Extraction - Analytical Chemistry (ACS Publications)

Raymond. Aubeau , Gerard. Blandenet , and Guy. Brogniart .... D. E. HEINZ , M. R. SEVENANTS , W. G. JENNINGS. Journal of Food Science 1966 31 (1), 63-...
7 downloads 0 Views 3MB Size
Extraction G e o r g e H . Morrison, Cornell University, Ithaca,

I

THE LAST DECADE solvent extraction methods h a l e exhibited a n astonishing vitality and, judging from the ever-increasing number of publications in t h e field, continue to hold the interest of analytical chemists everywhere. Not only have existing extraction systems been applied more widely and many new extraction systems been developed, but a sizabl. literature dealing with the theoretical aspects of various systems as well as of the extraction process has appeared. This review surveys the literature from late 1961 t o late 1963 and follows ,vithout duplication the material presented in the previous review. I n the face of this rapid groxth, it is gratifying to the authors to note t h a t the classification scheme for the metal extraction process and for solvent extraction systems develo 3ed in their book (561) and in their 1!)58 ANALYTICAL CHEMISTRY Review article (560) still applies six years and oi’er 2000 publications later to all known extraction systems with b u t minor modification. The general applicability of the classification scheme merits a brief description here since it will help bring in focus the relationship of some more recently developed s y s t e m for which t h e need of new classifications h a w been claimed. pi

PROCESS OF EXTRACTION

The over-all metal e>traction equilibrium can be conveniently analyzed in terms of three steps: A. Formation of a n Uncharged Extractable Compleic. This encompasses all aqueous phase (homogeneous) reactions leading to the formation of a moleculir species containing t h e metal which is capable of solution in t h e organic solvent. T h e formation of such a species can involve 1. Simple (monode itate) coordination alone, as with GeC14, 2. Heteropoly acid:, a class of coordination complexes in which t h e central ion is complex rather than monatomic (661) as with phosphomolybdic acid, H3PO4 12R’[o03, 3. Chelation (polyd3ntate coordination) alone, as with Fe(E8-quinolinolate)3, 4. Ion-association done, as with Cs+, (CsHs)4B-, or combinations of the above, such as 5 . Simple coordination and ionassociation-e.g., (“On um”) +, FeCla-, [“Onium” stands for one of the following cation types, hydrated hydronium ion,

N. Y.,

and Henry Freiser, University of Arizona, Tucson, Ariz.

(H30)30+,a rather labile cation requiring stabilization by solvation with a n oxygen-containing solvent, a substituted ammonium ion, R,NH+(4-,,, where R is a n alkyl or aralkyl group and n may vary from 1 to 3, a substituted phosphonium ion R4P+, stibonium R4Sb+, sulfonium ion, and other ions of this sort, including the important category of cationic dyes such as Rhodamine-B. ] 6. Chelation and ion-association with either positively or negatively charged metal chelates-e.g., Cu(2,9dimethyl-l,lO-phenanthroline)z+, C104or 3(n-C4HJ4N+,Mg(8-q~inolinolate)~or 3(n-C4HsNHs+), Co(Nitroso R Salt)3-3-and finally 7 . Simple coordination and chelation -e.g., T h ( T T A ) 4 . T B P . As can be seen in Table I, t h e metal extraction systems are conveniently classified according to this outline. B. P h a s e Distribution of the Extractable Complex. T h e distribution of t h e extracting species itself between t h e two immiscible solvents is mathematically described in a simple fashion by t h e Nernst Distribution Law, K D = [ A ] , / [ A ](for any species A ) . T h e value of K D is a measure of relative solubility of the species in the organic and aqueous solvent phases (keeping in mind t h a t these are slightly miscible and hence are mutually saturated). Factors affecting K D values have only recently come under scrutiny. The dielectric constant and solvating (including hydrogen bonding) ability of the organic solvent, the number of carbon atoms in a homologous series of metal complexes as well as t h e nature of the functional groups in the complexes are some of the factors t h a t play important roles in determining K D values. Martin (510) predicted from a thermodynamic basis t h a t the K D of a distributing solute would change upon introduction of a group by a factor characteristic of this group (and t h e solvent pair) but not of the rest of the solute molecule. This prediction is supported by the finding that the K D R(CHC13/H20) values of a number of homologous extractants increased by a constant amount (factor of 4) for each additional -CH2group (187). Although simple mercaptans form Cu(1) and Hg salts, these are not usually sufficiently soluble to be of use in extraction. Higher homologs such as t-hexadecyl mercaptan, however, can be used for the extraction of Cu(1) a t p H 6 and Hg(I1) at p H 1-2 (142).

Solvation of metal complexes that are coordinatively unsaturated-Le., those with a monoprotic bidentate reagent in which the coordination number of the metal is greater than twice its valenceis particularly effective in producing new species (solvates) of greater organic phase solubility (45, 952, 9 5 s ) . Thus, metal chelates such as Co(II)(TTA), and Tl(1) (8-quinolinate) are much more readily extractable in alcohols and ketones than with hydrocarbon solvents; with Co(II1) and TI(II1) chelates the difference is not so marked (953). The same effect can be achieved by using a mixed solvent containing a basic component such as butyl Cellosolve in CHC13 for the extraction of M g with 8quinolinol ( @ I ) , and T B P (290, 291) or trioctylamine (604-6) in the improvement of extraction of T h with TTA. It is also possible for the base to hydrogen bond to the chelated ligand rather than be coordinated to the metal ion. This sort of “correlated action” (746) of extractants has been sufficiently pronounced (enhancement up to lo8) to be termed “synergistic.” See also (217, 523, 324, 499, 515, 647, 931, 940). If a n excess of the additive is added to such a system a reversal of the enhancement can occur. The extent of this reversal depends on the quantity and nature of the additive and even on the nature of the solvent. Replacement of cyclohexane by chloroform in the extraction of P m using TTA with T O P 0 as additive can cause a drop of lo5 in the distribution ratio. This may be due to the greater solubility of water in CHC1, which might favor the formation of a hydrated species of lower solubility (299-4) 1 C. Chemical Interactions in the Organic Phase. Metal complexes involving ion association tend to form dimeric, trimeric, and higher aggregates with increasing concentration in organic (low dielectric constant) solvents. This tendency to polymerization in t h e organic phase will cause a n increase of extraction efficiency. Since this property is present to some extent in all ion association extraction systems, it seems unnecessary to single out a few, such as those involving substituted ammonium ions having high molecular weight R groupq, for designation under a new category, “liquid ion exchangers” (1.45, 360, 434). Any scientific justification for the introducVOL. 36, NO. 5, APRIL 1964

e

93

R

tion of such a new category must be based on the existence of polymeric aggregates of variable stoichiometryi. e., [(R4N+,X-)o(R4N+, Y - ) b ]where (a b) is large and b can vary readily with experimental conditions. On ion exchange resins, ions of multiple charge are more readily taken u p than monova-

+

lent ions; there is some evidence that in the case of ion association extraction? the reverse is true (428).. Since ion association complex formation involves metathesis, this has been suggested as a justification for the use of the term “ion exchange” extraction. This argument loses meaning when it is realized

that all extractable complexes, including chelates, are formed by metathesis. The addition of auxiliary solvent components to the organic solvent can also adversely affect the extraction of the metal by reacting with the metal complex to produce a species less soluble in the organic phase. Such an effect, to

Table 1. Metal Extraction Systems PRIMARY SYSTEMS I. Simple (Monodentate) Coordination Systems 1. Certain halide systems-- e. g., HgCl,, GeC1, 2. Certain nitrate systems-e. g., ( IJ0,)(TBP)z(NS03)3)~ 11. Heteropoly Acid Systems-e. g., H3POa.12k1003 111. Chelate Systems A. Bidentate chelating agents Reactive Grouping 4-Membered ring systems 1. Disubstituted dithiocarbamates-e. g., Ya’, (CzH,),SCSS- or s=c-s (CsHjCHzhSCSSXanthates--e. g., Na +, GHiOCSS2. Dithioohosohoric acids -e. E.. diethvldithioohosuhoric acid s-P-s3. Arsinid and arsonic acids-; g., beizenarsoiic &id -0-A~-0 5-Membered ring systems 1. N-Acyl hydroxylamines.--e. g., ,V-benzoylphenylhydroxylamine (BPHA) or benzohydroxamic acid 2. X-Kitroso-n‘-arylhydroxylamines-e. g., Cupferron, (N-nitrosophenylhydroxylamine) or neocupferron, (.V-nitrosonaphthylhydroxylamine) 3. a-Dioximes-e. g., Ilimethylgloxine, cyclohexane-dionedioxime (Xioximel 4. Diaryldithiocarbazones-e. g., Dithizone, (diphenyldithiocarbazone) 5. 8-Quinolinols-e. g., Oxine, (8-quinolinol), methyloxine, (2-methyl-8quinolinol) 6. Quinoline-8-thiols, dithioxamides-e. g., thio-oxine, (quinoline-%thiol) AV,iV’didodecyldithiooxamide 7. Quinoline-8-selenol 8. o-Dihydroxybenzenes-e. g., catechol, phenylfluorone, rhodizonic acid 9. o-Dimercaptobenzenes--e. g., toluene-3,4-dit’hiol 10. Thionalid (thioglycolic-p-aniinophthalide) c) 6-Membered ring systems 1. p-Diketones--e. g., Acetylacetone, TTA (thenoyltrifluoroacetone) dibenzoylniethane, hlorin, quercetin, quinalizarin 2. o-Xitrosophenols-e. g., 1-nitroso-2-naphthol 3. o-Hydroxyloximes-e. g., salicylaldoxime d ) Larger ring systems 1. rvlono or dialkyl-phosphoric or -phosphonic acids B. Polydentate chelating systenis 1. Pyridylazonaphthol (PAN) and pyridylazoresorcinol (PAR) 2. o,o‘ Dihydroxgazobenzenes-e. g., 2,2’-dihydroxy-5‘-isopropyl-4’-methyI4-nit,roazobenzene 3. ’V, ‘V’-( 1)isalicylidene)ethylenediimine (also S analog) 4. Glyoxal bis(2-hydroxyanil) (also S analog) IV. Simple Ion Association Systems A. Metal in cation 1. Inorganic anions-e. g., Cs+, 1 3 - or PF62. Tetraphenylboride anion 3. Ilinicrvlamine anion 4. Alkylphenolate anion 5 . Carboxylate and perfluorocarboxylate anions , MIXED SYSTEhlS V . Ion Association and SimDle Coordination Systems A . Metal in cation 1. Oxygen solvents--e. g., alcohols, ketones, esters, ethers-e. g., [(I-Oz)(ROH)6]+’, 25032. Xeutral phosphorus compounds, phosphates, phosphonates, phosphinates, phosphine oxides, and sulfides B. Metal in anion (paired with “onium” ion) 1. Halides-e. g., FeC1,2. Thiocyanates-e. g., C O ( C S S ) ~ - ~ 3. Oxyanions-e. g., MnOaVI. Ion Association and Chelation Swtems A. Cationic chelates 1. Phenanthrolines and polypyridyls-e. g., Cu(1) (2,9-dimethylphenanthro1ine)s 2. Tetraalkyl methylenediphosphonates-e. g., ( RO)ZP-CH~-P(OR)Z +

il

0

II

0

B. Anionic chelates 1. Sulfonated chelating agents a. 1-Sitroso-2-naphthol-e. g., Co(II1) (nitroso R salt)3P b. 8-Quinolinol-e. g., Fe(II1) (7-iodo 8-quinolinol-5 ~ulfonate)3-~ VI1 . Chelation and Simple Coordination Systems-e. g., Th(TTA),.TBP, Ca( TTA).(TOP0)2

94 R

ANALYTICAL CHEMISTRY

which has been unnecessarily attached the label of “negative or anti- (sic!) synergism,” is illustrated by the adverse effect of oxygm-containing solvents on the extraction of metaldialkylphosphoric acid complexes in hydrocarbon solventP (647, 940, 941). From the work of Peppard and others, dialkylphosphoric acids are known to form hydrogen-bonded dimers (similar to carboxylic acids but stronger) in nonpolar solvents from which one proton can be replaced hy a metal ion to give a chelate complex. The chelate ring still contains or e hydrogen bond and, as expected, is sensitive to the presence of hydrog;en-bonding substances as alcohols, amides, ketones, ethers, or esters. When these solvents are present the che1at.d dimer can open to form a species of poorer organic phase solubility (647, 940). REVIEWS AND BOOKS

During the period (overed by this review, a limited number of general reviews on the subject of extraction in analytical chemistry have appeared. Included is a n exten’jive tabulation of extractions for the separation of the elements ( 5 6 2 ) . West (906-8) has reviewed the use of a number of reagents in the extraction of cations and anions from aquc.ous solution, and Shokin, et al., (758) have summarized the d a t a for the extraction of inorganic acids with different organic reagents. An extensive survey of P u extraction has been prepared (7%). A number of other reviews have been published ( 11 , 4 l , 157,158,208, :MO,440,691, 950). The application of extraction in inorganic trace analysis has been surveyed (141). Metzsci (525) provides a good summary of extraction of organic substances. The important rolcl of extraction in radiochemistry and iiuclear science is illustrated by the monograph by Kusaka and Meinke (436) on “Rapid Radiochemical Separations, ’ and the chapters by Siddall (760),Flagg (21S),Davis and Jennings (156), and Pilppard (639). Several treatments of the chemistry of ion association systems have appeared. Fomin (216) discusses the mechanisms of hetercgeneous reactions involved in extraction, and Marcus (505) reviews ion associaticln solvent extractions. The annual reviews by Treybal (851) continue to be a good source of information on the engineering aspects of extraction. EXTRACTION SYSTEMS

Chelate Extraction Systems. DIT h e diethylammonium salt of diN2thyldithiocarbam a t e offers several advantages over

THIOCARBAMATES.

t h e sodium salt in t h a t i t is soluble in CC14 giving solutions of much greater stability ( 3 5 5 ) . Greater selectivity in dithiocarbamate extractions have been achieved through the use of its metal chelates rather than the N a salt as reagents. For example, Ag can be determined by exchange extraction with the copper dithiocarbamate (424); Cu is selectively extrarted in the presence of Fe and Co using lead dithiocarbamate (347). At p H 14 in the presence of cyanide, Tl(II1) forms a more stable dithiocarbamate complex than Pb(1I). Lead extracted with this reagent, can therefore be exchanged with (TlZo4) + 3 after removal of excess reagent and determined radiometrically (876). A radiometric trace analysis for cobalt is based on the ability of Co(II1)-diethyldithiocarbamate to resist exchange with Hg(I1) once formed. The zinc complex containing F5-labeled reagent is used to extract the Co(II1); counting is carried out after exchange with either inactive Hg(I1) or Hg203 (877). Metal exchange extraction has also been carried out with other dithiocarbamates; bismuth, cobalt, copper, nickel, and tellurium have been photometrically determined using zinc bis(2hydroxyethy1)dithiocarbamate (933),as have copper (401, 915) and thallium (278) using zinc dibenzyldithiocarbamate. New dithiocarbamates that have been studied include piperidinium piperidinodithioformate ( 5 8 0 ) , N a tetramethylenedithiocarbamate (419), 420) as well as some that give water-soluble met a1 complexes such as N-methyl-A‘sorbityl-, a-carboxy-N-tetramethylene-, N-carboxymethyl-, and N-nitrilodithiocarbamic acids (86).

-

0, 0’ DIALKPLDITHIOPHOSPHORIC ACIDS. Sodium diethyldithiophosphate,

(CzH50)zPSSSa,was found to precipitate CC14-soluble complexes from 0.1M to 10M HCl and from H 2 S 0 4solutions of t h e following metals. Cu(I), C u ( I I ) , Ag, Aiu(III), Zn, Cd, H g ( I ) , H g ( I I ) , In, Tl(I), Tl(III), Ga, Sn(IV), Sn(IV), Pb(II), As(III), .Is(V), S b ( I I I ) , Sb(V), Bi, Se(IV), Te(IV), Te(VI), hlo(VI), W(VI), Re(VI), Fe(II), Fe(III), Co(II), Xi, R u ( I I I ) , R h ( I I I ) , Pd(II), 09(IV), Ir(lV), P t ( I I ) , and Pt(1V) ( 8 5 ) . The diethyl ester was also found to extract Se(I1) into CHCI3 ( 1 1 2 ) . The solubility, acidity, and distribution between CCla, M I B K , or n-amyl acetate and aqueous phases were determined for the diethyl-, dlisopropyl, di-n-butyl, diisobutyl esters of the phosphorus dithioic acid ( 9 5 6 ) . Useof thelonger chained dibutyl esterextends the number of elements that can be extracted (282,285). The relative order of extraction was found to be P d ( I I I ) > ilu(II1) > Cu(1) > Hg(I1) > Ag(1) > C u (II)Sb(III)>Bi>Pb>Cd>Xi>Zn (285).

DIBUTYLARSlNIC ACID. Pietsch has found dibutylarsinic acid, ( C ~ H Q 2 )ii5 OOH, to form complexes of various structures (659) with many metals which can be extracted into many organic solvents. Methods have been developed for the extraction of Bi (661), EOz ( 6 6 2 ) , and Zn (660). N-ACYLHYDROXYLAMINES. Pu(1V) (up to 0.9 mg./ml.) is quantitatively extracted by 0.4M N-benzoylphenylhydroxylamine (BPHA) in CHC13 from 1-6M “ 0 3 solutions and can be readily back-extracted with HCl or H z S 0 4(137). Except for Zr and Kb, no fission products or transuranium elements extract under these conditions; thus Pu(1V) may be determined radiometrically in the presence of these elements. Back extraction with H2S04separates P u from Zr and N b as well. Vanadium(V) has been determined in steel by spectrophotometric examination a t 530 mp of the benzene extract of its BPHA chelate obtained from 3M HC1 to prevent extraction of Fe(II1) (168). T o avoid reduction of V(V) to V(IV) and consequent fading of the color, extraction should be done rapidly (255). A review of the analytical applications of BPHA through 1961 has been compiled

(10).

Benzohydroxamic acid chelates of U(V1) and Fe(II1) carry associated water into the organic phase when extracted by alcohols (522). N-NITROSO-N-ARYLHYDROXYLAMINES.

(CUPFERRONS).Equilibrium distribution studies carried out for cupferron between CHC13 and aqueous media a t ionic strength 0.08 gave a value of K D ~ of 130 to 140 (381). The extraction constant for Pu(1V) cupferrate into cC14 was measured (382). Regardless of the initial oxidation state, cupferron extracts plutonium as Pu(1V) with an extraction constant a t 20” of 1.1 X IO7 (547). A change in the oxidation state of V(V) by cupferron t o V(1V) probably accounts for the fading of its CHCl, solution (150). Cupferron extraction of P u following coprecipitation by B i P 0 4 has been used to develop a sensitive (-1O-lO pc/ml.) radiochemical procedure for P u applicable to water containing large quantities of F e and Ca (406) to sea water, and urine (310). Small amounts of U(1V) can be quantitatively extracted with cupferron into CHC13 by using Zr as a carrier (554). Ti is quantitatively separated from Zr or Th by extracting it from a 0.1M HC1 with 0.4% cupferron in butanol; Cd, Fe, U(1T’)) and M n interfere (574). A radiochemical method for T’ in zone-refined A1 is based on the CCI, eltraction of itq cupferrate following coprecipitation of the irradiated sample with Fe(OH)3 ( 1 7 1 ) . Cupferron continues to be used for separation prior to analysis-e.g., in the determination of Sc in coal ash (6.2) VOL. 36, NO. 5, APRIL 1964

95

R

and the analysis of Zr and Th in U, these metals are extracted from a n HC1 solution into CHC13 (555); in separation of T i and Zr from W in refractory metals, extraction froin oxalic acid into CHC13 is used (668); removal of F e and Ti prior to all determination in ceramic materials (63),removal of these metals prior to Sc determination in coal ash, and Fe, Bi, Ti, and S n in high purity indium are separated in this manner (929). Thorium cupferrate (Th Cup,) was found to react in CHC13 solution with a n o,o’-dihydroxyazo dye (H2.A), 4 ’ - nitro - 2,2’-dihydroxy - 4- methyl -5 isopropylazobenzene to give a n intense violet colored mixed complex ThCupzA (197, 198). This mixed complex may have interesting extraction characteristics. DITHIZONES. Extraction equilibria were determined for dithizone with Bi using a series of organic solvents; the extraction constants decreased in the order CsHs =, CC14 =C6HsCH3>iCsHllOdc> CHC13 (103). Substitution on t h e benzene rings in para position with electron-donating groups decrease the extraction constant of Bi using C6H6; electron-accepting groups have the opposite effect (104). Substitution in ortho positions, however, lower the extraction constants for H g ( I I ) , Cu(II), and Zn(I1) regardless of their electronic influence, probably because of steric hindrance to chelate formation (817 , 818, 813-6). The equilibrium chelate formation constants of the Zn and nickel chelates for a series of ortho- and para-substituted dithizones have been determined (616). The results clearly show that steric hindrance of ortho substituents lowers the chelate formation constant. The absorption spectra of the substituted dithizones and their metal chelates also vary in a regular manner with constitutional changes (821, 822). The extraction constant for Ga with dithizone in CC1, n a s found to be about a million times loner than that of I n (655). The spectra and extraction constants of the Bi, Zn, Cd, Hg and Xi compleses of di-2-naphthylthiocarbazone in CCI, were determined, and the constants found to be higher than those of the dithizone compleves (273). The chelates of di-1-naphthylthiocarbazone, however, were found to have lower estraction constants than those of dithizone (819). Evtraction equilibria have also been studied for Ti(I), Co(II), and Hg(I1) dithizonates in CHCl3 ( 7 4 9 ) , and for the oxygen analog, diphenylcarbazone (45). Spectral studies of metal dithizonstes in C6Hs (374) and CHCI, (23) and of mono- and di-pbroinodithizonates in C6H6 and CCI, (326) have been rellorted. The kinetics of extraction of Zn dithizonate shoned firit order dellendenre on Zn+Z and dithizonate anion concentrations indi96 R

