Fatigue Crack Propagation in PVC: Combined Effects of Rubbery

Jul 23, 2009 - 2 Current address: Diamond Shamrock Corp., Painesville, OH 44077. Durability of Macromolecular Materials. Chapter 22, pp 311–329...
0 downloads 0 Views 2MB Size
22 Fatigue Crack Propagation in P V C : Combined Effects of Rubbery Inclusions and Molecular Weight 1

M. D.SKIBO ,J. A. MANSON, S. M. WEBLER, and R. W. HERTZBERG Materials Research Center, Lehigh University, Bethlehem, PA 18015 E. A. COLLINS B. F. Goodrich Chemical Co., Avon Lake, OH 44012 2

This paper addresses three topics of current scientific and technological interest: poly(vinyl chloride) (PVC); toughening of brittle or ductile but notch-sensitive polymers by the inclu­ sion of rubbery phases; and the kinetics of fatigue crack propa­ gation (FCP). The research described below is part of an extensive funda­ mental program on the effects of polymer structure, composition, and morphology on FCP in a wide range of polymers (1-11), from highly crystalline (e.g., polyamides) or mesomorphic (e.g., PVC) polymers, to typically glassy ones (e.g., acrylics). Within this program, PVC has been selected for special attention because of its interesting range of structural and compositional features (e.g., states of order, tacticity, and effects of second phases), and because of its technological importance. The first paper in this series describes results of contin­ ued research on the effects of molecular weight (M) on FCP re­ sponse (12). This paper describes and discusses results obtained in a study of the effects of a rubbery phase on the impact strength and FCP behavior of a series of PVC matrixes comprising a range of different molecular weights. It will be shown that combined effects of M with elastomer content — in this case, a methacrylate-butadiene-styrene (MBS) copolymer— lead to interest­ ing FCP behavior. Additional results will be discussed in future papers, as well as results of current studies on the effects of other structural and compositional factors. FCP i n P o l y m e r s . Most, i f not a l l , a r t i f a c t s f a b r i c a t e d from p l a s t i c s c o n t a i n i n h e r e n t f l a w s t h a t may, i f a p p r o p r i a t e l o a d c r i t e r i a a r e m e t , p r o p a g a t e t h r o u g h t h e s p e c i m e n and r e s u l t i n c a t a s t r o p h i c f a i l u r e ( 1 , 1 3 , 1 4 ) , o f t e n at inconvenient times and p l a c e s . C y c l i c o r r e p e t i t i v e l o a d i n g ( f a t i g u e ) can be e s p e c i a l l y i n s i d i o u s , f o r f a i l u r e can occur at loads that are w e l l 'Current address: S a n d i a L a b s , L i v e r m o r e , CA 94550 Current address: Diamond Shamrock C o r p . , P a i n e s v i l l e , OH 44077 2

0-8412-0485-3/79/47-095-311$05.00/0 © 1979 A m e r i c a n C h e m i c a l Society

DURABILITY OF

312

MACROMOLECULAR MATERIALS

below those corresponding to the s t a t i c y i e l d or f r a c t u r e s t r e s s . S i n c e many p o l y m e r s i n s e r v i c e a r e i n f a c t s u b j e c t e d t o c y c l i c l o a d s o f some k i n d , f u n d a m e n t a l u n d e r s t a n d i n g o f t h e f a t i g u e p r o c e s s i s t h u s o f e n g i n e e r i n g as w e l l as s c i e n t i f i c i n t e r e s t . In p a r t i c u l a r , i t i s b e g i n n i n g t o be r e c o g n i z e d t h a t , c o n t r a r y t o e a r l i e r b e l i e f s , much, and o f t e n m o s t , o f t h e f a t i g u e l i f e i s spent i n propagation of a p r e e x i s t e n t f l a w , r a t h e r than i n the i n i t i a t i o n o f c r a c k growth (15). To c h a r a c t e r i z e t h e r a t e o f FCP, i t i s c o n v e n i e n t t o r e l a t e t h e r a t e o f c r a c k g r o w t h p e r c y c l e , da/dN, t o AK, t h e r a n g e o f t h e s t r e s s i n t e n s i t y f a c t o r a t t h e c r a c k t i p . The f o l l o w i n g e q u a t i o n (16) has b e e n f o u n d t o be u s e f u l f o r many p o l y m e r s ( 1 ) :

dN When A and n a r e c o n s t a n t s ( a t l e a s t o v e r a r a n g e o f A K ) . The s t r e s s i n t e n s i t y f a c t o r , AK, i s i t s e l f a f u n c t i o n o f g e o m e t r y , a p p l i e d s t r e s s , Aa, and c r a c k l e n g t h , a ( 1 7 ) : AK = YAa^a

