHCla hlIBK, BuOH, BuOAc
AmOAc
~~~~. - .__
Diisopropyl ketone MIBK, diisopropyl ketone, AmdAc - - Diisopropylcarbinol CCl,
"03-HF pH 12, NaK tartrate, Na citrate, KCN, EtZNCSzNa (189, 367, 410, KCN, citrate, hydroxylamine hydroDithizone in CHC13or CBHB chloride 438) pH 8, citrate, Na diethyldithiocarbamate CHCla (66, 600) KI, ButNHCl CHzClz (617) pH 8.5-10, phenyl 2-pyridyl ketoxime in CHCl3 EtOH pH 2, HC1-KCl, 4-methyl-1,2-cycloCHCla hexanedione dioxime pH 1-3.5, EDTA, N,N'-ethylenebis(4CHC13 me~hoxy-l,2-benzoquinone-l-oxime-2imine Methylene-diantipyrine, KI, dimethylCHCla glyoxime pH 5, quinoline-2-aldoxime CHCl3 pH 3-4, a-furil dioxime in alcohol C6H6 pH 2.5, PAN CHC13 pH 11-12, KSCN, pyridine MIBK 0.1-0.75N HC1 Reinecke salt in methyl ethyl ketone "03 Bis( 2-ethylhexyl) +phosphoric acid in Ultrasene 12N "03 TBP 5-6M HC1 Diisopro yl ketone, TBP in BuzO, MIBZ 6M HC1, 4N HCl or 3M HBr 4-12N HC1 pH 1, KSCN, HC1, thiourea pH 2.0-2.3, Bismuthiol 11, (NH4)zS04, EDTA, citrate Acetate
MIBK TBP in kerosine TBP CHCla TTA in CCl,, CHC13, or MIBK
(137, 4l.n
pH 2.5-4.5, phenylcinchoninic acid
(188)
Selenoyl-2-acetone LilL'O,, HNOs pH 1.5-2.5
"0s
BuOH Tri-n-octylamine and tri-isooctylamine Tri-n-octylphosphine oxide TBP CHC1, Mesityl oxide 8-Quinolinol in CHCll
N-Benzoylphenylhydroxylamine H2SO4, cupferron (CoHs)&3C!, polyphenols Salicylic acid, pyridine, thiosulfate
CHCl3 CHCli CHCla CHCls
6M HC1, SCN-, HSCHzCOOH
Tri-n-octylphosphine oxide in cyclohexane CsHe 2-Octanone TTA in BuOH CHClo
"03
Be
cc4
Reference (464) 488)
"03
Methyl violet 1M HBr pH >3.0 pH 6.2, benzohydroxamic acid pH 9.5-10, PAN, EDTA
(78)
(99) (49, 611) ($96) ( 180) (6)
(171) (380) (608)
( Continued)
74R
ANALYTICAL CHEMISTRY
Table II. (Confinued) Element Extracted
Separated from Th, R.E. Th and fission products Mixed fission products Zr, Hi Ca, Fe, Al, Si
Bi Many elements Many elements
V
w
U Ferrous alloys, ores, refractories U and other elements Many elements Alloys and steel Many elements
Many elements Fe Zircaloy, Be Many elements
W Y
Pr
Fe U,Zr, Th, Mo
p H 6-7, CaEDTA, dibenzoylmethane in acetone HNOa POla-
Ca
Many elements
Cd Fission product mixtures, alloys Xi Kb Spent reactor fuels Nb A1-Mg alloys Fission products
BuOAc
"08, satd. Ca(N0,): p H 4, quinaldinohydroxamic acid EtOCSZK pH 2, benzohydroxamic acid pH 3 . 5 - 4 . 5 , PAN
Methyl ethyl ketone-CCl, ISO-BuOH CHCL Hexanol CHC1,
HNOa, cupferron N-benzoyl-N-phenylhydroxylamine H,SO,, N-nitrosophenylhydroxylamine 2.8-5. ON HCl, N-2-thiophenecarbonyl-, N-p-tolyhydroxylamine, or N-%thiophenecarbonyl-N-phenylhy droxylamine HCl 8-9MJ HCl, SO2 HF, Ti(111), dithiol HC1, KSCN, ascorbic acid
CHCl,, EtOAc CHC1, EtOAc CHCla
"03
8-Quinolinol 7 M HCl
pH 8.8-9.5, 8-quinolinol Dithizone, bis(2-hvdroxyethvl) . " . dithiocarbamate Dithizone, NazSnOa Na diethyldithiocarbamate
pH 10, PAN, KCN, HCHO pH 9, 2-( 2-hydroxy-5-methoxyphenylazo)-4-methylthiazole 6N HCl HC104, HZOZ 2N HNOj Fluoboric acid, Al(N0a)s 0.2N HCl 8-10N HC1
distribution of a solute has been related to the interfacial tension (664) and t o the solute parachor (96). The distribution of a series of carboxylic and some inorganic acids between butanolwater has been determined and the results have been used to calculate the order of mean ionic radii (@9). KINETIC FACTORS I N EXTRACTION
A rate expression has been derived for the general process of mass transfer of a constituent between two liquid phases which may be considered t o comprise two consecutive steps: the
Reference ( 343) (261, 168) (613) (474)
EtOAc Esters of di-alkyl pyrophosphoric acid PoiaDodecyl acid phosphates HC1 Tri-n-octylphosphine oxide in cyclohexane pH 2.5-3.0, 6M NaN08,. 1,2-~yclohexyl- Tris(2-ethylhexyl) phosphine oxide ene (dinitri1otetra)acetic acid in cyclohexane Triiso-octylamine in xylene Acetic acid TBP in CeHB HCl, "01
2N HC1
Zn
Zr
Solvent System (before Mixing) Organic phase Aqueous phase p H 8.5-9.0, 8-quinolinol, EDTA CHClp Methyl eth 1 ketone, BuOH Arsenazo, complexon (111) pH 5-7.2, acetylacetone, EDTA, NaCl CHCls, B u ~ A c
(184, 672) (172) (486) (691) (168)
TBP Iso-PrzO AmOAc AmOH TBP CHCla Tri-n-octylphosphine oxide in cyclohexane Methyldioctylamine or triisooctylamine in MIBK CHCla CCL Toluene EtOAc, CHCla CHCla Iso-AmOH TTA in benzol or xylol TTA in xvlene --* Tributyl phosphine oxide in CC1, Dibutyl phosphate in CHCll TBP in methyl ethvl ketone, CHCla, or kerosine TBP in toluene ~
~
~~
~~
exchange between the interfacial layer and each of the phases (666). An experimental technique is described for the precise determination of interfacial resistance, a n important parameter in this equation (566). For a n interfacial resistance of 400 seconds per em. for acetic acid across a toluene-water interface, a n induction time for equilibration a t the interface is 30 seconds. Surfactants have been shown to reduce the transfer rate as the interfacial resistance rises exponentially as the interfacial tension drops (667). A similar study of the effects of stirring rates, salting agents, surfactants, direction of
transfer and temperature has been carried out on the transfer of uranyl nitrate across the water-tributyl phosphate interface (66). Some anomalous effects in the extraction of U with trioctylamine in benzene have been explained on the basis of absorption on the large interfacial area generated by vigorous agitation which account for the persistence of these effects after phase clarification ( 1 2 ) . The effect of the formation or dissociation of complexes to give the distributing species on the rate of transfer has been studied for the IrIo- (686) and general rapid dimerization (415) cases. VOL 34, NO. 5, APRIL 1962
75 R
The relation of deviations from the mutual solubility curve to the masstransfer coefficients for individual components of ternary liquid mixtures undergoing countercurrent distribution has been examined (164). The direction of diffusion mainly determines whether a phase will cross the equilibrium concentration line. APPARATUS AND TECHNIQUES
I n view of the simplicity of the technique of extraction as employed in analysis, there has been very little need for the design of complex apparatus beyond the separatory funnel for use with batch extractions, the type most encountered. Therefore, the last two years have seen little activity beyond the usual minor modifications for ease of manipulation of phases where the solvent is lighter than water (432, 509), the handling of highly radioactive solutions (483, 681), and the serial agitation of separatory funnels (COS). Interesting refinements in apparatus for countercurrent distribution of organic systems, however, continued to be made (173, 419) and von Metzsch (317) describes a new and useful extractor. Opposed to the limited development of apparatus, a number of rather interesting advances in extraction techniques have occurred. Masking agents are now universally employed in extraction procedures to improve selectivity, and Cheng (76) has treated in detail the role of masking of analytical reactions. His tabulation of the common masking agents for the various elements is of sufficient importance to extraction to be reproduced here. See Table I. A number of interesting variations of the extraction technique which extend its use in analysis have recently appeared and are worthy of further exploitation. These are extractive radiometric titration (499, 600), fractional extraction of cations and anions ( H I ) , and repeated extractions to analyze mixtures of labeled compounds (452). Other modifications include the use of binary mixtures of solvents (121) and the use of solid extracting agents
(2d6J @4) ’ PROCEDURES
Because of the large increase in the number of papers devoted to analytical procedures involving extraction, no attempt has been made to include them all. Table I1 includes a good representation of published procedures which have been arranged according to elements for convenience. Wherever possible, the conditions employed and the separations achieved have been included. I n many cases the extraction noted is just one step in a more complete
76 R
0
ANALYTICAL CHEMISTRY
procedure involving other separation methods. LITERATURE CITED
(3) Ac$mskii, IS.hl., Karpacheva, S. M., Me1 nikov, I. N., Rozen, 8. hf., Zbid., 2, 13 (1960). (4) Zbid., p. 400. (5) Alimarin, I. P., Bilimovich, G. K,, Collection Czechoslov. Chem. Communs. 26, 255 (1961). (6) Alimarin, I. P., Golovina, A. P., Puzdrenkova, I. V., Vestnik Moskov. Univ. Ser. Mat.. Mekhan. Astron., Fiz. i Khim. 14, Nb. 2, 185 (1959). (7) Alimarin, I. P., Golovina, A. P., Torgov, V. G., Zavodskaua Lab. 26, 709 (1960). (8) Alimarin, I. P., Petrukhin, 0. hl., Chleh. Y. H.. Dokladu Akad. Nauk S.S.S.’R. 136, 1073 (1961j. (9) Alimarin, I. P., Przheval’skii, E. S.,
Puzdrenkova, I. V., Golovina, A. P., Trudy Kommissii. Anal. Khim. Akad. Nauk S.S.S.R. 8, 152 (1958). (10) Alimarin. I. P.. Tsze. V.. Zacodskaua ‘ Lab. 25,1435 (1959). (11) Alimarin, I. P., Zolotov, Y. A., Pal’shin, E. S., Radiokhimiya 2, 637 ,
I
(1960). 112) Allen. K. A.. McDowell. W. J.. J . ‘ Phys. Chem. 64,877 (1960). ’ (13) Almhssy, G., Acta Chim. Acad. Sci. Hung. 25, 391 (1960). (14) AlmBssy, G., Vigvari, M., Ibid., 20, 243 (1959). (15) Amano, H., Sci. Reps. Research Znsts., Tohoku Univ. Ser. A 12, No. 1, 24 \IF)^. ----,.