ANALYTICAL CHEMISTRY

cating that the formation of the 1 : l complex in the aqueous phase is the slow step (311). Preliminary results of the investigation of the kinetics of extraction of zinc with substituted dithizonates indicate that, despite lomer chelate formation constants, ortho substituted derivatives give higher rates of chelate formation ( 4 8 4 ) . Dithizone placed on silica gel (656), cellulose acetate (500) or alumina (2431) columns has been used in direct or reversed-phase partition chromatography for the determination of Hg and In. This technique should be more widely applicable particularly to metal ions having similar extraction characteristics. The isotope-dilution method using substoichiometric amounts of extractant has been applied to the determination of as little as gram Cu per ml. (696), gram Hg per ml. (694),and 10-6 gram Zn per ml. (790) in the presence of many other metals using dithizone in CCl4 (696). The dithizone method for Cu (514) and for Zn (910) was judged superior to most others used for Cu in soil samples. Dithizone was found to form extractable 1 : 1 complexes a i t h organometallic compounds of ;is, Sn, Pb, T1, and Hg-e. g., (C2H5)JSnDz, (C6Hs)aPbDZ (322). ~ - Q U I N O L I N O L S . Wide ranging studies of extraction equilibria of 8-quinolinol systems involving 32 metal ions have been carried out (787, 866). Similar studies have appeared of the 8-quinolinol extraction constants for Cd (296, 730, 911), In (72?),V (590),of the 5,’i dibromo and 5,7 dichloro-8-quinolinol extraction of Cd ( 7 3 0 ) , and of the 2methyl-8-quinolinol extraction of V ( 5 9 0 ) . In addition, 8-quinolinol extraction has been used to study hydroxyaquo complexes of X I (622) and Ti(1V) (477). The spectra of 8quinolinol solutions in Rater and alcohols indicate the presence of hydrogen-bonded chelation of the solvent and the reagent (809). Water is associated with the U(V1)-quinolinol complex in CHCls ( 2 3 0 ) . The importance of the use of solvents capable of coordinating in the extraction of “coordination-unsaturated” metal (Ca, Mg, Zn, Cd, etc.) chelates of 8-quinolinol and other reagents has been pointed out (952). Auxiliary complexing agents such as acetylacetone (/t42)and various hydroxynitroazo compounds ( 4 $ S ) have been found to materially improve 8-quinolinol extraction of Zr . A substituted 8-quinolinol having a 2-pyridylazo group in the 7-position which has been developed as indicator (115) and color reagent (110, 111) has some potential a i an extractant. Metal8-quinolinol extracts can be submitted to flame photometry for determination of t h e metals (259-6’2). The use of 8-

quinolinols and 8-quinolinethiols in industrial analysis has been reviewed (907). 8-QUINOLINETHIOLS, The acid dissociation const’ants of 8-quinolinethiol and formation Constants of its complexes with Cu(II), P b , Zn, Xi, and M n have been determined (147). T h e ability of this reagent to extract metals a t lower p H values than possible with 8-quinolinol reflect both the larger acid dissociation constant’s of this reagent and the larger chelate formation constants. Quinoline-8-selenol has been synthesized and shown to have unusual selectivity and to form metal chelaies a t low p H values (734). It’ is likely to develop as a useful extractant. The application of 8-quinolinethiol and its halo derivatives to analysis has been described ( 4 3 ) ; the chelates of its &halo (F, C1, or Br) derivatives of Ga, In, and T1 have been prepared and characterized (50). The use of 8quinolinethiol in the analysis of the platinum metals has been described (47, 483). 8,8’-Riquinolyl disulfide has been suggested as a reagent for Cu(1) ( 4 6 ) . The reaction of the disulfide as well as of the thiol itself with either Cu(1) ‘ o r Cu(I1) has been proven to result in the Cu(II)-8-quinolinethiol chelate ( 1 4 8 ) . BETA - DIKETONES. Countercurrent distribution st,udies of the lanthanide acetylacetonates using CHC13 yielded equilibria data for these systems(R5) ; addition of C H 3 0 H was found to increase chelate solubilities by a factor of 10 (122, 895). Extraction equilibria have been studied for the systems Beacet’ylacetone-cyclohexane (268), Hfacetplacetone-CHCl3 (653), Y-TT.4several solvents and solvent mixtures (YE?)), metal-6-diketone-benzene for 30 met’als and acetylacetone, benzoylacetone, and dibenzoylmethane (789), Be-TTA-xylene (165),U(S’1)-dibenzoylmet’hane-CHC13 (729), Zr-benzoylacetone-CfiHfi (651), HfF14-i-TTX-CsH6 (880) Gd-benzoylacetone-CHC13 (271), Hf-selenoylacetone-C6Hs (652)! Zr-selenoyl-trifluoroacetone-CfiHfi (521) and metal- l-phenyl-3-methyl-4-acyl-5-pyrazolone-CHC13 for Be, A h , Zn, P b , UO2, La, and Th (353). Some of the pyraeolones are comparable to T T h ; the caproyl derivative seems superior to TTA in many respects (353). The extraction equilibria of 25 metals with @isopropyltropolane (IPT) in CHCL have been studied (188-190). The chelate &abilities of AI, Ga, in complexes of a series of substituted salicylic acids have been determined (441). Kinetic effect,s in the extraction of Zn with acetylacetone, benzoylacetone, and dibenzoylmethane in CHC13 (731) and that of Cr(II1) with acetylacetone in CHC1, (297) have been investigated. .imines such as butylamine, di-cyclohexylamine, and benzylamine increase ~

the extent of extraction of Cr(II1) with U(V1) and M E H P A ( 5 8 ) in hydrocarPolydentate azoxy compounds have acetylacetone ( 6 9 ); enhancement of bon or chlorinated hydrocarbon solvents been shown to be highly selective; 2E u f 3 extraction by TTA by dibutyl can be used for their analysis in human hydroxy-2'(2-hydroxy-5-methyIphenylphosphoric acid (193: and of T h with urine (643). azo)-4-methylazoxybenzene forms a Li various P-diketones using T B P (328) complex extractable into CHCls in the Dodecylphosphoric acid extraction have also been reported. equilibria are available for U(V1) (863, presence of pyridine a t p H 11-12; and Extracts of acetylocetonates of Be 2,2'-di(8-amino-l-hydroxy-3,6-disulfo-2870) and of Fe(1II) (870). The stability (166) and Mo(V1) (630) have been used naphthy1azo)azoxybmzene is selective constants of trivalent lanthanide and directly in polarographic determinations for Pd (196). actinide chloride and nitrate complexes of these metals. have been calculated using extraction Azo compounds containing arsonic ALKYLPHOSPHORIC ACIDS. Mono- and with di(p-octylphenyl) phosphoric acid acid groups have been developed as polydi-alkylphosphoric acid extraction char(DOPPA) in toluene (645). The exdentate chelating extractants. Arsenazo acteristics have been closely studied 111(2,2'-( 1,8-dihydroxy-3,6-disulfo-2,'itraction equilibria of Ca, Sr, and Ba ( 2 8 6 ) . The dimerization constant of from aqueous mineral acids into xylene naphthalene - bisazo) - dibenzenearsonic D B P and its K D , value have been desolutions of D E H P A or DOPPA were acid) forms anionic metal chelates which, termined in six s o k e n t s (131). The studied (647). when coupled with suitable heavy hydrodimerization increase:; as the KD, deThe extraction of Eu(I1) and Eu(II1) phobic cations-e.g., protonated dicreases indicating that solvation by t,he from HCI with alkyl phosphoric and phenyl guanidine, amidopyrine, or phenorganic solvent competes with dimerizaphosphonic acids has been compared azone-are readily extracted by alcohols tion. The distributions of M B P and and ketones (447, 482, 629, ?lh'). (640). Synergistic effects in dialkylD B P between C6H6 and water were phosphoric acid extraction by neutral Extraction of Sc and Y into CHCII found to decrease 1-2'% per "C. (AH = organophosphates have been surveyed has been accomplished using 2,2'1.75 t,o 1.91 kcal/ntole) (742). Ex(42) ( 9 4 0 ) . General mechanisms of dihydroxy - 5 - isopropyl - 4' - niethyltraction equilibria have been obtained extractions with acidic organophos4-nitrobenzene together with two other for 12 lanthanide and 5 actinide cations phorous extractants have been examined chelating agents, dibutylphosphoric acid and dibutyl phosphoric acid ( D B P ) in and ethyl acetoacetate ( l S 3 ) and (1U6). (642). butyl ether, CCI,, M I B K , iso-propyl ALKYLPHOSPHONIC ACIDS. Extraction Ion Association Extraction Systems. i l n extensive study was mad(. of t h c ether or hexane (184 equilibria have been obtained for Ca, Sr, of S d and Yb by D and B a from aqueous mineral acids into ion association extraction of thc salts xylene solutions of mono-n-octyl esters of three cationic tril)lic.n!.l~iicthanc C6H6 (427) and of S d by D B P in of phenyl- or chloromethyl-phosphonic various organic so1vent)s (428)is shown dyes, fuchsin, inalachitc. g r w n , a n d to increase with D B P concentration and acids (647) and for selected trivalent crystal violet, using CHCl3-HzOand iroto decrease in t h e order CC16>n-C&14> cations into n-octyl ester of phenylh m O H - H 2 0 systems (423). The anions phosphonic acid (644). Steric effects C6H6>n-C6H1;0H. Extraction is better studied include the halides, KO3-! in the extraction of Y and La by octyl from HNOI than from HC10, solutions. Clod-, and SO4'. Extraction of singly T h e extraction constants have beendeterphenacylphosphonic acid were examined charged anions were from ten to 100 mined for S b and Zr with M B P or D B P (901). Extractions with octyl phenyltimes better than the doubly charged ion from H K 0 3 into a 20c% solution of T B P phosphonic acid in toluene favors Cf and increased with the ionic radius of in kerosene (744), for Zr with D B P over C m by a factor of about 105 (646). both ions (423). The role of solvation from various nitrate kolutions (267), for Thorium is extracted from nitrate of energies in ion association extraction has Re(VI1) with D B P in CCI, from "03 chloride media by octyl octyl-phosbeen evaluated (321). The extraction (383), for E u and Am with D B P in phonic acid into toluene as a mixed of water into T B P or TBP-hexane mixvarious organic solvents from Hh'O3 complex containing a n inorganic anion tures is a function of the water activity ( 1 9 2 ) . Highly associat>ed metal com(528) and involves a hydrate species (648). PYRIDYLAZONAPHTHOL (PAN) AND plexes (mol. wt. > 10 000) of D B P were H , O . T B P (633). IVater extraction prepared in aqueous solution (44). RELATED REAGEXTS. Analytical applifrom H&04 into TBP is a t a maximum D B P in 'I'BP-kerosene can be decations of P.4K have been reviewed a t about 551 H&04 ( 9 2 ) . In the extermined by infrared spectrometry ( 1 5 6 ) . P.4N forms chelates with the traction of various inorganic (145, 303, rare earth cations which, except for La, 581, 912, 913) and organic (741) roton on (865). Ext'raction equilibria for trivalent Ce, and Sc, are extractable in ether acids into TBP, solvates of the w~rnposiE u and Y from H:\;O, into diamyl( 7 5 2 ) . Indium forms a chelate with tion H , X , n T B P are present in the phosphoric acid in CsH6 or hydroP.4S a t p H 3-6 t h a t is readily exorganic phase. genated naphtha (634),and for Fe(II1) tractable with butyl or pentyl alcohols, DIPICRYLANIXE. The extraction equifrom HCI, H N 0 4 , or H2S04into a C6H6 dichloroethane, and CHC1, (110). libria for dipicrylamine and its S a and solution of mixed isoamyl phosphoric Metal complex formation equilibria Cs salts between Phn'O, and water inacids (3,94) have been obtained. for chelates of PAR (342) and PAX dicated that the ion pairs are essmtially Distribution studiw involving di(2( 6 5 ) as well as extraction equilibria anhydrous in the organic phase and comethylhexy1)-phosphoric acid (DEPH.4) for the latter (65) have been carried out. pletely dissociated in the aqueous phase include: Be and ;\I from sulfate soluComplexation with P;ZN or P.4R may (452, 464, 467). tions into kerosene (1:?5); N p (589) and convert Co(I1) to Co(II1) ( 3 4 9 ) . CARBOXYLIC ACIDS. The extraction other metals (391) from H C l ; Y a and 4-(2-Pyridylazo)-l-naphthol, or p of metal ions with aliphatic, acids inSr from nitrate solutions into C6H6 P.4N, was found to form well defined, creases in the order S a , l h ,C'o, Si,Cd, extractable chelates with a number of Cu, Pb, Fe(1II) which i. the ini.crsr of (487); Pa, 'I'h, 17, and Zr from nitricoxalic acids (390): I. from HzSOa and metals (66). order of increasing water solutiilit y of H S 0 3into kerosene (712, 7 1 6 ) ; Fe(II1) OTHER POLYDEXATE CHELATES. Av3Lv'- the metal carboxylates (23;. 23;)); and I' in the presencr of many cations di(dicylidene)ethylenediamine forms using this method Co (>anhc .separdtcd from sulfate solutions into heptane CHC13 soluble conipleses with Cu, Xi> (871). Seighhoring lanthanides were Bi, Zn, Hg, Sb, Sn. and Ce (767). been applied in a countcrciirrrnt di.found to have separation factors of 2.4 i Glyoxal bis(2-hydroxyanil) has been tribution procedure, on a n industrial 0.87 with DEHP.4 in toluene (668). developed as a n extractant for AI (359), scale (SO). Extraction charac*terihtics Selective extraction c'f trivalent Ce, Y, Ca(896),Cd ( 6 1 9 ) ,rare earths (621) and of C7-C9 acids for C. ( 3 6 s ) . S h , %r. Fe, h m , I'u, tetravalent T h , SI), P u , and Sn (621). and U from H S 0 3 solutions h a r ~ hrcn , VOL. 36, NO. 5, APRIL 1964

97 R

determined (3). Naphthenic acids in kerosene extract Ga, All In, Zn, T h , UOZ, Y, Sc, Gd, and La a t varying p H values (203). The distribution ratios of K and R b salt's of Cz-C5 aliphat,ic acids in various organic solvents and the separation factor of this cation pair were determined; for butyrates the separation factor of 150 was reached using isobutanol (794). There was a n increasing tendency to formation of stable emulsions with increasing molecular weight of the acid. The extraction equilibria of Zr and Hf with p-bromomandelic acid in either nbutanol or isopentyl alcohol have been studied (9). Extraction has been employed to obtain the st,ability constants of UWI) with a-hydroxy-acids such as glycolic, lactic, and a-hydroxyisobutyric acids (788). h'iobium forms anionic salicylate complexes which may be extracted into CHCI3using cat,ions of antipyrine, triethylamine, quinine and other bases (40). NITRATES. Distribution of nitric acid in water-EtOPr or P r 2 0 (512) and in H20-MIBK or cyclohexanone (220) systems shows t h e extracted species are nitric acid solvates. Nitric acid is extracted by a variety of long chain amines in organic diluents as t h e substituted ammonium nitrat'e; distribution equilibria of this sort have been reported for dia-octylamine (527) and for various tertiary amines (53) including trioctylamine (221, 889). Apparent hydration numbers of 5 and 7 were observed for extraction of Zn and Co nitrates in hexanol and butanol (488). Calcium nitrate exerts a salting-out effect on "08 and Hap04 extraction into isopentyl alcohol (700). Mixtures or solvents, ethers or ketones with C6H6 or with other ethers provided in each case greater extractions of Ce, Zr, Nb, and R u nitrates from Ca(N03)2-HN03 solutions than could be predicted from the assumption of additivity (884). The effects of salting out agents such as HCl(653), NH4?;O3 (611 ) alone or mixed with C S ( N O ~ )(925) ~ on the extractions of "03 into T B P were studied. The infrared spectra of 16 nitrates in T B P provide evidence for a coordinate bond between the cation and the nitrate anion (373). Hafnium coordinates two moles of T B P (740); distribution equilibria of Hf-HN03-TBP have been used tjo evaluate the stability constants of the Hfnitrato complexes (675). Cerium(1V) is extracted into T B P in a form unlike the other lanthanides as H2Ce(N03)62TB1' (413). The presence of Ce(1V) lowers t'he extraction of T h (609) and U (610) nitrates with T B P . Distribution equilibria have been reported for nitrosylruthenium nitrate with T B P ( 2 7 9 ) ) Pu(1V) and Pu(V1) nitrat'es with T R P (655) and with aliphatic ketones (431), rare earth nitrates 98 R

ANALYTICAL CHEMISTRY

with TBP (695) and with aliphatic ketones (431), rare earth nitrates with T B P (364, 412) and diisopentylmet hylph osphonate (412 ) . The effect of the T B P diluent on the extraction of T h and the rare earth nitrates was found small ( 7 6 2 ) ; separation of Th from the rare earths was optimum a t 4-4.5M "03 into 40Oj, T B P in kerosine (364). The effectiveness of N p extraction from nitrate solutions drops from quaternary ammonium salts, tertiary, primary, and finally to secondary amines (902). Uranyl nitrate forms solvates when extracted into aliphatic ethers (218). Anionic species Ly02(r\703)3-which are formed in low concentrations in many organic solvents give rise to solvates in which coordinated SO3- is replaced; in strongly polar solvents coordinated water is completely replaced (364). Neutral organophosphorous compounds decrease in their relative uranyl nitrate extracting power in the order: tributyl phosphine oxide, tributyl phosphinate, tricyclohexylphosphate, dihexylphosphonate, phosphates with branching alkyl groups, those with nalkyl groups and finally, those with aryl groups (614, 617). A similar order was observed in the extraction of S p (902). Effectiveness of salting-out agents for uranyl nitrate extraction increases with increasing charge, decreasing cation radius, and with decreasing interaction between the cation and the nearest water molecules (24b, 449, 538, 883, 964). The temperature dependence of the distribution of uranyl nitrate in ethyl ether gives a linear log D us. 1/T relation with various salting out agents (245). Four- and fivecomponent phase diagrams for representation of C02(N03)zextraction d a t a show the effects of salting out agents (612) General extraction equilibria (780) and the role of sulfate (465) in U 0 2 ( N 0 3 ) 2extraction into T B P and other neutral organophosphorous solvents has been described. Acid decomposition products as impurities in T B P markedly affect GO2 (YO& (743) and Hf-Zr (318) extractions. Extraction equilibria for Zr and Hf nitrates into T B P have been studied; the extent of extraction of either is dependent on the presence of the other (408),on the HNO, concentration (364, 407, 682) reflecting the formation of polynuclear species in the aqueous phase; the extraction increases in the order iso-AmOH, hrnOAic,RuOhc (402) with Zr always extracting better than Hf (936). Extraction equilibria for Ce, U,Zr, and R u nitrates into triisooctylamine ( 2 0 9 ) , for U(V1) nitrate into tri-ndodecylamine ( 5 5 ) and for Pu(1V) nitrate into a group of long chain tertiary amines (54)were deicribed.

CHLORIDES. The mechanism of HCI extraction into ethyl ether (167) and various ketones (956) has been studied; HCl extraction equilibria have been determined for other solvent systems, acetophenone in C Z H ~ C(409), ~ Z in TBP (16)) in tributoxyethylphosphate (280), and in trioctylamine (959). I n each, the protonated solvent is associated with the chloride anion. Extraction into trioctylamine (TOA) in CsHs or CC14 follows the order H I > H B r > H C l and HClO,>H?J03>HCl (939). Extraction from high HC1 concentrations into trialkylamines involves the HC12- ion which competes with metallic chloranions such as CoCI4- better than does C1- (250). For this reason LiCl is better than HC1 when high [Cl-] is required. (465) Quaternary ammonium salts are found to be excellent extractants (452. 916) and superior to the amines (260). Systematic metal ion extraction from HC1 and other mineral acids into trioctylphosphine oxide has been described (331). The use of TBP-HC1 systems has been extended to paper chromatographic methods for 27 metals (577). Values of distribution ratios could be calculated from the R, value. Extraction equilibria for a mathematical approach to general metal salts from amine - HCI systems have been described (879). Distribution data have been reported for the extraction of tetra- and hexa- valent actinide chloro complexes into TOA in xylene (380, 698). In antimony extraction as chloro complexes, high [Cl-] can prevent hydrolysis and bring about as efficient extraction into iso- h m 2 0 and iso-AmOH as can HCl (673). Extraction of Co from chloride solutions by long chain amines dissolved in CH2BrCH2C1 is very efficient (252). Ga can be separated from As(V), Sb(III), and I n using iso-Am20 (672). Crystal violet is a more effective cation than various aliphatic amines in the extraction of SbCls- into C6H6(747). The extraction of Cr(V1) out of HCI into T B P (858) or M I B K (370, 372) involves the species HCr03C1; the extraction increases with the eighth power of [MIBK],,, (372). ;Ilthough, a4 shown by infrared spectra (737) (954) and electron paramagnetic resonance measurements (301), iron in FeC14- is not coordinated by either water, ethers or other 0-containing solvents, some water is necessary for the extraction of HFeC14 into ethers ( 2 1 9 ) . The species FeCI4- requires > 6M HCI to predominate in H20, > 0.2M C1- in formic and acetic acids, less in solvents such as ethyl ether, CHC13, and nitromethane, but is most stable in MEK, ethyl acetate, acetonitrile and similar solvents (613, 737,954). In some cases the solvents might be hydrated. Extraction equilibria for Fe(II1) - HC1-tetra- n-butylammonium chloride into various organic solvents

were determined (776) and the systems compared to those wkh tertiary amines and (C6Hs)4SbC1. Extraction with the quaternary ammoniLim salt is superior to those of the ternary amine in diluents of low polarity but nclt in those of higher polarity (775). T h e Fe extraction using Amberlite Lh-1 was not as effective as using ethyl ether or various esters (267). Extraction equilibria for G a from HC1 into various 0-containing solvents were determined (89); using 5.7M HC1, butyl acetate proved better than the group including iso-AmOH, isoAmOAc, C 6 H I 3 0 H ,m d PhCHzOH all of which were bt.tter than EtZO. Equilibrium extraction behavior of G a and In from HCl or HBr solutions into nitrobenzene or 2-chlorethyl ether was studied (172). The principles of GeC14 extraction into various organic solvents have been elaboratea ; GeC14extraction is similar to that of A%sC13,involving a neutral rather than a n anionic chloro complex. (575) Tht, extraction of GeC14 increases by the addition of CaClZ or MgClZ (20, 6 8 0 ) . LiCl is extracted by T B P , behaving as a weak electrolyte (pK, 5.3) in the organic phase (558). The addition of unsaturated hydrocarbons to solutions of Li in CH3NH2-iso-Xm0H in equilibrium with aqueous LiCl shifted Li6 into the aqueous phase; the reverse is true in the absen1:e of hydrocarbons (403). The distribution of H g between HCl and T B P over a wide HCl concentration range \*as studied ( 5 5 9 ) . Amines have been uiied in extraction of lanthanides from HCl and other acids (683). T h e extract?on of N b and Ta from HC1 into TOP0 in cyclohexane can be used to separate this metal pair ( 7 0 4 ) . Extraction with tribenzylamine was used to study the S b species in HC1-LiCl solution (624); these include Nb(OH)zCla-, Nb(OH)C14, N b ( 0 H ) C13+, Nb(OH)2+3 Nb(OH)2C13, Nb(OH)zC1~+ and N~(CbH)2Clt2. The distribution behavior of T h from HC1 and HCL04 into diisoamyl methyl phosphonate was studied; the extraction of T h increased with decreasing [ T h ] and increasing acid concentration with a sharp rise occurring above 4M HC1 (615). Extraction of U(V1) into T B P f r o n several salts was g., shown to involve 3, disolvate-e. C0zC12(TBP)2 (6821. The extraction of U(VI) from concentrated HC1 with neutral phosphorous compounds improves in the order T B P , diisoamyl methyl phosphonate, T O P 0 (464). T h e variation of V extraction from HC1 into T B P was stucied ( 2 7 4 ) ; in the region 3-4N HCI, tk,e extracted species is VOC13.(TBP)3 but in higher HC1 (>6Ar) VOCl,(TBP):, is present. Solvents of low polarity (simple ethers) were found to “coextract” traces of metals such as Sb, Fe, Zn, and I n in the presence of major components

-

such as S b or Fe out of HC1 (563), or HBr ( 7 7 9 ) , whereas this effect does not occur with the more polar solvents (alcohols, esters, ketones). Tributyl phosphine sulfide (307) was found to be much more selective than the trialkylphosphine oxides (331) ; in HCI media only Ag and Hg extracted of the 24 metals studied (281, 307). In(II1) halides are somewhat less soluble in thioethers than in 0 ethers (210). Iron is extracted as HFeCI4 into diisobutylthioether ( 8 8 5 ) . OTHER HALIDES. Extraction equilibria for the hydrogen and As[III) bromides, chlorides, and iodides between aqueous solutions and CC14, cIIC13, C2H4C12and C6H6were studied (946); extraction of the acids and .is halides both increase in the order C1, Br, I. Iron extracts from H B r solutions into ethyl ether as HFeBr4 which forms ion clusters a t higher concentrations (243, 763). Two ether phases result when the mole ratio of H20 to H + reaches 4. The extraction of the halogallate GaX4- into C,H6-Etz0 with rhodamine B is retarded by the presence of Al, Zn, Cu, or P b in the aqueous phase (722). Raman spectra of HBr and HC1 solutions of Sn(I1) salts in ethyl ether give evidence of the presence of SnBr3- and S n C k (960). No evidence for anionic Sn complexes appeared in a study of the extraction of Snl4 by C6H6(236). The extraction of c u , Pb, Bi, Sb, Cd, and Te into M B K has been described as a function of iodide concentration (363). The extraction of W from H B r into various 0-containing solvents increased with dielectric constants for ethers and decreased for alcohols ( 9 4 5 ) ; this did not appear to be the case for Mo. For both metals the extracted species is probably H2MO3Br2. Extraction of Zr from HFHS03 solutions into TBP-xylene is a t a maximum a t 0.26M HF (410). A study of N b and Ta extraction from fluoride solutions into T B P involves species H N b F s 3 T B P and IIl’aF6.3 T B P ; optimum separation is obtained from 1M HF-0.5M when Ta predominates and 6;M HF-3MHzS04 when N b does (235). The mechanism of the extraction of U(V1) by tridecylamine in C6H6involves two complexes in the organic phase : (R3NH+)UOZF3and (R3NH+)2UOeF4- (886). .i study of HF and Zr extraction from fluoride solutions into trioctylamine in C6H6 indicates the extracted species is (R3”f)zZrF6 (923). SULFATES. The distribution of H2S04 between water and TOA or tribenzylamine in kerosine can be explained on the formation of micellar aggregate of constant activity by the amine salt in the organic phase ( 8 9 0 ) . Various high molecular weight amines in CHC13 have been used to extract anionic sulfate complexes of iron, cobalt, and nickel

(261). Formation constants for sulfate T h complexes can be evaluated from extraction equilibria involving the system Th-HzSO4-di-n-decylaminc in C6H6 (12). U(V1) is extracted from H & 0 4 solutions into TOh in C6H6 as (R3NH+)4U02(S04)3(713, 716). Distribution equilibria have been determined for the extraction of U(V1) from sulfate solutions into TO.l (465) as well as for cyclohexyl- and benzylalkylamines (711 ) . THIOCYANATES. Anionic metallic thiocyanate complexes associate wit’h a wide variety of “onium” cations to form extractable species. I n addition to oxonium species obtained with various 0-containing solvents, particularly with T B P (153, 169, 175, $06, 215,236, 557, 625) various cationic dyes such as rhodamine B (59),and methyl violet (450)) high molecular weight amines such as Xmberlite L-i-1 (664), and phosphonium salts such as that of isoPrPPh3f (736) and 3,4-dichlorobenzyltriphenyl phosphonium ions (599) have been used in various thiocyanate extract’ion systems. Distribution data and extraction equilibria of the following thiocyanat,e systems have been determined: HSCN-acetophenone (891), Re?\“,CT\’S p H 3 C6-C,3 alcohols or C5-Cg ketones (YO), Co and Cu-SH4CSS4 - piperidino - 2 - methyl - 1 - phenyl2-butene in CHC1, or C6H6 (176); Cu - CNS- - pyridine - CH(I1, (841); Fe(II1)-KCNS-ethyl ether or iso-pentyl alcohol ( 3 6 9 ) , Fe(III)-KH4CSS, HC1diantipyrylmethane in CHC13 (842); Hg(I1)-KCNS-methanol, ethanol, or acetone ( 2 4 8 ) , Sc, Fe, and Co-CNS-M I B K ( 5 7 ) , Ti isotopes-HSCY-ethyl ether (451), NaSCK-TBI’ ( 2 a), ThXH4SCN-cyclohexano1or iso-pentyl alcohol (131); Ti, Kb, and T a - S H 4 S C S , HC1-ethyl ether, various esters, alcohols, ketones and nitrobenzene (506), Co, 310, Fe, W, V, and Ti-SH4SCN, HCl-MIBK (257) P t metals-KSCN, HC1-TRP (64). The optimum conditions for separating Ti and Xb are to extract twice from 1M KSCN-1M H 2 S 0 4into ethyl acet’ate and back extract Ti with 0.5X HCl or to use 251 KSCS-1.11 &So4 in a single extraction; Ti-Ta and S b - T a pairs may also be separated by thiocyanate extraction (506). The use of nitron (38) and carbazoline [2-(2heptadecyl - 2 - imidazolin - 1 - y1)ethylamine] (893) in metal thiocyanate extractions has also been described. Traces of TO.1 or other tertiary amines can be determined by extraction as the iron thiocyanate salt ( 1 7 0 ) . OTHER ANIOXS. High molecular weight amines have been used in the extraction of cyanide ( 9 7 ) ,oxalate (96) complexes of iron. cobalt and nickel into CHC13,the oxalate complexes of He

(Text continlied on page 107 R ) VOL. 36, NO. 5 , APRIL 1964

99 R

Table II.