(2)

where Y t a k e s a c c o u n t o f t h e s p e c i m e n g e o m e t r y ( s e e b e l o w ) . I n p r e v i o u s s t u d i e s by o t h e r s (18,19) and by t h i s g r o u p ( 8 , 9) i t was shown t h a t e q u a t i o n 1 s e r v e d w e l l t o d e s c r i b e t h e b e h a v i o r o f t y p i c a l PVC's. S t u d i e s by t h i s group a l s o d e m o n s t r a t e d a r e m a r k a b l e and u n e x p e c t e d e f f e c t o f M on FCP, b o t h i n p o l y ( m e t h y l m e t h a c r y l a t e ) (PMMA) and PVC (2,_3,9) • i t was a l s o shown t h a t PVC t e n d e d t o f a i l by a d i s c o n t i n u o u s c r a c k g r o w t h mechanism. T h i s p r o c e s s c o m p r i s e s p r o g r e s s i v e g r o w t h , d u r i n g many c y c l e s , o f a c r a z e ahead o f t h e c r a c k t o a c h a r a c t e r i s t i c l e n g t h , f o l l o w e d by s t r i k i n g t h r o u g h o f t h e c r a c k i n one c y c l e , and r e i n i t i a t i o n o f the p r o g r e s s i v e c r a z e growth (4,80. The q u e s t i o n o f t o u g h e n i n g p o l y m e r s ( e s p e c i a l l y a g a i n s t i m p a c t l o a d i n g ) by t h e j u d i c i o u s i n c o r p o r a t i o n o f r u b b e r y p h a s e s has a l s o r e c e i v e d much a t t e n t i o n i n r e c e n t y e a r s ( s e e , f o r e x a m p l e , r e f e r e n c e s _20, 21_, and 2 2 ) . D e p e n d i n g on t h e c o n c e n t r a t i o n , s t a t e o f s u b d i v i s i o n , and p r o p e r t i e s o f t h e e l a s t o m e r p e r s e , v a r i o u s t o u g h e n i n g mechanisms h a v e b e e n p r o p o s e d a n d , i n some cases, demonstrated. For example, the s t i m u l a t i o n of l o c a l i z e d c r a z i n g and s h e a r y i e l d i n g i n t h e m a t r i x , and t h e r e d u c t i o n o f t r i a x i a l i t y a t a crack t i p , undoubtedly p l a y s i g n i f i c a n t r o l e s i n t o u g h e n i n g , a t l e a s t u n d e r many common l o a d i n g c o n d i t i o n s . Howe v e r , much more a t t e n t i o n has b e e n g i v e n t o t h e e f f e c t s o f s t a t i c than to c y c l i c s t r e s s e s . A l s o , p e r u s a l of the l i t e r a t u r e (see, f o r e x a m p l e , r e f e r e n c e 20, pp. 313) r e v e a l s t h a t few s t u d i e s o f the e f f e c t s of rubber have i n v o l v e d the use o f a constant-M m a t r i x when t h e r u b b e r c o n c e n t r a t i o n i s v a r i e d . Our own e a r l i e r s t u d i e s s h o w i n g an a p p a r e n t l y b e n e f i c i a l r o l e o f a r u b b e r y p h a s e (1,10,11) a r e no e x c e p t i o n .

22.

SKIBO E T A L .

PVC

Fatigue

Crack

313

Propagation

Now t h e i n c o r p o r a t i o n o f r u b b e r y p h a s e s i n PVC i s o f p a r t i c u l a r i n t e r e s t , f o r , a s p o i n t e d o u t b y B u c k n a l l ( 2 0 , p . 2 9 9 ) , maximum t o u g h e n i n g b y t h e a d d i t i o n o f r u b b e r y p h a s e s i s o b t a i n e d when t h e m a t r i x i s i t s e l f d u c t i l e , a s i s t h e c a s e w i t h PVC. Evidence suggests t h a t t h e r u b b e r y i n c l u s i o n s i n d u c e a h i g h degree of shear y i e l d i n g i n t h e m a t r i x , r e s u l t i n g i n a l e s s e n i n g o f n o t c h s e n s i t i v i t y c h a r a c t e r i s t i c o f such m a t r i x e s , and a d r a m a t i c i n c r e a s e i n f r a c t u r e energy. Certainly polyblending of elastomers w i t h b r i t t l e p o l y m e r s d o e s seem t o i m p r o v e f a t i g u e r e s i s t a n c e t o some d e g r e e , t h o u g h n o t t o a s h i g h a l e v e l a s w o u l d b e d e s i r a b l e ( 2 3 ) ; g r e a t e r improvements a r e seen w i t h c r y s t a l l i n e and d u c t i l e polymers such as polyamides (24). T h i s paper, then, a d d r e s s e s two s p e c i f i c q u e s t i o n s : ( 1 ) a r e t h e d r a m a t i c a l l y h i g h v a l u e s o f i m p a c t s t r e n g t h i n t o u g h e n e d PVC c a r r i e d o v e r i n t o f a t i g u e ? a n d ( 2 ) how does t h e M o f t h e m a t r i x i n t e r a c t w i t h t h e r u b b e r added? A t h i r d q u e s i o n , t h e mechanism o f FCP i n t h i s s y s tem w i l l b e d e a l t w i t h i n d e t a i l s e p a r a t e l y . Experimental Materials. The PVC r e s i n s u s e d w e r e c h a r a c t e r i z e d b y meas u r e m e n t s o f i n t r i n s i c v i s c o s i t y ( [ n ] ) i n c y c l o h e x a n o n e a t 30°C. V a l u e s o f [n] a r e g i v e n i n T a b l e s I a n d I I , a l o n g w i t h v a l u e s o f weight-average m o l e c u l a r w e i g h t , M , e s t i m a t e d from a c a l i b r a t i o n c u r v e o f [ n ] v s . M d e v e l o p e d f o r a n e a r l i e r s e r i e s o f PVC s p e c i mens ( 9 ) . The m e t h a c r y l a t e - b u t a d i e n e - s t y r e n e (MBS) m o d i f i e r u s e d was g r a d e BTA I I I N, s u p p l i e d b y t h e M i t s u i Co., New Y o r k . Partic l e s i z e s r a n g e d m a i n l y b e t w e e n 500& a n d 750A ( 5 0 a n d 75 nm), w i t h a f r a c t i o n i n t h e r a n g e o f 2000A t o 2500& (200 t o 250 nm). F i v e d i f f e r e n t M's w e r e s e l e c t e d f o r t h e m a t r i x r e s i n s ; e a c h was b l e n d e d w i t h 0 p a r t s p e r h u n d r e d o f MBS ( p h r ) , 6 p h r , 10 p h r , a n d 14 p h r . The two h i g h e s t - M s a m p l e s w e r e m i l l e d a t 340°F (171°C); t h e o t h e r s a m p l e s w e r e m i l l e d a t 300°F (149°C). S t o c k t e m p e r a t u r e s r a n g e d b e t w e e n 360°F (182°C) a n d 390°F (199°C), d e p e n d i n g on t h e r e s i n a n d m o d i f i e r l e v e l . The m i l l e d s a m p l e s w e r e p r e s s e d a t 400°F (204°C) [ t h e h i g h e s t - M s a m p l e s ] o r 350°F (177°C) [ t h e lower-M samples). w