(16) Appelman, E. H., J. Phys. Chem. 65, 325 (1961). (17) Aritoshi, H., Kiniwa, M., Toei, K., Talanta 5, 112 (1960). (18) Arnold, W. D., Crouse, D. J., U. S. Atomic Energy Comm. Rept. ORNL3030, (1961). (19) Ashbrook, A. W., Chemist Analyst 48, 5, 7 (1959).
120) Athavale. V. T.. Gulavane. S. V.. ‘ Tillu, M. M., AnaL’Chim. Acta 23, 487 ( 1960).
(21) Athavale, V. T., Iyer, C. S. P., Tillu, M. M., Vaidva, - . G. M., Zbid.,. 24,. 263
(1961): (22) Athavale, V. T., Ramachandran,
T. P., Tillu, &I. M., Vaidya, G. hl., Zbid., 22, 56 (1960). (23) Ayres, G. H., Baird, S. S., Zbid., 23, 446 (1960). (24) Babko, A. K., Marchenko, P. V., Zavodskaya Lab. 26, 1202 (1960). (25) Babko. A. K.. Shakaravskii. Y. F.. ‘ Ihest. Vvsshikh Ucheb. ZavedeniZ: Khim. i K k m . Tekhnol. 2,15771959). ’ ( 2 6 ) Babko, A. K., TananaIko, hf. hl., Khim. Tekhnol. i Primenenie Proizvodnykh Piridina i Khinolina, Materialy Soveschaniya, Inst. Khim.,Akad. Nauk Latv. S.S. R., Riga 1957,289-9. (27) Babko, A. K., Volkova, 0. I., Dopovidi Akad. Nuuk. Ukr. R.S.R. 1959. 1336. (28jBabk0, A. K., Volkova, A. I., Zhur. Anal. Khim. 15,587 (1960). (29) Baes, C. F., Baker, H. T., J . Phys. Chem. 64, 89 (1960). (30) Bagshawe, B., Analyst 84, 475 ( 1959). (31) Balchin, L. A., Williams, D. I., Zbid 85,503 (1960). (32) Bankowkii, Y. A., Ievin’sh, A. F., Luksha, E. A., Zhur. Anal. Khim. 14(2), 222 (1959). I
(33) Bankovskis, J., Lobanova, E. F., Ibid., 14, 523 (1959). (34) Bankovskis, J., Svarcs, E., Ievins, A., Zbid., 14,313 (1959). (35) Banks. C. V.. Smith. R. V.. Anal. . Chim. Acia 21. 308 11959j. (36) Barcza, L.; A d a Cham. Acad. Sci. Hung. 28, 143 (1961). (37) Bauer, D. J., Rice, A. C., Berber, J. S., U. S. Bureau of hlines Rept. BM-RI-5570, 1960. (38) Beard, H. C., Lyerly, L. A., ANAL. CHEN.33, 1781 (1961). (39) Belew, W. L., Wilson, G. R., Corbin, L. T., Zbid., 33, 886 (1961). (40) Berg, E. W., Day, 31. C., Anal. Chim. Acta 18, 578 (1958). (41) Berg, E. W., Sen, W. L., Jr., Ibid., 19, 109 (1958). (42) Berger, W., Elvers, H., 2. anal. Chem. 171, 185 (1959). (43) Zbid., p. 255. (44) Best, G. F., Hesford, E., McKay, H. A. C., J . Inorg. &: A‘uclear Chem. 12, 136 (1959). (45) Blank, A. B., Bulgakova, A. M., ZRur. Anal. Khim. 15, 605 (1960). (46) Bloch. J. M.. Lazare. J.. Bull. SOC. chim. France 1960.1148. ’ (47) Blyum, I. A.,‘ Duihina, K., Zavodskaya Lab. 25(2), 137 (1959). (48) Bode, H., Neumann,, F.,. Z. anal. Chem. 172, l’(1960). (49) Bohlmann, E. G., U. S. Patent 2,897,046 (July 28, 1959). (50) Boirie, C., Bull. SOC. chim. France 1958, 980. (51) Boirie, C., Comm. lnergie atomique (France) Rappt. KO.1262, (1960). (52) Booth, E., U. K. Atomic Energy Authority Rept. AERE-AM-13, April 1959. (53) Booth. E., Bakes. M., Zbid.. AM-24 ‘ (i959). (54) Booth, E., Parker, A., Zbid., AEREAM-10. .___ _ _ (19.59). (55) Zbid., AERE-AM-41, (1959). (56) Bounsall, E. J., hfcBryde, W. A. C., Can. J.Chem. 38,1488 (1960). (57) Boyd, G. E., Larson, Q. V., J. Phys. Chem. 64, 988 (1960). (58) Brandstetr, J., Vrestal, J., Collection Czechoslov. Chem. Communs. 26, 392 (1961). (59) Britt. R. D.. Jr.. ANAL.CHEN. 33, ’ 602 (1961). (60) Brooks, R. R., Lloyd, P. J., Nature 189, 375 (1961). (61) Brown, W. B., Steinbach, J. F., Wagner, W. F., J . Inorg. & Nuclear Chem. 13, 119 (1960). (62) Brubaker, C. H., Johnson, C. E., Zbid., 9, 184 (1959). (63) Buchanan, R. F., Hughes, J. P., Hines, J. J., Bloomquist, C. A. A., Talanh 6, 173 (1960). (64) Buchowski. H.. Chem. Anal. (Warsaw) 3, 627 (1958): (65) Bulgakova, A. M., Volkova, A. M., Zhur. Anal. Khim. 15, 591 (1960). (66) Burger, L. L., U. S. At. Energy Comm. Rept. HW-62087, (1959). (67) Busev, A. I., Borzenkova, X. P., Zavodskaya Lab. 27, 13 (1961). (68) Busev, A. I., Bry’ko, V. M., Grandberg, I. I., Vestnik Moskov. Univ. Ser. Khim. 1960, 11, No. 2, 76. (69) Busev, A. I., Ivanov, V. M., Vestnik Moskov. Univ. Ser. I1 15, 52 (1960). (70) Busev, A. I., Ivanyutin, M. I., Feigina, E. M., Zavodskaya Lab. 24,265 ( 1958). (71) Busev, A. I., Kiseleva, L. V., Vestnik Moskov. Univ. Ser. Mat. Mekhan. Astron., Fiz. i Khim. 13,179 (1958). (72) Carswell, D. J., Lawrence, J. J., J . Inorg. & Nuclear Chem. 11,69 (1959). (73) Casey, A. T., Maddock, A. G., Zbid., 10, 289 (1959). ’
I
I
I
,
\ - - - - I .