Element extracted

Separated from Alloyed steel Pb Lead and lead oxide Th Various metals

Ag

Pb, Fe, Cu,TI, Al, Zn, Slg, Co, Ca, Si

Extraction Procedures

Solvent system (before mixing) Aqueous phase Organic phase dithizone/C& 8N HzS04 nH 4-Rdithizone/CCL or CHCL r-Ascorbic acid, up t o 4M HClO4 dithizonejCC1; "03-HF dithixone/CC14 EDTA, SaOAc, citrate pH 5-6 di thizone/CC14 C~-diethyldithiocarbamate/CHCl3 NaOAc buffer, pH 3-4 Anthranilic-1~S-diacetic acid (mask). MIBK dibutylarnine and salicylic acid ~

HC1 0 1M HCI- 12M LiCl

Actinides AI Magnesium metal (Fe) Ge

As

Ammoniacal 8-quinolinol 8-Quinolinol in HOAc pH 5.0-5.5 8-Quinolinol, acetate buffer pH 5.6-6.0, phenanthroline, NHzOH KI, HCI

Acid Pharmaceuticals Cast iron and carbon KI or HI, 0.5M Tic13 steel Cu HC1, HzOz, KI, HC1 Ge KI, H2S04,or HCI Fe, Cu,Ph 8-10N HCI Sb, Bi 6hf HC1-1.5hf AIC13 7 M HBr or 3-3.7M H I At Au(II1)

LOWgrade ores

Gold alloys P t metals, Fe

nil. nil. HC1 ( - 0 . l M ) Ph, iso-PrPC1, NaCNS PbAsC1. F-

c1-

Ores Pt, Pd

Circumin in MeZCO HF, Brilliant Green HF, HzS04 NaF, H2S9 HF, toluidine blue 0, Azure A or B Iron and steel HF, HzS04, tetrabutylammonium hvdroxide HCI Airborne dusts, Cu- 2-h'Iethyl-8-quinolinol, EDTA, cyanide Be, Be-A1 alloys pH 8.0 Ammoniacal solution, EDTA, Na&Oa hIeteorites pH 7.0-7.5, EDTA, XaC1 Iron and steel HCI or H F

Iron and steel BeO, Ti, Zr U, iron and steel

B

Be

Cu, hrass Te

Bi

Stainless steel ferromolybdenum Cu, Ti, Zr, Th, V, S b , T a Cr, 310, LV Fe, small amounts of Pb and TI Konferrous and platinum metals, technical iron, ferrous alloys Pb, Cu, Cd, Co, Be, Cr, Mn. Ca, Mg,

Reference (377)

Amberlite LA-1 /xylene triisooctylarnine/xylene CHC1, CHCI, CHC13 Diethylammonium diethyldithiocarbamate/CHCL, Ag diethyldithiocarbamate/CHC& CsH.5

Diisopropyl ether Dithizone/CHC& Dithizone/CHC13 Ce& or toluene CHC13 Crystal violet or methyl violet/C& or toluene BuOAc Isoamyl alcohol Polyoxyethylene glycol/CHnClz EtzO or EtOAc Polyoxyethylene gly col/CH,Clz TBP/CC14 MIBK CsH6 Methylene blue/CHZClz Crystal ViOk/CsHs C*H4C1z,CzH,CI,, or o-dichlorobenzene MIBK Isoamyl alcohol CHCh

0 . 1 4 M Sa1 pH 7-10, cyanide, citrate

Acetylacetone/CHCl, Acetylacetone/CHC13 or CCl4 Di-2-ethylhexyl phosphoric acid/kerosine dithizone/CHCls dithizone/CHCla dithizone/isoamyl acetate dithixone/CHCl,

pH 9.4-10.2, citrate, cyanide

0 . 0 1 % dithizone/CHCl,

SHdOH, KCN PH 4

(223, 225, 600)

(629, 626)

pH 9.5 ?iaNOz, KCN, tartrate, EDTA, CHCl3 or cc14 S a diethyldithiocarbamate or tetramethylenedithiocarbamate pH 18-2.4, dibutylarsinic acid

Al. Si

c u , -Fe

0.5-2A- HC1 10% K I Iron and steel Pb, Cd, Zn, Mg, Fe, KI, caprolactam,

CHCli O.1M CiHiTT\"z/CHC11

"03

Isoamyl alcohol CHCL

(748) (135) (763)

Cn

8-Quinolinol pH 12.5 Acetate, pH 2.7

CR

100 R

e

ANALYTICAL CHEMISTRY

MIBK (269) Bis(2-ethylhexyl)phosphate/Amsco org. (665) dilute 2-ethvlhexanol (Continued)

+

Table II.

Element, extracted Ca Cd

Ce(1V)

C1(VII) co

Extraction Procedures (Continued)

Solvent system (before mixing) Aqueous phase Organic phase Reference KOH Glyoxal bis(2-hydroxyanil)/AmOH, (896) Mg or iso-BuOH Alkaline medium, KCN A1 IXthizone/CHC13 (31, 889) pH 10.4-10.6, cyanide, KHzOH, tartrate Dithizone/CHC13 Cast iron ( 496 1 formaldehvde Alkaline medium Many elements Bromobenzothiazol/xylene (180) pH 8.7-10 methanolic P A S CHC13 (760) 0.1~l.IKI, HzS04, crystal violet Zn Isopropyl ether (149) 2-6M HC1 Amberlite LA-l/xylene (686) 0 . l M KI, pH 3 Zn (400) ilmberlite LA-P/xylene Pr14' M-SaBr03, pH 5-6 acetate buffer 20% Acetylacetone/C& or ccld (806, 807) pH 2.7-3.0 Fission products T B P and T T A / C & , (36) 2-Methyl-8-quinolinol in (CH, j&O, malic cC14 (640) acid DH 10 b.22k Na salicylate, HOAc, ?;H&03 Ethyl ether, ethyl acetate ( 688) Y o.lil!f "03 O.1dII BUzHPO4/CsHe (746) Fission pr ,ducts "03, 6 M KH4KO3 TBP (689) Pr144 LiNOa, "03 Trioctylamine/C& (13) 9 : 1 Xitroethane : n-hexane Al, Th, Zr, and stain- Tetrapropylammonium nitrate (609 1 less steel C104- from C 1 0 ~ Aqueous solution Brilliant Green/C&, toluene or xylene (244) Tetraphenylarsonium eosinate CHC13 ( 866 1 Acid solution, inethylene blue 1,2-Dichloroethane ( 944 ) pH 14 Fe, Zn Diethyldithiocarbamate/CC14 (874) pH 4-10 Diethyldithiocarbamate/CC14 (796) Alkaline, NH4 citrate U Diethyldithiocarbamate/CC14 (804, 874) DH 7.3-8.2 MIBK, CHC13, ethyl or amyl acetate (666, 671, 806) PH 6, HOAc-NH40Ac 0.15M TTA/Me2C0 (169) Many elernents 15co KaOAc l-Sitros0-2-naphthol/CHC1~ (796) pH 2-9 2-Xitros0-1-naphthoI/CHC1~ (608) 2-Xitroso-1-naphthol-4-sulfonic acid, 5 N AmOH ( 404 ) HN03 1,lO-Phenanthroline, EDTA, pH 4-5 Ethvlene chloride (810) Xi HC1 TBP (333,'474) 8X HC1 Amberlite XE-204/xylene or TOA Ni (178, 466) 0.5N HC1, NH4SCN, SnCle Iron and eteel (266, 694) MIBK pH 8.0 Tricaprylmethylammonium (917) thiocyanate/C& Isopentyl alcohol-ethyl ether or MIBK (666, 693, 736, Biological materials, SHICNS, KH,F alloys (60) Amberlite LA-1/CC14 or TOA Si SHdCNS (664, 466) i&fHC1 Bu~NOH/MIBK Fission products (492) TBP/C6H, HzSO, (709, 710, 867) 1-3K HC1 MIBK ( 1 7 4 , 971, 666) Methyl ViOlet/C& Acid medium 1-6M HC1 Cr(III), V ( V ) , Ti Amberlite LA-l/xylene pH 8.7-9.0, LiOH, Na&O', EDTA Many elements O.5M TTA/nitromethane or nitroben(161) zene Fission products Acid medium, Bi14Xitrobenzene (466, 468) Acid medium Fission products ?iaBPh4/nitrobenzene (427, 429) Keutral medium, EDTA Aged reaci or fuels KaB(C&j4 in pentyl acetate (472) DH 12.2. EDTA. diDicrvlamine as Na. Li. PhN02 Fission products (463, 466) Ca, or Mg salt pH 12.3, tartrate Fission products 4-Chloro-2-benzylphenol( Santophen 1) (872) in diisopropylbenzene ~. pH 4.5-5.0, EDTA S a diethyldithioZn, Cd, Fe, Mn CCl4 or CHC1, (136, 670, 349, carbamate 593, 799) Th, EDTA, wood Diethyldithiocarbamate/iso-AmOAc or (433, 780, 897) PH 9 CHC13 Pulp pH 9.2, EDTA Many elements diethyldit hiocarbamate/trichloro( 666) ethylene Electrolytic Xi Dil. acid Pb diethyldithiocarbamate/CHC& (6, 7% 466) In tracer levels pH 4.8 f 0.2, acetate Sub-stoichiometric amount of dithizone/ (696) CCld Soils, ,geological Ammonium citrate NH20H. HCI Dithizone/CsHs (166) sedim-n ts Al, In, wctter, soils, l v Ki diethyldithiophosphate/CC14 (106, 603) biological materials 4N HC1 l\lany elements Zn-o,o'-di-isopropyldithiophosphateCCl4 (646) 8-Quinolinol pH 5-7 Textile mz terials CHC13 (6311 pH 3.5, polyoxyethyleneglycol) X a CHZC13 (948) saccharinate, NHZOH pH 2.8-3.5 Ores S-quinolinol/CHCla ( 903 1 pH 4.93, 2.2'-dipyridyl CHC13 (830) Steels, Si-Co alloys pH 5.5-7.0, citrate, ascorbic acid 2,2'-Biquinolyl/pentyl alcohol (226, 266) pH 5-6, "?OH Plating so:utions 2,Z'-Biquinolyl/isopentyl alcohol ( 503 ) pH 4-11, 4,4'-diphenyl-B,6'-dimethylIsopentyl alcohol (606) 2,2'-biquinoline (Continued) Sepa-ated from

unr,

Cr(V1)

Cs

*

cu

I

VOL. 36, NO. 5 , APRIL 1964

e

101 R

Element extracted cu

F Fe(II1)

Table II. Extraction Procedures (Continued) Solvent system (before mixing) Separated Aqueous phase Organic phase from Hexanol or CHC13 Plant ash, foodstuffs pH 5, citrate, NH20H neocuproin in ethanol Th, high purity gold, pH 4-6, ammonium citrate, KH20H, neocuproin in ethanol U metal and compounds, U-Zr alloys pH 5.5, &Boa, ascorbic acid Bathocuproine/AmOH Nb, Ta, W, Mo 1-phenylthiosemicarbazide, 1,4-diphenylCr, Xi, Co, Fe, Bi, p H 1-6 thiosemicarbazide, or l-phenyl-4Sb tolylthiosemicarbazide in isopentyl alcohol Ascorbic acid Triphenylp hosphite/CC14 pH 3-4 Fe, Pb, Cr, Co, Ni Diethylacetic acid U ( NH4)&Oa, yridine, NH20H, KC1, KBr CHCla 0.2-1.2M SZN-,pH 1-7 A1 alloy TBP/CBH, Diisobutylketone 6.5M H2SO4, Tribenzylamine in pentanol-sec-butanol Ce( 111)-alizarin complexan chelate mixture pH 4.9, acetate buffer 0.1-6M HCl, cup- Cupferron/CHC13, TBP ferron l-Nitroso-2-naphthol/EtOAc and pH 4.3-10.0 BuOA4c TTA/xylene 2M HNOa-SM, "4x08 Isopentylp rophosphate/C& or diAqueous solution isopentyghos horic a c i d / C ~ H ~ Benzyl alcohol-8HC13 pH 1.6-2.0, 8-aminoquinoline 2-(2-Hydroxy-5-methoxy- heny1azo)-4pH 6.5, NaOAc methylthiazole/iso-Am8H Pentanol and other oxygen containing Fe(II), Co, Cu, Ni, pH 4.5, anthranilic acid, H2Oz solvents Cd pH 4-8, methanolic PAN CBH6 CL CS fatty acids/CHCla pH 2.5-5.7 Bathophenanthroline/.4mOHJ CHCla, NH20H. HC1 Many elements or AmOAc 6-Hydroxy-l,7-phenanthroline/propanol pH 5.5 pH 3, ",OH, XaC104, phenanthroline Nitrobenzene In pH 3-4, XH*OH, NH4C101tartrate, Mo CHCla bathophenanthroline in ethanol CO, atmosphere, pH 2.5, phosphate buffer, Isopentyl acetate Fe(II1) bathophenanthroline CHC1, or pentanol V, Cr, Ti, Nb, Ta, U, pH 4-6, citrate, Na2S204 bathophenanthroline in ethanol W metals, alloys, compounds pH 4, NH20H, bathophenanthroline in High purity Cr Isopentyl alcohol ethanol 1: 1 Isopentylalcohol: isopropyl ether pH 4-5, FiH20H, bathophenanthroline High purity Au in ethanol MIBK, EhO, or iso-AmOH 6-7N HCl Many elements, Babbitt metal, AI alloys, plating baths CHCl,, or AmOAc Amberlite LA-1 /xylene 6M HC1 Cr, Ti Tribenzylamine/CHCls Al, Si, Ti, Hf, Th, 5M HCl Xb, Ta, Xi MIBK A110 s of U, Ru, Pd, NHaCNS Zr Diethylacetic acid H -4.5 Pb, Cr, Co, Ni, Zn 8-Quinolinol/CHC13 pH 3.2 Ores Acetylacetone (diluent not noted) "Neutral" Irradiated sample CHC1a Al, Zn, Pb, Sb, Cd, 6M HC1, TiC13, diantipyrinylmethane Bi, As, Fe, Cu, In, Ge pH 3.6-5.0, methanolic PAN 6N HC1, TiCl3, rhodamine B, butylrhodMinerals amine B, Victoria Blue B

Reference (316, 568)

(638) (416)

(284) (563 ) (98)

(816)

" I

Fe(I1)

.

RE,

Ga

(141, 226) (182) (696) ($88)

(637) (927) (644) ($589 546, 346, 399, 436, 666, 811, 815, 816) (267, 587) (185, 895)

(486, 595) (635) (661, 555, 801) (559) (114)

(129, 139, 242, 669, 340, 768, ds2J 881 )

Ge

Hf

Zr

Zr

102 R

ANALYTICAL CHEMISTRY

6N HC1, NH,SCN, methyl violet pH 2.45, pyrocatechol, 2,2-bipyridine 9N HC1 8-llN HC1 >5M H I 7M HC1 Dil.

C6H6 or CHC1, (450) CHC13 (829) CCl4 ( 966 ) Amberlite LA-l/xylene (684) CBHB ( 833 ) N-dodecyltrialkyl-methylamine/xylene (684) Diisoamyl methyl phosphate (in pres- (366) ence of SCN-), dihexylphosphoric acid, diphenylphosphoric acid, or 3aminooctane/xylene Cyclohexanone (512) ( Contznued)

Table

Element extracted Hg

Dusts Sb. Sn

Ores Ge, V, Au, Mo, W, Re, V Sn

Ir Mg Mn(I1)

Mn(VI1) Mo(V1)

Extraction Procedures (Continued)

Solvent system Seprtrated Aqueous phase from Se, Cu PH 5 E1ectroly.k brines PH 2 EDTA, Sa2SO3 Coal Cu, Bi, %n, Cd, Pb, pH 3.5-4.5, EL)TA Xi, Co Phosphate pH 6.5-8 pH 6-7.5 methanolic PAN Acetate, pH 6

Phenyl mercury I C1, Br Pb, Te

In

II.

H3PO4, NaNO2 Dil. HSOs, H,OZ pH 0.3-0.6, HzSO4 H2S04, K&r20, pH 0.1-4.0, xaNO3 pH 8, citrate, KCN, NaBr, HzS04 5-6M H2S04,AI-benzoylphenylhydroxylamine pH 3.2 pH 4-12 pH 4-12.5, KCN HzsO4

(before mixing) Organic phase Dithizone/CHCls or CCl4 13thizone/CC14 Dithizone/CHCla Di-l-naphthylthiocarbazone/CC14

Diphenykarbazone/C& CHC13 C6H6 Brilliant Green/toluene a-Xylene 1: 1 TBP : MIBK CC14 CHC13 and other solvents 8-&uinolinol/CCl4 CHCl3

(462) (765) ( 909 ) (2411 (16) (843) (678)

8-Quinolinol/CHC13 8-Quinolinol/CHC13

535

8-Quinolinethiol/toluene

Isoamyl hos horic acid and isoamylpyropgos Eoric acid/C& or toluene Bis(2-ethylfexyl) phosphate/kerosine Zn, Cd, Cu, Pb, Co, pH < 2 Ni, Fe, Al, Ga "Neutral" Irradiated sample Acetylacetone ION HC1 TBP 4N HBr Isopropyl ether Zn 5-44 HBr-brilliant green, MezCO CBHB 2M HBr, rhodamine B Cassiterite C& A'-HI Ethyl ether Silicates pH 5.1, aqueous-alcohol PAK/CHCla 3-7.47 HCl, H2Oz TBP Rh pH 12.5-12.9, CX-, tartrate, formald7-[-ol-(o-Carbomethoxyanilino) benzyl]A1 alloys oxime 8-quinolinol/CHC13 Silicat,es pH 11, butylamine 8-Quinolinol/CHC18 Mg alloy13 pH 3-4, Na diethyldithiocarbamate cc14 pH 11.4-12.4 8-Hydroxyquinaldine/CHCla U, A1 pH 6.7-8 TTA/MezCO-CaHe pH 9-10 methanolic PAN Ethyl ether or CHC13 HN03, NaBiOa Ph4AsCl/nitrobenzene, CHCl, CaCOa pH 6.3, KIOa, PhiAsCl CHC13 Bone and teeth 2X HCl Cupferron/CHCls U, Be, Th, Zr, Ti Sulfate solution 8-Quinolinol/CHCla I N HC1, 8-quinolinethiol W, As, Cp, U, Cd, CHC13 Ni, Co, Fe, Ag W, Fe, Ni, Cr, T, Toluene-3,4-dithiol, NHzOH Ccl4 Al. Co Na2Sz03, tartrate, Zn-toluene-3,4-dithiol Isopentyl acetate Min&als w HCI, citric acid Acetylacetone/CHCl3 1N HCl ol-Benzoinoxime/CHC13 Fission pi.oducts Dibutylphosphoric acid/CCl( or gasoline 0.5N HC1 or H2SO4 Many elements w pH 2-3, sulfate Trioctylamine/kerosine 1 : l HCl 0.5% Nitron/CHCl, 6,7-Dihydroxy-2,4-diphenylbensopyriliumCHCl, chloride TBP Rocks 6M HC1 Acid medium, KSCS, SnCl2 MIBK Fe KCSS, SnC12 Ethyl ether Salts HCl, SnC12,3,4-dibenzyltriphenylCHCls phosphonium chloride TBP/CClr 8M HK03-2M LiN03 Diethyldithiocarbamate/CCl, or EtOH pH 4-5 Pyrrolidinedithiocarbamate/CHCla 8 5-1OM HC1 Cupferron/CHCla H2S04 Citric acid 8-&uinolinol/CHCl3 Ta Lumogallion/BuOH 4N &SO4 Ta, Ti, Zr pH 2-5 Acetylacetone/CHCls Citrate, tetralkylammonium salt, pyroEthyl acetate gallol (Ethoquad 18/25) TBP HF, 3M HzSO4 Triisooctylamine HF, HNOD Ta 8-&uinolinol/CHC13 pH 5.5-8.8 Alkaline medium, ",OH. HCl L)imethylglyoxime/CHCl3~aniline, or Zn, IT pyridine p H 6.5, dimethylglyoxime in ethanol CHCla Cu alloys

(475) (476)

(796) (918) (867) ($29) (847) ( 564 ) (161)

(753) (388, 51 8) ( 684 1

(308)

(793) (273)

(919) (392)

(467) (470) (106)

(202) ( 302

(53Z) ( 599 ) (6011

(856) ( 232) (6811 (6)

(7) (808)

(123)

($33, 437) (502) ( 262 1

(426, 63Y, 667, 806) (179) (Conltnued)

VOL. 36, NO. 5 , APRIL 1964

103 R

~~

~~

Table II.