w

C h a r a c t e r i z a t i o n b y DMS a n d DSC. A l t h o u g h c h a r a c t e r i z a t i o n of s m a l l - s t r a i n v i s c o e l a s t i c and s t r e s s - s t r a i n b e h a v i o r i s n o t y e t c o m p l e t e , p r e l i m i n a r y d y n a m i c m e c h a n i c a l s p e c t r o s c o p y (DMS) and d i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y (DSC) d a t a w e r e o b t a i n e d f o r t h e blends h a v i n g the h i g h e s t and lowest m o l e c u l a r w e i g h t s . To o b t a i n d y n a m i c m e c h a n i c a l s p e c t r a , a R h e o v i b r o n u n i t (Toyo I n s t r u m e n t C o . ) , m o d e l DDV I I , was u s e d . The i n s t r u m e n t was r u n a t a f r e q u e n c y o f 110 Hz. w i t h a h e a t i n g r a t e o f one °C per minute. G l a s s t r a n s i t i o n temperatures, T , were determined by l o c a t i n g t h e maxima o f t h e p r i n c i p a l p e a k s i n t h e l o s s m o d u l u s (E" ) as a f u n c t i o n o f temperature. DSC c u r v e s w e r e o b t a i n e d u s i n g a P e r k i n E l m e r i n s t r u m e n t , m o d e l DSC I B , a t a h e a t i n g r a t e g

m a x

314

DURABILITY OF

Table I .

MACROMOLECULAR MATERIALS

C h a r a c t e r i s t i c s o f t h e PVC

Specimen

[n]

131-1 131-2 131-3 131-4 135-1 135-2 135-3 135-4

0.54 0.54 0.54 0.54 1.09 1.09 1.09 1.09

xlO"

a

5

0.67 0.67 0.67 0.67 2.08 2.08 2.08 2.08

Polyblends

phr MBS

Av. T , °C (by D M S )

0 6 10 14 0 6 10 14

ioi

g

C

Studied Av. T , °C (by D S C ) g

d

67 66 67 67 72 71 72 72

e

— —

93 100(±3) 98(±3) 95 101(±7)

M a t r i x r e s i n i n c y c l o h e x a n o n e a t 30°C. From a c a l i b r a t i o n c u r v e o f e a r l i e r (9). Dynamic m e c h a n i c a l

[n] v s . v a l u e s o f M^

s p e c t r o s c o p y , 110

obtained

Hz.

D i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y , a t a r a t e o f 10°C/min. Anomalously h i g h . o f 10°C/min. The T v a l u e s w e r e t a k e n t o c o r r e s p o n d p o i n t of the t r a n s i t i o n i n the curve. g