I
\ -
I
,
,
(74) Cerrai, E., Testa, C., Energia nucldazre (Milan) 6, 707 ( 1959). (75) Zbid., p. 768. (76) Cheng, K. L., ANAL.CHEW 33, 783 f 1961). (77) -Cheng, K. L., Talanta 8, 301 (1961). (78) Chernikhov, Y. A., Dobkina, B. M., Zavodskaya Lab. 25,131 (1959). (79) Choq-dhury, A. N., Das Sarma, B., ANAL.CHEM.32,820 (1960). (80) Clarke. W. E.. Brit. Cast Iron Re‘ search Assoc. J . Risearch and Develop. 7, 813 (1959). (81) Cogan, E., ANAL. CHEX. 32, 973 (1960). (82) Collins, P., Diehl, H., Zbid., 31, 1692 (1959). (83) Collins, T. A., Kanzelmeyer, J. H., Ibid., 33,245 (1961). (84) Collopy, T. J., Stock, D. A., U. S. At. Energy Comm. Rept. NLCO-801, (1960). (85) Crandall, H. W., Hicks, T. E., Rubin B., Thomas, J. R., U. S. Patent 2,916,349, Dec. 8, 1959. (86) Cuttitta, F., Warr, J. J., U. S. Geol. Survey Profess. Paper 400B, 485 (1960). (87) da Silva, F., de Moura, L., Tecnicu 34, 437 (1959). (88) Damiani, L., Fattore, V., Energia nucleare (Milan) 6, 793 (1959). (89) Davis, W., Jr., Carmichael, H. H., U. S. Atomic Energy Comm. Rept. ORNL-2857, (1960). (90) De A. K., Khopkav, S. M., Chem. & Znd. (London) 1959,854. (91) Dean, G. A., Herringshaw, J. F., Analyst. 86, 106 (1961). (92) de Chazal, L. E. M., Lister, A. R., U. K. Atomic Energy Research Establ. M698 (1960). (93) Delsal, J. L., Manhouri, H., Bull. SOC. chim. biol. 40, 1169 (1958). (94) Demildt, A., Hoste, J., Bull. SOC. chim. Belg. 70, 145 (1961). (95) Deno, N. C., Berkheimer, H. E., J . Chem. Eng. Data 5 , 1 (1960). (96) de Trentinian, M., Chesne, A., France Comm. Energie Atomique CEA1426 (1960). (97) De Voe, J. R., Meinke, W.W.,ANAL. CHEM.31, 1428 (1959). (98) Diamond, R. M., Tuck, D. GI in “Progress in Inorganic Chemistry,” Vol. 2, F. A. Cotton, ed., Interscience, Kew York, 1960. (99) Dietrich, W. C., U. S. Atomic Energv Commission Rept. Y-1329, (1961?: (100) Dono, T., Nakagawa, G., Wada, H., J . Chem. SOC.Japan 82, 590 (1961). (101) Dreulle, K., Chim. anal. 43, 165 (1961). (102) Dreze, Ph., Bull. sac. chim. Belges 68, 674 (1959). (103) Ducret, L., Anal. Chim. Acta 20, 565 f19591. (104) Ducret, L., Pateau, L., Zbid., 20, 568 (1959). (105) Duffield, W. D., Analyst 84, 455 (1959). (106) Dufour, R. F., U. S. Atomic Energy Comm. Rept., KAPL-2000-11, pp. 1.1-
(114) Dyrssen, D., Krasovec, F., Acta Chem. Sand. 13, 561 (1959). (115) Dyrssen, D., Kuca, L., Zbid., 14, 1945 - f 1960’1. (116) Dziomko, V. M., Doklady Akad. Nauk.S.S.S.R. 134,1091 (1960). (117) Eberius, E., Metall. 12, 721 (1958). (118) Eberle, A. R., Lerner, M. W., U. S. Atomic Energy Comm. Rept. AECD4286, Declassified 1959. (119) Elliot, C. R., Preston, P. F., Thompson, J. H., Analyst 84, 237 (1959). (120) Fletcher, -4. W., Wilson, J. C., Bull. Znst. Mining Met. 652,355 (1961). (121) Fomin, V. V., Morgunov, A. F., Zhur. Neorg. Khim. 5,233 (1960). (122) Fomin, V. V., Zagorets, P. A., Morgunov, A. F., Zbid., 4, 700 (1959). (123) Forsythe, J. H. W., Magee, R. J., Wilson, C. L., Talanta 3, 324, 330 f19601. (124) Fujinuki, T., Japan Analyst 8, (1) 34 (1959). (125) Galkina, L. L., Markman, A. L., Uzbek Khim. Zhur. Akad. Nauch Uzhek S.S.R. 1960. No. 2 53. (126) Galloway, N.-- M., Analyst 84, 505 (1959). (127) Geary, N. R., U. K. Atomic Energy Authority, Ind. Group Rept. 8142, (1959). (128) Gerkhardt. L. I.. Zhur. Anal. Khim. ‘ 14, 434 (1959): (129) Giganov, G. P., Ponomarev, V. D., Khan, 0. A., Zzvest. Akad. Nauk Kazakh. S.S.R., Ser. Met., Obogashchen. i Ogneuporov 1960, 73. (130) Gilbert, D. D., Sandell, E. B., Mikrochem. J . 4, 491 (1960). (131) Gindin, L. M., Kopp, I. F., Rozen, A. M., Bobikov, P. I., Kouba, E. F., Ter-Oganesov, N. A., Zhur. Neorg. Khim. 5, 149 (1960). (132) Gindin, L. M., Kopp, I. F., Rozen, A. M., Kouba, E. F., Zbid., 5,139 (1960). (133) Goldin, A. S., Velten, R. J., ANAL. CHEM.33,149 (1961). (134) Goldstein, G., U. S. Atomic Energy Comm. Repts. CF-59-6-43, CF-59-716, (1959). (135) Zbid., ORNL-2862 (1960). (136) Goldstein, G., Menis, O., Manning, D. L., ANAL.CHEY.32,400 (1960). (137) Goldstein, G., Manning, D. L., Menis, O., Dean, J. A,, Talanta 7, 296 301 (19611. (138) Golkowska, A,, Chem. Anal. (Warsaw) 5,389 (1960). (139) Gomiscek, S., Malissa, H., Rudarskomet. Zbornik 1, 17 (1959). (140) Good, M. L., Bryan, S. E., J . Am. Chem. SOC.82. 5636 (1960). (141) Gorican, ’ H., Grdenic, D., Proc. Chem. SOC.1960, 288. (142) Goto, H., Ikeda, S., Sn’. Repts. Research Znsts.. Tohoku Univ. Ser. A 11, No. 3, 183(1959). (143) Zbid.. 11, No. 4 276 (1959). (144) Goto, H., Kakita, Y., Zbid., 11, 1 (1959). (145) Zbid., 11, KO.6 442 (1959). (146) Goto, H., Sudo, E., Zbid., 11, No. 5 1.L. 356 (19591. (107) Duke, J. F., Stanport, W.,Analyst (147) Graddon, D. P., J . Inorg. & Nuclear 85, 671 (1960). Chem. 11,337 (1959). (108) Dular, M., Kosta, L., Vestnik (148) Granger, C. O., U. K. At. Energy Sloven. kemi. druStva 6,59 (1959). Authority Rept. DEG 219 (C), (1960). (109) Dutta, R. L., J . Indian Chem. SOC. (149) Gregorowicz, Z., Chem. Anal. (War36,339 (1959). saw) 4, 829 (1959). (110) Zbid., 37, 167 (1960). (150) Gresky, A. T., Mansfield, R. G., (111) Duykaerts, G., Dreze, P., Simon, U. S. Atomic Energy Comm. Rept. A., J . Inorg. & Nuclear Chem. 13, 332 CF-59-6-15 (1959). (1960). (151) Guest, R. J., Bouvier, J. A. F., (112) Dyer, F. F., Schweitzer, G. K., Can. Dept. Mines and Tech. Surveys, Anal. Chim. Acta 23,1(1960). Mines Branch, Research Rept. R43, (113) Dymov, A. M., Koreneva, V. V., (19591. Nauch. Doklady Vysshei Shkoly Met. 3, 269 (1958); Referat. Zhur. Khim. (152) -Habashi, F., J . Inorg. & Nuclear 9 (1959), S o . 31,018. Chem. 13,125 (1960). ’
T
n
\----I.
(153) Hakkila, E. A., Waterbury, G. R., ANAL.CHEM.32,1340 (1960). (154) Handley, T. H., Dean, J. A., Ibid., 32, 1878 (1960). (155) Zbid., 33, 1087 (1961). (156) Hara, T., Sandell, E. B., Anal. Chim. Acta 23, 65 (1961). (157) Hardy, C. J., Greenfield, B. F., Scargll, D., J . Chem. SOC.1961, 90. (158) Hardy, C. J., Greenfield, B. F., Scargill, D., Ibid., 1961,.174. (159) Hardy, C. J., Scargll, D., J . Inorg. & Nuclear Chem. 13, 174 (1960). (160) Hartkamp, H., Z. anal. Chem. 176, 185 (1960). (161) Hashitani, H., Yamamoto, C., J . Chem. SOC.Japan, Pure Chem. Sect. 80, 727 (1959). (162) Healy, T. V., Kennedy, J., J . Znorg. & Nuclear Chem. 10,128 (1959). (163) Healy, T. V., Kennedy, J., Waind, G. M., Zbid., 10,137 (1959). (164) Hennico, A., Vermeulen, T., U. S. Atomic Energy Comm. Rept. UCRL9415 (1960). (165) Henning, G. J., Pharm. Weekblad. 95, 645 (1960). (166) Hesford, E., McKay, H. A. C., J . Znora. & Nuclear Chem. 13, 156 (1960). “ (167) Ibid., 13, 165 (1960). (168) Heyn, A. H. A., Banerjee, G., U. S. Atomic Energy Comm. Repts. NYO7568, (1959); NYO-7569, (1959). (169) Hibbits, J. O., Davis, W. F., Menke, M. R., Talanta 4, 101 (1960). (170) Zbid., 8, 163 (1961): (171) Hibbits, J. O., Dams, W.F., Menke, M. R., U. S. Atomic Energy Comm. Rept. APEX-523, (1959). (172) Hibbits, J. O., Rosenberg, A. F., Williams, R. T. Talanta 5, 250 (1960). (173) Hietala, P., Ann. Acad. Sn’. Fennicae, Ser. A IZ No. 100, (1960). (174) Hikime, S., Bull. Chem. SOC.Japan 33, (6) 761 (1960). (175) Hikime, S., Yoshida, H., Japan Analyst 8, 756 (1959). (176) Hikime, S., Yoshida, H., Uzumasa, Y., Ibid., 8,531 (1959). (177) Hillebrant, A., Hoste, J., Anal. Chim. Acta 18, 569 (1958). (178) Hirano, S.,Pvlizuike, A., Yamada, K., Japan Analyst 9, 164 (1960). (179) Hoenes, H. J., Stone, K. G., Talanta 4,250 (1960). (180) Holcomb, H. P., Yoe, J. H., Microchem. J . 4,463 (1960). (181) Horner, D. E., Coleman, C. F., U. S. Atomic Enerw Comm. Rept.