Element extracted Ni

Separated from

Cu, Cr

In, Co, Cu CU

Many elements Several elements co Fission Droducts. PU, A'm, Cm, 'v, Th U, Pu, Fe, other elements Fission products Ru, Ir, P t Ru

NP(W

Os(1V)

Extraction Procedures (Continued)

Solvent system (before mixing) Organic phase Aqueous phase pH 8.5-9.8, ethanol, Na salt dimethylCHC13 glyoxime a-benzildioxime/CHC13 pH 8-11 1,2-Cycloheptanedionedioxime/CHC13 DH 5.4-12.7. NaOAc or NHLOH Salicylaldoxime/4-met hyl-pentan-2-one bH 9.6, mannitol-aqueous SH3 TTA/M~zCO/CBH~ pH 5.5-8.0 PAS/CHC13 pH 5-6, KIO,, Na4P207 2,3'-thiobis( ethanethiol)/CHCla pH 10-11 Triisouctylamine/xylene 2-4M H N 0 3 ,back extract with HC1 TTA/xylene then TBP/decane 0.2N HSO3-Ca(N03)2 Catechol 1-5iY HCl

Al, Si, U

P(V1)

Labile phosphate esters Monazite sands Many elements

WV)

Nb, Ti, Zr, Hi Fe, U, Th, Hf Pb Te Tin-base Babbitt metal Bronze

Pd(I1)

Rh Pt, Rh, Ir, Ru, S i , Co, Cu, Fe Pt

7-85 HzSO4, iirsenazo I11 3.8M HC1 pH 14 tartrate, cyanide, N a diethyldithiocarbamate pH 10, KCN, SazSOo NH20H, tartrate, ammoniacal cyanide Isotope dilution (no details, aqueous Dhase) H h , sulfosalicylic acid, thiourea, K3Fe(CN)6 1.5M HC1 KI, or HC1 2 9 H2S04 pH 3.6 ethanolic benzoylmethylglyoxime

Pt metals Rh, Ir Ir U, Am, ISp) fission products

Pt(1V) Pu(1V)

U

u

Rare earths

Fission products

Rb Re( VII)

Cu, As, Fe Molybdenite, othei minerals Minerals ?*10

Ethyl ether CHC1, Diantipyrinylpropylmethane/

dichloroethane 150-BuOH, hlIBK, BuOAC,BuOHCHC13 Acetophenone or 3-methyl-1-butanol Isobutyl alcohol Butanol-CHCL Ethanol in Soxhlet apparatus Isopentanol or isobutanol TTA/CeHe TB, ethylacetoacetate N-benzoylp henyl hydroxylamine/CeH6 Iso-AmOH MIBK CcI4

Pb2I2dithizonate/HClo Arsazen/BuOH Amberlite A-1 /xylene MIBK Dimethylglyoxime/CHCl$ CHC13 Dibenzvldithiooxamide/CCL Dibenzyldithiooxamide/CCl4

Pt Other cations

Reference

Weakly acid solution pH 3 -6, A7,N'-di(allylthiocarbamol)hydrazine (Dalzin) 1-2K HCI 6a\r HC1, NaI pH 8.0-8.4, XH4SCN or NaI Thiosemicarbazide 1-6M H X 0 2 .back extract with HCI or H2SO4 0.3-85 HNOj Acid deficient Al(XO3): soln. 4 5 HK03 2-4M H S O j

Di-8-q;inolgldisulfide Di-8-quinolgldisulfide CHC13 8-Aminoquinoline PAS/CHC13 CHC13

(676)

(47, 483)

2-Mercaptopropionic acid/CHClJ TBP/hexane Pyridine/CHCla Pentyl acetate A'-benzoylphenylhydroxylamine/ CHCL MIBK and other ketones Tetrapropylammonium nitrate/MIBK TRP

Hyamine 1622 (benzyldimethyl-ptetramethylbu tylphenoxyethylammonium chloride) in benzene TTA4/xylenea t 60" C. HC1 Bis( 2-ethylhexy1)orthophosphoric HC1 acid /toluene PAS/EtZO Acid solution TBP TBP/CC14 SaPh4B/nitroethane pH 6 . 6 1 : 1 HC1, o,o-diethyldithiophosphoricacid C6H6 CHC13 pH 9, 8-quinolinol in HOAc Tetraphenylarsonium eosinate pH 8.5 PhaAsCl H 3 P 0 4or HzSO, pH 3.5-5.0 (Continued)

104 R

0

ANALYTICAL CHEMISTRY

Table II.

Element extracted Re(VII)

Separated from

1210 1210

w Rh

Ir, Pt, Pd

Ir Ru

Sb

sc

Fission products Fission products Mg alloyE

Rare eartis and other elemente Th, U Th, rare earths

Se(IV) S

Te

Si Sn

l l a n y eleinents Suclear ri?actor

Sr

Pb In, Sb(V) Sb Ca

Ta(V)

Nb, Sb

CI

Nb, Ti, Zr Fe, steel, Xb Nb, ores Kb Ti, S b , Zn

Extraction Procedures (Continued)

Solvent system (before mixing) Organic phase Aqueous phase CHC13 1 : 1 HC1, nitron Pyridine 4-6.Y S a O H Quaternary ammonium salts Alkaline medium Diantipyry lpropylmethane/ HC1, XaC1, H ~ O Z dichloroethane Isopentyl alcohol SnBr2, HC104-HBr CHCl, HC1, dithiophthalimide CCI4 AI(S03)3-HS03, Ag(1I)O CC14 HC1, NaOC1, pH 4 Pyridine/BuOAc NaOC1, alkaline solution CCL N a diethyldithiocarbamate Isopkntyl acetate or diisobutyl carbinol 7M HCl CC14;C6HsC1 6 X HCI, rhodamine B, NaPu'Ol Brilliant Green/toluene 62YHCl, S a S O z MIBK KI, &Son or HC1 pH 5-5 5 pH 1.5 pH 5.0-E1.5~tartrate M SH4SCN HC1 HCl HC1 > 9 M HC1 pH 6-8

TTA/xylene TBP/CHCl, Dithizone/CC14 Benzimidazolethiol/BuOH-CHCL RuaPO4!CC14 Amberlite LA-1 /xylene 3,3 '-Diaminobenzidine/toluene

0 . 5 X HC1

S-(mercaptoacety1)-p-anisidine or N (mercaptoacety1)-p-toluidine/BuOH-

0.1N HCl, +phenylenediamine, 1,2-, or 2,3-diaminonaphthalene 0.7-Y HCI, (SH4)2Mo04 pH 0.85, 207, XH4C18-quinolinol Alizarin blue in -V HCl 7-8M HC1 4,M H I or KI-HzS04 H2SO4, SH4SC'S pH 2.6-5.0 Ethoquad 18/25, boric acid, pyrogallol HF, HCI, or HzSO4 H&O, or HC1. S a F

Nb

Tc

Fission products U Ru, M o

HZSO4, NaF, HzOz pH 3.0, S C S - , H F 0.5-1M HzSOi 4 N SaOH K4Fe(S)6,HC1 Any PH

Te(1V)

Th

6-1OK HNOi pH 4-8.7 Al, Bi, Cr, Co, Cu, 4 5-6N HCl Fe, Ni, Se 4-6 HC1 Se Ce PH 5 pH 3.2-3.4 SC nH .5.2 r--In gram quantities pH 4.5 rtr 0.2 in NH40Ac Urine (Unspecified) Monazite sand pH 6.7-6.9, PAR 1-2s HCI Rare earths Rare earths 0.1.Y H2SO4

Ti Steel

p H 4-9, HzO2 pH 1-3, NaC104 -4cid medium, Na2S203 pH 3, pyrogallol, gallic, or chromotropic acids

Reference

CHCl, Decalin

Pentanol-Et20 CHCl, Cy clo hexanone-EtOAc Amberlite LA2/xvlene Ethyl ether EtOAc Di-2-ethylhexylphosphoric acid/toluene (strip Sr with 3'V HSOa) Ethyl acetate MIBK, diethyl ketone, n-amyl alcohol or CHC13 Ph4AsC1/CzH4C1~ Malachite green/C6H6 Methyl violet/CsHE or toluene Crystal violet/C6H8 Butylrhodamine B, or rhodamine 6G/Ce& Triisooctylamine/CC14 T B P or hlezCo-iso-BuOH TBP/kerosene BuOAc Triphenylguanidinium chloride/ hvdrocarbon AcGone AmOH Methyltricaprylammonium chloride/ CHCli EtzO Diethyldithiocarbamate/CC14 MIBK Amberlite LA-1 or -2/xylene 8-Q~inolinol/C&~or CHC13 5 ,7-Dichloro-8-quino1inol/CHCl3 Benzohydroxamic acid/hexanol TTA/various solvents TTA/xylene Ethyl acetate 1)ibromoarsenazo II/higher alcohols ~V-cyclohes3.l-n,-dodec'ylamine,S-benzyln-dodecylamine, or .V-dodecenyltrialkylmethyl amine/C6HO Ethyl ether and ethyl aretate 8-Quinolinol/CHC13 TTA/CsH, Diisoamyl pyrophosphate/C6H6 BuOH

(120) (313) (671 )

{?0?j

(34) (163, 636)

(558,875) (585) (576, 887) ( 598 ( 701 (677) (298) (109) (719) (921, 922) (678) (261, 300) (134)

(396-8)

(756, 7 5 7 )

(Continued)

VOL. 36, NO. 5, APRIL 1964

105 R

Table II.

Element extracted Ti

TI

Solvent system (before mixing) Organic phase Aqueous phase

Separated from Steel

Extraction Procedures (Confinued)

3,6-Dichlorochromotropic acid, diphenyl- BuOH

guanidinium chloride PH 3

Steel Brines

H2S04, NaPMoOl, NazHPO, SH4SCN 7-9M HCI, KHaSCN

Bi ores

Tartrate, cyanide KaOH, NaKC,H,Oe, K C S HBr (1 :1'i then evamrate ether extract. use'alkaline cyanihe, tartrate Citrate, alkaline cyanide, L-ascorbic acid

Manganese ores Silicate minerals

Pyrocatechol, ,V-acetyl anabasine/ CHCI, BuOH TOPO/cyclohexane or MIBK (300,'593) N-benzoylphenylhydr0xyIamine/CHC1~ (607) Zn dibenzyldithiocarbamate/CC14 Dithiocarbamate/CHCI, Dithizone/CHCl, Ethyl ether/dithizone/CHC13 Dithizone/CHCI3

pH 5 0.5% ethanolic quercetin HCI, methyl violet M HBr

Pentyl, butyl or ethyl acetate CeHe Isopropyl ether

Water

pH 6, EDTA, S a diethyldithiocarbamate pH 2-2.5 pH 7-8.5, NH4NO3 pH 5.2-5.8 dinitroaniline "01

Calcium fluoride lasers Various materials

pH 10, KCN, ethanolic PAN

CHCI, Dibutylarsinic acid/CHCl, 8-Quinolinol/CHCI3 8-Quinolinol/CHCl3 Bis( 2-ethylhexy1)phosphoric acid/ kerosine o-Dichlorobenzene

Zn, Cd Zn, Cd

Low grade ores

pH 9.2 EDTA, methanolic PAN 8M HC1 or 10M NH4N03 HNOs pH 2.5-3.0, NH4KO3, EDTA pH 3, AI(N&)3 HNO,, Al(NOa),, tartaric acid, cellulose

o-Dichlorobenzene Tri-n-octyIamine/C& Tris(2-ethylhexyl) phosphate or bis(2ethylhexyl)-2-ethylhexylphosphonate/ toluene TBP/CCI4 TBP/octane Ethyl ether TRP

fsi-AmOH-Et OH

Benzyldodecylamine/CHC13 or CsHe

Trioctylamine/C&

Biological or mineral samples

W

Ti Many cations U, ores, silicate rocks Fe, Cr, Ti, Zr,As, Co, Nil Nb, Ce,

pH 4.0-5.9, Na diethyldithiocarbamate 2.7-7.3 M HCI pH 4, EDTA

CHCI, N-cinnamoyl-N-phenylhydroxylamine/ 8-quinolinol/CCl4, CHCI,, or MIBK

pH 2.5-4.1

TTA/BuOH

U

H2S04 or HC1 HCI, NH4CNSl SnCln NaCNS, HC1

AmOH. toluene Methyl ethvl ketone Pyridine/CHC13

Fe, Ni, Cr, V, Al, Co TiP(SO,),, toluene-3,4-dithiol Steel Ti, Mo pH 5 . 5 pH 8.5-1 1.0 methanolic PAN 12N "03 Sr

P&-

Y

Zn

Meteorites Organic material In neutron irradiated samples Iron ores Sn, Pb Hematite chrome plating baths

Zr

pH 5.a, KCK pH 4.75, N~PSPO, pH 5.5, thiosulfate, cyanide, back extract with Na&borate to remove Cd and excess dithizone pH -5, acetate buffer pH 7.2-7.5, dibutylarsinic acid Acid solution pH 6.6 pH 5.6, Alizarin Blue KH4CNS, rhodamine B "4, CKS, NH4F

AI-Mg alloys

106R

ANALYTICAL CHEMISTRY

Dithizone/CCld Dithizone/CCl, I)ithizone/CCl4 Dithizone-cellulose acetate column CHCI, nr trichloroethvlene nikkyldithiophosphdric acid/CCla PAN/CHCI, Cyclohexanone and ethyl acetate Ethyl ether Isopentyl alcohol or MIBK 5,7-Dinitro-8-quinolinol in ethyl acetate

NbgT 2M HC1 HC1-fluoboric acid 11N HCI 0.2M HCI

(508, 793)

(199, 200) ( 186, 362, 593)

0.1M TTA/MIBK Ethyl ether T BP

Cupferron

Iron and steel

U

CCI, 8-Quinolinol/CHCl~ 180-BuOH, MIBK

Acetylacetone/CHCI? TTA/xylene, Strip Nbg7with S b carrier in HCIO, and H P O ~ TTA/xvlene Di-n-b6tylphosphoric acid/CHCIs Tri-n-octylamine/CeH~ TBP/MIBK or CHC13

(417 , 888, 910) (616)

(657)

( 1 6 4 ) , and the carbonate complexes of U (708). Extraction 8f, Cd from C104solutions into Amberlite LAL-lwas used to study Cd hydrolysis equilibria (194). NONMETALLIC

ANION

EXTRACTIONS.

Various large (usually colored) organic cations have been employed in the extraction of nonmetalltc anions such as borate (76) ( 1 6 4 ) , I:,erchlorate (244), fluoride (356). h study has been made of the CHCls-H20 disxibution of tetraphenyl arsonium salts of over two dozen anions (81). “Onium” ions have been applied t,o the anions of organic acids (227). 2,4-Dichloroplienoxy-aceticacid (2,4-D) can be determined phot’ometrically following ii,s extraction with butyl rhodamine into toluene (444). Cations such as (CIiH5)3Pb+combine with C1-, Br-, I-, A s O ~ - ~and , Se03-2 to form CHCls-extractable species (86). A stud,y of the distribution of (C6H&S+ (8;3) and (C&)4Pf ( 8 4 ) ion pair complexes with various inorganic anions has been carried out. PHEKANTHROLINES. Stepwise chelate formation constants of a series of metal complexes of 1,lO-phenanthroline and its 2-methyl, 5-methyl-, and 2,9-dimethyl-analogs have been determined by a study oi their extraction equilibria in n-hexanc, CHC13, or CCl, ( 3 2 5 ) . The stability of the complexes of the 2-methyl, 2nd 2,9-dimethyl derivatives were lower than the others because of steric hindr,tnce. T h e stability of the iron(I1) cornplex of dipyridyl was four orders of magnitude lower than the corresponding phenanthroline complex (631). T h e stability of the copper(I) complexes of 2,2’-biquinolyl, didipyridyl, and its 5,s - dichloro analog decreases in accord with a drop in the basicities of these ligands (232). A study of Cu(1) complexes and substituted biquinolyls indicated that substituents in the 6,6’-positions gave the greatest increase in color intensity. Maximum sensitivity was attained with 6,6’ - dimethyl - 4,4’ -diphenyl - 2,2‘ - biquinolyl (591). Phenanthroline coniplexes of lanthanide cations form neutral salicylate complexes that are extractable by benzene ( 4 0 5 ) . 6-Hydroxy-l,7-phenanthroline, similar to 8-quinolino1, forms colored Fe(1II) chelates of as great a sensitivity as 1,lO-phenanthroline (181). The perchlorate of Fe(I1) complex of 2,3,5,6tetra-(2-pyridyl)pyrasine is extractable into CHC13 or C6H5?;02 (774). TETRAALKYLDIPHOSF’HONATE ESTERS.

Bidentate organopb.osphorus compounds (analogous tcl the p-diketones except that they do nc t enolize or lose a proton) are strong chelating agents forming cationic chelates that can form extractable species by ion association or coordination with suitable anions. Tetrabutylethylenediphosphosphonate in kerosine has been used for the extraction of about 60 elements (532) of Zr, Y, Ce,

u

Pm, E u , and Lu (702), as well as for and T h (703). I n addition to the diphosphonate esters, compounds of the following types : (RO)~PO-CHZ-CONRZ and (R0)2POCOh’R2 have proven sufficiently powerful to extract c e , P m and -1m from HNOs solutions (761). X bidentate phosphine oxide, bis(di-nhexylphosphinyl) - methane, H D P M , was found to be a much more powerful extractant than the monodentate phosphine oxide, T O P 0 (99, 570). MISCELLANEOUS SYSTEMS. Distribution coefficients of actinide and fission product chlorides between two immiscible fused salts LiCl-K+, XlC1,have been determined ( 5 5 2 ) . Xonaqueous immiscible solvent pairs have been employed in ion pair extractions. Ethanolamine, formamide, or adiponitrile can quantitatively extract from their ethyl ether solutions the following ion pairs: bromides and chlorides of Fe( I I I ) , Mo(V1) , .1u(III), Sn(II), thiocyanates of Fe(III), Rlo(VI), Co(II), and nitrates of Ce(IV), T h , and U(V1); Sn(IV) chloride remained in the ether phase ( 4 6 9 ) . Virtually a n y unsaturated fatty acid can be isolated on a gram scale by the Craig countercurrent distribution apparatus using systems having h g + present - e.g., light petroleum-0.2M hgNOa in 90% MeOH (348). APPARATUS AND TECHNIQUES

Several reviews of extraction apparatus have been published (156, 468,507). The simple batch method of extraction, however, continues to be the technique most employed in analytical separations. X number of modifications of batch extractors include a micro separatory funnel in which separation of the aqueous and organic phases occurs automatically with no need of a stopcock ( 5 0 1 ) . The action is based on the difference in the respective surface tension forces of the two phases. A number of novel continuous liquidliquid extractors have appeared (240, 277, 781, 905, 9 1 4 ) , as well as several for liquid-solid extractions (93, 205). X gas-lift circulator for continuous extraction has been described (360),as well as a n apparatus for continuous extraction of radioisotopes and automatic recording of activity (937). Improved rotary extractors (783) and a mixersettler apparatus for laboratory use (411 ) have been designed. New developments in apparatus for countercurrent distribution continue t o appear; Post and Craig (670) have designed a new type of stepwise train which allows both the upper and lower phases t o be transferred simultaneously in opposite directions. A number of other designs have appeared (4, 214, 685). Experimental studies of the effi-

ciency of pulse columns have been carried out (99, 691). It is interegting t o note some recent applications of countercurrent distribution t o the extraction of inorganic systems including the separation of fission products (334) and the separation of P3and Pa233 from irradiated thorium (336). A paper chromatographic method has been developed for the determination of suitable solvent systems for countercurrent distribution (778, 899). Extractive separations using gels have also been reported (656, 7?1), as well as the extraction of colloidal solutions of metals (769, 770, 854). Ruzicka and Stary have used extraction in conjunction with isotope dilution to produce highly selective methods for the determination of zinc (780), mercury (696), and copper (696), and the method has applicability to many more elements ( 6 9 4 ) . A single extraction of the metal is made with a n organic reagent, and the radioactivity of the extract is measured. The amount of organic reagent used must be less than t h a t corresponding to the stoichiometric ratio. The method has been used for rapid separations in activation analysis (697,792,948,944). Similar approaches for determining mercury in plant materials (805) and cobalt in alloys (679) have been suggested by others. As a n aid to increased selectivity and specificity in extractions, the theory of masking agents has been treated by H u b nicki (316). Extractive titration procedures for a variety of elements continue to be developed (119, 784, 848). I t has been shown (665) t h a t techniques frequently applied to one phase systems to determine the composition of a complex, such as the slope ratio, molar ratio, and continuous variations methods, also apply to two phase systems with a n uncharged, distributing complex. PROCEDURES

The best demonstration of the usefulness of the technique of solvent extraction in chemical analysis is t h e large number of papers that have appeared in the recent literature involving extraction procedures. No attempt has been made to include them all, b u t rather representative procedures have been selected for inclusion in Table 11. Wherever possible the conditions employed and the separations achieved have been included. I n many cases the extraction noted is just one step in a more complete procedure involving other separation methods. The original articles should be consulted for de tai 1s. There has been a trend toward the increased use of multi-element extracVOL. 36, NO. 5, APRIL 1964

107 R

Material Ashed biological material High purity bases Fission products Fission products Fission product rare earths Target gold Alkali halides High purity In

Table 111. Elements extracted Mo(VI), Mn, Zn, Pb, Co, Fe, Cu Many elements

Zr, Nb, Ce, Pm, Y, Sr, Ru, Cs In, Sn, Sb, Trans-Pu elements Si, Fe, Pd, Pt, Mn, Cr, Pb, Ag Cu, Xi, Fe, Mn

In extracted from many elements .4u, Dy, Mo, Xi, Cu

Lithium compounds (neutron irradiated) Mixture Mixture Mixture Mixture

Co, Nil Cu, Fe, Mn Fe, Cu, Co, Ni, V T1, Bi, Cd, Pb, Cu, Pb, h-i, Fe

Electrolytic Pii Zone refined Pb

Cu, Fe, Co Cu, Fe, Bi, Sb

Platinum metals

Pt, Pd, Rh, Ir

Silicate minerals

Hg, Ag, Pb, Cu,.Ni, Co, Zn, Cd, Bi, Mn Many elements

Soils

Neutron irradiated

LITERATURE CITED

(1) Adamovich, L. P., Ruzhinskaya, R. I., Andrushchenko, D. A., Ckr. Khim. Zh. 27, 817 (1961).

108 R

0

ANALYTICAL CHEMISTRY

Method of estimation Spectrophotometric

8-Quinolinol/CHC13,dithiocarbamate/CHCla Cupferron/CHC13, TTA/TBP, Bu3P04/kerosine Chloride/isoamyl acetate, iodide/ isopropyl ether-C& Chloride-tertiary amines/diethylbenzene or diisopropylbenzene HC1-ethyl ether

Spectrographic

,

Spectrographic Spectrophotometric

Xitrate-TBP/CCl4, dimethylglyoxime/CHCl, Pyridine-SCX -/CHClr Dithiocarbamate/CC14 Dithiocarbamate/CHC13 N-benzoyl-1V-phenylhydroxylamine/CHC13 Dithiocarbamate/CHC13 Dithiocarbamate/CHC13, rhodamine B/C8H6,cupferron/ CHClr Iodide/TBP-hexane, p-nitrosodimethylaniline/CHC13 Dithiocarbamate/CC14, dithizone/ CHClr

Radioactive counting

(2) Adamskii, N. M., Borisov, V. V., Radaokhimiya 3, 291 (1961). (3) hdamskii, N. M., Karpacheva, S. AT., Rozen, A. M., Estraktsiya, Teoriya, Primenenie, Apparatura, Sb. Statei, 2, 80 (1962). (4) illderweireldt, F., ANAL. CHEY. 33, 1920 11961). (5) Aleskovskii, V. B., Semikozov, G. S., Kalinkin, I. P., Tr. Leningr. Tekhnol. Znst. im. Lensoveta, (61), 144 (1960). (6) .4limarin, I. P., Bilomovich, G. K., Ts'ui. H. H., 8h. Seoraan. Khim. 7 . 2725 '( 1962). ' 17) Alimarin. I. P.. Han. H. I.. Zh. Analit. Khim. 18.'82 f/1963). , (8) Alimarin, I. P., 'Makarova, S. V., Zbid., 17, 1072 (1962). (9) Alimarin, I. P., Shen, H., Zh. Seorgan. Khim. 6 , 2062 (1961). (10) Alimarin, I. P., Sudakov, F. P., Golovkin. B. G.. Usvekhi Khim. 31. 989 (1962). (11) hlimarin, I. P., Zolotov, Y. -4., Shakhova, N . V., T r . Rommis. P O Analit. Khim. 14, 24 (1963). (12) Allen, K. A , , lLlcDowel1, W. J., J . Phys. Chem. 67, 1148 (1963). (13) Almeida, I. G., Danon, J., .4nais Assoc. B r a d Quim. 19, 133 (1960). _

Radioactive counting

Iodide/BuOH, Pb diethyldithiocarbamate/CHC13, diacetyldioxime/CHC13 Bromide/Et20

Dithiocarbamate/CHClp, pyri: dine-SCN -/CHC13, a-furildioxime/CHCl,

Us08

tion procedures, whereby many elements are isolated from a particular sample matrix and then determined by such techniques as spectrophotometry, emission spectrography, polarography, flame photometry, and radioactive counting. Advantage is taken of the resolution of these methods to permit simultaneous determination of a number of elements. The approach is particularly applicable to the determination of trace impurities in high purity materials. .\ number of such procedures are listed in Table 111. Finally, it is interesting to note that a qualitative separation procedure for 36 cations has been developed based on solvent extraction of halides, chelates, and other complexes under carefully controlled conditions (850).

Extraction systems Acetylacetone, dithiocarbamate

Pyrrolidinedithiocarbamate/ CHC13 8-Quinolinol/CHCI,, TTA /C6H6 Dithizone/CHC13

Rare earths Cu, Pb, Cd, Zn, Xi, Co

Thorium Uranium

Multielement Extraction Procedures

I

1

.

