4 Rapid Screening of Extractive Distillation
Downloaded by UNIV MASSACHUSETTS AMHERST on August 10, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch004
Solvents Predictive and Experimental Techniques
DIMITRIOS P. TASSIOS Newark College of Engineering, Newark, N. J. 07102 Rapid predictive and experimental techniques for screening extractive distillation solvents are reviewed. In pre paring a list of potential solvents the method of Scheibel is recommended for non-hydrocarbon systems; for hydro carbon systems solvents of high polar cohesive density should be considered. For screening the potential sol vents the method of Pierotti, Deal, and Derr is recom mended. If it is not applicable, the method of Helpinstill and Van Winkle should be considered next. Finally, re liable screening is accomplished through a simple, rapid technique recently developed that uses gas-liquid chro matography.
" E x t r a c t i v e a n d a z e o t r o p i c d i s t i l l a t i o n i n different types o f c h e m i c a l i n d u s t r y has b e c o m e m o r e i m p o r t a n t as m o r e separations of c l o s e - b o i l i n g m i x t u r e s a n d a z e o t r o p i c ones are e n c o u n t e r e d . E x t r a c t i v e d i s t i l l a t i o n is u s e d m o r e because i t is g e n e r a l l y less expensive, s i m p l e r , a n d c a n use m o r e solvents t h a n a z e o t r o p i c d i s t i l l a t i o n . S o l v e n t s e l e c t i o n for a z e o t r o p i c d i s t i l l a t i o n has r e c e n t l y b e e n d i s c u s s e d b y B e r g ( I ) .
T h e r e f o r e , solvent
s c r e e n i n g for extractive d i s t i l l a t i o n is d i s c u s s e d here. T h e ease of s e p a r a t i o n o f a g i v e n m i x t u r e w i t h k e y c o m p o n e n t s i a n d / is g i v e n b y the r e l a t i v e v o l a t i l i t y :
w h e r e χ is the l i q u i d phase m o l e fraction, y is the v a p o r p h a s e m o l e f r a c t i o n , y is the a c t i v i t y coefficient, a n d P ° is the p u r e c o m p o n e n t v a p o r pressure. 46 In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Library American Chemical Society 4.
Extractive
TASSIOS
Distilfotion
47
Solvents
T h e solvent is i n t r o d u c e d t o c h a n g e t h e r e l a t i v e v o l a t i l i t y ( α # ) as far a w a y f r o m one as possible. S i n c e the r a t i o
(P°i/P° )
is constant for s m a l l
;
t e m p e r a t u r e changes, t h e o n l y w a y t h a t t h e r e l a t i v e v o l a t i l i t y i s affected is b y i n t r o d u c i n g a solvent w h i c h changes the r a t i o
(yi/γ,).
This ratio, i n
the presence o f the solvent, is c a l l e d selectivity (S^) : Sii—
[yi/r;] solvent
(2)
Downloaded by UNIV MASSACHUSETTS AMHERST on August 10, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch004
I n some cases a significant c h a n g e i n o p e r a t i n g pressure, a n d h e n c e t e m p e r a t u r e , changes
e n o u g h t o e l i m i n a t e a n azeotrope ( 2 ) .
Besides a l t e r i n g t h e r e l a t i v e v o l a t i l i t y , t h e solvent s h o u l d also b e easily s e p a r a t e d
from
the distillation products.
Other
criteria—e.g.,
toxicity, cost, e t c . — d i s c u s s e d b y V a n W i n k l e ( 2 ) a n d others m u s t b e c o n s i d e r e d . R e l a t i v e v o l a t i l i t y e n h a n c e m e n t is d i s c u s s e d i n this p a p e r . S e l e c t i n g the p r o p e r solvent b y c o n s i d e r i n g this c r i t e r i o n is s t i l l b a s e d o n e m p i r i c a l a p p r o a c h e s because o f t h e large n o n i d e a l i t y o f the r e s u l t i n g mixtures.
However,
g e n e r a l selection patterns a n d r a p i d e x p e r i m e n t a l
techniques have been made presents a r e v i e w
a v a i l a b l e t h r o u g h t h e years.
o f some o f these m e t h o d s
This
paper
t o f a c i l i t a t e t h e solvent
selection process i n t h e c h e m i c a l i n d u s t r y . Q u a l i t a t i v e aspects a r e first considered, followed
b y e m p i r i c a l correlations a n d r a p i d e x p e r i m e n t a l
techniques. Qualitative
Considerations
Since the type
o f solutions e n c o u n t e r e d
i n extractive d i s t i l l a t i o n
i n v o l v e m i x t u r e s o f p o l a r c o m p o u n d s o r p o l a r w i t h n o n p o l a r ones, t h e solutions a r e u s u a l l y n o n i d e a l , a n d p r e d i c t i n g t h e phase e q u i l i b r i u m f r o m p u r e c o m p o n e n t d a t a o n l y is p r a c t i c a l l y i m p o s s i b l e . T h e o r e t i c a l a n d e x p e r i m e n t a l studies t h r o u g h the years, h o w e v e r , h a v e e s t a b l i s h e d c e r t a i n trends w h i c h are u s e d to s e a r c h f o r a n d screen p o t e n t i a l solvents. Non-Hydrocarbon Mixtures: The Scheibel Method. S c h e i b e l ( 3 ) has suggested that the p r o p e r solvent c a n b e f o u n d a m o n g t h e m e m b e r s o f the h o m o l o g o u s series o f either k e y c o m p o n e n t s , i o r /
close t o o n e ) .