1087, April 19K9. (185) Hyde, E. K., Katzin, L. I., Wolf, M. J., U. S. Patent 2,894,827 (July 14, 1959). (186) Hyman, H. H., Leader, G. R., Zbid., 2,894,814 (July 14, 1959). (187) Ichikawa, F., Bull. Chem. SOC. Japan 34,183 (1961). (188) Ichikawa, F., Uruno, S., Zbid., 33, 569 (1960). (189) Ickikawa, S., Nanjo, bl., Kano, S., Eisei Shikenjo HBkoku No. 77, 427 (1959). (190) Ilozhev, A. P., Poddubskaya, I. V., Rozen, -4. RI., Radiokhimiya 2, 411 (1960). (191) Inarida, M., J . Chem. SOC.Japan, Pure Chem. Sect. 89, ( 3 ) 273,280 (1959). (192) Irving, H., “Liquid-Liquid Extraction,” in Treatise on Analytical Chemistry; Part 1, Vol. 3, I. Kolthoff, P. Elving, eds., Interscience, New York, 1961. VOL. 34, NO. 5, APRIL 1962
77 R
(193) Irving, H., Edgington, D. N., J . Znorg. & Nuclear Chem. 10,306 (1959). (194) Ibid., 15,158 (1960). (195) Irving, H., Lewis, D. C., PTOC. Chem. SOC.1960, 222. (196) Irving, H., Ramakrishna, R. S., Analyst 85,860 (1960). (197) Isaac, N. M., Wilkins, J. W., Fields, P. R., J . Znora. & Nuclear Chem. 15.
(235) Kiba. T.. Kanetani. M.. Bull. Chem. . Soc. Japan 31,1013 (1958).’ (236) Kiba, T., Mizukami, S., Ibid., 31, 1007 (1958). (237) Kiba, T., Ohashi, S., Maeda, T., Zbid., 33,818 (1960). (238) Kimura. I. K.. Ibid.., 33.. 1038 . (1960). (239) Kimura, K., J . Atomic Energy SOC.Japan 2, 585 (1960). (240) Kitagawa, H., Shibata, N., Japan Analyst 8,302 (1959). (241) Kitazato, T., Saeki, Y., Zbid., 8,422 ( 1959). (242) Knapp, W. G., ANAL. CHEM.31 1445 (1959). (243) Kopanica, M., Pribil, R., Talanta 4, 158 (1960). (244) Korenman, I. M., Sheyanova, F. R., Zzvest. Vysshikh Ucheb. Zavedenii Khim. i Khim. Tekhnol. 2,151 (1959). (245) Korenman, I. M., Sheyanova, F. R., Mitrokhina, T. N., Trapeznikova, T. N., TrwIy PO Khim. i Khim. Tekhnol. 1959, No. 2, 414. (246) Korenman, I. M., Sheyanova, F. R., Savel’eva, M. I., Trudy Khim. i Khim. Tekhnol. 2, No. 166 (1959). (247) Korovin, S. S., Ivanova, R. V., Saakova, 0. V., Bol’shakov, K. A., Zhur. Priklad. Khim. 34, 1007 (1961). (248) Korpak, W., Deptula, C., Nukleonika 5, 123 (1960). (249) Koshin, N. V., Trudy Leningrad. Tekhnol. Znst. Pishchchevoi Prom. 15, (1958) : Referat. Zhur. Khim. 1959. No. 38290. (250) Kovacs, E., Guyer, H., Chimia 13, 164 (1959). (251) Kovaleva, A. G., Kul’berg, L. M., Uchenye Za piski Sarah. Gosudarst . Univ. 71, 221 (1959) from Referat. zhur. Khim. 1961, No. AD12. (252) Kreimer, S. E., Butylkin, L. P., Zavodskaya Lab. 25, 662 (1959). (253) Kreimer, S. E., Butylkin, L. P., Stogova, A. V., Zhur. Anal. Khim. 15, 467 (1960). (254) Kreimer, S. E., Stogova, A. V., Lomekhov, A. S., Zavodskaya Lab. 26, 1104 (1960). (255) Kriss, E. E., Sheka, Z. A,, Zhur. Neora. Khim. 5.2819 (1960). (256) Kristaleva,‘ L. B.; Zavodskaya Lab. 25, 1294 (1959). (257) Kuehn, P. R., Howard, 0. H., Weber, C. W., ANAL. CHEM.33, 740 f 1961). (258) Kuznetsov, V. I., Blechta, V., Collection Czechoslov. Chem. Communa. 26, 1092 (1961). (259) Kuznetsov V. I., Bol’shakova, L. I., Zhur. Anal. Khim. 15, 523 (1960). (260) Kuznetsov, V. I., Fang, M., Zhur. Neorg. Khim. 5 , 1375 (1960). (261) Kuznetsov, V. I., Kukisheva, T. N., Zavodskaya Lab. 26, 1344 (1960). (262) Kuznetsov, V. I., Sawin, S. B., Radiokhimiua 2. 682 11960). (263) Kuznetsov,’ V. I., Titov, P. D., Dokladu Akad. Nauk. S.S.R. 131, 840 (1960).(264) Kuznetsov, V. I., Titov, P. D., Zzvest. Sibir. Otdel. Alcad. Nauk. S.S.S.R. 1960, 58. (265) Kuznetsova, V. K., Tananaev, N. A., Izvest. Vysshikh. Ucheb. Zavedeniz, Khim. i Khim. Technol. 2,840 (1959). (266) Kuznetsova, V. K., Tananaev, N. A., Nauch. Doklady Vysshei Shkoly Khim. i Khim. Tekhnol. 1959, Xo. 2, 289. (267) Kuznetsova, V. K., Tananaev, N. A., Nauch. Doklady Vysshef Shkoly, Met. 1958, No. 4, 258. (268) Kuznetsova, V. K., Yuminov, V. S., Trudy Ural. Politekh. Znat. im. S. M. Kirova 1960, No. 96, 109. (269) Kyrs, M., Pelcik, J., Polansky, P., \ - - - - , -
(220) Karraker, D. G., U. S. Patent 2,894,817 (July 14, 1959). (221) Kassner, J. L., Ting, S., Grove, E. L., Talanta 7, 269 (1961). (222) Kawahata, M.. Mochizuki. H.. . Misaki, T., Japan Analyst 9,‘ 1023 (1960). Y. E., J . ZnOTg. & Nudear % (1960). W. E., Sheppard, J. C., , Zbid., 12,327 (1960). 1. M.. Smales. A. A.. Anal. Chim. Acta 23, 397 (1960).‘ (226) Kertes, A. S., J . Znorg. & Nudear Chem. 11, 104 (1960). (227) ---Ker,tea, A. S., Beck, A., J . Chem. S O ~1961, . 1921. (228) Zbid., 1961, 1926. (229) Kertes, A. S., Halpern, M., J. znorg. & Nuclear Chem. 16,308 (1961). (230) Kertes, A. S., Kertes, V., Can. J . Chem. 38. 612 (19601, \--
I
CHEM.3 (232) Kho ( 2 3 & Znd. (London) (234) Khopkar, S . 1 Chem. 171, 241 ( ~ J O J J , .