Spectrographic

Spectrophotometric Flame photometric Polarographic Spectrophotometric Spectrophotometric t i

'L

Spectrographic I ,

It

Polarographic Radioactive counting

(14) Aman, R. E. V., Kanxelmeyer, J. H. ANAL. CHEM.33, 1128 (1961). (15) Anghileri, L. J , Intern. J . Appl. Radiation Isotopes 14, 381 (1963). (16) Apraksin, I. A., Korovin, S. S., Reznik, A. M., Rozen, A. RI., Zh. Seorgan. Khim. 8 , 237 (1963). (17) Arakawa, M.! J Japan Znst. Metals, Sendai, 25, 535 (1961). (18) Arcand, G., Carroll, W. R., J . Phys. Chem., 6 6 , 1014 (1962). (19) Arden, J. W., Booth, E., Perkins, M., U. K. Atomic Energy Authority Rept. AERE-AM-90, (1962). (20) hrtykbaev, T., Tsyganov, G. A,, Dokl. Akad. S a u k Crz. S S R 19,48(1962). (21) Ashbrook, A . W., Analyst 88, 113

(24) Ibid., p. 354. (2.5) I b i d , p . 443. (26) Ibid., p. 439. ( 2 7 ) Zbid., p. 555. ( 2 8 ) Zbid., p. 558. (29) Zbid., p. 683. (30) Ibid., p . 688. (31) Ibid., p. 817.

(32) Athavale, 5’. T , Bhasin, R. L., Jangida, B. L., Analyst 87, 217 (1962). (33) Athavale, T.’. T., Patkar, A4.J., Rao, B. L., J . Sei. Ind. Res., India, B , 21, 231 (1962). (34) Attrep, hI., ANAL.CHEM.34, 1349 (1962). (35) Awu-al, XI. A , , Ibi’d., 35, 2048 (1963). (36) Ayres, G. H., Br.ird, S. S., Talanta 7. ., 237 (1961). --, (37) rivres, G. H., Scloggie, L. E., Anal. Chim. Acta. 26, 470 (1962). (38) Babenko, A . S.,Tolmachev, V. S . , U k r . Khim. Z h . 27.732 (1961). (39) Babko, A. K.,’C:halaya, ‘2. I., Zh. Analit. Khim. 17, 286 (1962). (40) Bahko, A. K., bolkova, A. I., Zh. Seorgan. Khim. 7 , 2345 (1962). (41) Babko, A. K., Zharovskii, F. G., Zacod. Lab. 28, 1287 (1962). (42) Baes, C. F., &\ucl. Sei. Eng., 16, 405 (1963). (43) Bagreev, V. V., Zolotov, Y. A., Zh. .Analit. Khim. 17, 852 (1962); Ibid., 18, 425 (1963;). (44) Baldwin, W .H., Higgins, C. E., J . I n o r g . .Vucl. Chem. 17, 334 (1961). 14.5’1 I3alt. S.. Van Dalen. E.. .Inal. Chim. \ - -

27. 1 i 8 11962’1 --, (46) Rankhvskii, Y. ,AL,, Ievin’sh, A . F., Luksha, E. O., Boc,hkans, P. Y., Zh. Analit. Khim. 16, 150 (1961). ( 4 7 ) I3ankovskii, Y. A , , hlezharaups, G. P., Ievin’sh, A . F., Ibid. 17, 721 \ - -

(1962). (48) Rankovskii, Y. A , , Tsirule, Y. A . , Ievin’sh, A . F., I b i d . 16, %562(1961). (49) Bankovskis, J., Ievins, A , , Kuznetsov, V. I., Khim. Tekhnol. i Primenenie Proizv. Piridina i Khinolina. Sbornik 271

(loeo).

(50) 13ankovskis, J., Circule, J., Levins, A,, Latvijas P S R Zi,iatnu Akad. Vestis Kim. Ser. 1 , 53 (196:2). (51) Harbieri, \V., Stoppa, C., Lorenzini, L., Italian Atomic Energy Commission R e d CNEN-135. (1962’1. (-52) hircza. L.. Sbmmer., L.., Z . Anal. --\ - - I

~

Chem. 192,

TO;

(1%3).

(,53) Baroncelli, F., Scibona, G., Zifferero, M., J . Inors. .Yucl. Cabem.24,405 (1962). ( 5 4 ) Zbid., p.”541. (55) Ihid., p. 547. (56) Rasargin, S . X., ‘I’kavchenko, A. X., Stupa, L. R., Borodaevskaya, L. S . , Zavod. Lab., 28, 1311 (1962). ( 5 7 ) Rautista, R. G., Hard, R. A., Trans. A I J f E 257, 124 (1963). (58) Raybarz, R . n.,Lenze, R . E., .Vuclear Sei. Eng. 1 l ! 90 (1961). (59) Baybarz, R. D., Weaver, B., U. S. htomic Energy Conim. Rept,s. ORNL3185 (1961); ORNL-3244 (1962). (60) Beard, H. C., Ljerly, L. A . , ANAL. CHEM.33, 1781 (1961). (61) Belew, W. L., Wilson, G. R., Corbin, L. T., Ihid., 33, 886 ( 1961). (62) Relopolskii, M. I:., Gumbar, K. K., Popov, 5 . P., ZaLod. Lab., 28, 921 (1982). (63) Bennett, H., Earcley, R. P., Hawley, W. G,) Thwaites, I., Trans. Brit. Ceram. Soc. 61, 433 (1962). (64) Berg, E. W , , Lau, E. Y., Anal. Chim. Acta 27, 248 (1962). (65) Eetteridge, D., Fernando, Q., Freiser, H., ASAL.CHEM.3 5 , 294 (1963). (66) Betteridge, D., Todd, P . L., Fernando, &., Freiser, H., Ibid., 35, 729 (1963). (67) Betteridge, D., TVest, T. S., Anal. Chim. ..Ida 26, 101 (1962). (68) Beyerrnann, K., % . Anal. Chem., 183, 91 (1961). (69) Ibl’d., 190, 4 (1962). ( 7 0 ) Biermann, W. J . , IfcCorkell, R . , Can. J . Chem. 40, 1368 (1962). (71) Blackburn, R., Peters, B. F. C . , A N . 4 L . C H E M . 35, 10 (1963).

(72) Blank, A. B., Bulgakova, A . M., Sizonenko, S . T., Zh. Analzt. Khim. 16, 715 (1961). (73) Blank, A. B., Bulgakova, A. hl., Sizonenko, S . T., Metody A4nalata Veshchestv, Osoboi Chistoty i Monokrostallov, Gos. Kom. Sou. Min. S S S R p o Khim. 1962, 1, 63. (74) Blank, G. R., Heller, H . A., Sorelco R e p . , ( 9 ) 23 (1962). (75) Blyum, I. A . , Dushina, T. K., Zavod. Lab. 28, 903 (1962). (76) Blyum, I. A , , Dushina, T. K., Semenova, T. V., Shcherba, I. Y., Ibid., 27, 644 (1961). (77) Blyum, I. A , , Shebalkova, G. N . , Tr. Kazakhsk. Sauchn. Issled. Inst. Mineral. Syr’ya 5 , 265 (1961). (78) Blyum, I. A , , Vasil’eva, A. P., Skrinskaya, R . P., I b i d . , 5 , 260 (1961). (79) Boase, D. G., Foreman, J. K., Drummond, J. L., Talanta, 9, 53 (1962). (80) Bobikov, P. I., Gindin, L. M., Izv. Sibarsk. Otd. Akad. iVauk S S S R 6, 46 (1962). (81) Bock, R., Beilstein, G. M.,2. Anal. Chem., 192, 44 (1963). (82’1 Bock. R.. Deister. H.. Saturtviss. 14, 496 i1963). (83) Bock, R., Hummel, C., 2. Anal. Chem., 198, 176 (1963). (84) Bock, R., Janz, J., Ibid., 198, 315 (1963). (85) Bode, H., Arnswald, W., 2. Anal. C’hem. 185, 179 (1962). (86) Bode, H., Tusche, K-J., Wahrhausen, H.-F., Ibid., 190, 48 (1962). (87) Boirie, C., Bosc, D., Hugot, G., Platzer. R.. Acta Chim. Acad. Sci. Huns., .. 33, 281 (1662). (88) Boirie, C., Platzer, R., Ibid., 33, 275 (1962). (89) Bol’shakov, K. h., Seryakov, G. V., Zh. Priklad. Khim. 34, 1021 (1961). (90) Bonchev, P. R., Godishnik Sojiskiya Unav. Fiz. Mat. 54. No. 3. 179 (1961). (91) Borovikova. A: L.. T r . Kazakhsk. IVauchn. Issled. Inst. ‘Mzneral. Syr’ya, 6 , 196 (1961). (92) Brauer, E., Hogfeldt, E., J . Inorg. Nucl. Chem., 23, 115 (1961). 193) British Standards Institution, B. S. *~ 1428-: Part L1: 1963. (94) Brooks, R. R., Anal. Chim. Acta, 24, 456 (1961). (95) Brown, W. B., Pope, G. W., Steinbach, J. F., Wagner, W. F., J . Inorg. Nucl. Chem. 25, 429 (1963). (96) Bryan, S. E., Good, pvl. L., Ibid., 21, 339 (1961). (97) Bryan, S. E., Good, M . L., Maus, C:. J., Ibid., 25, 595 (1963). (98) Budesinsky, B., Gurovic, J., Collection Czechoslov. Chem. Communs. 28, 1154 (1963). (99) Burke, K. E., Sakurai, H., O’Laughlin, J. W.,Banks, C. V., U. S. Atomic Energy Comm. Rept. IS-284 (1961); IS-560 (1962). (100) Busev, A. I., Akimov, V. A . , Zh. Analit. Khim. 17, 979 (1962). (101) Ibid., 18, 610 (1963). (102) Busev, A. I., Akimov, V. K., Zh. h’eorgan. Khim. 7, 2071 (1962). (103) Busev, A. I., Baxhanova, L. A., Ibid., 6 , 2210 f196l). (104) Ibid., p. 2805. (103) Busev, .4. I., Borzenkova, N. P., Zavod. Lab. 27, 13 (1961). (106) Busev, A . I., Chang, F., Zh. Analit. Khim. 16, 578 (1961). (107) Busev, A. I., Huang, 31. T., I b i d . , 17, 1091 (1962). (108) Busev, A . I., Huang, 51,T., Ibid., 18, 360 (1963). (lO!l) Busev, A . I., Ivanov, V. M.,I r v . F’yssh. 7,-cheb. Zavedenii, Khim. i Khim. Tekhnol. 4,914 (1961). (110) I b i d . , 5, 202 (1962). \

-

\ - - ,

11) Busev, A. I., Ivanov, V. AI., Talipova, L. I,., Z h . ilnalit. K h i m , , 17, 380 (1962). 12) Busev, A . I., hIintyao, Kh., Zh. S e o r g a n . Khim., 7 , 88 (1!)62). 13) Busev, .4.I., S a m , .4.,Zh. Analit. Khim. 1 8 , 5 0 0 (1‘363). 14) Busev, A . I., Skrebkova, I,. M . , Ibid.. 17. 56 (1962). 15) kusev, A . I.,’ TaIipova, L. L., Ivanov, V. AI., Zh. V s r s , R h i n i . Obshch. in. D . I . Wendeleecn, 6 , 30X (1M1j. (116) Butler, F. E., .~sAI.. CHEM.35, 2069 (1963). (117) Cddararu, H., I l w . Chim. (Rurharest) 14, 39 (1963). (118) Camera, V., .\fed. Lavoro 52, 59 (1961). (119) Cameron, A . J., Gibson, S . A , , Anal. Chim. A c t a 25, 24>429 (1961). (120) Campbell, If. H., SAL. CHEM. 35, 20.52 (1963). (121) Carlstroni, C . G., Palvarinne, V., Jernkontor. .-inn. 146, 453 (1962). (122) Carnes, IT.J., ]lean, J . A , , SAL. CHEM.,33, 1961 (1961). (123) Catoggio, J. h., Rogers, I,. B., Talanta 9 . 377 (1962). (124) Ibid., ’p. 389. (125) Cattrall, R. W.) rlustrwliun J . Chem., 14, 163 (1961). 1126) Cerrai, E., Testa, C.. Anal. C‘him. ilcta 26. 204 (1962). (127) Cerrai, E., Testa, C , Energzo .l-ucleare 8, 737 (1961). (128) Chang, T., J . Chinese C‘hem. Soc., Formosa, 7 , 33 (1080). (129) Chekalin, 5’. V.> .\.azichn. Tr. Irkutskii .Yauchn. Issled. Inst. IZedkikh J f e t a l 1961, S o . 10, 93.

(130) Chen, Y., J . Chinese Chem. Soc., Formosp, 6 , 118 (1!160). (131) Chen, Y., Sun, P-J., Chou, F., J . Chinese Chem. Soc., Formosa, 8 , 66 i1961). (132) ‘Cheng, Cheng, K . L L.,, Talanta 9 , 7 8 9 (1962). S Atomic Energy (133) Chester, C. V., C . S. Comm. Ilept. ORNL-3109 (1961). Corigliano, F.. Corialiano. F., (134) Chiantella, L. I’., .Inn. Chem. (Rome) 52, 813813 (1962). (135) Chiba, T., J a p a n Analyst 10, 980 11961 \ - - - - ’,1. (136) Chira, A . , R e v . Chim.,Nucharest, 13, 494 (1962). (137) Chmutova, M. K., Petrukhin, 0 . M.. Zolotov. Y. A . . Zh. Analit. Khim. 18,’ 388 (1963). 138) Chudinov, E. G., Takovlev, ( i , S . , Radiokhimiya, 4, 875 (1962). 139) Chu-Ju, H., H7ia Hsueh Tung Pao 1963 (3)) 183. 140) Chwastowska, J., Chem. Anal. ( W a r s a w ) 7 , 8.59 (1962) 141) Claasen, A . , Chem. IVeckhl., 58, 33 (1962). 142) Clingman, A . L., Parrish, J , R., J . i t p p l . Chem. 13, 193 (1963). 143) Coleman, C. F., Rlake, C. A , , Brown. K. B.. Talanta 9 . 297 f 1962). (144) Co’llins, A. G , AsAL. CHEM.’35, 1258 (1963). (145) Colton, R., Atomic Energy Research Estab. (Gr. Brit.) Rept. R3823, (1961). (146) Corhett, J . A , , .Ifrtrtllirrgia 65, 43 (1982). (147) Corsini, A , Fernando, Q., Freiser, H., A N A L . CIIEM.35, 1421 (1963). (148) Corsinin, A , Fernando, Q , , Freiser, H., Talanta 1 1 , 68 (19ii1). (139) Courtot-Coupez. J . , (;uertier, P., H u l l . Soc.

f‘hirn. Frctncp.

10.

1042

(1961 ) 1.50) Croather. 1’. KeniD. 1) \ I . .tnnl

VOL. 36, NO. 5 , APRIL 1964

109 R

154) Cyrankowska, M.. Chem. Anal.. Warsaw,6,649 (1961). 155) Danzuka, T., Kagaku (Kyoto) 16, 686 (1961). 156) Davis, M. W., Jr., Jennings, A. S., “Equipment for Processing by Solvent Extraction,” in “Nuclear Sei. Technol.,” V. L. Parsegian, J . F. Flagg, ed., pp. 271-303, Academic Press, New York, 1961

l i j j D e , A. K., Khopkar, S. M j J . Sci. Znd. Res. 21A, 131 (1962). (158) Zbid., p. 195. (159) De, ,4. K., Majumdar, S. K., Anal. Chim. Acta 27, 153 (1962). A . K., Rahaman, M.S., Zbid.,

(162) Zbid.,’p.1095. (163) Dean, J . A , , Simms, J . C., Zbid., 35, 699 (1963). (164) de Bruin, H. J., Kairaitis, D., Temple, R . B., Australian J . Chem. 15, 457 (1962). (165) de Bruin, H. J., Temple, R. B., Ibid., 15, 153 (1962). (166) I k h n , H., Gutmann, V., Schober, G., Monatsh. Chem. 93, 877 (1962). (167) Denisov, E. I., Zh. Vses. Khim. Obshchestva im D. I . Mendeleeva 7, 706 (1962). (168) de Pool. D. H., Cadavieco, R. D., .Acta Cient. Venezolana 13, 157 (1962). (169) Deptula, C., Korpak, W., Nukleonika 6, 49 (1961). (170) Desai, 51. W., Murthy, T. K. S., dnalyst 88, 223 (1963). (171) Deyris, M., Albert, P., Mem. Sci. Rev. Metall. 59, 14 (1962). (172) Dietz, R. J., Mendez, J., Irvine, J. W., Jr., Radioisotopes Phys. Sci. Ind. Proc. Conf. Use, Copenhagen, 1960, 415 (Pub. 1962). (173) Dinsel, D. L., Sweet, T. R., ANAL. CHEM.35, 2077 (1963). (174) Tlinstl, G., Hecht, F., Mikrochim. Acta 1962, 321. (175) Dizdar, Z. I., Rajnvajn, J . Bull. Inst. Sirclear Sci. “Boris Kidrich” (Belgrade) 1 1 , 181 (1961). (176) Dombrovskii, A. V., Zolotukhina, K. G., Ganushchak, S . I., Ckr. Khim. Zh. 28, 469 (1962). (177) Dono, T., Nakagawa, G., Hayashi, M., J . Chem. SOC. Japan 81, 1703 (1960). (178) Dono, T., Sakagawa, G., Wada, H., Japan Analyst 1 1 , 654 (1962). (179) Dozinel, C. M . , Chim. Anal. 44, 436 (1962). (180). Drapkina, D. A., Brudz, V. G., Smirnova, K. A., Doroshina, M. I., Xh. Analit. Khim. 17, 940 (1962). (181) Duswalt, J. 31. S . , Dissert. Abstr. 23, 813 (1962). (182) Duswalt, J. M., Mellon, M. G., AXAL.CHEM.33, 1782 (1961). (183) Dutt, 9. K., Sen Sarma, K. P., J . Indian Chem. SOC.39, 20 (1962). (181) Duyckaerts, H. G., Dreze, P., Bull. SOC.Chim. Belges 71, 306 (1962). (18.5) Ilymov, A. M., Koreneva, 5’. V., Saitch. Dokl. Vyssh. Shkoly Metallurgiya 1958, S o . 3, 269. (186) Ilymov, A. M., Kozel, L. Z., Izvest. Vysshikh I’cheb. Zavedenii, Chernaya Jfet. 1961, No. 5, 192. (187) Dyrssen, D., A . C. S. Analytical Symposium, Tucson, Arizona, June 1963; ASAI,. CHEM.35, 1994 (1963). (158) l)yrssen, TI., dcta Chem. Scand. 15, 1811 (1061). (18!)) J>vrssen, D., Trans. Roy. Inst. ?‘~chn&. NO. 188 (1962). (190) Ilyrssen, D . , Ekherg, S., A c t a Chem. Scanrl., 16, 785 (1962). f l n l , Tkrssen., D.., Hav. L. D.. Zbid.., 14. . 1091 (“1960). (102) Zbid., p. 1100. I

,

~

110 R

ANALYTICAL CHEMISTRY

(193) Dyrssen, D., Heffez, M., Sekine, T., J . Inorg. .Vuclear Chem. 16, 367 i 1961’i. (194) Dyrssen, D., Lumme, P., Acta. Chem. Scand. 16, 1785 (1962). (195) Dziomko, V. M., Dokl. Akad. Y a u k . SSSR. 134, 1091 (1961). 1196) Dziomko. V. M.. Dunaevskava. ’ K. A., Acta Chim.Acad. Sci. Hung., 32; 223 (1962). (197) Dziornko, V. M., Rudenko, N. P., Kremenskaya, I. N., Zh. -Veorgan. Khim. 8, 655, (1962). (198) Ibid., p. 1278. 1199) Eberle. 4. R.. ANAL.CHEM.35.

(230) Gere, D. R., Meloan, C. E., J . Inorg. .Vucl. Chem. 25, 117 (1963). (231) Gershuns, A. L., Tr. Kommh. Analit. Khim. Akad. S a u k SSSR 11. 28 (1960). (232) Gibalo, I . M., Alimarin, I. P., Davaadorzh, P., Dokl. Akad. Nauk SSSR 149, (6), 1326 (1963). (233) Giganov, G. P., Pnomarev, V. D., Tr. Inst. Met. i Obogashch., A kad. 2Vauk Kaz. SSR 5. 119 11962). (234) Zbid., p. 125. (235) Giganov, G . P., Ponomarev, V. D., Khan, 0. A., Razdelenie Blizkikh PO Svoistvam Redkikh Metal., 1962, 79. (236) Gilbert, D. D., Sandell, R. B., J. (200) Eberle, A. R., Lerner, M. W., Ibid., Znorg. .Vucl. Chem. 24, 980 (1962). 34, 627 (1962). (237) Gindin, L. M., Bobikov, P. I., (201) Edge, R. A , , Anal. Chim. Acta Kouba, E. F., Bugaeva, A. V., Zh. 27, 396 (1962). A’eorgan. Khim. 5, 1868 (1960). (202) Edge, R. A., Dunn, J. D., Ahrens, (238) Gindin, L. M., Bobikov, P. O., L. H.. Ibid.. 27. 551 11962). Patyukov, B. M., Rozen, A. M., Kouba, (203) Efendiev, I. G. K.,Alekperov, R. E. F., Bugaeva, A. V., Ekstraktsiya, A,, Azerb. Khim. Z h w . 3, 117 (1962). Teoriya, Primenenie, Apparatura, Sb. (204) Egli, R. A,, Z. Anal. Chem. 194, Statei, 2, 87 (1962). 401 (1963). (239) Gindin. L. M..Bobikov. P. 1.. (205) Erdos, J., Mikrochim. Acta 1961, Rozen, A. M., Dokl.’Akad. S a u k SSSR 515. 128,295 (1959). (206) Eremin, G. K., Kamenev, A . I., (240) Gleit, C. E., Chemist-Analyst 51, Martynenko, L. I., Zh. iVeorgan. Khim. 20 (1962). 6, 1487 (1961). (241) Glotko, E. D., Golovin, E. I., (207) Eshelman, H. C., Dean, J. A,, Malakhov, V. V., Savichev, E. I., ANAL. CHEM.33, 1339 (1961). Tr. Altaisk. Gorno-Metallurg. .Vauch.(208) “Extraction Methods in Analytical Zssled. Znst. 11, 162 (1961). Chemistry,” Symposium Moscow, Dec. (242) Gluck, V., Ioan, S., Rev. Chim., 1961, Tr. Kommis. PO Analit. Khim. Bucharest 13, 551 (1962). 14 (1963). (243) Golden, G. S., Clark, H. M., J . (209) Facrhini, A , , Gerontopulos, P., Phys. Chem. 65, 1932 (1961). Rigali, L., Energia Sucl. 9,681 (1962). (244) Golosnitskaya, V. A . , Petrashen, (210) Fairbrother, F., Flitcroft, K., J . V. I.. Zh. Analit. Khim. 17. 878 (1962). Less-Common Metals 4. 504 11962). (245) Golovatenko, R. T., Samoilov, 0. (211) Faye, G. H., Inman, W: R., : ~ N A L . Y., Radiokhimiya 4, 25 (1962). CHEM.35, 985 (1963). (246) Golovina, 4 . P., Tiptsova, V. G., (212) Fedorov, A. rl., Ozerskaya, R. A., Zh. Analit. Khim. 17, 524 (1962). Malinina, R. D., Sokolovz, Z. M., (247) Goltermann, H. L., Wurtz, I. M., Linkova,’F. V., Sb. T r . Tsentr. Nauch.Anal. Chim. Acta 25, 295 (1961). Zssled, Znst. Chern. Metallurg., (19), (248) Golub, ,4. M., Romanenko, L. I., 7 (1960). Zh. .Veorgan. Khim. 5, 1085 (1960). (213) Flagg, J. F., “Solvent Extraction (249) Golutvina, M. M., Levin, V. I., Processes Based on Hexone” in “NuTikhomirova, E. A , , T r . Taskkent. clear Sci. Technol.”, V. L. Parsegian, Konf. po Mirnomu Ispol’zovan. At. Energii, Akad. ‘Vauk Uzbek. SSR 2, J. F. Flagg ed., pp. 249-70, Academic 402 (1960). Press, Kew York, 1961. (214) Fleetwood, J. G., Chem. Process Eng. (250) Good, M. L., Bryan, S. E., Holland, 43, 106 (1962). F. F., Jr., Maus, G. J., J . Znmg. Sucl. (215) Fletcher, J. M., Scargill, D., WoodChem., 25, 1167 (1963). head, J. L., J . Chem.(Soc. 1961, 1705. (251) Good, M. L., Bryan, S. E., Juge, (216) Fomin, V. V., Chemistry of ExF., Jr., Inorg. Chem. 2 , 963 (1963). traction Processes,” translated from (252) Good, M. L., Holland, F. F., Jr., J . Inorg. Sucl. Chem. 24, 1683 (1962). Russian, Israel Program for Scientific Translations, Jerusalem, 1962. (253) Goto, H., Kakita, Y., Japan Analyst (217) Fomin, V. V., Kartushova, R. E., 10, 904 (1961). Maiorova, E. P., Ekstraktsiya, Teoriya, (254) Goto, H., Kakita, Y., J . Chem. SOC. Primenenie, Apparatura, Sb. Statei, Japan 82, 1212 (1961). (255) Goto, H., Kakita, Y., Namiki, M., No. 2, 37 (1962). (218) Fomin, V. V., Maslova, R. N., J . Japan Inst. Metals, Sendai 25, 178 Zbid., 19 (1962). (1961). (219) Fomin, V. V., Morgunov, A . F., (256) Goto, H., Kakita, Y., Namiki, M., Zh. .Yeorgan. Khim. 5, 138.5 (1960). Zbid., 25, 181 (1961). (257) Goto, H., Kakita, Y., Namiki, M., (220) Fomin, V. V., Morgunov, A. F., Korobov! I. V., Ibid., 5, 1846 (1960). .Vippon Kagaku Zasshi 82, 580 (1961). (221) Fomin, V. V., Potapova, V. T., (258) Goto, H., Sudo, E., Japan Analyst 9, 213 (1960). Zbid., 8, 990 (1963). (222) Forster, - W. rl., Brazenall, P., (259) Zbid., p. 171. Bridge, J., Analyst 86, 407 (1961). (260) Ibid., p. 175. (223) Fowler, E . W., Ibid., 88,380 (1963). (261) Zbid., p. 456. (224) Fujimoto, Jf., Xakatsukasa, Y., (262) Ibid., p. 463. (263) Ibid., p. 1213. Anal. Chim. Acta 27, 373 (1962). (264) Goto, H., Takeyama, S.,J . Japan (225) Furrer, H., Mitt. Lebensmitt Hyg., Znst. Metals, Sendni, 25, ,588 (1961). Bern, 52,286 (1961). (226) Gahler, A . R., Hamner, R . M . , (265) Gottschalk, G., Z. Anal. Chem. 194, Shubert, R. C., ANAL.CHEM.33, 1937 321 (1963). (266) Grabner, H.-J., Ibid., 182, 401 (1961). 1227) Gainer, A. B.. Dissert. Abstr.,, 23.. (1961). 47 (1962). (267j Green, H., Metallurgia, Manchr., (228) Galliford, D. J. B , Sewman, E. J., 65, 30.5 (1962). (268) Green, R. W., Alexander, P. W., iinalyst 87, 68 (1962). J . Phvs. Chem.. 67.905 (1963). 1229) Geilmann. W.. Tolp. G.. Glastech. Rer., 34, 253’(1961); ,:3 85; 138, 281 (269) Gkenhalgh, R., Riley, J.’ P., Anal. Chim. Acta 27, 305 (1962). (1962). \ - - - - I



