16 Biodegradable Fillers in Thermoplastics GERALD J. L. GRIFFIN
Downloaded by UNIV OF PITTSBURGH on September 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch016
Brunel University, Department of Polymer Science and Technology, Uxbridge, Middlesex, E n g l a n d
Increased degradability in landfill and composting of the common packaging thermoplastics has been achieved by incorporating a biodegradable filler into the plastics com pounds using standard hot-melt compounding techniques. A search of possible fitters disclosed that only raw starch satisfied the requirements of adequate thermal stability, minimum interference with melt-flow properties, and mini mum disturbance of product quality. Successful extrusion -blowing of layflat film in LDPE containing up to at least 30 wt % of starch is reported, and starches—principally maize, rice, and tapioca—have been successfully included in other products such asfibrillatedPP film, TPS injection moldings, extrusions, and thermoformings. The characteri zation of starches by scanning electron microscopy and narrow angle light scattering is described as part of this investigation.
' T ^ h e preservation of our environment has excited m u c h p u b l i c a n d A
technical discussion i n recent
years.
Special attention has been
f o c u s e d , p e r h a p s s o m e w h a t u n f a i r l y , o n t h e p a r t i c u l a r p r o b l e m s associated w i t h t h e i n c r e a s i n g p r o p o r t i o n o f plastics p a c k a g i n g m a t e r i a l s i n c o m m u n i t y d o m e s t i c refuse. Wallhàuser has p u b l i s h e d three d e t a i l e d articles (1, 2, 3 ) , w h i c h d e s c r i b e t h e s i t u a t i o n i n t h e F e d e r a l G e r m a n R e p u b l i c b u t nevertheless are o f g e n e r a l interest e s p e c i a l l y i n c o n n e c t i o n w i t h c o m posting a n d landfill procedures.
P o l y o l e f i n film has r e c e i v e d s p e c i a l c r i t i -
c i s m b e c a u s e o f its l o n g e v i t y u n d e r s o i l b u r i a l c o n d i t i o n s .
Because the
o n l y l i k e l y d e g r a d a t i o n processes a c t i n g o n b u r i e d polyolefins a r e s i m p l e o x i d a t i o n a n d m i c r o b i o l o g i c a l attack, t h e v a l u a b l e w o r k o f Scott (4) o n the c o n t r o l l e d p h o t o o x i d a t i o n Wallhàuser reports t h a t i n
of polymers
five-year
cannot provide
s o i l b u r i a l tests L D P E
a solution. h a d been
159 In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
160
FILLERS
c o l o n i z e d b y Desulfovibrio
AND
REINFORCEMENTS FOR
PLASTICS
b a c t e r i a , a n d m a t e r i a l f r o m 2.5-meters
depth
h a d b e c o m e e m b r i t t l e d . M o r e r e c e n t l y N y k v i s t ( 5 ) has e s t a b l i s h e d t h a t L D P E is s l o w l y b i o d e g r a d e d i n compost; h e d e m o n s t r a t e d this b y e x p e r i ments u s i n g c a r b o n - 1 4 - l a b e l e d
polymer and detecting radioactive
C0
2
i n the air a s p i r a t e d f r o m the s a m p l e vessel. L o n g t e r m o x i d a t i o n studies of L D P E , w h i c h are of great interest to c a b l e a n d p i p e m a n u f a c t u r e r s , h a v e b e e n w e l l d o c u m e n t e d , a n d p o w e r f a c t o r m e a s u r e m e n t is the p r e f e r r e d m e t h o d for m o n i t o r i n g the o x i d a t i o n . T h e e a r l y w o r k is r e v i e w e d b y H a y w o o d ( 6 ) a n d suggests t h a t the o x i d a t i o n rates a r e n e g l i g i b l e at Downloaded by UNIV OF PITTSBURGH on September 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch016
r o o m t e m p e r a t u r e , b u t 1-mm t h i c k sheet w o u l d e m b r i t t l e i n a b o u t y e a r at 4 0 ° C .