to the mid-

Impact S t r e n g t h . V a l u e s o f notched impact s t r e n g t h were d e t e r m i n e d u s i n g n o t c h e d s p e c i m e n s and an I z o d t e s t e r f o l l o w i n g t h e ASTM p r o c e d u r e D256. F a t i g u e M e a s u r e m e n t s . S p e c i m e n s f o r d e t e r m i n a t i o n o f FCP b e h a v i o r w e r e c u t i n t h e f o r m o f compact t e n s i o n (CT) c o u p o n s , w i t h d i m e n s i o n s 0.64 cm x 7.5 cm x 7.5 cm. Specimens were c u t i n t h e m a c h i n e d i r e c t i o n , w i t h t h e e x c e p t i o n o f one i n t e r m e d i a t e - M s a m p l e o f u n m o d i f i e d PVC, 1 3 3 - 1 . [The p o s s i b l e e f f e c t o f t h i s v a r i a t i o n i s u n d e r s t u d y , t h o u g h t h e FCP r a t e was c o n s i s t e n t w i t h p r e v i o u s d a t a ( 9 ) . ] Edge n o t c h e s w e r e i n t r o d u c e d by f i r s t machini n g t o a d e p t h o f M..2 cm and t h e n c u t t i n g w i t h a r a z o r b l a d e . T e s t i n g was p e r f o r m e d i n t h e t e n s i o n - t e n s i o n mode as d e s c r i b e d p r e v i o u s l y (4) u n d e r a m b i e n t c o n d i t i o n s a t 10 Hz w i t h a l o a d r a t i o R o f 0.1 (R = minimum load/maximum l o a d ) . The p r o g r e s s o f t h e c r a c k was o b s e r v e d u s i n g a t r a v e l l i n g m i c r o s c o p e and t h e c r a c k l e n g t h was o b t a i n e d as a f u n c t i o n o f l o a d c y c l e s AN. The FCP r a t e , da/dN, was t h e n computed as a f u n c t i o n o f AK, u s i n g e q u a t i o n 2 and t h e f o l l o w i n g e x p r e s s i o n f o r t h e g e o m e t r i c a l f a c t o r , Y: 2

3

Y = 29.6-185.5(a/w)+655.7(a/w) -1017(a/w) +638.9(a/w)

4

(3)

A t t e m p t s w e r e made t o m e a s u r e t h e f r a c t u r e t o u g h n e s s , K ( a meas u r e o f f r a c t u r e e n e r g y ) , by d e t e r m i n i n g A K » t h e maximum v a l u e c

m a x

22.

SKIBO E T A L .

Table I I .

Specimen 131-1 131-2

Fatigue

Matrix M^xlO-S

0.54

0.67 0.67

phr MBS 0 6

IS (IS ) 0

1.0 1.2

a

fey

(akMk )

0

C

K ,MPav^a c

0

1.0 1.2

1.0

1.0 2.5xl0"

2

3.2

131-3

0.54

0.67

10

1.9

1.9

2.2xl0"

131-4

0.54

0.67

14

4.4

4.4

2.5xl0"

2

132-1

0.67

0.95

0

1.4

1.0

1.0

2.0

132-2

0.67

0.95

6

1.5

1.1

0.2

2.1

132-3

0.67

0.95

10

3.0

2.1

0.2

132-4

0.67

0.95

14

133-1

0.78

1.14

0

1.4

1.0

1.0

133-2

0.78

1.14

6

3.8

2.7

0.5

133-3

0.78

1.14

10

50

36

0.7

133-4

0.78

1.14

14

65

46

0.9

134-1

0.95

1.69

0

134-2

0.95

1.69

6

134-3

0.95

1.69

10

53

36

0.6

134-4

0.95

1.69

14

60

40

0.8

135-1

1.09

2.08

0

1.9

1.0

1.0

135-2

1.09

2.08

6

7.4

3.9

0.2

135-3

1.09

2.08

10

1.09

2.08

14

40

29

0.2

1.5

1.0

1.0

4.8

3.2

0.36

54

28

0.2

65

34

0.2

1.4

1.4

1.8

N o t e that these values c o r r e c t a numerical e r r o r i n the data f o r t h e 131 s e r i e s i n r e f . 1 0 , and t h a t v a l u e s a r e t a k e n a s r e l a t i v e to t h e v a l u e f o r t h e lowest-M specimen, 131-1.

kImpact s t r e n g t h r e l a t i v e specimen. C

315

Propagation

I m p a c t a n d FCP R e s p o n s e o f PVC P o l y b l e n d s

[n]

0.54

Crack

2

135-4 a

PVC

t o t h e impact s t r e n g t h o f the c o n t r o l

V a l u e o f da/dN r e l a t i v e t o da/dN f o r t h e c o n t r o l s p e c i m e n ; c o m p a r i s o n a t AK = 0.9 t i m e s f o r t h e c o n t r o l specimen.

DURABILITY OF

316

MACROMOLECULAR MATERIALS

o b s e r v e d f o r AK p r i o r t o c a t a s t r o p h i c f r a c t u r e , b u t e x c e p t f o r t h e c o n t r o l s and f o r s p e c i m e n s h a v i n g b o t h l o w M s and l o w r u b b e r c o n t e n t s (131-2 and 132-2) b r i t t l e f a i l u r e was n o t o b s e r v e d . For t h e s p e c i m e n s t h a t d i d e x h i b i t b r i t t l e f a i l u r e , K was e s t i m a t e d as b e f o r e ( 2 , 9 ) , by d i v i d i n g ^K by 0.9 ( t o a c c o u n t f o r t h e v a l u e o f 0.1 s e l e c t e d f o r R ) . f