~I

(270) Grisevich, A . N., Kladnitskaya, K. B.. Zavod. Lab. 27, 1343 (1961). (271) Gromova, M. I., I’erelyaeva, G. N., Vestn. Mosk. C‘niv., Swies ZZ, Khim. 18, 1, 58 (1963). (272) Grubitsch, H., Heggeboe, T., Monatsh. Chem. 93, 274 (1962). (273) Grzhegorzhevskii, A. S., T r . Kommis. Analit. Khim. Akad. S a u k SSSR 11, 165 (1960). (274) Guenzler, G., J . Prakt. Chem., 19, 64 (1962); Zbid., 19,63 (1962). (275) Gustin, V. K., Smeet, T. R., ANAL. CHEM.35, 44 (1963). (276) Zbid., p. 1395. (277) Guvernator, G. C., 111, ChemistAnalyst 51, 52 (1962). (278) Hagiwara, K., Sumki, H., Muraki, I. J a an Analyst 10, ,507 (1961). (279)) d l l a b a , E., Azzam, R . A . I., Z . Anorg. Allgem. Chem., 314, 53 (1962). (280) Halpern, M., Kim, T., Li, S . C., J . Znorg. .Vucl. Chem., 24, 1251 (1962). (281) Handley, T. H., Amer. Nucl. Sec. Proc. of Solv. Extn. F8ymp.,1962. (282) Handley, T. H., Ax.4~.CHEM.35, 991 (1963). (283) Zbid., p. 1163. (284) Handley, T. H., Dean, J. A,, Zbid., 33, 1087 (1961). (285) Zbid., 34, 1312 (lC62). l . Ena., 16,. 1286) Hardv. C. J.. ; Y ~ ~ cSci. 401 (1963”): (287) Hardy, C. J., Scargill, D., J . Znorg. h u c l . Chem. 17, 347 (1961). (288) Hardy, C. J., Greenfield, B. F., Scargill, D., J . Ciiem. SOC. 1961, _

,

~

174

(289j’Hashimoto, S., Tmaka, R., Japan Analyst 8, 564 (1959). (290) Healy, T. V., J . Znorg. Sucl. Chem. 19, 314 (1961). (291) Zbid., p. 328. (292) Healy, T. V., Lv?kcl.Sci. Eng. 16, 413 (1963). (293) Healy, T. V., Solvent Extraction Symposium, Gatliribu-g, Tenn., Oct. 23, 1962. (294) Healy, T. V., ?eppard, D. F., Mason, G. W., J . Zrorg. Sucl. Chem. 24, 1429 (1962). (295) Healy, W. B., WcCabe, W . J., .4KAL. CHEM.35, 211:’ (1963). (296) Hellwege, H. E., tichweitzer, G. K., Anal. Chim. Acta 28, 236 (1963). (297) Zbid., 29, 47 (1963). (298) Helman, A. H., U. K. Atomic Ener y Authority Rept. PG 178, (1961). (299) ercules, D. M., Talantu 8, 485 (1961). (300) Herrmann, M.. Z . Anal. Chem., ‘ 190, 78 (1962). 190. ’ (301)) ‘Her (301 Hertel, G. R., Clark, H . M.,J. Phys. Chek., Chem., 65, 1630 1930 (1961). (302) Hibbits, J. O., Williams, R . T., Anal. Chim. Acta 26, 363 (1962). (303) Higgins, C. E., Baldwin, W. H., J . Znorg. ,Vucl. Chem. 24, 415 (1962 (1962). (304) Hirano, S., Mizuike, A., Iida, Y., Japaz, Analyst 12, 61 Hasegawa, Y., Japal11963). ~~, (305) Hirokawa, K., Sei Repts. Res. Znst., Tohoku L‘niv., Ser. A , 13, 426 (1961). (306) Zbid., 14, 112 (1962). (307) Hitchcock, R. B., Dean, J. A , , Handley, T. H., A N A L . CHEM.35, 254 (1963). (308) Hobart, E . W., Hurley, E. P., Anal. Chim. Acta 27, 144 (1962). (309) Hoffman, E . , 2 . ilnal. Chem., 182, 193 (1961). (310) Hollstein, U., Hoogma, A . H. XI., Kooi, J., Health Phys., 8, 49 (1962). (311) Honaker, C. R., Freiser, H., J . Phys. Chem. 66, 127 (1962). (312) Hoshino, Y., Japatz Analyst 11, 1032 (1962). (313) Howard, 0 . H., Weber, C. W., AKAL.CHEM.34,530 (1962). (314) Huff, L. C., Lwering, T. G.,

If

\ - -

Lakin. H . W.. Mvers. A. T.. Econ. Geol., ’56, 855 (1961) (315) Huffman, C , Skinner, D L , U S Geol Surv Profess Paper 424-B, 330 (1961). (316) Hulanicki, A , , Talanta 9,549 (1962). (317) Hunter, W. L., Higbie, K. B., U. S. Bur. Mines Rept. Invest. No. 5918 (1961). (318) Hure, J., Rastoix, M., Saint-James, R., ilnal. Chim. Acta 25, 118 (1961). (319) Ichiryu, A,, Sawada, T., Japan Analyst !2, 429 (1?63). (320) Inarida, M., Rlka Guku Kenkyusho Hokohu 37, 426 (1961). (321) Ionin, M. V., Kurina, N. V., “Extraction bfethods in Analytical Chemistry,” T T . Kommis. po Analit. Khim., ,14, 87 (1963). (322) Irving, H., Cox, J. J., J . Chem. SOC.,1961, 1470. (323) Irving, H., Edgington, D. N., J . Znorg. LYucl. Chem. 20, 314 (1961). (324) Zbid., 21, 168 (1961). (325) Irving, H., Mellor, D. H., J . Chem. SOC.1962, 5222, 5237, 5245. (326) Irving, H., Ramakrishna, R . S., J . Chem. SOC.1961,2118. (327) Ishibashi, M., Japan Analyst 11, 426 (1962). (328) Ishihara, Y., Kishi, H., Komuri, H., Zbid., 11,932 (1962’). (329) Ishii, D., Takeuchi, T., Ibid., 10, 1391 (1961). (330) Ishimori, T., Kimura, K., Zbid., 11, 85R (1962). (331) Ishimori, T., Kimura, K., Frifino, T., Murakami, H., J . Atomic Energy Soc. Japan 4, 117 (1962). (332) Ishimori, T., Kimura, K., Nakamura, E., Akatsu, J., Kobune, T., Xippon Genshiryoku Gakkaishi, 5, 533 (1963). (333) Ishimori, T., Sakamura, E., Kobune, T., Japan Analyst 12, 261 (1963). (334) Ishimori, T., Sommour, H. M., J . Atomic Energy SOC. Japan 3, 344

Chniielowska, M., J . Znorg. Nucl. Chem. 20, 106 (1961). (355) Johnson, W. c . , Analyst 88, 253 (1963). (356) Johnson, C. A., Leonard, M. A., J . Pharm. Pharmacol. 13, 164T (1961). (357) Jones. P. 11.. Newman. E. .J.. Analyst 87, 66 (1962). (358) Zbid., p. 637. (359) Jungreis, E., Lerner, A,, Anal. Chim. Acta 25, 199 (1961). (360) Kahihana, H., Sakagawa, M., Kagaku S o Ryoiki 16, 100 (1962). (361) Kakita, Y., Goto, H., ANAL.CHEM. 34. 618 11962). (362) Kakita, Y . , Goto, H., Sci. Rep. RITU, A-15, l(1963). (363) Zbid., p. 134. (364) Kaplan, G. E., Moiseev, S. D., Gavrilin, V. M., Semenov, G. I., Vorotilin, V. P., Ekstraktsiya Teoriya, Primenenie, Apparatura, Sb. Statei. 2, 154 (1962). (365).Kaplin, G. E., Yagodin, G. A,, hloiseev, S. D., Dmitrieva, L. P., Mostovaya, 0. A., Chekmarev, A. M., Sevost’vanova. E . N.. Udovenko. V. F.. Razdelenie Blizkikh Po Svoistvam Red: kikh Metal. 1962, 28. (366) Karalova, Z. K., Nemodruk, A. A,, Zh. Analit. Khim. 17, 985 (1962). (367) Zbid., 18, 615 (1963). (368) Karpacheva, S. M., Adamskii, N . M., Borisov, V. V., Radiokhimiya 3, 272 (1961). (369) Kataev, G. A., Shpaer, I. S., Zzv. Vysshikh C‘chebn. Zavedenii, Khim. i Khim. Tekhnol. 5, 901 (1962). (370) Katz. S. A., Dissert. Abstr. 23. 1182 -

1

~

(lQ)Al\.

(335) Zbid., p. 410. (336) Ishimori, T., Watanabe, K., Fujino, T . , Ibid., 3, 507 (1961). 1337) Ishimori. T.. Watanabe. K.. Kimura. K..’Zbid.. ’2. 750 1 1860).’ (338) Ito,’ S.,’ Hayashi, K., Uhumasa, Y., Japan Analyst 12, 257 (1963). (339) I v a d o v a , A. I., T r . Kazakh. Nauch.-Zssled. Znst. Mineral. Syrya, 3, 328 (1960). (340) Ivankova. A. I.. Tr. Kazakh. Nauch.-Issled.’ Znst. hfineral. Syr’ya 5, 245 (1961). (341) Ivankova, A. I., Blyum, I. -4., Zavod. Lab. 27 371 (1961). (342) Iwamoto, T., Bull. Chem. SOC.Japan 34, 605 (1961). (343) Iwamoto, T., Fujimoto, M . , Anal. Chim. Acta 29, 282 (1963). (344) Iwasaki, I., Utsumi, S., Kang, C., Bull. Chem. SOC.Japan 36, 325 (1963). (345) Jackson, H., Phillips, D. S.,Analyst 87. 712 (1962). (346j Zbid.; p. 718. (347) Jackwerth, E., Arch. Pharm., Berlin, 295, 779 (1962). (348) James, A. T., Analyst 88,572 (1963). (349) Jankovskv. J.. Pavlikova, E.. Sb. Praci l‘stavu”’Pr0’ Vyzkum Rud,‘ ZV, 229 (1962). (350) Jarboe. C. H.. Chemist-Analvst 50. ‘ 120 (1961): (351) Jasim, F., Magee, R. J., Wilson, C. L., Mikrochim. Acta 1962, 160. (352) Jaskolska, H., Mincaewski, J., Acta Chim. Acad. Sei. Hung., 32, 9 (1962). (353) Jensen, B. S.,Acta Chem. Scand. 13, 1890 (1959). (354) Jezowska - Trzebiatowska, B., ~

(375) Kawahata, M., Mochizuki, H., Misaki, T., Japan Analyst 10, 15 (1961). (376) Zbid., 11, 448 (1962). 1377) Zbid.. D. 1017. i378j Kawase. A , . Zbid.. 11. 1162 (1962). (379) Kayssi,’ M’. A , , ’ Magee, R. J., Wilson, C. L., Talanta 9, 125 (1962). (380) Keder, W. E . , J . Znorg. ,Yuc1. Chem. 24, 561 (1962). (381) KemD. D. AI., Anal. Chim. Acta 27. 480 (11862). (382) Kemp, I>.‘M.,U. K. Atomic Energy 4uthority Rept. AERE-R 4119, (1962). (383) Kertes, .4.,Beck, A,, J . Chem. SOC. 1961, 5046. (384) Kiba, T., Ohashi, S., Maeda, T., Bull. Chem. SOC.Japan 33, 818 (1960). (385) Kiba, T., Miura, A , , Sugioka, Y., Zbid., 36, 663 (1963). (386) Kida, K., Abe, M., Nishigaki, S., Kobayashi, K., Japan Analyst 9, 1031 (1960). (387) Kida. K.. .4be. M . . Sishieaki.. S.,, Kusaka, ?.,Zbid., 10, 663 (196i). (388) Kiesl, W., Bildstein, H., Sorantin, H., Mikrochim. Zchnolanal. Acta 1963, 1.51. (389) Kim, C. K., Meinke, W .W., ANAL. CHEM. 35, 2135 (1963). (390) Kimura, K., H u l l . Chem. SOC. J a p a n 3 3 , 6 3 (1961). (391) Kimura, K., ’Vippon Genshiryoku Gakkaishi 2 , 585 (1960). (392) Kiss, A , , Magy. Kem. Folyoirat 68, 106 (1962); 69, 131 (1963). (393) Kladnitskaya, K. B., Griuevich, A . S . , L*kr. Khim. Z h . 27, 803 (1061). (394) Kletenik, Y. B., Izv. Sibirsk. Otd. A k a d . .Yauk S S S R 6, 59. \ - -

VOL. 36, NO. 5 , APRIL 1964

~

111 R

(395) Kletenik, Y. B., U.S.S.R. Pat. 142,803 (2,8/12/61). 1396) Kletenik, Y . B., Zh. Analit. Khim. ' 17; 868 (1962). (397) Ibid., p. 1063. (398) Ibid., 18, 66 (1963). (399) Kliniov, I. T., Gidrokhim. Materials 34, 128 (1961). (400) Knapp, J. R., Van Aman, R. E., Kanzelmeyer, J. H., ASAL. CHEM.34, 1374 (1962). (401) Kocher, J., Chim. Anal. 44, 161 (1962). (402) Kolikov, V. M.,Perovskii, A. P., Zh. Priklad. Khim. 34, 2605 (1961). (403) Kolotyrkin, V. M.,Mikolaev, X . I., Zh. Fir. Khim. 36, 2540 (1962). (404) Koniatsu, S., J . Chem. SOC.Japan 82, 1064 (1961). (405) Kononenko, L. I., Poluektov, N. S., Zh. .Yeorgan. Khim. 7 , 1869 (1962). Health Phys., (406) Kooi, J . , Hollstein, E., 8, 11 (1962). (407) Korovin, S. S., Dedich, K., Lebedeva. A. S . , Reznik, A . M . , Zh. .Yeorgan. k h i m . 7 , 2475 (1962). (408) Korovin, S. S., Lebedeva, E. N., Reznik, A . XI., Komissarova, L. N., Kuznetsova, G . P., I z v . Vysshikh l'chebn. Zavedenii, Khim. i Khim. Tekhnol. 5,. 231 (1962). (409) Korovin, S. S., Mironenko, A. P., Reznik, h. AI.) Komissarova, L. N., Inv. V'ysshikh I-chebn. Zavedenii Khim. i Khim. Tekhnol. 5 , 553 (1962). (410) Korovin, S. S., Reznik, A . M., h r a k s i n , I. .I.,Zh. L\l'eorgan. Khim. 7 , 1.183 (1962) (411) Korovin, S. S., Reznik, A. M., \-asil'eva, ?VI. I., %mod. Lab 25, 1533 (1959). (412) Korpusov, Q. V., Eskevich, I. V., Pstrusheva, E. S . , Erchenkov, V. V., Alekseeva, L. R., Ekstraktsiya, Teoriya, Primenenie. Apparatura, Sb. Statei 2, .. 117 (1962) (413) Korpusov, Q. V., Levin, V. I., Brezhneva, S . E., Prokhorova, S . P., Eskevich, I. V., Seredenko, P. M., Zh Veorgan. Kham. 7 , 2254 (1962). (414) Kosaric. S . , Leliaert, G., Mikroch;'m. Acta 1961, 806 (415) Kosaric, S . , Leliaert, G., Suture ~

101.

70.1 I I F )-~, ~ ) . \ - -

(4ifi)'Koshkin, S . V.,Tr. Kommis. Analit. Khim., A k a d . S a u k SSSR 1 1 , 211 (1960)'. (417) Kostin, ?;. V., Pashinkin, A . S., 1-estnik Moskov. Univ., Khim. Ser. I1 16, S o . 1, 64 (1961). (41s) Kotlyar, E. E., Sazarchuk, T . N., Byull. Inst. Metallokeram i Spets Splavov A k a d . .\auk I'kr SSR, ( 6 ) 93 (1961). (419) Kovacs, E., Guyer, H., Z . Anal. ('hem. 186, 267 (1962). (420) I b i d . , 187, 188 (1962). (421) Kovarik, M,,Moucka, M., Chem. :lnal. (Karsaw) 3, 615 (1958). (422) Kowalczyk, M., Ogiolda, K., Rudy. JIetule .\iezelazane 6 , 118 (1961). (423) Krasnov, K. S.,Kashirina, F. D., k'atsirnirskii, K. R., "Extraction lLlethods in Analytical Chemistry," Tr. Kommis. p o Analit. Khim. 14, 59 (1963). (424) Kreinier, S. E., Lornekhov, .4.S., Stogova, A . V., Zh. -4nalit. Khim. 17, 674 (1962). (42.5) Kreinier, S. E., Stogova, A . V., Lornekhov, Ai,S., Zavod. Lab. 27, 386 ( I961 ). (426) Kreirner, S. E., Tuzhilina, X. V., Gaeva, I,. ll.,Lomekhov, A. S., Zavod. f,nh. 28, 266 (1962). (127) Kriss, E. E., Zh. .\eorgan. Khim., 8, 13O.i (1963). (128) Ihitl., p. 1.512. (420) Krtil, J., Fojtik, >I., Kyrs, bf., ('ollection Czech. Chem. Commun. 27, 2069 (1062).

1 12 R

ANALYTICAL CHEMISTRY

(430) Kuca, L., Jaderna Energie 8, 286 (1962). (431) Kuca, L., Collection Czech. Chem. Commun., 27, 2372 (196.2). (432) Kuchmistaya, G. I., Zavod. Lab. 27, 377 (1961). (433) Kukoyama, T., Ichinose, N., Japan Analvst 10. 107 11961). (434) gunin,' R., Winger, A. G., Angew. Chem. (Intl. E d . ) 1 , 149 (1962). (435) Kurina, N. V., Ionin, M. V., Tr. po Khim. Tekhnol. 4 , 574 (1962). (436) Kusaka. Y.. Meinke. W. W.. "Rapid Radiochemical Separations," C . S. Atomic Energy Commiss. Rept. N A S N S 3104, 1961. (437) Kushima, I., Moriyuma, J., Nishimura, S., Suiyo Kaishi 14, 266 (1961). (438) Kuzina, A. F., Tagil, T. S., Zamoshnikova, N. S . , Spitsyn, V. I., Dokl. ilkad. Nauk S S S R 145. 106 11962). (439) Kuz'man, K. M.,'Belyaev, V. P., Kalinachenko, V. R., Zavod. Lab. 29, 691 (1963). (440) Kuznetsov, V. I., "Chemical Prinof Extraction-Photometric ciples Methods of Analysis," Ministry of Geology S.S.S.R., Moscow, 1963. (441) Kuznetsov, V. I., Basargin, N. N . , Zh. Seorgan. Khzm. 7 , 814 (1962). (442) Kuznetsov, V. I., Fang, M., Ibzd., 7 , 422 (1962). (443) Ibid., p. 425. (444) Kuznetsov, V. I., Gagarina, M. I., Zh. Analit. Khim. 17. 235 (1962). (445) Kuznetsov, V. I.,'Gorshkov, t.V., Radiokhim. 5, 93 (1963). (446) Kuznetsov, V. I., Savvin, S. B., Dokl. Akad. S a u k SSSR 140, 125 (1961). (447) Kuznetsov, V. I., Savvin, S. B., Radiokhimiya 3 , 79 (1961). (448) Kuznetsov, V. I., Seryakova, I. V., Ekstraktsiya Teoriya, Primenenie, Apparatura, Sb. Statei 1962, KO.2, 227. (449) Kuznetsova, A. A., Samoilov, 0. Y., Tikhomirov, V. I., Radiokhimiya 3, No. 1, 10 (1961). (450) Kuznetzova, V. K., Tanenaev, N. A , , Zh. 'Veorgan. Khim. 6,476 (1961). (451) Kuznetsova, E. M., Zakurin, N. V., Nikitin, 0. T., Ibid., 7 , 676 (1962). (452) Kyrs, M.,Collectzon Czech. Chem. Commun., 27, 155 (1962). (453) Ibid., p. 2380. (454) Ibid., p. 2389. (455) Kyrs, M., Czech. 97,586. Appl. Aug. 1, 1959. (456) Kyrs, M., Podesva, S., Anal. Chim. Acta 27, 183 (1962). (457) Kyrs, M. Podesva, S., Collectzon Czech. Chem. Commun. 27. 289 f 1962). (458) Kyrs, M., Podesva, S.,' Zh. 2qeorg&. Khim. 8, 499 (1963). (459) Lai, T., Chen, S., J . Chin. Chem. Soc. (Taipei) 9, 249 (1962). (460) Lai, T., Lin, H. T., Ibid.,, 8 .. 327 ' (1961).' ' (461) Lakanen, E., Ann. Agr. Fenniae 1, 109 (1962). (462) Lapin, L. K . , Reis, N. V., 'Vauch. Tr. Samarkandsk. Med. Inst. 19, 199 (1960.) (463) Laskorin, B. N., Golynko, Z. S., Skorovarov. D. I.. Ekstraktsiua Teoriua. Primenenie,' A pparatura, S6 Statei"2; 190 (1962). 1464) Laskorin. B. N.. Kuznetsov. V. A,. ' Ibid., 2,209 (1962). ' (465) Laskorin, B. N., Skorovarov, D. I., Ibid.. 2. 174 (1962). (466) Laskorin; B. N . , Timofeeva, V. K., Zh. Prikl. Khim. 36.37 (1963). (467) Laskorin, B. S . , Ul'yanov, V. S., Sviridova, R. A,, Ibid., 35, 2409 (1962). (468) Laskorin, B. N., Yakubovich, I. A , , Zuev. G. P.. Krosav. V. G.. Smirnov. V. F.', Pivovarov, V. E . , Atomic Energi ( U S S R )12,503 (1962). '

(469) Latimer, G. W., ANAL.CHEM.35, 1983 (1963). (470) Lazarev, A. I., Lamreva, V. I., Zak, S. S., Ustenko, T. M., Zavod. Lab. 28, 1316 (1962). (471) Lazarev. A. I., Rodzaevskii. V. V.. Zh. Analit. Khim. '16, 243 (1961). (472) Leaf, A. C., U. S. Atomic Energy Comm. Rept. HW-72, 199 (1962). (473) Levin, I . S., Zh. Prikl. Khim., 35, 2368 (1962). (474) Levin, V. I., Golutvina, M. M., Tikhomirova, E. A,, Radiokhimiya 2, 596 (1960). (475) Levin, I. S., Mikhailov, V. A . , Dokl. Akad. .\-auk SSSR 138, 1392 11961). \ _ _ . _