78 R
ANALYTICAL CHEMISTRY
Collection Czechoslov. Chem. Communs. 25,2642 (1960). (270) Lamprey, H., Ann. N . Y . Acad. Sci. 88, 519 (1960). (271) Larsen, R. P., Seils, C. A., ANAL. CHEM.32,1863 (1960). (272) Laskorin, B. N., Smirnov, V. F., Zhur. Priklad. Khim. 33,2172 (1960). (273) Lavrukhina, A. K., Chzhu, P., Radiokhimiya 1, 530 (1959). (274) Lazarev, A. I., Zhur. Awl. Khim. 14, 362 (1959). (275) Lazarev, A. I., Lazareva, V. I., Zavodskaya Lab. 25, 405 (1959). (276) Lebedeva, N. V., Nazarenko, V. A., Trudy Kommissii Anal. Khim. Akad. Nauk S.S.S.R. 11,287 (1960). (277) Leeb, A. J., Hecht, F., Z. anal. Chem. 168, (2), 101 (1959). (278) Lefevre, A. M., Lefevre, J. F , Raggenbass, A,, J. Znorg. & Nudear Chem. 12, 297 (1960). (279) Lel’chuk, Y. L., Skripova, L. L., Kristalev, P. V., Zzvcst. Sibir. Otdel. Akad. Nauk. S.S.S.R. 1960, No. 11, 63. (280) Levin, V. I., Golutvina, M. M., Mctody Polycheniya i Zzmeren. Radioaktiv. Preparatov. Sbornik StateZ 1960, 64. (281) Lieser, K. H., Schroeder, H., Z . anal. Chem. 174, 174 (1960). (282) Loveridge, B. A., Thomas, A. M., U . K . Atomic Energy Authority Rept. C/R 2828, (1959). (283) Lowe, R. W., Prestwood, S. H., Rickard, R. R., Wyatt, E. I., ANAL. CHEM.33,874 (1961). (284) Lueck, C. H., Boltz, D. F., Zbid., 30, 183 1958). (285) Mc ormack, J. J., Cripps, F. H., Wiblin, W. A., Anal. Chim. Acta 22, 408 (1960). (286) McCown, J. J., Larsen, R. P., ANAL.CHEM.32,597 (1960). (287) McManamey, W. J., J . Appl. Chem. (London) 11,44 (1961). (288) Madigan, D. C., Australian J. Chem. 13, 580 (1960). (289) Maeck, W. J., Booman, G. L., Elliott, M. C., Rein, J. E., ANAL.CHEW 32,605 (1960). (290) Maeck, W. J., Booman, G. L., Kussy, M. E., Rein, J. E., Ibid., 32, 1874 (1960). (291) Zbid., 33, 1775 (1961). (292) Maeck, W. J., Kussy, M. E., Rein, J. E., Zbid., 33,235 (1961). (293) Zbid., p. 237. (294) Maekawa, S., Yoneyama, Y., Fujimori. E,. J a m n Analvst 9.475 (1960). (295) Majumdar, S. K.; De; A. K.,ANAL. CHEM.32, 1337 (1960). (296) Ibid.. 33. 297 (1961). (297) Majumdar, S. K:, De, A. K., Talanta 7, 1 (1960). (298) Majumdar, S. K., De, A. K., Z. anal. Chem. 177. 97 (1960). (299) Malissa, H.; Gomiscek, S., Z. anal. Chem. 169, 401 (1959). (3001 hlarchenko. P. V.. Zavodskaua Lab. . 26(5). 532 f 1960). ’ (301j Kfargeium, ’D. W., Santacana, F., ANAL.CHEY.32, 115i (1960). (302) Marsh, S. F., Maeck, W. J., Booman, G. L., Rein, J. E., Zbid., 33, 870 f19611. (303) hiartin, F. S., Holt, R. J. W., Quart. Reus. (London) 13, 327 (1959). (304) Mashima, M., J . Chem. SOC.Japan 80. 1260 (1959). (305) Mashima, M., Japan Analyst 9, 269 (1960). (306) Zbid., 9, 272 (1960). (307) Riatano, S., Kawase, N., Ibid., 8 (1) 14 (1959). (308) ’Matano, ’K., Kawase, A., Trans. Nut. Res. Inst. Met., Japan 1 (1) 69 (1959).
6
(309) Matsuura, N., Ouchi, A., Kojima, M., Bull. Chem. SOC.Japan 34, 411 (1961). (3;O) Matuszek, J. M., Jr., Sugiharra, r. T., AN.4L. CHEM.33, 35 (1961). (311) hIedlin, W. L., Ibid., 32, 632 (1960). (312) Meloan, C. E., Brandt, W. W., Ibid., 33, 102 (1961). (313) Meloan, C. E., Holkeboer, P., Brandt, W. W., Ibid., 32, 791 (1960). (3141 Menis. 0.. Rains. T. C.. Ibid.. 32. ‘ 1837 11960). ’ (315) hienke; H., Herrman, G., 2. anal. Chem. 175, 324 (1960). (316) hlerrill, J. R., Honda, >I., Arnold, tJ. R., ASAL. CHEM.32,1420 (1960). (317) hletzsch, F. A. v., 2. ChemieInaenieur-Technik 31.262 (1959). (318j hleyer, S., Koch, 0. G.’, Arch. Eisenhiittenw. 31,711 (1960). (319) Meyer, S., Koch, 0. G., 2. Anal. Chem. 179, 175 (1961). (320) hlilaev. S . M.. Referat. Zhur. Khim. ’ 1959, (lo),h o . 34; 604. 13211 D.. Libina. Libina, R. I.. I., Zhur. (321) Miller. Miller, A. D., Anal. Khim. 13, 664 (1958). (322) Miller, F. J., Thomason, P. F., ANAL.CHEY.33,404 (1961). (323) Xlinczewski, J., Stolarezyk, U. Marczenko, Z., ‘Chem. Chem. Anal. (Warsaw) (Warsawj 6. 51 (19611. I
.
’
(1958). 1326) Moisenko. I.. Rozen.’ A. M.. Radio‘ khkmiya 2, 274 (i960). (327) Monnier, D., Haerdi, W.,Anal. Chim. Acta 20. 444 11959). (328) Moore, F. L.,‘ ANAL. CHEM. 32, 1048 (1960). (329) Ibid.. T). 1075. (33oj Ibid.; 33, 748 (1961). (331) Moore, F. L., U.S. Atomic Energy Commission Rept. NAS-NS-3101, Dec. 15. 1960. (332) Alorachevskii, Y. V., Borovaya, N. S., Cchenye Zapeski Leningrad. Gosudarst. Unav. A . A . Zhdanova No. 297, Ser. Khzm. Nauk KO.19, 99 (1960). (333) Morris, D. F. C., Bell, C. F., J . Inoig. 82 Nuclear Chem. 10, 337 (1959). (834) hlorrison, G. H., Freiser, H., A N A L . CHEAI. 30, 632 (1958); 32, 37R (1960). (335) Morrison, G. H., Freiser, H. “Solvent Extraction in Analytical Chemistry,’’ Wiley, Xew York, 1957. (336) Morrison, G. H., Freiser, H., Cosgrove, J. F.!,in “Handbook of Anal .tical Chemistry, L. Meites, ed., hIc&rawHill, S e ~ vYork, in press. (337) Motojima, K., Hashitani, H., A x . 4 ~ . CHEAI.33.48 11961). (338) Ibid.,’p. 239. ’ (339) Notoiima, K., Hashitani, H.,, Japan . Anal?ist8;526 (1959). (3401 Ibid.. 9. 151 (19601. ~, (341j Motojima, K., Hashitani, H., Yoshida, H., Ibid., 10, 79 (1961). 13421 Motoiima. K., Izava. K.. J . Atomic ‘ E’nernzi Sic. Javan2.253 i1960) (343) ifotojima,’ K., koshiha, H,, Izawa, K., ASAL. CHEX.32,1083 (1960). (344) Mottola. H. -4..Sandell. E. B.. . Anal. Chim.’Acta 24,’301 (1961). (345) Moucka, V., Stary, J., Collection Czechoslov. Chem. Communs. 26, 763 (1961). (346) Mukoyama, T., Ichinose, S., Japan Analyst 10, 107 (1961). (347) Munchow, P., Materialprujung 2, 171 (1960). (348) hlurphy, J. W.,Bffsprung, H. E., ANAL.CHEY.33, 1658 (1961). (349) Murray, B. B., U. S. Atomic Energy Comm. Rept. DP-316, (1958).
(350) Musil, A., Weidmann, G., Mikrochim. Acta 1959, (3), 476. (351) Muxart, R., Levi, M., Bouissieres. G.; Compt. rend.’249, 1000 (1959). (352) Nadalin, R. J., Broada, W. B., A N A L . CHEM. 32, 1141 (1960). (353) Naito, K., Bull. Chem. SOC.Japan 33, 363 (1960). (354) Nakagawa, G., J. Chem. Soc. Japan 81, 444 (1960). (355) Ibid., p. 446. (356) Ibid., p. 747. (357) Ibid., p. 751. (358) Nakamura, E., Bull. Chem. SOC. Japan 34,402 (1961). (359) Neeb, R., Z. anal. Chem. 182, 10 1961). (360) Newman, L., Klotz, P., J . Phys. Chem. 65,796 (1961). (361) Nielsch, W., Mikrochim. Acta 1959, (5), 725. (362) Niese, S., Leibnitz, E., J. prakt. Chem. 10,311 (1960). (363) Nikolaev, A. V., Shubina, S. N., Sinitsyn, N. M., Doklady Akad. Nauk S.S.S.R. 127,578 (1959). (364) Nikolaev, A. V., Shubina, S. M., Sinitsyn, N. M., Radiokhimiya 2, 3 (1960): (365) Nikolaev, A. V., Sinitsyn, N. M., Doklady Akad. Nauk S.S.S.R. 127, 117 11959). (366)-N’ikolaev, A. V., Sinitsyn, N. M., Zhur. Neorg. Khim. 4,1935 (1959). (367) Norwitz, G., Cohen, J., Everett, M. E., ANAL.CHEM.32,1132 (1960). (368) Nukada. K.. Naito. K.. Maeda. U..’ ‘ Bill. Chem. boc.‘Japan 33,894 (1960). (369) Oelschlager, W., 2.anal. Chem. 174, 241 (1960). (370) Oi, N., J . Chem. SOC.Japan 80,1151 (1959). (371) Onishi. H.. Mikrochim. Acta 1.