one
H o w e v e r , temperatures a b o v e 4 0 ° C are c o m m o n i n c o m -
p o s t i n g . A l s o , o x y g e n diffusion rates i n t h e p o l y m e r g i v e extra significance to film thickness a n d t e m p e r a t u r e . E v i d e n t l y one c i r c u m s t a n c e w h i c h w o u l d encourage b o t h m o d e s of attack w o u l d be a n increase i n the specific surface a r e a of the m a t e r i a l ; Wallhàuser refers to the d e s i r a b i l i t y of s h r e d d i n g the w a s t e b e f o r e b u r i a l . A n a l t e r n a t i v e a p p r o a c h is to i n t r o d u c e a filler i n t o the m a t e r i a l w h i c h itself is s p e e d i l y d e g r a d e d , thus l e a v i n g a porous film r e a d i l y e n t e r e d b y m i c r o o r g a n i s m s a n d r a p i d l y s a t u r a t e d w i t h oxygen.
T h e selection of a
s u i t a b l e filler is t h e subject of this w o r k . Criteria
for Biodegradable
Filler Selection
T h e markets c u r r e n t l y satisfied b y plastics p a c k a g i n g films expect t h e i n d u s t r y to s u p p l y t h e m w i t h a p r o d u c t t h a t is strong, s m o o t h , odorless,
Figure picture
1. Scanning electron microscope of rice starch grains. Average grain size is about 5 μm.
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
16.
GRIFFIN
Biodegradable
161
Fillers
b a s i c a l l y colorless, n o n - t o x i c , w a t e r resistant, a n d cheap. A n y b i o d e g r a d a b l e filler m u s t n o t u n d u l y c o m p r o m i s e these qualities a n d m u s t b e a b l e to w i t h s t a n d p r o c e s s i n g temperatures for short p e r i o d s . f a l l w i t h i n the r a n g e 1 5 0 ° - 3 0 0 ° C .
These normally
T h e p r i m a r y r e q u i r e m e n t of
biode-
g r a d a b i l i t y is a c h i e v e d b y t h e filler a c t i n g as a p o t e n t i a l m a j o r n u t r i e n t f o r some m i c r o o r g a n i s m s o r b e i n g d e c o m p o s e d b y m i c r o o r g a n i s m n u t r i tion.
T h i s means, i n e v i t a b l y , t h a t t h e
filler
w i l l be organic i n nature.
L o w cost r e q u i r e m e n t s suggest t h a t a waste p r o d u c t f r o m another i n d u s t r y s h o u l d be c o n s i d e r e d , b u t a n i n t e r e s t i n g s u r v e y of i n d u s t r i a l wastes Downloaded by UNIV OF PITTSBURGH on September 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch016
b y G u t t ( 7 ) r e m i n d s us t h a t the o v e r w h e l m i n g b u l k of i n d u s t r i a l waste is m i n e r a l i n o r i g i n . C e r t a i n w e l l k n o w n l o w cost o r g a n i c wastes s u c h as l i g n i n a n d leather g r i n d e r y refuse are i m m e d i a t e l y e l i m i n a t e d b e c a u s e of color or o d o r , a n d p r o t e i n - b a s e d m a t e r i a l s are too t h e r m a l l y u n s t a b l e to be considered.
C e l l u l o s i c m a t e r i a l s are t r a d i t i o n a l i n g r e d i e n t s of t h e r m o
setting m o l d i n g c o m p o s i t i o n s , a n d W o r l d W a r I I experience w i t h m i l i t a r y e q u i p m e n t i n the tropics e s t a b l i s h e d the a c c e s s i b i l i t y of these fillers to b i o l o g i c a l attack. T h e p h y s i c a l n a t u r e of w o o d flour a n d c e l l u l o s e p u l p m a k e t h e m u n w e l c o m e h i g h - v o l u m e a d d i t i v e s i n t h e r m o p l a s t i c s because
Figure picture
2. Scanning electron microscope of potato starch grains. Average grain size is about 50 μπι.
the refined nature of the e x t r u s i o n - b l o w i n g a n d e x t r u s i o n - c o a t i n g t e c h nologies m a k e t h e m v e r y sensitive to changes i n t h e i r r h e o l o g i c a l p r o p erties. M i n i m u m particle/particle interaction i n
flowing
suspensions,
and
h e n c e m i n i m u m v i s c o s i t y increase, is a c h i e v e d b y systems i n w h i c h t h e s u s p e n d e d p a r t i c l e s are s m o o t h spheres or, e v e n better, s m o o t h e l l i p s o i d s w h i c h c a n orient to a m i n i m u m e n e r g y c o n f i g u r a t i o n i n l a m i n a r
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
flow.