c

max

F r a c t u r e S u r f a c e Morphology. A l t h o u g h f u l l d e t a i l s w i l l be published separately, preliminary observations of fracture surf a c e m o r p h o l o g y w e r e made on a n ETEC s c a n n i n g e l e c t r o n m i c r o s c o p e , u s i n g s p e c i m e n s t h a t had b e e n c o a t e d w i t h g o l d and c a r b o n p r i o r to examination. R e s u l t s and D i s c u s s i o n C h a r a c t e r i z a t i o n by DMS and DSC. P r e l i m i n a r y d y n a m i c mechan i c a l s p e c t r a f o r MBS r u b b e r m o d i f i e d PVC s a m p l e s showed no c o n s i s t e n t d e p e n d e n c e o f Tg, o r o f t h e t r a n s i t i o n s l o p e , on r u b b e r c o n t e n t ( T a b l e I ) . T y p i c a l s p e c t r a f o r h i g h - M PVC w i t h 0 p h r and 14 p h r MBS m o d i f i e r a r e shown i n F i g . 1. I t may be n o t e d t h a t , i n c o n t r a s t t o p r i o r e x p e r i e n c e w i t h many p o l y m e r s , r e p r o d u c i b i l i t y o f s p e c t r a was n o t a s good a s e x p e c t e d , e s p e c i a l l y w i t h s p e c i m e n s o f s a m p l e 135-4, t h e s a m p l e h a v i n g t h e h i g h e s t m o l e c u l a r w e i g h t and t h e h i g h e s t r u b b e r c o n t e n t . T h i s may r e f l e c t g r e a t e r inhomog e n e i t y i n these specimens. A l s o , t h e Tg f o u n d f o r s p e c i m e n 131-1 a p p e a r s t o be a n o m a l o u s [ h i g h e r t h a n e x p e c t e d b a s e d on t h e v a l u e o f M a n d , a f t e r a l l o w a n c e f o r d i f f e r e n c e s i n t e s t i n g r a t e , on v a l u e s o f T f o u n d by DSC ( s e e T a b l e I ) ] . I n g e n e r a l , each s p e c i men e x h i b i t e d a b r o a d a s y m e t r i c a l s e c o n d a r y p e a k i n E spanning t h e r a n g e f r o m -100°C t o 40°C. The s h a p e o f t h i s p e a k and t h e s l o p e o f t h e Tg c u r v e d i d n o t depend on r u b b e r c o n t e n t . S i n c e t h e p e r c e n t a g e o f b u t a d i e n e i n t h e MBS m o d i f i e r i s r e l a t i v e l y l o w and s i n c e t h e Tg p r o b a b l y f a l l s w i t h i n t h e t e m p e r a t u r e r a n g e o f t h e s e c o n d a r y t r a n s i t i o n f o r PVC ( 2 0 , pp. 115 and 2 9 2 ) , i t i s n o t s u r p r i s i n g t h a t no s i g n i f i c a n t e f f e c t o f MBS c o n t e n t i s s e e n a t t h e l e v e l s p r e s e n t i n these specimens. Thus, so f a r t h e s e r e s u l t s a r e c o n s i s t e n t w i t h those expected f o r a r e l a t i v e l y incompatible s y s tem ( s e e r e f e r e n c e s 24^ and 2 5 , Ch. 3) i n w h i c h a m o d i f i e r i s p r e sent a t r e l a t i v e l y low c o n c e n t r a t i o n ( i . e . , r e l a t i v e to the conc e n t r a t i o n s o f p u r e e l a s t o m e r i n t h e c u r v e s shown i n r e f e r e n c e 24) and i n w h i c h a b r o a d s e c o n d a r y t r a n s i t i o n i s c h a r a c t e r i s t i c o f the m a t r i x . The r e l a t i v e c o n s t a n c y o f Tg was c o n f i r m e d by t h e DSC meas u r e m e n t s ( s e e T a b l e I and F i g . 2 ) . The DSC measurements a l s o i n d i c a t e d an e x p e c t e d s l i g h t d e p e n d e n c e o f Tg on m o l e c u l a r w e i g h t , w i t h T i n c r e a s i n g f r o m ^67 °C f o r M^, = 6.7x10* t o ^72°C f o r M^ = 2.08x10^. W h i l e t h e s e v a l u e s a r e l o w e r t h a n v a l u e s q u o t e d f o r s i m i l a r v a l u e s o f M ( 2 6 ) , t h e h e a t i n g r a t e was a l s o l o w e r (10°C/ m i n i n s t e a d o f 32°C/min); t h e ^5°C d i f f e r e n c e i s c o n s i s t e n t w i t h r e s u l t s o f o t h e r measurements ( 2 7 ) . g

lf

g

22.

SKIBO E T A L .