A n e x a m p l e p r e s e n t e d b y S c h e i b e l . ( 3 ) best demonstrates this a p p r o a c h . C o n s i d e r i n g the separation o f the m e t h a n o l - a c e t o n e azeotrope, t h e p o t e n t i a l solvents a c c o r d i n g t o this m e t h o d a r e presented i n T a b l e I. A n y m e m b e r o f either h o m o l o g o u s series c a n b e u s e d . T h e reason b e h i n d this a p p r o a c h is that w h i l e the m e m b e r s o f a h o m o l o g o u s series f o r m essen t i a l l y i d e a l solutions, t h e y f o r m n o n i d e a l solutions w i t h t h e other c o m ponent. with
F o r e x a m p l e w h i l e m e t h a n o l forms essentially i d e a l solutions
ethanol,
1-propanol,
a n d 1-butanol,
n o n i d e a l solutions w i t h t h e m .
acetone
forms
increasingly
W h i l e t h e p a r t i a l pressure o f m e t h a n o l
decreases i n t h e presence o f a h i g h e r a l c o h o l , that o f acetone increases.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
48
E X T R A C T I V E
Table I.
A Z E O T R O P I C
Potential Solvents for the Acetone "-Methanol
B.P.,
Solvent Methylethyl
ketone
102.0
M e t h y l i s o b u t y l ketone M e t h y l n - a m y l ketone,
etc.
DISTILLATION
6
Separation
B.P.,
Solvent
°C
79.6
M e t h y l η-propyl ketone
Downloaded by UNIV MASSACHUSETTS AMHERST on August 10, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch004
A N D
°C
Ethanol
78.4
Propanol
97.8
115.9
Water
100.0
150.6
Butanol A m y l alcohol
117.0
Ethylene
197.4
137.8
glycol
"Boiling point: 54.6°C. B o i l i n g point: 64.7°C. b
So that a n a z e o t r o p e w i t h acetone does not f o r m , the a l c o h o l u s e d m u s t h a v e a h i g h e n o u g h b o i l i n g point.
T h i s r e q u i r e m e n t is r e l i a b l y
l i s h e d o n l y i f v a p o r - l i q u i d e q u i l i b r i u m d a t a for at least two,
estab
preferably
three, of the m e m b e r s of the series w i t h acetone are k n o w n . T h e P i e r o t t i Deal-Derr
method
(4)
( d i s c u s s e d l a t e r ) o r the T a s s i o s - V a n
Winkle
m e t h o d ( 5 ) c a n b e u s e d i n this case. I n the latter m e t h o d a l o g - l o g p l o t of y°i vs. P°i s h o u l d y i e l d a straight line. F i g u r e 1 presents results for n-alcohols a n d b e n z e n e f r o m t h e i s o b a r i c ( 7 6 0 m m H g ) Coates (6).
d a t a of W e h e a n d
R e l i a b l e infinite d i l u t i o n a c t i v i t y coefficients are established
for the o t h e r η-alcohols f r o m d a t a for at least t w o , a n d p r e f e r a b l y three, of t h e m . T h e s e y° or W i l s o n (7)
values are u s e d w i t h equations l i k e those of V a n L a a r to generate a c t i v i t y coefficients
at i n t e r m e d i a t e
composi
tions a n d to c h e c k for a n e x i s t i n g a z e o t r o p e o r a difficult separation c u r v e close to t h e 45°
(x-t/
line).
F r o m the t w o series the one of t h e alcohols is p r e f e r r e d because here acetone is the o v e r h e a d p r o d u c t a n d u s i n g a ketone causes the v o l a t i l i t y to invert.
Scheibel (3)
recommends
relative
that the lowest b o i l i n g
h o m o l o g , w h i c h does not f o r m a n azeotrope, is chosen.
An
alternative
a p p r o a c h suggests the h o m o l o g w h i c h b a r e l y meets the m i s c i b i l i t y re q u i r e m e n t , for this results i n h i g h selectivity
(8).
T h e choice between
these c o n f l i c t i n g suggestions m u s t b e m a d e o n the basis of
economical
considerations. Hydrocarbon Mixtures. H e r e i t is u s u a l l y n o t the existence of a n azeotrope b u t r a t h e r the close v a p o r pressure of the k e y
components
that often necessitates u s i n g extractive d i s t i l l a t i o n . T h e q u a l i t a t i v e c r i t e r i a for solvent selection for h y d r o c a r b o n tures h a v e b e e n d i s c u s s e d b y P r a u s n i t z a n d A n d e r s o n ( 9 ) a n d P r a u s n i t z (10). (II),
and
mix
Weimer
S i n c e a r e v i e w was p r e s e n t e d r e c e n t l y b y Tassios
o n l y the c o n c l u s i o n s are discussed here.