162
FILLERS
A N D R E I N F O R C E M E N T S F O R PLASTICS
Potato starch
25
20
No.X
Downloaded by UNIV OF PITTSBURGH on September 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch016
15
10
20
Figure 3.
30
40
50
eo microns
Potato starch mean diameter
25
histogram
Jack bean starch
20-
15-
Figure
4. Jack bean starch diameter histogram
mean
T h i s t h e o r y has b e e n l o n g e s t a b l i s h e d f o r N e w t o n i a n fluids a n d is r e v i e w e d a n d extended i n the second D u t c h report o n viscosity a n d plast i c i t y , e s p e c i a l l y b y B u r g e r s ( 8 ) . A f u r t h e r r h e o l o g i c a l c o n s i d e r a t i o n is t h e q u e s t i o n of p a r t i c l e size d i s t r i b u t i o n . E v e s o n ( 9 ) f o u n d r e d u c t i o n s of u p to 1 6 % i n t h e r e l a t i v e v i s c o s i t y of 2 2 . 5 % m i c r o s p h e r e
suspensions
b y c h a n g i n g o n l y t h e size d i s t r i b u t i o n a w a y f r o m t h e h o m o d i s p e r s e . T h e s e considerations n a r r o w the field of s e a r c h to p a r t i c l e s of r e g u l a r geometries, a n d o n l y spores, seeds, d r i e d s i m p l e organisms, a n d starches remain for consideration.
Starches a r e t h e most a t t r a c t i v e m e m b e r s of
this g r o u p a n d w e r e selected f o r f u r t h e r s t u d y
(10).
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
16.
GRIFFIN
Characteristics
Biodegradable of
163
Fillers
Starches
L i t t l e needs to b e r e c o r d e d h e r e o n g e n e r a l starch t e c h n o l o g y other t h a n a reference to t h e r e m a r k a b l e atlas' of R e i c h e r t (11) c o m p r e h e n s i v e text of W h i s t l e r a n d P a s c h a l l (12).
a n d the r e c e n t
T h e c r i t e r i a set out
earlier are m e t to a r e m a r k a b l e degree b y a s m a l l g r o u p of c o m m e r c i a l l y a v a i l a b l e starches. T h e p a r t i c l e s c a n b e n e a r spheres, as i n the p o l y h e d r a l r i c e s t a r c h grains s h o w n i n F i g u r e 1, or e l o n g a t e d n e a r e l l i p s o i d s as w i t h the p o t a t o s t a r c h grains s h o w n i n F i g u r e 2. T h e s e g e o m e t r i c a l v a r i a t i o n s
Downloaded by UNIV OF PITTSBURGH on September 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch016
are d e t e r m i n e d b y the m o d e of o c c u r r e n c e of t h e s t a r c h grains w i t h i n t h e p a r e n t p l a n t structures, c o m p o u n d s t a r c h grains g i v i n g rise to t h e f a c e t e d particles.
T h e r a n g e of p a r t i c l e sizes is f r o m 3 to 100 μιη, a n d t h e i r
Figure 5. Narrow angle light scatter ing pattern directly recorded on pho tographic plate following method of Stein and Rhodes. Sample was dis persion of wheat starch in Canada balsam solution in xylene held as film between microscope slide and cover
Figure 6. Same as Figure 5, but sample was dispersion of maize starch
Figure 7. Same as Figure 5, but sample was dispersion of rice starch
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
164
FILLERS
AND
REINFORCEMENTS FOR
PLASTICS
m e a s u r e m e n t was c o n s i d e r e d i m p o r t a n t i n this w o r k . S t e i n a n d R h o d e s s m e t h o d of s p h e r u l i t e size m e a s u r e m e n t s t a r c h suspensions, a n d S a m u e l s (14) particles i n light scattering work.