(476) Levin, I . S., Zabolotskii, T. V., Ibid., 139, 158 (1961). 1477) Liberti. A , . Chiantella. IT.,Ann. chim. (Rome)52,495 (1962). (478) Liteanu, C., Cordos, E., Rd1. Inst. Politech. Iasi 7 , S o . 3-4, 127 (1961). (479) Lorenzini, L., Stoppa, C., Barbieri, W., Met. Ital. 54, 380 (1962). (480) Lowe, R. W., Prestwood, S. H., Rickard, R . R., Wyatt, E. I., ANAL. CAEM.,33, 874 (1961). (481) Luke, C. L., Ibzd., 28, 1443 (1956). (482) Lukin, A . %I., Chernaya, L. S., Petrova, G. S., Sosnina, A. I., Zavod. Lab. 28, 398 (1962). (483) Lystsova, G. G., Zbid., 28, 543 (1962). (484) McClellan, B. E., Fernando, Q., Freiser, H., Private Communication, Sept. 1963. (485) McCown, J. J., Kudera, D. E., ANAL.CHEM.34, 870 (1962). (486) McCown, J. J., Larsen, R. P., Ibid., 33, 1003 (1961). (487) LlcDowell, FV. J., Coleman, C. F., J . Znorg. S u c l . Chem. 25, 234 (1963). (488) McManamey, W. J., J . Phys. Chem. 65, 1053 (1961). (489) Mabuchi, H., Nakahara, H., Bull. Chem. Soc. Japan 36, 1.51 (1963). (490) Maeck, W. J., , Kussy, M. E., Booman, G. L., Rein, J. E., AXAL. CHEM.33, 998 (1961). (491) Maeck, W. J., Kussy, M. E., Ginther, B. E., Wheeler, G. V., Rein, J. E., Ibid., 35, 62 (1963). (492) Maeck, W. J., Kussy, M. E., Rein, J. E., Ibid., 34, 1602 (1962). (493) Maeck, W.J., Marsh, S. F., Rein, J. E., Ibid., 35, 292 (1963). (494) Maekawa, S.,Yoneyama, Y.,Japan Analyst 10, 732 (1961). (495) Ibid., p. 736. (496) h'laekawa, S., Yoneyama, Y., Fujimori. E.. Zbid.. 10. 341 (1961). (497) Ibid., p. 345. (498) ?*lagee, R. J., Witwit, A. S., Anal. Chim. Acta 29, 27 (1963). (499) Manning, P. G., Can. J . Chem. 41, 658 (1963). (500) Mapper, D., Fryer, J. R., Analyst 87, 297 (1962). (501) Marchart, H., Mzkrochim. Acta 1962, 913. (502) Marchart, H., Hecht, F., Ibid., 1962, 1162. (503) Marchenko, N . A., Raiber, Z. S., LiDko. S. K , Zavod. Lab. 28, 1192 (1962j. (504) Marchenko, P. V., Zbid., 27, 801 (1961). (505) Marcus, Y., Chem. Rev. 63, 139 (1963). (506) hfari, E. A , , Anal. Chim. Acta 29, 303, 312 (1963). (507) Markov, V. K., Korinfskaya, M.F., Zavod. Lab. 28, 1376 (1962). (508) Marsh, S. F., Maeck, W. J., Booman, G. L., Rein, J. E., ASAL. CHEM.33, 870 (1961). (509) Ibid., 34, 1406 (1962). (510) hlartin, A . J. P., Biochen. Sac. Symposia, 3 , 4 (1950). I

,

McDuffie, H. F., U. S. Atomic Energy Comm. Rept. ORNL-3323 (1962). (552) Moore, R. H., U. S. Atomic Energy Comm. Rept. HW-SA-2804 (1963). (553) Morachevskii, Y. V.,Borovaya, N . S., C‘ch. Zap. Leningrad. Gas. Univ. 297, 99 (1960). (554) Morachevskii, Y. V., Tserkovnitskaya, I. A . , Grigorev, M. F., Ibid., 297, 119 (1960). (555) Morimoto, I., Ashizawa, T., Japan Analyst 10, 668 (1961). (556) Morimoto, I., Tanake, S., Ibid., 11, 861 (1962). (557) Morris, D. F. C., Short, E . L., Chem. Ind. (London) 1469 (1962). (558) Morris, D. F. C., Short, E. L., J . Inorg. .Vucl. Chem. 25, 291 (1963).. (559) Morris, D. F. C., Williams, J . H., Tolanta 9, 623 (1962). (560) Morrison, G. H., Freiser, H., A N ~ L . CHEM.30, 632 (1958). (561) Morrison, G. H., , Freiser, H. “Solvent Extraction In Analytical Chemistry,” Wiley, S e w York, 1957. (562) Morrison, G. H., Freiser, H., Cosgrove, J. F., in “Handbook of Analytical Chemistry,” L. Meites ed., McGraw-Hill, New York, 1963. (563) Moseev, L. I., Karabash, -4.G . , Zh,. .Yeorgan. Khim. 6, 1944 (1961 ). , (564) bfotojima, K., Hashitani, H., Imahashi. T.. ANAL.CHEM.34. 371 11962). (565) Gotojima, K., Hashitdni, HI, Katsuyama, K., Japan rlnalyst 9, 517 (1!360.) (566) Ibid., p. 628. (567) Motojima, K., Hashitani, H., Katsuvama. K.. J . Atomic Enerau ” “ SOC. 29 Jdpan 3, 89’(1961). -. (527) Mezhov, E. A . , Pushkov, A. A4., (568) Motojima, K., Yoshida, H., Imahashi, T., Japan Analyst 1 1 , 1028 Schmidt, V , S., Zh. Al’eorgan. Khim. 7, 932 (1962). (1962). (528) lfikhailov, V. A , , Sazin, A. G., (569 1 Mottola, H . A . , Sandell, E. B., Izv. Sibirsk. Otd. Akatl. . Y a k S S S R 9 , A71al. Chim. Acta 25, 520 (1961). 54 (1962). 15701 Mrochek. J. E.. O’Lauehlin. J . W.. (529) Rlilaev, S. ?*I., Maksai, I., Sb. Sakurai, H.,’ Banks, C. f , J : Inorg: .Vauch. Tr. Vses. iVa’Lch-Issled. Gorno‘Vucl. Chem. 25, 955 (1963). metallurg. Inst. Tsvet. V e t . 1960, 459. (571) Mukhedkar, A . J., Despande, 5 . (530) Milaev, S. M., S‘oroshina, K. P., V., ANAL.CHEM.35, 47 (1963). Zavod. Lab. 29, 410 (1363). (572) Mukoyama, T., Hirano, S., Yagi, (531) &files, T. D., Delasanta, A. C., I.. Katsumata. S.. J . Chem. SOC.J a .m n ., Curry, J. C., ASAL. CHEM. 33, 685 Inti. Chem. S e k 64,969 (1961). (1961). (573) Ibid., p. 972. (532) Miller) A. D., Mokhov, A. A., (574) Munshi, K. X., Dey, A. K., Anal. Turyleva, L. Sr., Geokhimzya (7), 610 Chim. Acta 27,89 (1962). (1961). (575) Murach, N . N . , Krapukhin, V. V., (533) Xlinczewski, J., Chwastowska, J., Kulikov. F. S.. Chernvaev. V. N.. Marczenko, Z., Chem. Anal. (Warsaw) Xekhamkin, L. G., Zh. Priklad. Khim: 6 , 501 (1961). 34, 2188 (1961). (534) Ibid., p. 509. (576) Murphy, J. W., Affsprung, H. E., (535) Llinczewski, J., Maleszewska, H., AKAL.CHEM.33, 1658 (1961). Steciak, T., Ibid., 7, 791 (1962). (577) Musil, A., Haas, W., Weidmann, (536) Ylinczewski, J., Rozycki, C., Ibid., G., Mikrochim. Acta 1962, 883. 8 , 6 3 (1963). (578) Myasoedov, B. F., Muxart, R., (537) htinczewski, J., Wieteska, E., MarZh. Analit. Khim. 17. 340 (19621. rzenko. Z.. Ibid.., 6., 515 11961). (579) Myasoedov, B. F., Pai’shin, E. S., (5%) llihts,’ S., Uhpevskaya, Ibid., 18, 596 (1963). A., Radiokhimiya 3 , 137 (!,961). (580) Yair, C. G., Rao, V. R., Vasudeva (539) hlinutilli, F., Ru,tatsuo, S., J . [‘hem. Soc. Japan 82, 459 (1961). (518) Matuszek, J . M . , Sughihara, T. T., ASAL. CHEM.33, 35 (1961). (519) May, S. L., Tews, J. L., Goff, T. S , ,U. S. Bur. Mines Rept. Invest. No. 5862 (1961). (520) Meadows, J. W. T., Matlack, G. M.,ANAL.CHEM.34, 39 (1962). (521) Melchakova, S . V., Peshkova, V. M . , Zh. LVeorgan.Khim., 8, 1280 (1963). (522) Meloan, C. E., Brandt, W.W., J . Inorg. T u c l . Chem. 24, 1645 (1962). (523) Mencis, I., Sweet, T. R., h A L . CHEM.35, 1904 (1963). (524) Meshri, I>. T . , Halder, B. C., J . Sci. Ind. Research ( I n d i a ) 20B, 551 (1961). (525) illetzsch, F. A. v., in “Physical hfethods in Chemical Analysis,” Vol. IV, 1%’. G. Berl ed., Academic New York, 1961. (526) Mezaraups, G., Levins, A., Bankovskis, J., Latoips P S R Zinatnu A k a d . Vestis, K i m . 8er. 1962, ?io. 1,

~

~

~I

1.

e

(592) Ibid., 82, 1256 (1962). (593) Maniki, M., Kakita, Y., Goto, H., Sci. Repts. Res. Inst., Tohoku Univ. A-14, 233 (1962). (594) Namiki, M., Kakita, Y., Hidehiro, G., Ibid., A-14, 300 (1962). (595) Nazarenko, V. A,, Flyantikova, G. V., Zavod. Lab. 27, 1339 (1961). (5,96) Nazarenko, V. A., Shustova, M. B., phitareva, G. G., Yagnyatinskaya, G. Y., Ravitskava, R . V., Ibid., 28, 645 Gilutvina; M. M., hfetody Polucheniya Radioaktivn Preparatov, Sb. Statei 1962, 118. (598) Kee, C., Liang, S., Sei. Sinica (Peking) 12, 1238 (1963). (599) Xeeb. R., 2. Anal. Chem. 182. 10 (1961): ’ (600) Negina, V. R., Zamyatnina, V. N., Zh. Analit. Khim. 16, 209 (1961). (601) Negina, V. R., Zamyatnina, V. N., Presnyakova, hl. A . , Chikisheva, L. A,, Radiokhimiya 3 , 473 (1961). (602) Nemodruk, A. A , Novikov, Y. P., Lukin, A . M.,Kalinina, I. D., Zh. Analit. Khim. 16.292 i1961). (603) Nemodruk, ‘A. A,, Stasyuchenko, V. V., Ibid., 16, 407 (1961). (604) Sewman, L., J Inorg. AVucl.Chem. 25, 304 (1963). (605) Kewman. L.. Klotz., P.., J . Phvs. ’ Chem. 65, 796 (1961). (606) Ibid., 67, 205 (1963). (607) S i , Che-Ming., Liang, S., Sci. Sinica 12, 615 (1963). ;608) Nielsch, W., Mikrochim. Acta 1959, 725. (609) Xikolaev, A . V., Afans’ev, Y. A,, Dokl. Akad. A’azck S S R 147,1380 (1962). (610) Xikolaev, A. V., D’yachenko, 0. R., Afanas’ev, Y. A . , Ibid., 146,.102 (1962). (611) Nikolaev, A . V . , Kolesuikov, A. A,, Izv. Sibirsk. Old. A k a d . ,Vauk SSSR 10, 80 (1962). 1612) Xikolaev. A. V.. Kurnakova. A. G.. Yakoviev, I.’ I., Zh. Seorgan.’ Khim: 5, 1832 (1960). (613) Nikolaev, A. V Mikhailova, M. P., Izv. Sibirsk. O l d . Akad. S a u k , SSSR 1 1 , 136 (1962). (614) Nikolaev. A. V . Sinitsvn. N. M.. Shubina, S. ’M., EkstraktsGa’ Teoriyaj Primenenie, Apparatura, Sb. Statei, 2, 63 (1962). (615:) Sikol’skii, V. D., Pozharaskaya, M. E., Ibid., 2 , 160 (1962). (616) Xishimrira, M., Sandell, E. B., Anal. Chim. Acta 26. 242 (19621. (617) Nomura, S., Hjra, It., I b i d . , 25, 212 (1961). (618) Obolonchik, V. A,, Renni, T r . V s e s . Soveschch. po Proble. Reniya, Akad. S a u k S S S R Inst. Met. 1958. 232 (publ. 1961). (619) Oi, N . , Japan A n a l y s t 9 , 770 (1960). (620) Oka, Y., Yamasaki, T., Matsuo, S., Abe, M.,J . Atomic Energy SOC. Japan 3 , 110 (1961). (621) Okar, A,, Vrchlabsky, M., Z . Anal. Chem. 182, 425 (1961 ). (622) Okura, T., Goto, K., Yotuyanagi, T.. ANAL.CHEM.34. 581 (1962). (623j Olander, D. Ii., Renedict, M., S u c l . Sei. Eng. 14, 287 (1962). (624) Omori, T., Suznki, S . , Bid1 Chem. SOC.Japan, 35, 1633 (1962). (625) Onishi, H., Banks, C. V., Anal. Chim. Acta 29, 210 (1963). (626) Onishi, H., Ishikvatari, Y . , Talanta 8, 753 (1961). (627) Pal’shin, E. S., Myasoedov, B. F., Z h . dnalit. Khim. 18, 750 (1963). (628) Pal’shin, E. S., blyasoedov, B. F., Novikov, Y. P., Ibid., 18, 6,57 (1963). (629) Pal’shin, E. Y.,Myasoedov, B. F., Palei, P. N . , Ibid., 17, 471 (19621. (630) Pantani, F., Hic. Sci., K.C., A , 1, 12 (1961). ’

~

VOL. 36, NO. 5 , APRIL 1964

113 R

(631) Parker, C. A , , Harvey, L. G., Analyst 87, 558 (1962). (632) Pasztor, L., Bode, J . D., Anal. Chim. Acta 24,467 (1961). (633) Patrovsky, V., Coll. Czech. Chem. Commun., 27, 1705 (1962). (634) Patrusheva, E . N., Brezhneva, N . E., Korpusov, G. V., Radiokhimiya 2 , 451 (1960). (635) Pavlova, K.N., Blyum, I. A . , Zavod. Lab. 28, 1305 (1962). (636) Pavlova, V. S . , Vasil'eva, N. G., Kashlinskaya, S. E., Ibid., 27, 965 (1961). (637) Penner, E. M.,Inman, W. R., Talanta 9 , 1027 (1962). (638) Ibid., 10, 407 (1963). (639) Peppard, D. F., "Applications of Liouid-Liauid Extraction in Inorganic ieGaratio&," in "Progr. in NCclear Energy," C. E. Crouthamel, ed., pp. 201-23, Pergamon Press, S e w York, 1961. (640) Peppard, D. F., Horwitz, E. P., Mason, G . W., J . Inorg. Sucl. Chem. 24, 429 (1962). (641) Peppard, D. F., Mason, G. W., Ibid., 24, 1387 (1962). (642) Peppard, D. F., hiason, G. W., Sucl. Sci. Eng. 16, 382 (1963). (643) Peppard, D. F., Mason, G. W., Andrejasich, C. M., J . Inorg. Sucl. Chen. 25, 1175 (1963). (644) Peppard, D. F., Mason, G. W., Hucher, I., Ibid., 18, 245 (1961). (645) Ibid., 24, 881 (1963). (646) Peppard, I). F., hlason, G. W., Hucher, I., Radioisotopes Phys. Sei. Ind., Proc. Conf. Use., Copenhagen, 1960, 2, 541 (1962). (647) Peppard, D. F., Mason, G. W., McCartv, S., Johnson, F. D., J . Inorg. Nwrl ?hem. 24. 321 (1962); Ibid., 967-(1962). (648) Peppard, D. F., Kamboodiri, 31. N . , Mason, G. W., Ibid., 24,979 (1962). (649) Peshkova, V. >I Bochkova, ., V. M . , Astakhova, E. K., Zh. Analit. Khim. 16, ,596 (1961). (650) Peshkova, V. M.,Ignat'eva, Y . G., Ibid., 17, 1086 (1962). (651) Peshkova, V. M . , Mel'chakova, E,V.. Zhemchuxhin, S. G., Zh. ,Veorgan. Khim', 6 , 1233 (1961). (652) Peshkova, V., P'eng, A., 1 % ~ . Vmshiki l'chebn. Zavednii, Khim. i khji;;L. Tekhnol 5 , 694 (1962). (653) Peshkova, V. >I., P'eng, A . , Zh. Seorgan. Khim. 6 , 2082 (1961). (654) Peterson, H. E., Mac Duff, J. S., Hovev. M. R.. U. S. Bur. Mines, Rept. &e&.' No. 5889 (1961). (655) Pierce, T. B., Peck, P. F., Anal. Chim. Acta 27, 392 (1962). (656) Ibid., p. 557. 1657) Pierce. T. B., Peck, P. F., .4nalyst 87; 369 (1962). (658) Ibid., 88, 217 (1963). (659) Pietsch, R., Mikrochim. Acta 1962, 1124. (660) Pietsch, R., Pichler, E., Ibid., 1961, 914. (661) Ibid., 1962, 954. 1662) Pietsch, R., Pichler, E., 8. .Inal. I Chem. 190,'319 .(1962). (663) Pilipenko, A. T., Obolonchik, V. A,, A k a d . S a u k C'k. SSSR 1960, S o . 8, 132. (664) Plaksin, I. Y . , Izvest. Vysshikh I'cheb. Znvedenii, Tsvetnaya Met. 4, 87 (1961). (663) Pogodaeva, V. G., Stolyarov, K. P., c'ch. Zap. Leningrad Gos. Cniv. 297, 170 (1960). (666) Pohl, H., X. Ertberghaic .%letallhuettenw. 16, 18 (1963). (667) Popea, F., Jurascu, C., Acad. R. P . X., S t u d . C'rrcet. Chl'm. 10, 211 (1902). \

-

1 14 R

ANALYTICAL CHEMISTRY

(668) Popova, 0. I., Kornilova, V. I., Zh. Analit. Khim. 16, 651 (1961). (669) Posey, J. C., Ind. Eng. Chem. 53, 647 (1961). (670) Post, O., Craig, L. C., ANAL. CHEM.35, 641 (1963). (671) Pozdnyakov, A. A , , Basargin, S . S . , Gerlit, Y. B., Dokl. A k a d . S a u k SSSR 144, 861 (1963). (672) Privalova, M. &I., Ryabchikov, D. I., Ekstraktsiya Teoriya, Primenenie, Apparatura, Sb. Statei 2 , 165 (1962). (673) Privalova, M. M., Ryabchikov, D. I., Zh. Seorgan. Khim. 5 , 1605 (1960): (674) Priyadarshini, U., Tandon, S. G., Analyst 86, 544 (1961). (675) Prokharova, X . P., Brezhneva, N. E., Zh. .Veorgan. Khim. 7, 1846 (1962). (676) Pyle, J. T.. Jacobs. W. D.. Talanta 9. 761 (1962) (67j) Rains, T: C., Ferguson, M., House, H. P., ANAL.CHEM.33, 1645 (1961). (678) Rakovskii, E. E., Petrykhin, G. M., Zh. Analit. Khim. 18, 539-(1963) 1679) Ralph, W. I)., Sweet, T. R., Mencis, I., ANAL.CHEY.34, 92 (1962). (680) Ilayner, H. B., Ibid., 35, 1097 (1963). (681) Reed, J. F., Talanta 10, 347 (1963). (682) Reznik, 4 . XI., Rozen, A. hl., Korovin, S. S., Apraksin, I. A,, Dokl. Akad. .\auk SSSR 143. 1413 (1962). (683) Rice, A . C., Stone, 'C. A,, R 1 Bur. Mines 5923 (1962). (684) Richardson, M. L., ilnalyst 87, 435 (1962). (685) Ritschard, W. J., Helv. C h i n . Acta 45, Xo. 4, 1132 (1962). (686) Rolf, R. F., ANAL.CHEY.33, 125 i1961'I. (68ij Ross, H. H., Hahn, R. B., Talanta 8,575 (1961). (688) Rosyanov, S. P., Kopycheva, N . K., Kusakin. A . P.. T r . Leninar. Tekhnol. Inst. im.'Lensoveta 55. 108 (1961). (689) Rovinskii, F. q., Ispravnikova, V. V., At. Znergy (C'SSR) 14, 283 (1963). (690) Rozbianskaya, A. A , , Tr. Inst. .Ifineralog. Geokhsm. i Krzstallokhim. Redkikh. Elementov Akad. S a u k . SSSR 6 , 138 (1961). (691) Itozen, A . M., Ekstraktsiya, Teoriya, Primenenie, Apparatvra, 2, 300 (1962). (692) Rozen, .4. M.,Moiseenko, E. I., Ibid., 2 , 235 (1962). (693) Rozen, A. hl., Reznik, A . M., Korovin, S. S., Metonidze, Z. A , Zh. .\eorgan. Khim. 8, 1003 (1963). (694) Ruzicka, J., Stary, J., Talanta 8, 228 (1961). (695) Ibid., 535. (696) Ibid., 9,617 (1962). (697) Ibid., 10,287 (1963). (698) Ryan, J. L., Inorg. Chem., 2 , 348 (1963). (699) Sabaev, I. Y., Shokin, I. N . , Krashaninnikov, S. A,, Tr. Mosk. Khim. Tekhnol. Inst. No. 35. 60 (1961). (700) Ibid., p. 67. (701) Saed, A. G., Lapitskii, A . V., Rudenko. S . P.. Radzokhim. 5. 290 (1963). (702) Saisho, H., Bull. Chem. SOC.Japan 34, 859 (1961): (703) Ibid., p. 1254. (704) Ibid., 35, 314 (1962). (70.5) Saito, K., Suzuki, N . , Seto, K., Ikegami, H., I b i d . , 36, 692 (1963). (706) Saito, K., Takeuchi, T., Japan AnalJyst 10, 1129 (1961). (7071 Salaria. G. B. S.. Rulfs. C. L.. Elving, P.' J., ANAL.' C H E Y . ' ~98b ~, (1963). 1708) Sardina, R I . T., Cellini. R. F.. Rodriguez, T . B., J . Inorg. .\-ucl. Chem. 24, 721 (1963).