T h e types of possible interactions b e t w e e n a m i x t u r e of h y d r o c a r b o n s a n d a p o l a r solvent are:
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
Extractive
TASSIOS
Distillation
49
Solvents
1. p h y s i c a l ( d i s p e r s i o n a n d d i p o l e - i n d u c e d d i p o l e ) 2. c h e m i c a l ( r e s u l t i n g f r o m t h e f o r m a t i o n of l o o s e l y b o u n d aggre gates) U s i n g p h y s i c a l i n t e r a c t i o n alone, P r a u s n i t z a n d A n d e r s o n ( 9 ) a n d W e i m e r a n d P r a u s n i t z (10)
h a v e d e v e l o p e d this s i m p l i f i e d expression
for h y d r o c a r b o n selectivity, S° 3, at infinite d i l u t i o n i n a solvent: 2
Downloaded by UNIV MASSACHUSETTS AMHERST on August 10, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch004
lnS°2s
oc ( r x W e - V a )
(3)
w h e r e η is the p o l a r cohesive e n e r g y d e n s i t y of the solvent, w h i c h is rer e l a t e d to the p o l a r i t y a n d t h e m o l a r v o l u m e of t h e solvent. References 10 a n d 11 e x p l a i n h o w to c a l c u l a t e τ. T h e s e l e c t i v i t y is h i g h e r , t h e l a r g e r the difference i n m o l a r v o l u m e b e t w e e n the h y d r o c a r b o n s a n d the l a r g e r the p o l a r cohesive e n e r g y d e n s i t y ( τ ) of t h e solvent. P r a u s n i t z a n d c o w o r k e r s (9, 10),
Gerster a n d his coworkers (12), Pierroti, D e a l , a n d D e r r
a n d D e a l a n d D e r r (14) conclusions.
F o r e x a m p l e , the selectivities of the p a i r h e x a n e - b e n z e n e
at 2 5 ° C w i t h v a r i o u s solvents (14) for τ
χ
(13),
g i v e e x p e r i m e n t a l e v i d e n c e to s u p p o r t the a b o v e are p r e s e n t e d a l o n g w i t h the values
i n T a b l e I I a n d p l o t t e d against e a c h other i n F i g u r e 2.
Here
3.0L.
l.ol 5.0
I
I
I
I
I 6.0
ι
ι
I
I
I 7.0
I
I
L
lnP°
Figure 1. Prediction of infinite dilution activity coefficients for numbers of a homologous series m a common solvent: n-Alcohols in Benzene at 1 atm
A 7°B
vs. P°B
·
7°A vs. P°A
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
50
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
( V 3 - V 2 ) is constant, a n d the s e l e c t i v i t y tends to increase w i t h τ ,
indi
2
χ
c a t e d b y E q u a t i o n 3. L o o s e l y b o u n d aggregates ( c h e m i c a l effects) are f o r m e d w i t h the h y d r o c a r b o n s a c t i n g as e l e c t r o n d o n o r s ( L e w i s b a s e ) a n d t h e acting
as
electron
acceptors
(Lewis
acid).
The
forms the m o s t stable c o m p l e x w i t h the solvent experiences a i n volatility.
E l e c t r o n donors
are r a t e d b y
that
decrease
ionization potential,
e l e c t r o n acceptors are r a t e d b y t h e i r e l e c t r o n affinities.
Downloaded by UNIV MASSACHUSETTS AMHERST on August 10, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch004
solvents
hydrocarbon
The
and
selectivity
w i l l b e h i g h e r , the l a r g e r the difference i n i o n i z a t i o n p o t e n t i a l b e t w e e n the h y d r o c a r b o n s a n d the l a r g e r the e l e c t r o n affinity of the solvent While
data
(15, 16),
on
ionization potentials
of
hydrocarbons
can be
(9). found
e l e c t r o n affinities d a t a are r a r e because of difficulties i n t h e i r
experimental
determination.
Prausnitz and Anderson
that the s i g m a scale, p r o p o s e d b y H a m m e t t (17),
(8)
b e u s e d to
recommend determine
a p p r o x i m a t e l y the s o l v e n t s r e l a t i v e a b i l i t y to f o r m complexes w i t h the two hydrocarbons.
A t t e m p t s b y this a u t h o r , h o w e v e r , to use this scale
w e r e n o t c o n c l u s i v e . P r a u s n i t z a n d A n d e r s o n (8)
s h o u l d b e c o n s u l t e d to
u n d e r s t a n d better the p h y s i c a l a n d c h e m i c a l effects. The Effect of Solvent and Solute Concentration. T h e effect of solvent c o n c e n t r a t i o n o n selectivity is q u a l i t a t i v e l y d e s c r i b e d b y three types
(2,
11 ) s h o w n i n F i g u r e 3. I n the first t y p e the s e l e c t i v i t y increases a l m o s t l i n e a r l y w i t h solvent c o n c e n t r a t i o n , a n d this seems to represent the p r e d o m i n a n t p a t t e r n 19).
(18,
I n the s e c o n d t y p e the s e l e c t i v i t y increases m o r e t h a n l i n e a r l y w i t h
solvent c o n c e n t r a t i o n , b u t it is h a l t e d b y i m m i s c i b i l i t y at h i g h solvent c o n c e n t r a t i o n s (20).
T h e t h i r d t y p e shows a m a x i m u m a n d is a n u n u s u a l
p a t t e r n . O n e s u c h case was o b s e r v e d b y H e s s et al. (21)
i n s t u d y i n g the
s e p a r a t i o n of 1-butane f r o m butenes-2 w i t h the f u r f u r a l solvent Table II.