PVC

Fatigue

Crack

Propagation

317

10"

1 1 1 1 1 « 1

1Q8I -160

-80

0

80

T.C

Figure 1. Dynamic mechanical spectra of ( ), control and ( ), MBS-modified PVC (M of matrix = 2.08 X 10 ; ( ), phr MBS = 0 and ( ), 14; frequency = 110 Hz) 5

w

50

60

70

80

90

T,C Figure 2. DSC traces for two pairs of control and MBS-modified PVC. Pair a and b displaced from pair c and d for better display. Compositions: (a) M == w

2.08 X 10 > 0 phr MBS; (b) M = 2.08 X iO ,14 phr MBS; (c) M = 6.7 X 10\ 0 phr MBS; (d) M = 6.7 X JO ,14 phr MBS. 5

5

w

w

w

4

318

DURABILITY OF

MACROMOLECULAR MATERIALS

R e s u l t s o f t h e more d e t a i l e d c h a r a c t e r i z a t i o n i n p r o g r e s s w i l l be r e p o r t e d s e p a r a t e l y , a l o n g w i t h r e s u l t s o f s t r e s s - s t r a i n and c r e e p b e h a v i o r . Impact S t r e n g t h . As shown i n F i g . 3 and T a b l e I I , i m p a c t s t r e n g t h i s i n c r e a s e d by t h e i n c o r p o r a t i o n o f MBS a t a l l l e v e l s o f m o l e c u l a r w e i g h t . However, t h e r e l a t i v e e f f e c t s depend s t r o n g l y on b o t h M and MBS c o n t e n t . Thus w i t h 0 p h r and 6 p h r MBS, v a l u e s o f i m p a c t s t r e n g t h a r e i n c r e a s e d t w o f o l d and s i x f o l d , r e s p e c t i v e l y a s M i n c r e a s e s f r o m 0.67x10^ t o 2.08x10^ ( s e e v a l u e s o f I S / ( I S ) i n T a b l e I I ) . A t h i g h e r MBS c o n t e n t s , t h e e f f e c t s a r e much more d r a m a t i c , w i t h v a l u e s o f i m p a c t s t r e n g t h f o r s p e c i m e n s c o n t a i n i n g 10 p h r and 14 p h r MBS i n c r e a s i n g by f a c t o r s o f 28 and 34, r e s p e c t i v e l y , o v e r t h e same r a n g e o f M. It i s interesting t h a t the g e n e r a l trend of impact s t r e n g t h w i t h respect t o m o d i f i e r c o n c e n t r a t i o n i s c o n s i s t e n t w i t h t h a t n o t e d by P e t r i c h (28) f o r M B S - m o d i f i e d PVC a s a f u n c t i o n o f t e m p e r a t u r e . In h i s case, the a d d i t i o n o f m o d i f i e r had t h e same e f f e c t as r a i s i n g t h e t e m p e r a t u r e ; t h e MBS i n d u c e d a b r i t t l e - d u c t i l e t r a n s i t i o n . I n our case, at a m o d i f i e r l e v e l o f 6 phr, the lower-M m a t e r i a l s are b r i t t l e ( c f . o b s e r v a t i o n s o f K b e h a v i o r n o t e d a b o v e ) ; as M i s i n c r e a s e d , f a i l u r e becomes more d u c t i l e . A t a m o d i f i e r l e v e l o f ^10 p h r , however, the temperature o f the b r i t t l e - d u c t i l e t r a n s i t i o n i s c l e a r l y >20°C (28) f o r a l l s p e c i m e n s , r e g a r d l e s s o f M. 0

0

c

A t t h e same t i m e ( s e e F i g . 4 ) , t h e i m p a c t s t r e n g t h ( a t a g i v e n M) r e l a t i v e t o t h a t o f t h e u n m o d i f i e d c o n t r o l r e s i n ( I S / I S ) app e a r s t o p a s s t h r o u g h a s l i g h t maximum a t l x l 0 < M < V L . 5 x l 0 5 f o r s p e c i m e n s w i t h MBS c o n t e n t s £10 p h r . ( V a l u e s o f I S / I S do, howe v e r , i n c r e a s e w i t h m o d i f i e r c o n t e n t a t a l l v a l u e s o f M, a s ment i o n e d above.) Thus a t some c r i t i c a l v a l u e o f MBS c o n t e n t (>6 p h r ) , t h e i m pact strength e x h i b i t s a s i g n i f i c a n t increase. This i s c o n s i s t e n t w i t h a r g u m e n t s a d v a n c e d by P e t r i c h ( 2 8 ) , B u c k n a l l ( 2 0 , c h . 10) and D e a n i n and M o s h a r ( 2 9 ) : t h a t t h e i n c l u s i o n o f an e l a s t o m e r i c p h a s e i n PVC r e d u c e s PVC's i n h e r e n t n o t c h s e n s i t i v i t y and p e r m i t s t h e t a k i n g a d v a n t a g e o f PVC's i n h e r e n t d u c t i l i t y by s t i m u l a t i n g a h i g h degree of shear y i e l d i n g . I t i s a l s o s u g g e s t e d ( 2 0 , c h . 10) t h a t c r a z i n g i s induced a t the h i g h r a t e s of s t r a i n i n v o l v e d i n i m p a c t l o a d i n g , t h o u g h c r a z i n g may n o t c o n t r i b u t e much t o d e f o r m a t i o n e n e r g i e s a t l o w e r s t r a i n r a t e s ( 2 0 , c h . 7; 28, 30, 3 1 ) . With r e s p e c t t o t h e r o l e o f M, one w o u l d c e r t a i n l y e x p e c t t h a t t h e i m p a c t f r a c t u r e e n e r g y s h o u l d r i s e as M i s i n c r e a s e d t o a l i m i t i n g v a l u e , as i s t h e c a s e w i t h f r a c t u r e e n e r g i e s d e t e r m i n e d u n d e r o t h e r c o n d i t i o n s of l o a d i n g ( 3 ) . With r e s p e c t to the s m a l l but apparent tendency f o r I S / I S to decrease s l i g h t l y at h i g h v a l u e s o f M, one may s u p p o s e t h a t t h e h i g h e s t - M m o l e c u l e s may be r e l a t i v e l y l e s s mobile at the high s t r a i n r a t e s i n v o l v e d . Q

5

G

Q

F r a c t u r e Toughness. V a l u e s o f K f o r the neat r e s i n agree r e a s o n a b l y w e l l w i t h those r e p o r t e d p r e v i o u s l y ( 9 ) , though the c

22.