(709) Sastri, M. S . , Sundar, D. S., Chemist-Analyst 50, 101 (1961). (710) Sastri, M . N., Sundar, D. S., 2. Anal. Chem. 195, 343 (1963). (711) Sato, T., J . ,Appl. Chem. 12, 130 11962). (712) Sato, T., J . Inorg. .Yucl. Chem. 24, 699 (1963). (713) Ibid., p. 1267. (714) Ibid., 25, 109 (1963). 1715) Ibid.. ~ . 4 4 l . (716) Sato,' T., .\-atiirwiss. 50, 19 (1963). (717) Savichev, E. I., Iskhakova, E. I., Flyazhnikova, L. F., Zavod. Lab. 28, 412 (1962). (718) Savvin, S. B., Zh. Analit. Khim. 17, 785 (1962). (719) Savvin, S. B., Basargin, T. N., hfakarova, V. P., Ibid., 18, 61 (1963). (720) Scandinavian Pulp, Paper and Board Testing Committee, SCAYC12:62. Sorsk Skogind, 16, 391 (1962). (721) Schaarschmidt, K., Emrich, G., Reinhard, G., Chem. Tech., Berlin 14, 463 il9fi2). (722) Scheibov, D. P., Kagarlitskaya, N . V., Xavod. Lab. 28, 30 (1962). (723) Scherbov, D. P., Kolmogorova, V. T.'., Ibid., 28, 649 (1962). (724) Schneider, R. A., ANAL.CHEY.34, ,522 ilOfi21. (725) Schoffmann, E., Malissa, H., Mikrochim. Acta 1961, 319. (726) Scholes, I. R., Waterman, W. R., -4nalysl 88, 374 (1963). (727) Schweitzer, G. K., Coe, G. R., Anal. Chim. d c t a 24, 311 (1961). (728) Schweitzer, G. K., McCarty, S. W., Ibid., 29, 56 (1963). (729) Schweitzer, G. K., Mottern, J. L., Ibid., 26, 120 (1962). (730) Schweitzer, G. K., Randolph, D. R., Ibid., 26, 567 (1962). (731) Schweitzer, G. K., Rimstidt, J . R., Jr., Ibid., 27, 389 (1962). (732) Sehestian, I., Zitnansky, B., Chem. Listy 56, 948 (1962). (733) Segall, J., Ariel, X I . , Shorr, L. M., Analyst 88, 314 (1963). (734) Sekido, E., Fernando, Q., Freiser, H., ANAL.CHEM.35, 1550 (1963). (735) Senise, P., Pitombo, L. R. M., Anal. Chini. Acta 26, 89 (1962). (736) Seno, H., Kakita, Y., J . Chem. SOC. Japan, Pure Chem. Sect. 82. 4,52 (1961). (737) Seryakova, I. V., Zolotov, Y. A:, Kuryakin, A. V., Brihov, L. A , , Zubrilina, M. E., Zh. Seorgan. Khim. 7, 2013 (1962). (738) Shanker, J., Venkateswarln, K. S., Gopinathan, C., J . Inorg. .Vucl. Chem. 25, 57 (1963). (739) Shchekochikhina. R. L.. Peshkova. ' V. M., Shlenskaya, 9. I., Vestn. Jdosk: l'niv. Ser. I I , Khim. 17, X o . 4, 38 (1962). (740) Sheka, I. A., Kacherova, S. A , , Ukr. Khirn. Zh. 28. 38 11962). (731) Shevchenko, V. R., Renard, E. V., Zh. .Yeorgan. Khim. 8, 516 (1963). (742) Shevchenko, V. B., Smelov, V. S., Ekstraktsiya, Teoriya, Primenenie, Apnaratum. 2. .58 (1962). (743) Ibid., p. 219. (744) Zhid., p. 267. 1745) Shevchenko. V. B.. Smelov. V. S.. Zh. .Yeorgan. Khim. 6 , 732 (1961). (746) Shevrhenko, V. B., Smelov, V. S., Strakhova, A. V., Ekstraktsiya, Teoriya, Primmenie, .4ppatiiraj 2 , 179 (1962). (747) Shevchuk, I. .4., I-kr. Khim. Xh. 20. 104 i1963). (748j Shevchuk,'I. A , , Ilegtyarenko, L. I., Ibid., 28, 1112 (1962).

1749) Shevanova. F. R.. Kozhokina. G . Y . , T r . po Khim. i Khim. Tekhnol. 3, S o 1, 50 (1960).

(750) Shibata, S., Ancz,!. Chim. Acta 25, 348 (1961). (751) Ibid., 28, 388 (191W). (752) Shibata, S., Ishii:uro, Y., Sagoya Kogyo Gijutsu Shikensho Hokoku 1 1 , 318 (1962). (753) Shibata, S., Niirri, Y., Pvlatsumae, T., Rept. Gout. Ind. Res. Inst., -Yagoya 1 1 , 275 (1962). (754) Shimojima, H., J . Chem. SOC.Japan 82, 1186 (1961). (755) Hhlenskaya, V. I., Bikbulatov, A. B., Vestn. Moskov. Vniv. Ser. Khim. 16, 51 (1961). (756) Shnaidermann, S. Y., Kalinschenko, I. E., c ‘ k ~ .Khim. Zh. 27, 402j1961). (757) Shnaiderman, S. Y., Kalinchenko, I. E., Vysshikh L‘chebn. Zavedenii, Khim. i Khim. Tekhncd. 4, 897 (1961). (758) Shokin, I. S . ,Kraighaninnikov, S.-4., Sabaev, I. Y., Tr. Mo::k. Khim. Tekhnol. Inst. 1961, K O ,35, 45,. (759) Shustova, M. B., Nazarenko, U. A . , Khim. Prom. .Yazrk. Tekhn. Zb. 1962, S o . 4, 78. (760) Siddall, T. H., “Solvent Extraction Processes, Based on ‘hi-n-Butyl Phosphate,” in “Xuclear Sci. Technol.,” V. L. Parsegian, J. IC. Flagg, ed., pp. 199-248, Academic F’ress, Sew York, 1961. (761) Siddall, T. H., Aiken, S., J . Inorg. Sucl. Chem., 25, 883 (1963). (762) Siekierski, S., J . Inorg. S u c l . Chem. 24, 205 (1962). (763) Sikorska-Tornicka, K., Z . Anal. Chim. 187, 258 (1962 1. (764) Sill, C. W., Williri, C. P., Geochim. et Cosmoch. Acta 26, 1209 (1962). (765) Silverman, L., ANAL. CHEY. 34, 701 (1962). (766) Simon, F. O., Grimaldi, F. S., Ibid. 34, 1361 (1962). (767) Singh, B. R., Kurnar, S., Z . Anal. Chem. 185, 211 (1962). (768) ,Skrebkova, L. .M.,Zh. Analit. Khzm. 16, 422 (1961). (769) Skrylev, L. D., Eiorisikhina, V. I., Mokrushin, S. G., Izvest. Vysshikh Ccheb. Zovedenii, Khzm. i Khim. Tekhnol. 4, 611 (1961). (770) Skrylev, L. D., Mokrushin, S. G., Kolloid Zh. 22, 344 (1960). (771) Slkaravskii, Y. F., Zavod. Lab. 28, 265 (1962). (772) Small. H., J . Inorg. Nucl. Chem. 18, 232 (1961). (773) Smith, L. L., U. !i. Atomic Energy Comm. Rept. DP-700 (1962). (774) Smith, C. J., Jr., Dissert. Abstr. 22, 2566 (1962). (775) Smulek, W., X~kleonika 7, 547 (1962). (776) Socolovschi, R., Rev. Chim. (Rucharestl 10. 712 (1959). (777) Ibid., 1 1 , 348 (19EO). (778) Soczewinski, E., Waksmundzki, A,, >Iaciejewicz, W., B~~11.Acad. Polon. Sei., Ser. Sci. Chim. .LO, 125 (1962). (779) Sokolov, A. B., Moseev, L. I., Karabash, A. G., Zh. Xeorgan. Khim. 6 , 994 (1961). (780) Solovkin, A. $!., Ekstraktsiya, Teoriua. Primenenie,. Apparatura 2, .. 47 (l?l62,. (781) Sorokin, 0. I., Zavod. Lab. 27, 117 (1961). (782) Spacu, P., Voicu, V., Acad. Rep. Po.oulare Romine. Studii Cercetari Chim. -’ 10, 305 (1962). (783) Spence, R., Streeton, R. J. W., U . K. Atomic Enerrv Estab. Reot. .” AERE-R4091 (1962). (784) Spitzy, H., Doaud 1, I., Microchem. J., Syniposzum Ser. 2 , 019 (1962). (785) Sporek, K. F., ASAL. CHEM. 33, 754 (1961). (i86) Stanton, R. E., McDonal, A. J., iInnh/st 87, 2’4Q (1962) ~

~

~

(787) Stary, J., Anal. Chim. Acta 28, 132 (1963). (788) Stary, J., Balek, V., Collection Czech. Chem. Commun. 27, 809 (1962). (7891 Stary, J., Hladsky, E., Anal. Chim.Acta 28.227 (1963). (790) Stary, J.,’Ruzicka, ’J., Talanta 8 , 296 (1961). (791) Stary, J., Ruzicka, J., Salamon, M., Ibid., 10, 375 (1963). (792) Stary, J., Ruzicka, J., Zeman, A,, Anal. Chim. Acta 29. 103 (1963). (793) Stepanova, S . A’., Yakunina, G. A , , Zh. Analit. Khim. 17,858 (1962). (794) Stepin, B. D., Plyushchev, V. E., Ivanova, Y. -4.,Khim. Prom. 1962, 404. (795) Stokely, J. R., Jacobs, W. D., ANAL. CHEM.35. 149 (1963). (796) Stolyjrov, K. P.,’Zh. Analit. Khim. 16, 452 (1961). (797) Strel’nikova, iY.P., Zavod. Lab. 28, 1193 (1962). (798) Strel’nikova, S . P., Lystsova, G. G., Ibid., 28, 659 (1962). (799) Strel’nikova,N . P., Lystsova, G. G., Dolgorukova, G. S., Ibid., 28, 1319 (1962). (800) Studlar, K., Talanta 8 , 272(1961). (801) Sudo, E., Goto, H., Scz. Repts. Res9arch Inst. Tohoku Univ. 14, 220 ( 1 9i2). (802) Ibid., p. 231. (803) Suzuki, M.,Sci. Repts. Tohoku C n k.,First Ser. 43, 161 (1959). (804) Suzuki, M., Takeuchi, T., Japan Amdyst 9 , 179 (1960). (805) Ibid., p. 708. (806) Suzuki, K., Oki, S., Bull. Cheni. SOC. Jaran 35,233 (1962). (807) I b i d . , p. 237. (808) Ibid., p. 595. (809) Saoke, J., Acta Chim. Acad. Sei. Hu:ag., 30, 459 (1962). (810) Tachibana, K., Mem. Fac. Sei., Kyiishti Univ. Ser. C, 4, 234 (1961). (811) Tajima, S . , Kurobe, M.,Japan Ancdyst 9, 399 (1960). (812) Ihid., p. 612. (813) Ibid., p. 798. (814) Ibid., p. 884. (815) Ibid., 10, 528 (1961). (816) Tajima, N . , Kurobe, M., Terada, H., Ibid., 10, 1340 (1961). (817) Takei, S., Bunseki Kagaku, 10, 708 (1901). (818) Ibzd., p. 715. (810) Takei, S., Japan Analyst 9, 288 (1900). (820) Ibid., p. 294. (821) Ibid., p. 402. (822) Ibid., p. 409. (823) Takei, S., Kato, T., Technol. Rept. Tohoku Cniv. 25. 127 (1961). (824) Ibid., p. 143. (82.5’1 ~Ihid.. -- 26. 19 11962’1. ~, (826j Ibid.: p.’35. (827) Takeuchi, T., Ishii, D., Shijo, Y., J . (’hem. Soc. Japan, Ind. Chem. Soe. 65, 1956 (1962). (828) Takevama, 9.. Goto, H.. Sei. Repts. Res. Inst., Tokohu Univ. ’ A-15, i44 (10E3). (829) Talipov, S. T., Dzhiyanbaeva, R. K., Aniskina, V. S.,Uzbeksk. Khim. Zh. 6 , 25 (1962). (830) Ibid., 7, 22 (1963). (831) Talipov, S. T., Sigai, K . G., Zh. Analit. Khim. 18, 178 (1963). (832) Tanaka, K., Bunseki Kagaku 9 , 574 (1960). (833) I b i d . , 1 1 , 332 (1962). (834) Tanaka, K., Japan Analyst 9 , 574 (1960). 1835) I b i d . . D. 700. (836) Ibzd.; ‘10, 612, (1961). (837) I b i d . , p. 1087. (838) Tanaka, M., Kawahara, M., Ibzd., 10, 185 (1961). \

-

~

-

~

I

.

(839) Tanaka, M., hlorikawa, H., Ibid., 10.396 (1961 ). (840j Tanaka, Y . , Shido, N., Kumamoto Pharm. Bull. 5 , 16 (1962). (841) Tanaiko, M. M., Ukr. Khim. Zhur. 27,813 (1961). (842) Ibid., 28, 447 (1962). (843) Teng, W., Khim., Fiz-Khini. Spektral’n. Metody Rasseyan. Elementov. Mzn., Geol. i Okhrany A;edn. S S S R 1961, 47. (844) Tertepis, G. G., Beamish, F. E., ANAL.CHEM.34, 623 (1962). (845) Testa, C., Anal. Chim. Acta 25, 525 (1961). (846) Thilliez, G., Acta Chim. Acad. Scz. H u n g , 32,315 (1962). (847) Tikhonov, V. X., Nikitina, A. P., Zavod. Lab. 28, 662 (1962). (848) Titley, A. W.,ilnalyst 87, 349 11962). (849) Todd, R., Cuthbert, G., Dickinson, R., IT. K . Atomic Energy Authority Rept. PG 337 (S) (1962). (850) Tolg, G., .4nal. Chim. Acta 190, 161 (1962). (851) Treybal, R. E., Ind. Eng. Chem. 54, 55 (1962). (852) Tribalat, S., Piolet, C., A n n . Chim. (Paris) 7, 31 (1962). (853) Tribalat, S., Piolet, C., Bull. SOC. Chini. France 1961. 1527. (854) Troitskii, K . V:, C‘spekhi Khim. 32, 239 ( 196.7). (855) Trudell, L., Boltz, D. F., ANAL. CHEM.35, 2122 (1963). (856) Tserkovnitskaya, I. A , , Borovaya, K. S., Cch. Zap. Leningr. Gos. Univ. 297, Ser. Khim. S a u k 19, 06 (1960). (857) Tuck, D. G., ilnal. Chim. Acta 27, 296 (1862). (858) Tuck, D. G., Walters, R. M., J . Chem. SOC.1963, 1111. (859) I‘ehara, S.,Hamada, S., J . Chem. SOC.Japan, Ind. Chein. Sed. 63, 1580 (1960). (860) L.’ K. Atomic Energy Authority Rept. pg. 21O(W), (1061). (861) Ihid., D. 186 (1962). (862) Ibid.; p. 269 (1062). (863) Ibid., p. 294 (1962). (864) Ibid., p. 348 (1962). (865) Ibid., p. 402 ( W ) 1962. (866) Yniland, 2. Anal. Chem. 190, 186 (1962). (867) I‘mland, F., Podder, B. K . , Meckenstock, K. G., Z . .4nal. Chern. 185, 362 (1962). (868) Upor, E., Hidro. Kozl. 39,76 (1959). (860) I!rbanski, T., ,Vucleonika 5, 341 (1960). (870) Urbanski, T., h h r , S., Ibid., 6 , 765 (1961). (871) Ibid., 7 , 703 (1962). (872) I‘.S.Atomic Energy Comm. Rept. ORNL-3452 (1963); SSA 17, 39186 (1963). (873) I’zurnasa, Y., Hayashi, K., Ito, S., Rd1. Chem. SOC.Japan 36, 301 (1963). (874) Van Erkelens, P. C., Anal. Chiwi. Acta 24. 526 (1961 1. (875) Ibid., 25, 126 (1961). (876) Ibzd., 26, 32 (1962). (877) Ibzd., p. 46. (878) Van Erkelens, P. C., Thesis, Rijksuniv. 17trecht 11960). (879) Van Ipenburg, K., Rec. Trav. Chim. 80, 269 (1961). (880) Varga, L. P., Hume, I).N., Inorg. Chena. 2 , 201 (1963). (881) T’asil’ev, P . I., Podval’naya, R. L., Voronkova, ill. A . , .Mineral. Syr’ye, Jfoscow, Shornik, 1960, KO.1, 302. (882) Vasilevskaya, .4.E., Shcherbakov, V. P., Klimenchuk, V. I., Zazbod. Lab., 28, 41.5 (1962). (883) Vdovenko, T’. hf., Kovaleva, T. V., Potapov, V. G., Radiokhiniiya 4 , 34 (1062). \ - - - - I

VOL. 3 6 , NO. 5 , APRIL 1964

115 R

(884) Vdovenko, V. M . , Krivokhatskii, A . S., Gusev, Y. K., Ibid., 2 , 531 (1960). (885) Vdovenko, V. XI., Krivokhatskii, A . S., Zh. .Yeorgan. Khini. 5 , 745 (1960). (886) Vdovenko, V. ll.]Lipovskii, A. A , , Sikitina, S. A . , Radiokhimiya 4 , 625 (1962). \ - - - - ,

(887) Vecera, Z., Bieber, B., Hut. n L i s t y 15, 667 (1961). (888) Veksler, R. I., Tr. p o Khim. z Khirn. Tekhnol. 1 , 142 (1962). 18891 Versteeen. J. LI. P. J.. Trans. Fara‘ day Soc. 58; 1878 (1962). ‘ (890) Verstegen, J. M. P. J., Ketelaar, J. A . A , , J . Phys. Chem. 6 6 , 21 (1962). (891) Vinarov, I. V., Orlova, A . I., Kishtsa, S. F., Ck. Khim. Z h . 28, 789 (1962). (892) Vinogradov, E E., Zh. Yeorgan. , 2813 (1962). Khzm. 77,”2813 (893) Vinokurova, G. N., l‘k. Khzm. Zh. 28, 651 (1962). (894) Voaliotti, Vogliotti, F., Energza AYucl.(Mzlan) 7 . 169 (1960). 0). (89;) von Baeckmann, A , , Glemser, O., 2. Anal. Chenc. 187, 429 (1962). (896) Vrchlabsky, SI., Okac, A , , Collection Czech. Cheni. Cornmun. 27, 246 (1962). (897) Vydra, F., Pribil, R., ChemistAnalyst 51, 76 (1962). (898) Wagner, W. F., Record Chem. Progr. 23, S o . 3, 155 (1962). (89!1) Waksmundski, A,, Socxewinski, E., Roczn. Cheni. 35, 1363 (1961). (900) Wang, Y. Y.,Khalkin, V. A., Radiokhirniya 3, 662 (1961). (901) Warren, C. G., J . Inorg. Sucl. Cheni. 23, 103 (1961). (902) Weaver, B., U. S. Atomic Energy Commission Report ORNL-3194 (1961). (903) Weglarczyk, A , , Chem. Anal. Warsaw 7 , 969 (1962). (9041 Weiss. D.. Rudu. Praaue 9 (4‘ Addendum) (1961). ” (905) Werner, .4. E., Waldichick, M., ANAL.CHEM.34, 1674 (1962). (906) West, T. S., Anal. Chim. Acta 25, 405 (1961). (907) West, T. S., Ind. Chemist 38, 35, 81 (1962). \ -

(908) Ibid., 38, 634 (1962). (909) West, P. W.,Lorica, A . S., ilnal. Chirn. ilcta 25, 28 (1961). 1910) Westoo. G.. Analust 88. 287 119631. (911) Wheali, R.‘D., B h d , B . J., Falania 9 , 823 (1962). (912) Whitney, D C., U. S. Atomic Energy Comm. Rept. UCRL 10505 , 186 pp. (1962). (913) Whitney, D. C., Diamond, R. XI., J . Phys. Chern. 67, 209 (1963). 1914) Wilhelm. H. A , . U. S. Atomic Energy Comm. Rept.’ IS-309 (1961). (915) Wilson, A. I,., -4nalyst 87, 884 (1962). (916) Wilson, A . lI., Churchill, I,., Kiluk, K., Hovsepain, P., As.41,. CHEM. 34, 203 (1962). (917) Wilson, A. hI., hIcFarland, 0 . K., Ibid., 35, 302 11963). (918) Wilson, R. B., Jacobs, W. D., Ibid., 33, 1650 (1961). (919) Wish, I,., I b i d . , 34, 625 (1962). (920) LVoodward, I,. A , , Taylor, 3f. J., J . Cheni. Soc. 1962, 407. (921) Yagi, I., J . Chevk. Soc. Japan. Ind. Chews. Sect. 63. 1930 11060). (922) Ibtd., 64, 878 (i96l). (923) Yagodin, G. A,, Chekmarev, A . SI., Ekstraktsaua, Teoriua, Przmenenze, Aparatura 2,‘141 (1962). 1924) Yakimov. ;IT. A , , Sosova, N. F., Z i . S e o r g a n . Khim. 6 , 208 (1961). (925) Yakovlev, I. I., Opalovskaya, R. I., Isv. Sibirsk Otd. -4kad. .I‘auli S S S R ( 1 2 ) 62 (1962). (926) Yamauchi, F., XIurata, A , , Japan Analyst 9 , !I59 (1960). (927) Yanagihara, T., Xfatano, S . , Kawase, A , , Ibid., 10, 414 (1961). 1928) Yeh. S.J.. Chu, P. C.. J . Chinese Chem. Soc. ( I I ) 10, 1 (1963). (929) Yen, T., Hsieh, Y . , Chem. Bull. Pekzng, 2 , 17 (1960). (930) Yoshida, H., Japan Analyst 12, 169 i1963). (931) Yoshida, H., J . Inorg. .Vucl. Chenc. 24, 4257 (1062). 19321 Yosliida. H.. Takahashi. M., Jamn ~, Analyst 10, {I54 (1961). I-

/

,



(933) Yoshida, H., Yamamoto, M . , Hikime, S., Bunseki Kagaku 1 1 , 197 (1962). (934) Yoshimura, J., llurakami, Y., Bull. Chern. Soc. Japan 35, 1001 (1962). (935) Yuasa, T., Japan Analyst 10, 965 (1961). (936) Yuranova, 1,. I., Kommissarova, L. S . , Plyuschchev, T‘. E., Dokl. A k a d . .Yauk S S S R 140, 855 (1961). (937) Zaborenko, K. B., .%lian, .4., Zavod. Lab. 28, 1380 (1962). (938) Zagon, S. I.. Obogashch. Rud. 6, 3 2 (1961). (939) Zakharov-Sartsissov, 0.I., Ochkin, A . V., Zh. Seorgan. Khim. 7 , 665 (1962). (940) Zangen, J . Inorg: Sucl. Chem. 25, 581 (1963). 1941) Ibid.. D. 1051. (942j Zelle; A , , Fijalkowski, J., Chem. Anal., Warsaw 7, 317 (1962). (943) Zeman, A , , Ruzicka, J., Stary, J., Talanta 10, 685 (1963). (944) Zbid., p. 981. (945) Zharovskii, F. G., Sakhno, A. G., Ckr. Khim. Zh. 28. 145 11962). 1946) Zharovskii. F.’G.. Litvinenko. V. ‘ A,:Zh. Seorgan. Khim. 6 , 1940 (1661). (947) Ziegler, M., 2. Anal. Chem 182, 166 (1961) (948) Ziegler, M., Holland, J., Ibid., 194, 240 (1963). 1949) Zieder. 11..Matschke. H. D.. Ibid.. 184, 166 (196lf. (950) Zolotov, Y. A., Zavod. Lab. 28, 1404 (1962). (951) Zolotov, Y. A . , Alimarin, I. P., J . Inorg. jVucl. Chem., 25, 719 (1963). (952) Zolotov, Y. A., Alimarin, I. P., Radiokhimiya 4 , 272 (1962). (953) Ibid., Talanta 9 , 891 (1962). (954) Zolotov, Y.A , Seryakova, I. V., Antipova-Karutaeva, I . I., Kut’senko, Y.I., Karyakin, A . V., Zh. ?;eorpan. Khiiii. 7 , I197 (1962). (955) Zolotov, Y.A , , Seryakova, I. V., Karyakin, -4.V.,Gribov, Id. -4., Zubrilina, 11.E . , Ibid., 8 , 475, 481 (1963). (956) Zucal, R. H., Dean, J. A., Handley, T. H., A x . 4 ~ CHEM. . 35, 988 (1963). ~

Fluorometric Analysis Charles E. White, University o f Maryland, College Park, Md. Alfred Weissler,‘ Air Force O f f i c e o f Scientific Research, Washington 25, D. C.

T

review covers the 2-year period from approximately December 1961 (634)to December 1963. Several books, chapters, and a number of r e \’iews ’ on fluorescence have appeared in this period. Cdenfriend (499)in a 500-page book on “FluoreScence in I3iology and lledicine” gives d a t a on the fluorescence spectra of many compounds and discusses procedures and apparatus. Weissler and White (530) contribut,ed a chapter on fluorescence analysis in a “Handbook of ,\nalytical Chemistry’’ in which methods for 33 elements and 215 compounds are listed. The reagents, conditions, excitation and emission maxima, sensitivity, and references are given. HIS

1 Alfred Weissler is author of organic and biological section.

116 R

ANALYTICAL CHEMISTRY

Nairn’s book (342) of 280 pages on protein tracing covers antibody techniques and material of interest for fluorescence applications in biology. T h e title of Gunn’s book (It?$), “Introduction to Fluorimetry,’’ is expressive of the content in its 59 pages. collection of the papers given a t the New York L-niversity International Conference on the Luminescence of Organic and Inorganic Materials is not concerned directly with analyses but does give considerable theoretical material from a physics and physical chemistry standpoint (236). Review 1)alm-s have appeared in many foreign journals. Parker and Rees (877) have given an excellent review covering theory, methods, and applications and include 150 references.

Parker (370) has also published a short review on phosphorimetry. Fluorometric analysis has been reviewed by Shcherbov (431j with 144 references; Patrovsky (378), 4 i references; Konstantinova-Shlezinger (262), 154 references; Holzbecher (213)) 120 references; Eisenbrand (141), 30 references; and Bozhevol’nov ( 6 6 ) , 122 references. Dorr (133) has written an excellent general article on the theory, equipment, and spectra determinations in fluorometric analysis. Crystalline luminous substances in inorganic analysis are the subject of an 8-page article with 68 references (224). 13owman (64)has a 3-page article on application of fluorescence to submicrogram analysis. An excellent 25-page review on the effects of environment, pH, concentration,