(96.5%
Selectivities and Polar Cohesive Energy Densities for the Hexane ( l ) - B e n z e n e (2) System at 25°C (12) Solvent
M E K Acetone Pyridine Aniline Acetonitrile Propionitrile Nitromethane Nitrobenzene Phenol Furfural Dimethyl-sulfoxide D i m e t h y l formamide
S°2J 3.6 3.8 5.2 12.2 9.4 6.5 15.0 5.8 6.0 10.9 22.0 12.5
T (cal/cc)
m
t
5.33 6.14 3.71 6.37 8.98 7.17 9.44 4.89 9.84 7.62 9.47 8.07
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
TASSIOS
Extractive
Distilfotion
51
Solvents
1.4
•
1.2
-
Downloaded by UNIV MASSACHUSETTS AMHERST on August 10, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch004
1/1
•
•
1.0
0.8
0.6
1
1
•
•
•
•
•
•
•
•
•
•
20
I
1
I
40
60
80
ι
1
I g.molel Figure
2.
Variation of selectivity with solvent's polar cohesive system: hexane (l)-benzene (2) at 25°C (12)
weight furfural and 3 . 5 % water). that
selectivity
H o w e v e r , G e r s t e r et al
i n c r e a s e d w i t h solvent
c o n c e n t r a t i o n for
density;
(22)
report
the
system
b u t a n e - b u t e n e - 1 w i t h p u r e f u r f u r a l as solvent. C o n s i d e r i n g the extensive e x p e r i m e n t a l w o r k of the s e c o n d s t u d y , the results s h o u l d b e c o n s i d e r e d m o r e r e l i a b l e . A n o t h e r case i n v o l v e s the s e p a r a t i o n of e t h y l b e n z e n e f r o m e t h y l c y c l o h e x a n e w i t h h e x y l e n e g l y c o l as solvent ( 2 3 ) .
The maximum
appears i n this case i f definite, a n d t h e d a t a are r e p r o d u c e d . T h i s decrease i n s e l e c t i v i t y at h i g h e r solvent c o n c e n t r a t i o n results f r o m the
higher
temperatures r e s u l t i n g f r o m l a r g e r solvent c o n c e n t r a t i o n , for as t e m p e r a t u r e increases, s e l e c t i v i t y decreases. S e l e c t i v i t y is also affected b y the r e l a t i v e concentrations of the k e y c o m p o n e n t s . If c o m p o n e n t ( 1 ) forms a m o r e n o n i d e a l s o l u t i o n w i t h t h e solvent t h a n c o m p o n e n t ( 2 ) , a decrease i n Xi w i l l affect y χ m u c h m o r e t h a n a decrease of x w i l l affect y . 2
2
more rapidly than w h e n x
2
H e n c e , as X i decreases, οi2 increases
decreases.
Experimental evidence
(19,
20)
c l e a r l y shows this. F o r e x a m p l e , c o n s i d e r h o w p r o p a n o l affects the r e l a tive v o l a t i l i t y of the n-hexane ( l ) - b e n z e n e ( 2 )
system. H e x a n e forms a
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV MASSACHUSETTS AMHERST on August 10, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch004
52
E X T R A C T I V E
0 0
0.2
04
0.0
02
0.4
Figure •
A N D
A Z E O T R O P I C
Solvent Mole Fraction 06 08
0.6 Solvent V o l u m ^
1 0
0 8 y d r e e
1.0 V
o
|
3. Variation of refotive volatility with solvent Hydrocarbon ratio is 1:1. P: Constant. ethylcyclohexane (l)-ethyl
DISTILLATION
amount.
benzene (2)/hexylene glycol (22)
A n-hexane (l)-~benzene (2)/l-propanol (18) φ 2-4 dimethylpentane (l)-benzene (2)/aniline (19)
m o r e n o n i d e a l system w i t h p r o p a n o l t h a n b e n z e n e (xi/xo)
(19).
A s the r a t i o
decreases, Si increases. T h i s w a s o b s e r v e d e x p e r i m e n t a l l y 2
(19)
(see F i g u r e 4 ) . Mixed Solvents Effect.
U s i n g m i x e d solvents c a n i m p r o v e selectivity.
F o r e x a m p l e , a d d i n g s m a l l a m o u n t s o f w a t e r has i m p r o v e d the selectivity of f u r f u r a l i n s e p a r a t i n g C (25)
4
h y d r o c a r b o n s (24). B a u m g a r t e n a n d G e r s t e r
h a v e s t u d i e d h o w v a r i o u s solvents affect the selectivity o f f u r f u r a l
for t h e p e n t a n e - p e n t e n e p a i r . T h e y c o n c l u d e d t h a t for o n l y a f e w solvents some i m p r o v e m e n t w a s o b s e r v e d .
T h e r e s u l t i n g s e l e c t i v i t y lies b e t w e e n
t h e s e l e c t i v i t y of the p u r e solvents ( see T a b l e III ). T o a v o i d i m m i s c i b i l i t y at h i g h solvent c o n c e n t r a t i o n s , a s e c o n d solvent is sometimes a d d e d
(25).