(3)
is d i r e c t l y a p p l i c a b l e to
has u s e d r i c e s t a r c h as c a l i b r a n t
S o m e c a u t i o n is i n d i c a t e d b e c a u s e of
t h e o c c u r r e n c e of s k e w e d a n d d o u b l e - p e a k e d p o p u l a t i o n s . S a m p l e h i s t o grams f r o m d i r e c t m i c r o s c o p y are s h o w n i n F i g u r e s 3 a n d 4. T h e q u a l i t y of the H
scatter c l o v e r l e a f varies g r e a t l y b e t w e e n starches, a n d a series
v
of examples p r o g r e s s i n g i n m e a n p a r t i c l e d i a m e t e r are s h o w n i n F i g u r e s 5, 6, a n d 7. T h e r e is also o c c a s i o n a l u n c e r t a i n t y a b o u t t h e s t a r c h g r a i n Downloaded by UNIV OF PITTSBURGH on September 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch016
d i m e n s i o n s q u o t e d i n the l i t e r a t u r e because the longest c h o r d m e a s u r e Table I. Starch
Mean Diameters of the Common Starch G r a i n s
0
Microscopy
Light Scattenng
Literature
Rice Maize Arrowroot Wheat
5 11 21 26
5.6 14.2 25.8 36.4
Jack bean Potato
24.5 25.5
30.8 55.2
3 to 8 A v . 15 — 2 t o 10 a n d 20 t o 35 — 15 t o 100
α
A l l dimensions in micrometers.
m e n t o n s t r e w n samples c a n b e q u o t e d w i t h o u t q u a l i f i c a t i o n . T a b l e I c o m p a r e s m y measurements w i t h c e r t a i n p u b l i s h e d values. T h e m i c r o s c o p y figures are of the f o r m D = p h o t o g r a p h s of settled suspensions. results are d e r i v e d f r o m H
v
(I -f- b)/2
and were determined on
T h e n a r r o w angle light scattering
m o d e H e - N e laser l i g h t s c a t t e r i n g e x p e r i
ments u s i n g Stein's e q u a t i o n D = 2 λ / χ sin (Θ/2) T h e l i t e r a t u r e figures are q u o t e d f r o m K n i g h t
(15).
Compounding A c k n o w l e d g e d difficulties i n r e l a t i n g l a b o r a t o r y r h e o m e t r y to p o l y m e r p r o c e s s i n g t e c h n o l o g y e n c o u r a g e d m e to a d o p t a " t i t r a t i o n " t e c h n i q u e f o r assessing the c o m p a t i b i l i t y of s t a r c h w i t h L D P E .
A set w e i g h t of
p o l y m e r was fluxed o n a l a b o r a t o r y t w o - r o l l m i l l , a n d a starch w a s a d d e d p r o g r e s s i v e l y u n t i l the h i d e of c o m p o u n d b r o k e u p or b e c a m e u n m a n ageable.
F o r the b l o w n film experiments the p o l y m e r u s e d w a s I m p e r i a l
C h e m i c a l Industries g r a d e Q 1 3 8 8 of d e n s i t y 0.920 at 2 3 ° C a n d m e l t flow
i n d e x 2 f o l l o w i n g m e t h o d 1 0 5 C of B r i t i s h S t a n d a r d S p e c i f i c a t i o n
2782. R i c e , w h e a t , potato, m a i z e , a n d t a p i o c a starches w e r e a l l b l e n d e d easily i n t o the fluxed p o l y m e r p r o v i d e d o n l y t h a t t h e y w e r e d r y a n d n o t
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
16.
Biodegradable
GRIFFIN
i n h a r d agglomerates.