SKIBO E T A L .

PVC

Fatigue

Crack

Propagation

16,

M Figure 3.

V A /

x10"

5

Effect of MBS content and M of matrix on notched impact strength of " PVC blends

M x10"5 w

Figure 4.

Effect of MBS content and M of matrix on notched impact strength of PVC blends relative to that of unmodified matrix

319

DURABILITY OF

320

MACROMOLECULAR MATERIALS

v a l u e s t e n d t o be l o w e r a t h i g h v a l u e s o f M. This lower trend i s b e l i e v e d t o be more r e a l i s t i c t h a n t h e e a r l i e r one. In the e a r l i e r s p e c i m e n s i n t e r g r a n u l a r f r a c t u r e a l o n g PVC p a r t i c l e b o u n d a r i e s was o b s e r v e d a t h i g h v a l u e s o f AK; s u c h a phenomenon w o u l d be e x p e c t e d t o i n d u c e an i n c r e a s e i n t h e a p p a r e n t v a l u e o f K i n comp a r i s o n t o t h e c a s e o f i n t r a g r a n u l a r (and h e n c e r e l a t i v e l y smooth) f r a c t u r e . As m e n t i o n e d a b o v e , h o w e v e r , v a l u e s o f Kc c o u l d o n l y be e s t i m a t e d f o r s p e c i m e n s h a v i n g b o t h l o w M and l o w MBS content— n a m e l y , s p e c i m e n s 131-2 and 132-2. C l e a r l y a b r i t t l e - d u c t i l e t r a n s i t i o n i s i n v o l v e d (see a l s o d i s c u s s i o n above). In contrast t o o b s e r v a t i o n s o f i m p a c t s t r e n g t h , t h e a d d i t i o n o f 6 p h r MBS t o t h e l o w e s t - M r e s i n i n c r e a s e d t h e f r a c t u r e e n e r g y ( a s i m p l i e d by K ) t h r e e f o l d ; l i t t l e e f f e c t was n o t e d a t t h e n e x t l e v e l o f M. Hence a t t h e l o w e r s t r a i n r a t e s o p e r a t i v e i n FCP i n c o m p a r i s o n t o i m p a c t f r a c t u r e , t h e r u b b e r y p h a s e does s i g n i f i c a n t l y i m p r o v e t h e a b i l i t y t o d i s s i p a t e e n e r g y i n low-M PVC, a s r e f l e c t e d b o t h i n K and i n t h e r e d u c t i o n i n FCP r a t e s ( s e e b e l o w ) . As M i s i n c r e a s e d , f a i l u r e becomes d u c t i l e a t a l l l e v e l s o f MBS; s u c h s p e c i m e n s d i d n o t u n d e r g o r u p t u r e b u t r a t h e r became t o o c o m p l i a n t t o c o n t i n u e testing. In t h i s r e s p e c t , the q u e s t i o n of p o s s i b l e temperature r i s e w o u l d be w o r t h y o f i n v e s t i g a t i o n , t h o u g h so f a r g r o s s i n c r e a s e s i n t e m p e r a t u r e due t o h y s t e r e t i c h e a t i n g h a v e n o t b e e n observed (see a l s o d i s c u s s i o n below). c