The Effect of Temperature. T h e t e m p e r a t u r e effect o n s e l e c t i v i t y is given by:
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
Extractive
TASSIOS
Distilfotion
53
Solvents
d(logS° ) 12
_
tf(l/T)
~
L \ - L \ 2.303R
v
'
w h e r e L° is p a r t i a l m o l a r heat of s o l u t i o n , c o m p o n e n t k at infinite d i l u t i o n i n the solvent. k
F o r h y d r o c a r b o n pairs i n different solvents a n d over m o d e r a t e t e m p e r a t u r e ranges (to 1 0 0 ° C ) , a l i n e a r d e p e n d e n c y of l o g S ° i o n ( 1 / T ) c a n b e a s s u m e d (12, 14, 26). A n e x a m p l e is s h o w n i n F i g u r e 5, w h e r e l o g S° for t h e h e x a n e - b e n z e n e p a i r i n five different solvents is p l o t t e d against t h e r e c i p r o c a l absolute temperature. T h e r e l a t i o n s h i p c a n b e c o n s i d e r e d l i n e a r for e n g i n e e r i n g a p p l i c a t i o n s . S e l e c t i v i t y decreases w i t h i n c r e a s i n g temperature, a n d this explains t h e u n u s u a l m a x i m u m i n t h e v a r i a t i o n of selectivity w i t h solvent c o n c e n t r a t i o n s h o w n b y t h e system e t h y l b e n z e n e - e t h y l c y c l o h e x a n e w i t h h e x y l e n e g l y c o l as solvent ( F i g ure 3 ) .
Downloaded by UNIV MASSACHUSETTS AMHERST on August 10, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch004
2
30
i.ol
0.0
ι
I
02
I
I
04
ι
I
1
0.6
1 0 8
1—
1.0
M. Van Winkle, "Distillation," McGraw-Hill Figure 4. Variation of relative volatility with composition (2). Sys tem: hexane (l)-benzene (2)/l-propanol (3) at 760 mm (18). x,/x : · 2
1:3, A
1:1, •
3:1
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
54
E X T R A C T I V E
Table III.
Mixed
Downloaded by UNIV MASSACHUSETTS AMHERST on August 10, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch004
1-Pentene(2)
P r o p a n e (3) P r o p y l e n e (2) α
A Z E O T R O P I C
DISTILLATION
Selectivity of Pure and Mixed Solvents
Solute
n-Pentane(3)
A N D
Solvents
B;
Vol%
s
a
A
Β
M e t h y l Cellosolve M e t h y l Cellosolve M e t h y l Cellosolve
Nitromethane Nitromethane Nitromethane
0 5 100
1.69 1.70 2.49
Pyridine Pyridine Pyridine
-Butyrolactone -Butyrolactone -Butyrolactone
0 32.1 100
1.60 1.79 2.17
E t h y l m e t h y l ketone E t h y l m e t h y l ketone E t h y l m e t h y l ketone
-Butyrolactone -Butyrolactone -Butyrolactone
100 50 0
2.17 1.79 1.62
Acetonitrile Acetonitrile Acetonitrile
Water Water Water
0 50 100
1.64 1.34 .98
Acetonitrile-water data from Reference 41, all others from Reference
Quantitative
Methods
Infinite d i l u t i o n a c t i v i t y coefficients are p r e d i c t e d b y several methods (4,5,10,
27,28, 29, 30, 31).
method
(4),
method
(10),
T h e m o s t g e n e r a l are the P i e r o t t i - D e a l - D e r r
the p a r a c h o r m e t h o d modified
(27),
a n d the
Weimer-Prausnitz
by Hellpinstill and V a n Winkle
a c c u r a c y is l i m i t e d i n these m e t h o d s
Since
(28).
a n d noninfinite dilution
tions p r e v a i l i n a c t u a l operations, the infinite d i l u t i o n a c t i v i t y
condi
coefficients
o b t a i n e d s h o u l d o n l y be u s e d for s c r e e n i n g purposes. Pierotti-Deal-Derr Method (4). (γ°)
Infinite d i l u t i o n a c t i v i t y
coefficients
of s t r u c t u r a l l y r e l a t e d systems are c o r r e l a t e d i n this m e t h o d to the
n u m b e r of c a r b o n atoms of the solute a n d solvent (n
x
m e m b e r s of the h o m o l o g o u s series H ( C H 2 )
w l
a n d n^).
F o r the
X i ( s o l u t e ) i n the m e m b e r s
of the h o m o l o g o u s series H ( C H ) „ Y 2 : 2
log o y
x
_
A
+
l l
+
n
2
2
B
2
^ + ^ no
w h e r e the constants are functions of t e m p e r a t u r e , B of t h e solvent series, C
x
of b o t h , a n d D
Q
(5)
+ Dofa-n*)* U\ 2
and F
is a f u n c t i o n of the solute series, A
lt2
2
are f u n c t i o n s is a f u n c t i o n
is i n d e p e n d e n t of b o t h .
F o r z e r o m e m b e r s of a series—e.g., w a t e r for a l c o h o l s — n o infinite v a l u e for y°
is o b t a i n e d .
Instead, b y c o n v e n t i o n , a n y terms c o n t a i n i n g
a n η for the z e r o m e m b e r are i n c o r p o r a t e d i n the c o r r e s p o n d i n g cient. So for η-alcohols i n w a t e r :
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
coeffi
4.
TASSIOS
Extractive
Distilhtion
l o g y\ Notice
= Κ + B % + 2
that the t e r m D
(%-n )
0
constant because D
G
55
Solvents
2
x
was
2
(6)
CJn
i n c o r p o r a t e d i n t o the
Κ
is s m a l l e r t h a n the other coefficients b y a factor of
1 0 ; therefore, this t e r m is insignificant. I n E q u a t i o n 6 o n l y Κ is a f u n c 3
t i o n of the solute a n d solvent, as stated before.