165
Fillers
M i l l i n g times e x c e e d i n g 1 h r at r o l l temperatures
of 1 5 0 ° C c a u s e d n o v i s i b l e increase i n d i s c o l o r a t i o n , a n d light microscopy
subsequent
of films m a d e f r o m these m a t e r i a l s s h o w e d
discrete
i n t a c t s t a r c h p a r t i c l e s i n t h e p o l y m e r m a t r i x . C o n t r o l l i n g size d i s t r i b u t i o n b y u s i n g b l e n d s of s m a l l p a r t i c l e a n d l a r g e p a r t i c l e starches w e i g h t l o a d i n g s e x c e e d i n g 100 p h r to b e a c h i e v e d .
enabled
These concentrated
stocks w e r e g r a n u l a t e d f o r use as masterbatches b y c u t t i n g the stock as
Downloaded by UNIV OF PITTSBURGH on September 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch016
strip f r o m the m i l l a n d f e e d i n g , after a i r c o o l i n g , to a r o t a r y c u t t e r .
ol
0
1
Figure 8. increasing Conversion
I 20
I I I I AO 60 Concn of S t a r c h - p h r
1
1 80
L
100
Melt flow index for two grades of LDPE with starch content. Maize starch only was used.
Processing
I n i t i a l w o r k w a s r e s t r i c t e d to s a m p l e sheet p r e p a r a t i o n b y p r e s s i o n m o l d i n g , h e a t s t a b i l i t y testing b y the e x t r u s i o n of a 12 X
com1-mm
r i b b o n , a n d e x t r u s i o n - b l o w n film trials u s i n g a l i n e b a s e d o n a S a m a f o r e x t r u d e r of 2 0 : 1 l:d r a t i o w i t h a 4 5 - m m d i a m e t e r s c r e w m a k i n g 3 0 0 - m m w i d e layflat at 25 m i c r o m e t e r n o m i n a l gage. T h e heat s t a b i l i t y p r o c e d u r e i n v o l v e d c o n t i n u o u s e x t r u s i o n at the lowest m a c h i n e s p e e d of a n L D P E r i b b o n c o n t a i n i n g 10 p h r s t a r c h w h i l e p r o g r e s s i v e l y r a i s i n g t h e h e a d a n d d i e temperatures. T a k i n g m a i z e s t a r c h as t y p i c a l , some v a p o r e v o l u t i o n o c c u r r e d at 2 3 0 ° C w h i c h w a s p r e s u m a b l y c a u s e d b y steam generation, a n d i t c a u s e d a r o u g h e n i n g of the surface of t h e extrudate. T h e t e m p e r a t u r e l i m i t of t h e e q u i p m e n t w a s 300 ° C , a n d at this l e v e l a p a l e c r e a m color d e v e l o p e d
i n the products.
The
onset of d i s c o l o r a t i o n w a s at a h i g h e r t e m p e r a t u r e t h a n e x p e c t e d , a n d i t w o u l d seem that t h e u n u s u a l e n v i r o n m e n t of the i s o l a t e d s t a r c h grains m a y be a significant r e t a r d i n g factor.
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
166
FILLERS
AND
REINFORCEMENTS FOR
PLASTICS
F i l m e x t r u s i o n - b l o w i n g w a s e v a l u a t e d b y setting t h e S a m a f o r
film
e x t r u s i o n l i n e to operate n o r m a l l y w i t h u n m o d i f i e d L D P E a n d t h e n p r o gressively i n c r e a s i n g the content of 100 p h r s t a r c h m a s t e r b a t c h i n the feed blend.
P r o v i d e d o n l y that the m a s t e r b a t c h w a s d r y , the s t a r c h /
Downloaded by UNIV OF PITTSBURGH on September 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch016
L D P E c o m p o u n d e x t r u d e d as r e a d i l y as t h e u n m o d i f i e d m a t e r i a l w i t h
Figure 9. Rice starch grains, 5 μπι mean diameter, seen by polarized light microscopy in polypropylene film after extrusion at 230°C n o i n d i c a t i o n of i n c r e a s e d p o w e r c o n s u m p t i o n o n the n o r m a l m a c h i n e instruments.
A b o v e 30 p h r o c c a s i o n a l b u b b l e f a i l u r e s o c c u r r e d , b u t i t
w a s possible to b l o w t h e 100-phr m a s t e r b a t c h d i r e c t l y f o r short p e r i o d s . E a r l y difficulties w i t h screen p a c k b l o c k a g e w e r e later a v o i d e d b y c a r e f u l a t t e n t i o n to the c o n t r o l of m a s t e r b a t c h c o m p o u n d i n g flow
technique.