(1960). (376) Pal’shin, E. S., Zolotov, Y. A,, Radiokhimiya 1, 482 (1959). (377) Parker, A., U. K . Atomic Energy Suthority Rept. AERE-AM-26, (1959). (378) Parker, C. A., Harvey, L. G., Analyst 86, 54 (1961). (379) Pasztor, L., Bode, J. D., ANAL. CHEM.32, 1530 (1960). (380) Pasztor, L., Bode, J. D., Anal. Chim. Acta 24,467 (1961). (381) Pasztor, L., Bode, D. J., Fernando, Q.,ANAL. CHEX 32, 277 (1960). (382) Patkin, P. N., Berezkina, V. V., Prutkova, N. M., Izvest. Timiryazev. Sel‘skokhoz. Akad. 1960, 196. (383) Patrusheva, E. I., Brezhneva, N. E., Korpysov, G. V., Radiokhimiya 2, 541 (1960). (384) Pauer, R. S., Poluektov, N. S., Inst. General Inorganic Chemistry, Academy of Sciences, Ukrainian S.S.R. Ind. Lab. 25,938 (1959). (385) Pease, B. F., Williams, M. B., .4N.4L. CHEX. 31, 1044 (1959). (386) Pellerin, F., Bull. SOC. chim. France 1961, 1071. (387) Pel’sh, G,. F., D,’Yachkov, V. I., Uchenye Zapzska Lenangrad. Gosudarst. Cnzv. A . il. Zhdanova No. 297, Ser. Khim. Nauk S o . 19, 102 (1960). (388) Peppard, D. F., Ferraro, J. R., J . Inorg. & Suclear Chem. 15, 365 (1960). (389) Peppard, D. F., Mason, G. W., ’ci. S.Patent 2,955,913 (Oct. 11, 1960). (390) Peppard, D. F., Mason, G. IT., Driscoll, W.J., McCarty, S., J . Inorg. & Nuclear Chem. 12, 141 (1959). (391) Peppard, D. F., Mason, G. W,, McCarty, S., Ibzd., 13, 138 (1960). ~
(392) Peppard, D. F., Mason, G. W., Sironen, R. J., Ibid., 10, 117 (1959). (393) Peshkova, V. M., Am, C. V., Vestnik Moskov. Univ. Ser. II 15. 59 (1960). (394) Peshkova, V. M., Bochkova, V. M., Lazareva, L. I., Zhur. Anal. Khim. 15, 610 (1960). (395) Peshkova, V. M., Shlenskaya, V. I., Sokolov, S. S., Trudy Komissii Anal. Khim. Akad. Nauk S.S.S.R. 11, 328 (1960). (396) Peshkova, V. M., Zozulya, A. P., Zhur. Anal. Khim. 14, 411 (1959). (397) Petrov, K. A., Shevchenko, V. B., Timoshev, V. G., Maklyaev, F. L., Fokin, A. V., Rodionov, A. V., Balandina, V. V., El’kina, A. V., Nagnibeda, Z. I., Volkova, A,, Zhur. Neorg. Khim. 5,498 (1960). (398) Pfeifer, V., hlikrochim. Acta 1960, 518. (399) Pfeifer, V., Hecht, F., Ibid., 1960, 378. (400) Pfeifer, V., Hecht, F., Z. anal. Chem. 177, 175 (1960). (401) Philipenko, A. T., Obolonchik, V. A., Ukrazn. Khim. Zhur. 26, 99 (1960). (402) Picasso. G., Met. ital. 52, 358 (1960). (403) Poddubnaya, L. V., Poddubnyi, B. N., Sbornik Nauch. Trudov. Rostov. Med. Inst. 1959, No. 10, 187. (404) Pohl, F. A., Kokes, K., Bonsels, W., 2. anal. Chem. 174,6 (1960). (405) Popa, S., Furnica, G., Acad. rep. populare Romtne Studii cercetari. Chim. 6, (3), 481 (1959). (406) Poskanzer, A. M., Foreman, B. M., J . Inorg. & Nuclear Chem. 16, 323 (1961). (407) Pryadarshini, U., Tandon, S. G., ANAL.CHEM.33,435 (1961). (408) Pryadarshini, U., Tandon, S. G., Chem. & Ind. (London) 1960,931. (409) Production Group, U. K. Atomic Energy Authority Rept. PGR-l4(S), 1959. (410) Ibid., PGR-I9(S), 1959. (411) Ibid., PGR-SI(S), 1959. (412) Ibid., PG161(W), 1960. (413) Prokopovitsh, A. S., Green, T. E., U . S. Bur. Mines Revt. Invest. No. ,
I
~
(414) 5720,Provaznik, 1960. J., Knizek, M., Chem. listv. 55. 79 (1961). f41A\-R.a~:1. .T. .B.. Johnson. A. I.. Can. J . --- Chem. Engr. 37,’ 218 (1959). (416) Rader, L. F., Swadley, W.C., Lipp, H. H.. Huffman, C.. Jr., U . S. Geol. Survey; Projess.’ Papers No. 400-B, B-477-B80 (1960). (417) Rains, T. C., Ferguson, hl., House, H. R., ASAL. CHEhl. 33,1645 (1961). (418) Research Group, U. K. Atomic Energy Authority Rept. AERE-AM-38, July 1959. (419) Rieamonti, R., Attual. Lab. 5, 65 \ - - - I
3
-
~
Ricerca sci. 30, 81 (421) Rilev. J. P.. Anal. Chim. ‘ 317 (19gQ). (422) Rimshaw, S. J., Malling, G. F., ANAL.CHEY.33, 751 (1961). (423) Rolf, R. F., Ibid., 33, 125, 149 (1961). (424) Rooney, R. C., Xetallurgia Manchr. 62, 175 (1960). (425) Ross, H. H.. Hahn, R. B., Talanta ‘ 7,‘276 (1961). (426) Ross, FIT. J., White, J. C., ANAL. CHEM.33,424 (1961). (427) Rozen, A. M., Gindin, L. At., Knopp, I. F., Doklady Akad. Nauk S.S.S.R. 131,883 (1960). (428) Rozen, A . hl., Moiseenko, E. I., Zhur. Seorg. Khim. 4, 1209 (1959). VOL. 34, NO. 5, APRIL 1962
79 R
(429) Rubins, E. J., Hagstrom, G. R., J . Agr. Food Chem. 7, 722 (1959). (430) Rudenko, X. P., Zhur. Neorg. Khim. 4, 220 (1959). (431) Rudenko, N. P., Stary, I., Radiokhimiya 1, KO.I, 52 (1959). (432) Rudstam, G., ANAL.CHEM.32,1664 (1960). (433) Ryabchikov, D. I., Privalova, M. M., Zhur. Neorg. Khim. 3, 1694 (1958). (434) Ryan, D. E., Analyst 85,569 (1960). (435) Rylek, M., Vondrak, J., Collection Czechoslov. Chem. Communs. 25, 2497 (1960). (436) Sadzhaya, S’. D., Petruzashvili, L., Trudy, Tbilis. Gosudarst. Pedagog. Inst. 11, 673 (1957); Referat. Zhur. Khim. 1958 (23), N o . 77,265. (437) Saito, K., Ikeda, E., Saito, M., Bull. Chem. SOC.Japan 33,884 (1960). (438) Saito, K., Takeuchi, T., Japan Analyst 10, 152 (1961). (439) Saito, S., Yui, N., J . Chem. SOC. Japan 80,135 (1959). (440). Sarma, B., Deshpande, P. D., J . Scz. Ind. Research (India) 19B, 101 (1960). \ - - - - I
(441) Sato, T., J . Inorg. & Nuclear Chem. 16, 156 (1960). (442) Sato, T., Goto, F., Kogyo Kagaku Zasshi 62, 684 (1959). (443) Scherff, H. L., Herrmann, G., J . Inorg. & Nuclear Chem. 11, 247 (1959). (444) Scherff, H. L., Herrmann, G., Z. Elektrochem. 64,1022 (1960). (445) Schill, G., Anal. Chim. Acta 21, 341 (1959). (446) Schill, G., Danielson, B., Ibid., 21, 248 (1959). (447) Schoffmann, E., Malissa, H., Mikrochim. Acta 1961, 319. (448) Schulek, E., Laszlovsxky, J., Ibid., 1961, 41. (449) Schuler, W. E., U. S. Atomic Energy Comm. Rept. DP-513, (1960). (450) Schuller, H., Mikrochim. Acta 1, 107 (1959). (451) Schweitzer, G. K., Bramlitt, E. T., Anal. Chim. Acta 23, 419 (1960). (452) Schweitaer, G. K., Dyer, F. F., Anal. Chim. Acta 22,132 (1960). (453) Scroggie, L. F., Dean, J. A., Ibid., 21, 282 (1959). (454) Seaborg, G. T., U. S. Patent 2,882,124 (April 14, 1959). (455) Seamer, P. A, Nature 184, 636 (1959). (456) Sen, B., ANAL. CHEX 31, 881 ( 19.59 - -1., (457) Sen, B., Anal. Chim. Acta 21, (l),35 (1959). (458) Senise, P., Sant’Agostino, L., Mikrochim. Acta 1959 (4), 572. (459) Shevchenko, V. B., Federov, I. A., Radiokhimiya 2,6 (1960). (460) Shevchenko, V. B., Shilin, I. V., Zhdanov, Y. F., Zhur. Neorg. Khim. 5, 2832 (1960). (461) Shevchenko, V. B., Shmidt, V. S., Nenarokomov, E. A., Ibid., 5, 2354 (1960). (462) Shevchenko, V. B., Slepchenko, I. G., Shmidt, V. S., Nenarokomov, E. A., Ibid., 5, 1095 (1960). (463) Shevchenko, V. B., Smelov, V. S., Atomnaya Energ. 6,140 (1959). (464) Shevchenko, V. B., Solovkin, A. S., Shilin, I. V., Kirillov, L. M., Rodionov, A. V., Balandina, V. V., Radiokhimiya 2. 281 11960’1. (465) Sheyanova, F. R., hirapetyan, -4.G., Ryabova, S. A,, Ryabov, M., Trudu Khim. i Khim. Tekhnol. 1959, 410. (466) Shibata, S., Anal. Chim. Acta 22, 479 (1960). (467) Ibid., 23, 367 (1960). (468) Ibid., p. 434. (469) Shigematsu, T., Japan Analyst 7, 787 (1958). \ -
80
I
ANALYTICAL CHEMISTRY