B
2
is a l w a y s the same
w h e n w a t e r is the solvent a n d C i is the same for η-alcohol solutes.
This
Downloaded by UNIV MASSACHUSETTS AMHERST on August 10, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch004
is s h o w n better f r o m t h e f o l l o w i n g h o m o l o g o u s series i n w a t e r at 100°C: η-Alcohols:
l o g y\
=
-0.420 +
(0.517)% +
(0.230)/%
η-Aldehydes: l o g y ° = - 0 . 6 5 0 + ( 0 . 5 1 7 ) % + ( 0 . 3 2 ) / % 1
T h e coefficient Β is the same i n b o t h cases. E q u a t i o n 6 assumes a different f o r m for c y c l i c c o m p o u n d s i n a solvent.
F o r unalkylated cyclic (aromatic
and/or naphthenic)
fixed
hydro
c a r b o n s i n fixed solvents: log y\ where
B
a
and B
n
=
Κ + Bn
are
solvent
a
+ Bn
a
n
n
+ C [l/r -
dependent
r
1]
constants, C
(8) r
is
constant,
d e p e n d i n g o n the t y p e of ring ( d i p h e n y l l i k e or n a p h t h a l e n e l i k e ) , r is the n u m b e r of rings, a n d n
a
bers, respectively.
a n d η% are a r o m a t i c a n d n a p t h e n i c c a r b o n n u m
F o r e x a m p l e for d i p h e n y l l i k e h y d r o c a r b o n s i n p h e n o l
at 2 5 ° C : logy\ =
0.383 + 0.1421 n + 0 . 2 4 0 6 n a
n
+
1.845[l/r -
1]
30 I
(9)
~
1
1.0 I
I.JU
Figure 5. Dependence of selectivity on temperature. System: hexane (1}benzene (2). φ nitrobenzene, A acetonitrile, + furfural, ψ dimethyl sulfolane, Ο diethylene glycol
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
56
E X T R A C T I V E
A N D AZEOTROPIC
DISTILLATION
C o r r e l a t i o n s f o r various systems, d e v e l o p e d b y u s i n g e x p e r i m e n t a l d a t a o n 2 6 5 systems, are a v a i l a b l e ( I I , 2 6 ) . T h e r e l a t i o n s h i p s u s e d , the n u m e r i c a l values o f t h e constants, a n d t h e c a l c u l a t e d a n d e x p e r i m e n t a l values f o r y° are a v a i l a b l e ( 1 3 ) a n d s h o u l d b e u s e d t o s t u d y solvent selection. The Parachor Method ( 2 7 ) . Infinite d i l u t i o n a c t i v i t y coefficients are
Downloaded by UNIV MASSACHUSETTS AMHERST on August 10, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch004
o b t a i n e d a c c o r d i n g to this m e t h o d f r o m the f o l l o w i n g r e l a t i o n s h i p ( 2 7 ) :
^-^άκτ^ - ^
10
1/2 €υ
2
(10)
w h e r e 17* is p o t e n t i a l e n e r g y o f c o m p o n e n t i c a l c u l a t e d f r o m : C7< · = ( A H a p ) i — R T , Δ Η ρ is e n t h a l p y o f v a p o r i z a t i o n , c a l / g r a m m o l e , C is a constant, a f u n c t i o n o f temperature, t h e p a r a c h o r r a t i o o f the t w o c o m ponents, a n d t h e n u m b e r o f c a r b o n atoms i n t h e solute a n d solvent m o l e c u l e s ; R is t h e gas constant. V
ν Λ
E q u a t i o n 10 generalizes t h e expression o f E r d o s ( 3 1 ) a p p l i c a b l e to c o m p o n e n t s i n v o l v i n g t h e same f u n c t i o n a l g r o u p . R e t u r n i n g to t h e c o n stant C i n E q u a t i o n 10, u s u a l l y t h e n u m b e r o f c a r b o n atoms does n o t d i r e c t l y affect t h e constant. A p p a r e n t l y this effect is c o r r e c t e d b y t h e p a r a c h o r w h i c h changes w i t h t h e n u m b e r of c a r b o n atoms. F o r example, for aromatics i n f u r f u r a l : C — (0.5632 + 0.03 X 10" *) (Pi/P ) 4
2
02222
(11)
a n d f o r naphthenes i n f u r f u r a l : l o g C = (0.2658 + 14.53 X 10" £) (log P i / P 4
2
- 0.5982) - 0.2679 (12)
w h e r e P i is p a r a c h o r o f c o m p o n e n t i a n d t is temperature, ° C . A b o u t t h e same v a r i e t y o f systems, c o v e r e d i n t h e P D D m e t h o d , is c o v e r e d i n this a p p r o a c h , a n d t h e expressions f o r C are g i v e n elsewhere ( 2 7 ) . A c o m p a r i s o n b e t w e e n t h e P D D a n d t h e p a r a c h o r m e t h o d seems to suggest t h a t t h e latter is n o w o r s e t h a n t h e former, a n d often better ( 2 7 ) . F o r t h e systems c o n s i d e r e d , t h e p a r a c h o r m e t h o d gives l o w e r m a x i m u m deviations i n 11 cases, t h e P D D i n 7. A l s o , t h e authors o f t h e p a r a c h o r m e t h o d c l a i m better a c c u r a c y w h e n e x t r a p o l a t i o n w i t h respect to tempera ture is r e q u i r e d . F o r example, t h e case o f n-heptane ( 1 ) i n 1-butanol ( 2 ) is c i t e d . V a l u e s f o r y° c a l c u l a t e d b y e x t r a p o l a t i n g t h e P D D constants to temperatures r a n g i n g f r o m 114.5°C-171.9°C y i e l d error r a n g i n g f r o m 1 0 0 - 2 0 0 % ; t h e errors f o r t h e p a r a c h o r m e t h o d range b e t w e e n 0 . 5 - 3 . 6 % . H o w e v e r , this is t h e o n l y c o m p a r i s o n a v a i l a b l e ( 2 7 ) a n d m a y n o t a l w a y s b e v a l i d . T h e p a r a c h o r values are estimated f o r different c o m p o u n d s b y a g r o u p c o n t r i b u t i o n m e t h o d (32, 33). The Weimer-Prausnitz (WP) Method (10). S t a r t i n g w i t h t h e H i l d e b r a n d - S c h a t c h a r d m o d e l f o r n o n p o l a r mixtures (34), W e i m e r a n d P r a u s -
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4.