Melt
i n d e x measurements o n a series of L D P E / m a i z e c o m p o u n d s
were
m a d e a n d c o n f i r m e d t h e m o d e s t interference w i t h flow p r o p e r t i e s sug gested b y the e x t r u s i o n t r i a l s ; the results are p r e s e n t e d i n F i g u r e 8.
The
L D P E film p r o d u c e d was s i m i l a r i n f e e l a n d a p p e a r a n c e to u n m o d i f i e d film
w h e n the starch content w a s l o w , a p a r t f r o m a n increase i n surface
roughness w h i c h e l i m i n a t e d the b l o c k i n g t e n d e n c y of t h e film a n d d e creased its t r a n s p a r e n c y .
A t s t a r c h concentrations
a b o v e 15 p h r
the
p r o d u c t b e g a n to d e v e l o p a p l e a s i n g , p a p e r y f e e l w h i c h w a s v e r y p r o n o u n c e d at 30 p h r . I n v i e w of the success of these trials the w o r k w a s e x t e n d e d
to
establish t h e c o m p a t i b i l i t y of starches w i t h other t h e r m o p l a s t i c s b y s m a l l scale m i l l c o m p o u n d i n g .
So f a r , this has b e e n v e r i f i e d f o r a l l t h e c o m
m o n packaging thermoplastics.
W i t h polypropylene
it was
easier
to
e x t r u d e a b l e n d of P P granules a n d L D P E / s t a r c h m a s t e r b a t c h granules, a t e c h n i q u e a d o p t e d to a v o i d e x p o s i n g s t a r c h to h i g h temperatures w h i l e u n p r o t e c t e d b y a p o l y m e r m e l t envelope.
E v e n after e x t r u s i o n i n P P
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
16.
GRIFFIN
Biodegradable
167
Fillers
at 2 3 0 ° C the s t a r c h grains w e r e u n d a m a g e d as i n d i c a t e d b y t h e i r a p p e a r ance u n d e r p o l a r i z e d l i g h t m i c r o s c o p y
(Figure 9).
Extruded P P ribbon
w i t h 1 5 - p h r rice s t a r c h content c o u l d b e c o l d - d r a w n at u p to 12:1 r a t i o for
fibrillation. T h e p o l y s t y r e n e c o m p o u n d i n g trials w e r e s c a l e d u p first to a S h a w
3-kilo i n t e r n a l m i x e r , a n d l a t e r to
a Buss P R 1 0 0 continuous
mixer
e q u i p p e d w i t h a f a c e cutter f o r p e l l e t p r o d u c t i o n . T h e p r o d u c t w a s u s e d for m a k i n g e x t r u d e d sheet f r o m b l e n d s
w i t h toughened
polystyrene,
using a vented barrel Samafor extruder w i t h a 45-mm diameter
screw
Downloaded by UNIV OF PITTSBURGH on September 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch016
of 2 5 : 1 l:d r a t i o a n d c o u p l e d to a 3 0 0 - m m slit d i e . T h e sheet p e r f o r m e d w e l l i n t h e r m o f o r m i n g trials of
deep disposable
drinking
cups.
The
same p o l y s t y r e n e master b a t c h w a s u s e d i n b l e n d s for i n j e c t i o n m o l d i n g trials a n d , once a g a i n p r o v i d e d o n l y t h a t the m a s t e r b a t c h w a s d r y , n o difficulties w e r e e x p e r i e n c e d w i t h m o l d i n g the c u s t o m a r y test pieces.
Figure 10. Scanning electron microscope picture of 30 phr maize starch-filled LDPE sheet, pressed sample, untreated Biological
Figure 11. Scanning electron mi croscope picture of same sample as in Figure 10 after 24 hr enzyme extraction at 35°C
Testing
T h e t i m e p r o b l e m associated w i t h s o i l b u r i a l tests w a s c i r c u m v e n t e d to a degree b y a d o p t i n g a d i r e c t e n z y m e attack p r o c e d u r e .
T h e presence
of a m y l a s e sources i n most soils is a s s u r e d b y the w i d e d i s t r i b u t i o n of organisms s u c h as B . subtilis.