c

c

F a t i g u e C r a c k P r o p a g a t i o n R e s p o n s e . T y p i c a l FCP responses a r e s u m m a r i z e d i n T a b l e I I and i n F i g s . 5-9. As may be s e e n by c o m p a r i s o n o f t h e d a t a w i t h t h o s e r e p o r t e d i n r e f e r e n c e J9, t h e behavior of the c o n t r o l specimens agrees w e l l w i t h the behavior found w i t h the e a r l i e r s e r i e s . A l t h o u g h t h e c u r v e s e x h i b i t some c u r v a t u r e not p r e v i o u s l y observed, the p o s i t i o n s of the curves f i t w e l l w i t h t h o s e o f t h e p r e v i o u s o n e s , and t h e v a l u e s o f da/dN a t AK = 0.6 MPav^n f a l l c l o s e l y on t h e c u r v e a s a f u n c t i o n o f M ( s e e F i g . 2, r e f e r e n c e 9 ) . As shown i n T a b l e I I and F i g . 5 ( t h e c u r v e s i n F i g . 5 a l s o h o l d f o r 6 p h r MBS), on a d d i n g 6 p h r o f MBS, FCP r a t e s a r e s i g n i f i c a n t l y reduced. The e f f e c t i s d e s c r i b e d q u a n t i t a t i v e l y by t h e r e l a t i v e v a l u e s o f c r a c k g r o w t h r a t e s a t c o n s t a n t AK ( s e e T a b l e I I , i n w h i c h a and a r e p r e s e n t v a l u e s o f da/dN ( a t A K = 0 . 9 A K f o r t h e c o n t r o l ) f o r m o d i f i e d and n e a t r e s i n s , r e s p e c t i v e l y ) . T h u s , w i t h t h e l o w e s t - M m a t r i x , a s t r i k i n g r e d u c t i o n i n da/dN i s o b s e r v e d a t a l l AK l e v e l s , a c c o m p a n i e d by a t h r e e f o l d i n c r e a s e i n K (Table I I ) . Indeed, at a v a l u e of AK=0.9AK (of the c o n t r o l ) da/dN i s r e d u c e d 4 0 - f o l d . On t h e o t h e r h a n d , w i t h t h e h i g h e s t - M m a t r i x da/dN i s r e d u c e d t o a r e l a t i v e l y l e s s e r e x t e n t , o n l y f i v e f o l d ( t h e c u r v e s i n F i g . 6 a l s o h o l d f o r 6 p h r MBS). A t t h e same t i m e , i n t h e l a t t e r c a s e , t h e f a i l u r e becomes d u c t i l e i n n a t u r e (see above). A t i n t e r m e d i a t e v a l u e s o f M, r e d u c t i o n s o f da/dN a t 6 p h r o f MBS r a n g e b e t w e e n t w o f o l d and f i v e f o l d . Thus i n c o n t r a s t to t h e c a s e o f i m p a c t s t r e n g t h , e v e n a l o w c o n c e n t r a t i o n o f MBS (6 p h r ) i n d u c e s a s i g n i f i c a n t t o u g h e n i n g i n f a t i g u e e v e n a t a l o w K

c

K o

m a x

m a x

22.

SKIBO E T A L .

PVC

Fatigue

Crack

321

Propagation

Figure 5. Effect of MBS addition (14 phr) on FCP behavior of PVC (M — 6.7 X 10 ). The curve for 14 phr also represents data for 6 phr and 10 phr of MBS. w

4

DURABILITY

322

O F MACROMOLECULAR

MATERIALS

Figure 6. Effect of MBS addition (14 phr) on FCP behavior of PVC (M = 2.08 X 10 ). The curve for 14 phr also represents data for 6 phr and 10 phr of MBS. w

s

22.

SKiBO E T A L .

PVC

Fatigue

Crack

Propagation

323

324

DURABILITY O F MACROMOLECULAR

MATERIALS

AK,MPAv7n Figure 8.

Effect of M on FCP behavior of PVC modified with 10 phr of MBS

SKIBO E T A L .

PVC

Fatigue

Crack

Propagation

326

DURABILITY OF

MACROMOLECULAR MATERIALS

v a l u e o f M ( 6 . 7 x 1 0 * ) . A t h i g h e r v a l u e s o f M, t h e r e l a t i v e f a t i g u e i m p r o v e m e n t s a t 6 p h r o f MBS a r e o f t h e same o r d e r o f m a g n i t u d e as t h e i m p r o v e m e n t s i n i m p a c t s t r e n g t h ( T a b l e I I ) . I n t e r e s t i n g l y , w i t h b o t h t h e two l o w e s t - M and t h e h i g h e s t - M m a t r i x e s ( s p e c i m e n s 1 3 1 , 132, and 135, r e s p e c t i v e l y ) , t h e a d d i t i o n o f >6 p h r o f MBS has no s i g n i f i c a n t e f f e c t on FCP r a t e s . This b e h a v i o r m i g h t s p e c u l a t i v e l y be a t t r i b u t e d t o t h e c o n s e q u e n c e s o f a d y n a m i c b a l a n c e b e t w e e n (1) r u b b e r - i n d u c e d t o u g h n e s s due t o t h e a b i l i t y o f t h e r u b b e r t o i n d u c e s h e a r y i e l d i n g and c r a z i n g and (2) r u b b e r - i n d u c e d s o f t e n i n g ( i . e . , r e d u c t i o n i n s t i f f n e s s ) . Now s t i f f e n i n g c a n be r e d u c e d by two f a c t o r s , a c t i n g a l o n e o r t o g e t h e r : the presence o f the rubber per se (see, f o r example, r e f e r e n c e s 28 and 3 2 ) , and by h y s t e r e t i c h e a t i n g due t o i n h e r e n t m e c h a n i c a l damping ( 1 , 6 ) . W h i l e t h e p r e s e n t s t u d y c a n n o t r e s o l v e these p o i n t s , techniques are b e i n g developed i n our l a b o r a t o r y to d e t e r m i n e t h e v a l u e o f E u n d e r a c t u a l t e s t c o n d i t i o n s , and an i m p r o v e d DMS i n s t r u m e n t on o r d e r s h o u l d p e r m i t more p r e c i s e v a l u e s of damping, (Note t h a t , d e p e n d i n g on t h e s y s t e m and p r e s u m a b l y f r e q u e n c y , E" o r t a n