Extractive
TASSIOS
DistiUation
Solvents
57
n i t z d e v e l o p e d a n expression for e v a l u a t i n g values of h y d r o c a r b o n s i n p o l a r solvents: R T lny°
-
2
RT[
ν [(λχ -
λ )
2
2
In V / V i + 2
+
2
η
2
-
2ψ ]
+
12
V2/V1]
1 -
(13)
w h e r e V * is t h e m o l a r v o l u m e of p u r e i, c c / g r a m m o l e , λ* is t h e n o n p o l a r s o l u b i l i t y parameter, c o m p o n e n t i , a n d r is the p o l a r s o l u b i h t y p a r a m e t e r , {
Downloaded by UNIV MASSACHUSETTS AMHERST on August 10, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch004
c o m p o n e n t i . T h e s u b s c r i p t 1 represents the p o l a r solvent a n d s u b s c r i p t 2 is the h y d r o c a r b o n solute w i t h f
1 2
—fc'n
(14)
2
Later H e l p i n s t i l l and V a n W i n k l e (28)
suggested that E q u a t i o n 13
is i m p r o v e d b y c o n s i d e r i n g the s m a l l p o l a r s o l u b i l i t y p a r a m e t e r of
the
h y d r o c a r b o n (olefins a n d a r o m a t i c s ) : RTZny
o
2
-V [(Ai -λ ) 2
2
2
R T [ l n V2/V1 +
+
(η -
τ*) 2
2ψ ] 12
+
V2/V1]
1 -
(13a)
A l s o E q u a t i o n 14 b e c o m e s : ψ
12
=
1ϊ(τ
1
-
τ ) 2
(14a)
2
T h e v a l u e of k was o b t a i n e d b y c u r v e - f i t t i n g e x p e r i m e n t a l
infinite
d i l u t i o n a c t i v i t y coefficients of paraffins, olefins, a n d aromatics i n several p o l a r solvents. Table IV.
T h e v a l u e of k for e a c h h y d r o c a r b o n g r o u p is g i v e n i n
T h e values for λ are t a k e n f r o m plots ( 2 8 ) . {
c a l c u l a t i n g ^ is also a v a i l a b l e T h e term ψ
12
The method
for
(28).
corresponds to the i n d u c t i o n e n e r g y b e t w e e n the p o l a r
a n d n o n p o l a r , or s l i g h t l y p o l a r , species.
S i n c e n o c h e m i c a l effects
are
i n c l u d e d , the c o r r e l a t i o n s h o u l d not b e u s e d for solvents s h o w i n g s t r o n g hydrogen bonding. Rapid Experimental
Techniques
T h e safest m e t h o d u s e d to choose extractive d i s t i l l a t i o n solvents is to m e a s u r e d i r e c t l y m u l t i c o m p o n e n t v a p o r - l i q u i d e q u i l i b r i u m d a t a of the c o m p o n e n t s i n v o l v e d w i t h the solvents b e i n g c o n s i d e r e d . T h i s , h o w ever, is a tedious, t i m e c o n s u m i n g a p p r o a c h . T h e r e are r a p i d e x p e r i m e n t a l t e c h n i q u e s w h i c h c a n at least be u s e d i n the s c r e e n i n g stage of selecting t h e solvent.
T w o m e t h o d s are d i s c u s s e d h e r e ; b o t h use g a s - l i q u i d c h r o
m a t o g r a p h y , a n d t h e y are s i m p l e a n d r a p i d . T h e first ( 3 5 ) to screen; the s e c o n d (36), tive volatilities.
is o n l y u s e d
besides screening, gives infinite d i l u t i o n r e l a
B o t h methods
r e q u i r e a solvent w i t h a l o w e r
pressure t h a n the solutes as i n extractive d i s t i l l a t i o n .
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
vapor
58
E X T R A C T I V E
A N D A Z E O T R O P I C
Values for k in Equation
Table IV.