F o r c o n v e n i e n c e a n α-amylase concentrate,
S i g m a C h e m i c a l C o . A - 6 7 5 5 , f r o m m a l t w a s u s e d i n the f o r m of a 0 . 1 % s o l u t i o n i n w a t e r w i t h a p p r o p r i a t e salts a n d buffers a n d h e l d at 35 ° C i n a n i n c u b a t o r . P o l y e t h y l e n e / s t a r c h sheet samples w e r e s u s p e n d e d i n this e n z y m e s o l u t i o n for 1 to 10 days w h e n , t y p i c a l l y , the surfaces
would
b e c o m e s l i m y p r o b a b l y because of a l a y e r of l i m i t dextrans w h i c h w e r e
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
168
FILLERS
AND
REINFORCEMENTS FOR
PLASTICS
r i n s e d off b e f o r e t h e samples w e r e d r i e d at r o o m t e m p e r a t u r e , v a c u u m m e t a l l i z e d w i t h A u / P d , a n d e x a m i n e d b y s c a n n i n g electron m i c r o s c o p y . F i g u r e s 10 a n d 11 s h o w a pressed L D P E sheet c o n t a i n i n g 30 p h r m a i z e starch before a n d after e n z y m e treatment. C o n t r o l samples i n c u b a t e d i n w a t e r over t h e same p e r i o d s h o w e d n o a p p a r e n t change. T h e s m a l l s u r face d i s t u r b a n c e s c r e a t e d b y the u n d e r l y i n g s t a r c h g r a i n s i n t h e u n t r e a t e d sheet h a v e d e v e l o p e d , after e n z y m e exposure, i n t o d e e p p i t s ; these p r o v e d to b e r a t h e r difficult objects for s c a n n i n g e l e c t r o n m i c r o s c o p y b e c a u s e of t h e f a i l u r e of the m e t a l l i z a t i o n to p e n e t r a t e i n t o the u n d e r c u t s , g i v i n g Downloaded by UNIV OF PITTSBURGH on September 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch016
rise to the f a m i l i a r electrostatic " f l a r e . "
Figure 12. Microtome cross section through 50-/xm thick LDPE blown film originally containing 30 phr starch but extracted for 10 days with enzyme solution at 35°C. Phase contrast transmitted light photography. F u r t h e r experiments w e r e c o n d u c t e d i n o r d e r to s h o w the e x t r a c t i o n effect i n d e p t h .
F o r example, extrusion-blown L D P E
film
containing
30 p h r m a i z e s t a r c h was e x t r a c t e d as a b o v e for 10 days a n d t h e n e m b e d d e d i n w a t e r - s o l u b l e w a x for m i c r o t o m y . F i g u r e 12 shows the a p p e a r ance of s u c h a s a m p l e i n cross section as seen b y p h a s e contrast m i c r o s c o p y , a n d i t is e v i d e n t that t h e m a t e r i a l has b e e n c o n v e r t e d i n t o a sponge. I n a n o t h e r m a t e r i a l , t h i n sheets of p o l y s t y r e n e c o n t a i n i n g 2 5 %
tapioca
s t a r c h w e r e e n z y m e - e x t r a c t e d a n d the change w a s r e v e a l e d b y s t a i n i n g the s t a r c h grains w i t h i o d i n e s o l u t i o n . 125-/xm t h i c k p o l y s t y r e n e extraction.
F i g u r e s 13 a n d 14 s h o w this
t r e a t e d i d e n t i c a l l y except
for
T h i s w o r k has b e e n p a r a l l e l e d b y s o i l b u r i a l
the
enzyme
experiments
w h i c h i n d i c a t e that s i m i l a r events take p l a c e . F o r e x a m p l e , b y f o l l o w i n g w e i g h t loss i t has b e e n e s t a b l i s h e d t h a t 8 0 % of t h e s t a r c h i n a n L D P E 50-/xm t h i c k film c o n t a i n i n g 15 p h r m a i z e s t a r c h has b e e n e x t r a c t e d i n m o i s t g a r d e n s o i l i n a b o u t 8 weeks at 25 ° C
(16).
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Biodegradable
GRIFFIN
Downloaded by UNIV OF PITTSBURGH on September 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch016
16.