(470) Shigematsu, T., Tabushi, M., Bull. Inst. Chem. Research, Kyoto 39, 34 (1961). (471) Shigematsu, T., Tabushi, M., J . Chem. SOC. Japan, Pure Chem. Sect. 80 (2), 159 (1959). (472) Ibid., p. 162. (473) Shigematsu, T., Tabushi, M., J. Chem. SOC.Japan 81, 262 (1960). (474) Ibid., p. 265. (475) Shigematsu, T., Tabushi, M., Japan Analyst 8, 261 (1959). (476) Siddall, T. H., J . Am. Chem. SOC. 81,4176 (1959). (477) Siddall, T. H., J . Inorg. & Nuclear Chem. 13, 151 (1960). (478) Siddall, T. H., U. S. Atomic Energy Comm. Rept. DP-548, (1961). (479) Siekierski, S., J. Inorg. & Nuclear Chem. 12, 129 (1959). (480) Siekierski, S., Gwodzdz, R., Nukleonika 5,205 (1960). (481) Signorelli, G., Ann. chim. (Rome) 50, 1057 (1960). (482) Silverman, L., Seitz, R. L., Anal. Chim. Acta 20 (4), 340 (1959). (483) Slee, L. J., Phillips, G., Jenkins, E. N., Analyst 84,596 (1959). (484) Small, H., Chem. Eng. News 39, No. 28. 44 11961). (485) Smith, ~ W .B., Drewry, J., Analyst 86, 178 (1961). (486) Socolovschi, R., Rev. chim. (Bucharest) 11, 348 (1960). (487) Solovkin, A. S., Zhur. Neorg. Khim. 5, 1345 (1960). (488) Ibid., p. 2119. (489) Solovkin, A. S., Ivantsov, A. I., Renard, E. V., Ibid., 4,2826 (1959). (490) Sommer, L., 2. anal. Chem. 169, 342 (1959). (491) Sonnenschein. W.. Ibid., 168. 18 . (1959). (492) Spaccamela-Marchetti, E., Mazza, M. T. C., Chim. e ind. (Milan) 43, 133 (1961). (493) Specker, H., Cremer, M., 2. anal. Chem. 167, 110 (1959). (494) Specker, H., Cremer, M., Jackwerth, E., Angew. Chem. 71, 492 (1959). (495) Specker, H., Jackwerth, E., Naturwissenschaften 46, 446 (1959). (496) Specker, H., Jackwerth, E., 2. anal. Chem. 167, 416 (1959). (497) Specker, H., Jackwerth, E., Hovermann, G., Ibid., 177, 10 (1960). (498) Spitsyn, V. I., Golutvina, M. M., Atomnaya Energ. 8,117 (1960). (499) Spitzy, H., Mikrochim. Acta 1960, 789. (500) Spitzy, H., Dosudil, I., “Rapid Radiometric Microgram Determinations Via Precipitation With Labelled Reagents Or Extraction,” presented a t 1961 International Symposium on Microchemical Techniques, Pennsylvania State Univ., August 1961. (501) Stander, C. M., ANAL.CHEM.32, 1296 (1960). (502) Stary, J., Chem. listy 53, 556 (1959). (503) Stary, J., CollectionCzechoslov. Chem. Communs. 25,86 (1960). (504) Ibid., p. 890. (505) Stary, J., Zhur. Neorg. Khim. 4,2412 (1959). (506) Stary, J., Rudenko, N. P., Ibid., 4, 2405 (1959). (507) Staten, F. W., Huffman, E. W. D., ANAL. CHEM. 31,2003 (1959). (508) Stavinoha, W. B., Nash, J. B., Ibid., 32, 1695 (1960). (509) Steele, T. W., Analyst 85, 153 (1960). (510) Stepin, V. V., Pliss, A. M., Silaeva, E. V., Byul. Nauch. Tekh. Inform. Ural Nauch. Issledovatel’rnykh. Inst. Chem. Metal. 1958 (4), 103; Referat. Zhur. Khim. 1959 (15), No. 53, 184. (511) Stewart, J. H., Jr., ANAL. CHEM. 32. 1090 (1960). I
,
(512) Stoner, R. E., Dasler, IT., Ibid., 32, 1207 (1960). (513) Studlar, K., Janousek, I., Collection Czechoslov. Chem. Communs. 25. 1965 (1960). (514) Sudarikov, B. N., Zaytsev, V. A., Puchkov, Y. G., !Vauk. Doklady Vysshei Shkoly. Khim. z Khim. Tekh. 1, 80 (1959). (515) Sugawara, K., Tanaka, M., Okabe, S., Bull. Chem. SOC.Japan 32 (3), 221 (1959). (5i6) Sunderman, D. N., Ackermann, I. B., Meinke, W. W., ANAL. CHEW 31,40 (1959). (517) Suzuki, M., Japan Analyst 8 (6), 395 (1959). (518) Ibid., 8, 432 (1959). (519) Suzuki, N., J . Chem. SOC.Japan 81, 437 (1960). (520) Suzuki, N., Japan Analyst 8, 283 (1959). (521) Suzuki, N., Muroi, S., Ibid., 8, (5) 287 (1959). (522) Suzuki, N., Yoshida, H., J . Chem. SOC.Japan, Pure Chem. Sect. 80 (9), 1005, 1008 (1959). (523) Tabushi, M., Bull. Inst. Chem. Research, Kyoto Univ. 37, 226, 237 ( 1959). (524) Ibid., pp. 232, 245,252 (1960). (525) Tada, K., 01, K., Tsuge, Y., J . Chem. SOC.Japan 81, 1554 (1960). (526) Takei, S., Kato, T Technol. Repts. Tohoku Univ. 24,75 (1959). (527) Ibid., p. 85. (528) Takeyama, S., Sudo, E., Goto, H., Sci. Repts. Research Insts., Tohoku Univ. Ser. A 12, No. 5, 416 (1960). (529) Tanaka, K., Nagoya Kdgyd Gijutsu Shikensho HBkoku 8, 799 (1959). (530) Tandan, J. P., Mehrotra, R. C., 2. anal. Chem. 176, 87 (1960). (531) Tandon, S. G., Bhattacharyya, S. C., ANAL.CHEM.33,1267 (1961). (532) Tarayan, V. M., Mushegyan, L. G., Doklady Akad. Nauk. Arm. S. S. S . R. 27, 157 (1958); Referat. Zhur. Khim. 1959 (lo), No. 34,574. (533) Taube, M., J . Inorg. & Nuclear Chem. 12. 174 (1959). (534) Ibid.,‘ 15, 171 (1960). (535) Tertoolen, J. F. W., Detmar, D. A., Buijze, C., 2. anal. Chem. 167, 401 (1959). (536) Thamer, B. J., J . Phys. Chem. 64, 694 (1960). (537) Thompson, J. H., Peters, B. W., Analyst 84, 180 (1959). (538) Thompson, J. H., Ravenscroft, M. J., Ibid., 85, 735 (1960). (539) Toul, J., Okac, A., Spisy pHrodovldeckb f a k . unzv. BrnZ No. 417. 407 (1960). (540) Tremillon, B., Bull. SOC. chim. France 1960, 1011. (541) Treybal, R. E., Ind. Eng. Chem. 52, 262 (1960); 53, 161 (1961). (542) Tribalat, S., Dutheil, C., Bull. SOC. chim. France 1960, 160. (543) Troitskii, K. V., Zhur. Neorg. Khim. 3, 1457 (1958). (544) Trusell, F., Diehl, H., 4 x 4 ~CHEM. . 31, 1978 (1959). (545) Tuck, D. G., J . Inorg. & Nuclear Chem. 11. 164 (1959). (546) Tuck, D . . G., ‘Diamond, R. M., J . Phys. Chem. 65,193 (1961). (547) Umezawa, H., Hara, R., Anal. Chim. Acta 23, 267 (1960). (548) Umland, F., Hoffmann, W., 2. anal. ClhPm. 268 (1969). - .- .. 168. ~.~ --, (549) Urnlad&-- F., Hoffmann, W., Meckenstock, K. U., Ibid., 173, 211 (1960). (550) Umland, F., Meckenstock, K. U., Angew. Chem. 71, 373 (1959). (551) Umland, F., Meckenstock, K. U., 2. anal. Chem. 165, 161 (1959). \ -
(552) Ibid., 177, 244 (1960). (553) Usatenko, Y. I., Tulyupa, F. M., Zavodskaua Lab. 26. 783 (1960). (554) Vaniman, R. E., Hoiligaugh, F. D., Kanzelmeyer, J. H., ANAL.CHEM.31, 1783 (1959). (555) Vanwinkle, Q., Kraus, K. A., U. S. Patent 2,910,345 (Oct. 27, 1959). (556) Vdovenko, V. M., Alekseeva, N. A., Radiokhimiya 1,450 (1959). (557) Vdovenko, V. M., Krivokhatskii, A. S., Ibid., 1,454 (1959). (558) Vdovenko, V. M., Krivokhatskii, A. S., Zhur. Neorg. Khim. 5,494 (1960). (559) Vdovenko, V. M., Lipovskii, A. A., Kuzina, M. G., Ibid., 4, 2502 (1959). (560) Vdovenko, V. M., Smirnova, E. A., Radiokhimiya 2, 291 (1960). (561) Vecera, Z., Bieber, B., Hutnickd Zisty. 14, 56 (1959). (562) Velten. R. J., Goldin. A. S.. ANAL. ' CHEM. 33,128 (1961). ' (563) Vesely, V., Beranova, H., Maly, J., Collectaon Czechoslov. Chem. Communs. 25, 2622 (1960). (564) Vignes, A,, J . china. phys. 57, 966 (1960). (565) Ibid., p. 980. (566) Ibid., p. 991. (567) Ibid., p. 999. (568) Vlacil, F., Zatka, V., Chem. prilmsyl 11, 139 (1961). (569) Voicu, V., Dema, I., Acad. rep. populare Romine, Studii cercetiiri chim. 7, 431 (1959). (570) Vondrak, J., Rylek, M., Collection Czechoslov. Chem. Communs. 26, 307 (1961). (571) Vouk, V. B., Weber, A. O., Analyst 85,46 (1960). (572) Vozzella, P. A., Powell, A. S., Gale, R. H., Kelly, J. E., ANAL.CHEM. 32, 1430 (1960). (573) Vydra, F., Pribil, R., Talanta 3, 72 (1959). (574) Wakamatsu, S., Japan Analyst 8, (5), 298 (1959).