(14a)
System
k
% Average Absolute Error in γ°
Paraffins Olefins Aromatics
0.399 0.388 0.447
11.6 8.5 13.5
Screening Solvents through G L C . I n g a s - l i q u i d Downloaded by UNIV MASSACHUSETTS AMHERST on August 10, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch004
DISTILLATION
(GLC)
separating mixture components
l i q u i d b e i n g a b l e to i n t e r a c t w i t h different w i t h t h e v a p o r pressure differences.
chromatography
is b a s e d o n the p a r t i t i o n i n g strengths w i t h t h e m , a l o n g
T h e same is true for a n extractive
d i s t i l l a t i o n solvent. It seems l o g i c a l , therefore, that extractive d i s t i l l a t i o n solvents c o u l d b e r a t e d o n t h e i r p e r f o r m a n c e as p a r t i t i o n i n g l i q u i d s w i t h the m i x t u r e u n d e r c o n s i d e r a t i o n . W a r r e n et al. (37)
a n d Sheets a n d M a r c h e l l o (38)
have
suggested
u s i n g g a s - l i q u i d c h r o m a t o g r a p h y to s t u d y extractive d i s t i l l a t i o n solvents. I n t h e first s t u d y (37) a n i n d i v i d u a l c o l u m n w a s p r e p a r e d f o r e a c h solvent b y u s i n g this solvent as a p a r t i t i o n i n g l i q u i d .
It is a tedious,
time-
c o n s u m i n g m e t h o d a n d w a s r e s t r i c t e d to solvents o f h i g h b o i l i n g p o i n t . F i n a l l y t h e e x p e r i m e n t a l e v i d e n c e b a s e d o n l i m i t e d d a t a is n o t c o n c l u s i v e . Sheets a n d M a r c h e l l o (38)
significantly s i m p l i f i e d i t b y r e p l a c i n g t h e
p r e p a r i n g o f i n d i v i d u a l c o l u m n s f o r e a c h solvent w i t h d i r e c t l y i n j e c t i n g the solvent i n a c h r o m a t o g r a p h c o n t a i n i n g a g e n e r a l p u r p o s e c o l u m n . N o e x p e r i m e n t a l e v i d e n c e w a s g i v e n to s u p p o r t a p p l y i n g G L C t o rate extractive d i s t i l l a t i o n solvents.
R e c e n t l y Tassios
( 3 5 ) has p r o v e d
that
the m e t h o d is effective for screening. T h e t e c h n i q u e consists o f i n j e c t i n g a c e r t a i n a m o u n t (e.g., 3 c c ) of the solvent b e i n g c o n s i d e r e d i n t o the c h r o m a t o g r a p h c o n t a i n i n g a g e n e r a l p u r p o s e c o l u m n o r a c o l u m n c o n t a i n i n g a n inert s u p p o r t . N e x t , f o u r o r five 5 - m l samples o f a m i x t u r e of t h e k e y c o m p o n e n t s are injected, a n d t h e s e p a r a t i o n factor, F , 12
is m e a s u r e d f o r e a c h s a m p l e : F
12
(15)
= D /£>i 2
w h e r e D is distance b e t w e e n a i r p e a k a n d p e a k f o r c o m p o n e n t i as s h o w n {
i n F i g u r e 6. T h e o b t a i n e d values o f F
12
f o r these samples a r e p l o t t e d
against
t i m e f r o m solvent injection to establish t h e m a x i m u m v a l u e f o r t h e sepa r a t i o n factor, F12 ( m a x ) .
F u r t h e r details a b o u t t h e e x p e r i m e n t a l t e c h
n i q u e are i n t h e o r i g i n a l p a p e r ( 3 5 ) . T h e larger t h e v a l u e o f F
12
(max),
the better t h e solvent c a n separate t h e m i x t u r e , i n d i c a t i n g a better ex t r a c t i v e d i s t i l l a t i o n solvent.
T h i s w a s v e r i f i e d b y c o m p a r i n g values f o r
F12 ( m a x ) a n d infinite d i l u t i o n r e l a t i v e v o l a t i l i t i e s ( « ° i 2 ) for t h e system n-hexane—benzene
w i t h six different solvents.
T h e results p r e s e n t e d i n
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV MASSACHUSETTS AMHERST on August 10, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch004
4.
TASSIOS
Extractive
Distilhtion
59
Solvents
1 Figure 6.
Evaluation
of the separation
factor
Fjg
T a b l e V a n d p l o t t e d i n F i g u r e 7 suggest t h a t the l a r g e r the v a l u e of a°i2, the l a r g e r the v a l u e of F
(max).
12
T h e deviations observed w i t h
d i e t h y l e n e g l y c o l m u s t r e s u l t f r o m the l i m i t e d s o l u b i l i t y of n-hexane a n d benzene i n this solvent ( 3 5 ) .
C o m p a r i n g the solvents b a s e d o n the same
v o l u m e is r e c o m m e n d e d because i t is easier a n d seems m o r e c o n c l u s i v e . Infinite Dilution Relative Volatilities through G L C . If the solvent a m o u n t injected i n the c o l u m n is h i g h e n o u g h so t h a t i n f i n i t e d i l u t i o n c o n d i t i o n s for the i n j e c t e d solute p r e v a i l , it is r e a d i l y s h o w n ( 3 8 ) the s e p a r a t i o n factor
becomes
e q u a l to the infinite d i l u t i o n
that
relative
volatility: (16)