169
Fillers
Figure 13. Toughened polystyrene sheet containing 25 phr tapioca starch photographed by transmitted light microscopy after staining starch with iodine
Figure 14. Piece from same sample sheet used for Figure 13 but stained and photographed after 10 days enzyme extraction at 35°C. Holes left by absent starch grains can just be seen. Conclusions A b i o l o g i c a l l y i n n o c u o u s filler has b e e n selected w h i c h appears to cause m i n i m u m d i s t u r b a n c e to t h e c o m m o n p a c k a g i n g t h e r m o p l a s t i c s as f a r as t h e i r p r o c e s s i n g a n d p r o p e r t i e s are c o n c e r n e d at l o a d i n g s of u p to 10 p h r ; a b o v e this l e v e l i t p r o d u c e s c o m p o s i t i o n s w h i c h a r e a t t r a c t i v e i n their o w n right.
I n L D P E films these m o r e h e a v i l y
have a papery quality.
T h i s filler, or r a t h e r g r o u p of
filled
compositions
fillers—the
plant
starches, resists d r y heat i n the n o r m a l plastics p r o c e s s i n g operations. T h e y are i n e r t to w a t e r at r o o m t e m p e r a t u r e b u t are r a p i d l y d i g e s t e d b y
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
170
FILLERS A N D R E I N F O R C E M E N T S FOR PLASTICS
the u b i q u i t o u s amylases; t h e p o r o s i t y thus g e n e r a t e d offers t h e m o s t f a v o r a b l e circumstances f o r b i o l o g i c a l a n d o x i d a t i v e attack. T h e m e c h a nism b y w h i c h the large enzyme molecules are able to penetrate t h e p o l y m e r films b e t w e e n t h e s t a r c h p a r t i c l e s is n o t e v i d e n t b u t is b e i n g i n v e s t i g a t e d . T r i a l s are also b e i n g e x t e n d e d t o l o n g t e r m s o i l a n d c o m p o s t b u r i a l s a n d t o other p o l y m e r s a n d p r o c e s s i n g m e t h o d s . Acknowledgments
Downloaded by UNIV OF PITTSBURGH on September 21, 2013 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch016
T h e a u t h o r t h a n k s C o l o r o l l L t d . f o r t h e i r s u p p o r t o f this w o r k , a n d final
y e a r students a t B r u n e i U n i v e r s i t y , e s p e c i a l l y M r . P e t e r J e n k i n s ,
f o r p a t i e n t m a n i p u l a t i o n o f m i c r o s c o p e a n d laser.
Literature Cited 1. Wallhäuser, Κ. H., Verpackungs Rundschau (1972) 3, 266. 2. Wallhäuser, Κ. Η., Mull Abfall (1972) 1, 10. 3. Wallhäuser, Κ. Η., Preprints, Degradability of polymers and plastics, Plas tics Institute, London, 27 Nov. 1973. 4. Scott, G., Plastics Rubbers Textiles (1970) 1, 361. 5. Nykvist, N., Preprints, Degradability of polymers and plastics, Plastics Institute, London, 27 Nov. 1973. 6. Haywood, C. K., in "Polythene," Renfrew and Morgan, Eds., p. 135, Iliffe, London, 1960. 7. Gutt, W., Chem. Ind. (1972) 439. 8. Burgers, J. M., 2nd, Report on Viscosity and Plasticity. Verhandelingen der Konok. Nederl Akad. Eerste Sektie Deel XVL No. 4 North Holland Pub. Co. Amsterdam 1938. 9. Eveson, G. F., in "Rheology of Disperse Systems," pp. 61-83, Pergamon Press, London, 1959. 10. British Patent Application 23469/72, Assigned to Coloroll Ltd. 11. Reichert, E. T., Carnegie Inst. Washington Pub. No. 173 (1913). 12. Whistler, R. L., Paschall, E. F., "Starch Chemistry and Technology," Aca demic Press, New York, 1965. 13. Stein, R. S., Rhodes, M. B., J. Appl. Phys. (1960) 31, 1873. 14. Samuels, R. J., J. Poly. Sci. (1971) A2, 9, 2165. 15. Knight, J. W., 'The Starch Industry," Pergamon Press, London, 1969. 16. Dowding, P., private communication, Trinity College, Dublin, 1974. RECEIVED October 11, 1973.
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.