(575) Ibid., 9, 858 (1960). (576) Walkden, J., U. K. Atomic Energy Authoritv Reots. AERE-AM-21: AERE-AM-53. I i959). (5773-Ibid:l AE-alAMl22, (1959). (578) Ibid., AERE-AM-45, (1959). (579) Ibid., AERE-AM-50, (1959). (580) Walkden. J.. Heathfield. K. E.. ' Ibid., AERE-AM-32, September 1959. ' (581) Wallace, R. M., Pollack, H., U. S. Atomic Energy Comm. Rept. DP-411, IlQiQ) ,----,.
(582) Warr, J. J., Cuttitta, F., U.S. Geol. Surv. Profess. Paper 400B, 483 (1960). (583) Warren, C. G., Suttle, J. F., J . Inorg. &Nuclear Chem. 12,336 (1960). (584) Watkinson, J. H., ANAL. CHEM. 32, 981 (1960). (585) Watts, H., Australian J . Chem. 14, 15 (1961). (586) Weaver, B., Harner, D. E., J . Chem. Eng. Data 5,260 (1960). (587) Weaver, B., Kappelmann, F. A,, U. S. Atomic Energy Comm. Rept. ORNL-2863, Feb. 12, 1960. (588) Weidmann, G., Can. J . Chem. 38. ' 459 (1960). (589) Werner, L., Perlman, I., Calvin, M., U. S. Patent 2,894,805 (July 14,1959). (590) Wezranowski, E., Nukleonika 5, 677 (1960). (591) White, J. C., U. S. Atomic Energy Comm. Rept. CF-59-4-100, April 1959. (592) Ibid., CF-59-4-106, (1959). (593) White, J. C., Kelly, P., Li, N. C., J . Inorg. & Nuclear Chem. 16,337 (1961). (594) White, J. C., Ross, W.J., U. S., Atomic Energy Comm. Rept. NAS-NS3102, (1961). 1595) Wilburn. N. P.. Ibid.. HW-66386. ,
I
(596) Wild, F. E., U. K. Atomic Authority Rept. AERE-AM-28, (597) Williams, K. T., Wilson, ASAL. CHEW. 33,244 (1961). (598) m7ilson. H. N.. Skinner. ' Ret. trav. chim. 79,574 (1960). '
Energy (1959). J. R.,
J. M..
(599) Wilson, R. B., Jacobs, W. D., ANAL.CHEM.33, 1650 (1961). (600) Wood. D. F.. Nicholls. H. A.. ' Akalyst 85, 139 (1960). (601) Yagodin, G. A., Mostovaya, 0. A., Zhur. Priklud. Khim. 33. 2459 (1960). (602) Yagodin, G. A., Mostovaya, O..A., Chekmarev, A., Izvest. Vysshikh Ucheb. Zavednit Khim. i Khim. Tekhnol. 3, 135 (1960). (603) Yamamura, S. S., ANAL.CHEM.32, 1896 (1960). (604) Yanagihara, T., Matano, N., Kawase, A., Japan Analyst 8, 10 (1959). (605) Ibid., p. 14. (606) Yatsimirskii, K. B., Izvest. Vysshikh Ucheb. Zavedenit Khim. i Khim. Tekhnol. 3, 823 (1960). (607) Yoshimori, T., Takeuchi, T., Japan Analyst 9, 689 (1960). (608) Yoshimori, T., Tomida, Y., Takeuchi, T., Ibid., 10, 156 (1961). (609) Young, J. P., White, J. C., Ball, R. G., ANAL.CHEM.32,928 (1960). (610) Zharovskii, F. G., Ukrain. Khim. Zhur. 25, 245 (1959). (611) Zhivopistsev, V. P., Minin, A. A., Zavodskaya Lab. 26, 1346 (1960). (612) Ziegler, M., Angew. Chem. 71, 522 (1959). (613) Ziegler. M., Naturwissenschaften46, ' 353 (1959): ' (614) Ibid., p. 492. (615) Zieeler. M.. Z. anal. Chem. 171, 111 ' (1959).' ' (616) Ibid., 180, 348 (1961). (617) Ibid., p. 351. (618) Ziegler, M., Glemser, O., vonBaekmann, A., Z. anal. Chem. 172,105 (1960). (619) Ziegler, M., Horn, H. G., Ibid., 166 (5), 362 (1959). (620) Ziegler, M., Sbrzesny, H., Glemser, O., Ibid., 167, 96 (1959). (621) Ibid., 173, 411 (1960). (622) Zingaro, R. A., White, J. C., J . Inorg. & Nuclear Chem. 12,315 (1960).
Review of Fundamental DeveloDments in Analvsis
Fluorometric Analysis Charles E. White, University of Maryland, College Park, Md. Alfred Weissler,' Laboratory of Technical Development, National Heart Institute, Bethesda, 7 4, Md.
T
REVIEW covers the 2-year period from approximately Kovember 1959 (397) to December 1961. Only a selected group of references are included. Chapters on fluorometric analysis (406) and fluorescence and phosphorescence (411) have appeared in books dealing with instrumental analysis. A section on fluorophotometry and phosphorimetry is included in a n encyclopedia of spectroscopy (64). Many of the papers given in a symposium on energy transfer in the liquid and solid HIS
1 Author of the Organic and Biological part. Present address, Air Force Office of Scientific Research, Washington 25, D. C.
states are of interest to the general topic of fluorescence (72). The correction of fluorescent spectra for the variations in intensity of the exciting source and for the characteristics of the measuring devices has always been troublesome. Parker and Rees (269) have published a n excellent general discussion on this topic including quantum efficiency considerations. Parker (264) also has presented a general paper on spectrofluorimetry as well as one on fluorescence escitation spectra and fluorescence sensitivity (265). White, Ho, and Keimer (399) have presented methods for corrections of both fluorescence excitation spectra and fluorescence emission spectra as determined with the Aminco-Bowman spectrofluorometer. The procedure as
outlined may be applied to other instruments. It should be noted t h a t the values in column 1 of table one of this article (399) are in relative quanta whereas the remainder are given in relative energy. Braunsberg and James (40) have also published observations on fluorometric determinations with the Aminco-Bowman instrument. Bowen (54) and Lippert ($01) have reviewed the conditions and considerations necessary for the presentations of fluorescence spectra. d convenient method of obtaining corrections for fluorescence emission spectra from 360 to 750 mfi is by use of the fluorescence compounds as described by Lippert and his associates ($02). This has been supplemented by a group of dyes covering the range from 450 to 610 mfi (266). VOL. 34, NO. 5, APRIL 1962
0
81 R