12 Compounding of Fillers STAN
JAKOPIN
Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012
Werner & Pfleiderer Corp., W a l d w i c k , N. J. 07463
The several methods available to produce glass-reinforced thermoplastic materials vary greatly in their methods and results. Data obtained on pre-compounded glass-reinforced polypropylene show that physical properties vary signifi cantly with vanous compounding techniques. Proper selec tion of compounding equipment and optimizing equipment parameters can substantially increase mechanical properties of the final product. Methods of selecting the most efficient equipment for a given compounding operation must take into consideration degree of shear required, temperature sensitivity, residence time distribution, and volume to be produced. When dealing with glassfibers,abrasion or cor rosion of the compounding equipment plays a substantial role in economics. The simplicity and accuracy of the com pounding process are also important.
' " p h e d e v e l o p m e n t of filled plastics has r e a c h e d a p o i n t w h e r e p r o p e r t i e s ·*- of r a w m a t e r i a l s ( filler a n d p o l y m e r ) as w e l l as final m o l d i n g p a r a m e ters h a v e b e e n t h o r o u g h l y s t u d i e d a n d s u b s t a n t i a l t e c h n i c a l d a t a h a v e b e e n p u b l i s h e d . O n t h e other h a n d the t e c h n o l o g y i n v o l v e d i n c o m p o u n d i n g fillers a n d p o l y m e r s has not b e e n w e l l p u b l i c i z e d , a n d this c r i t i c a l area d i r e c t l y influences b o t h t o t a l e c o n o m i c s a n d final e n d - p r o d u c t q u a l i t y . T h e v o l u m e of p r e c o m p o u n d e d p l a s t i c pellets u s e d a n n u a l l y has b e e n increasi n g at a r e m a r k a b l e rate. S e l e c t i o n of t h e p r o p e r c o m p o u n d i n g
system,
therefore, is a c r i t i c a l e n g i n e e r i n g f u n c t i o n . A v a i l a b l e processes m u s t b e c a r e f u l l y e v a l u a t e d , t a k i n g i n t o c o n s i d e r a t i o n e n d - p r o d u c t q u a l i t y , degree of a u t o m a t i o n possible, a n d r e a l i s t i c p r o d u c t i o n rates as w e l l as v e r s a t i l i t y . A w r o n g d e c i s i o n here c a n cause a n e v e n t u a l c o m m e r c i a l f a i l u r e . A g o o d e v a l u a t i o n c a n p r o v i d e a c o m p e t i t i v e edge. T o d a y nearly a l l important polymers
are a v a i l a b l e as
filled
pre-
c o m p o u n d e d pellets f o r i n j e c t i o n m o l d i n g a n d extrusion. B e a r i n g i n m i n d 114 In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
jAKOPiN
Compounding
of
115
Fillers
process economics, e q u i p m e n t a v a i l a b i l i t y , a n d preference, the d e c i s i o n as to w h a t c o m p o u n d i n g t e c h n i q u e a n d w h a t c o m p o u n d i n g e q u i p m e n t to u t i l i z e often centers a r o u n d t h e q u e s t i o n of h o w m u c h shear is r e q u i r e d , h o w sensitive the c o m p o u n d
a n d / o r c o m p o u n d i n g i n g r e d i e n t s are to
t e m p e r a t u r e , a n d the v o l u m e to b e c o m p o u n d e d .
Q u a l i t y levels, s p a c e
l i m i t a t i o n s , a n d t h r o u g h p u t r e q u i r e m e n t s m u s t also b e c o n s i d e r e d .
The
processor t h e n c a n select e i t h e r a separate or i n - l i n e system, w h i c h e v e r is most efficient for h i s needs. T h i s a r t i c l e r e v i e w s v a r i o u s m e t h o d s of c o m p o u n d i n g
Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012
forced and non-reinforced)
fillers
(rein-
i n t o t h e r m o p l a s t i c or thermoset m a t e r i a l s .
B e f o r e d i s c u s s i n g t h e m e t h o d s of c o m p o u n d i n g , w e c o n s i d e r b r i e f l y the production requirements for compounding
The Compounding The
Production
Processs
e q u i p m e n t for c o m p o u n d i n g
several requirements: (a)
fillers.
fillers
and polymers must fulfill
steady-state r u n n i n g c o n d i t i o n s , ( b )
d u c i b i l i t y of p r o c e s s i n g c o n d i t i o n s , ( c )
repro-
ease of c l e a n i n g , a n d ( d ) v e r s a -
t i l i t y to a d a p t to n e w f o r m u l a t i o n s . T o a c h i e v e o p t i m u m m a t e r i a l q u a l i t y , the e q u i p m e n t s h o u l d h a v e : ( a ) the a b i l i t y to generate sufficiently h i g h i n t e r n a l shear stresses to f a c i l i t a t e g o o d d i s p e r s i o n of t h e a d d i t i v e s ( b ) the c a p a b i l i t y to expose e a c h p a r t i c l e to short a n d e q u a l stresses ( c ) exact t e m p e r a t u r e c o n t r o l to r e g u l a t e a n d m i n i m i z e heat h i s t o r y Compounding Methods. B a s i c a l l y , w e c a n differentiate t w o types of c o m p o u n d i n g : ( 1 ) d i s c o n t i n u o u s system a n d ( 2 ) c o n t i n u o u s system. T h e d i s c o n t i n u o u s system is f a i r l y o l d a n d i n most cases refers to B a n b u r y ( R ) i n t e n s i v e mixers or r o l l m i l l s . T h r o u g h p u t s for these systems r a n g e f r o m 500 to 10,000 l b s / h r , a n d s i z a b l e investments are r e q u i r e d . H o w e v e r , a n efficient p r o c e s s i n g system w i l l a l l o w the c o m p o u n d e r to operate econ o m i c a l l y at h i g h v o l u m e . O n the o t h e r h a n d , c o n t i n u o u s c o m p o u n d i n g systems h a v e capacities u p to 7000 l b s / h r . B e c a u s e of e c o n o m i c s a n d t h e large v o l u m e r e q u i r e m e n t s for
filled
p l a s t i c s , c o n t i n u o u s systems
are
u s u a l l y p r e f e r r e d . F o r q u a l i t y , c o n t i n u o u s systems offer better u n i f o r m i t y of p r o d u c t w i t h less b a t c h - t o - b a t c h v a r i a t i o n t h a n a d i s c o n t i n u o u s system. I n most cases, the p r o p e r p r o c e s s i n g c o n d i t i o n s f o r
compounding
can be filled a d e q u a t e l y w i t h s i n g l e - s c r e w c o m p o u n d i n g t y p e extruders. The
advances of s c r e w d e s i g n t e c h n i q u e s a n d n e w devices that a i d i n
l o c a l i z e d a n d c o n t r o l l e d i n t r o d u c t i o n of shear are n o w a v a i l a b l e to a p o i n t w h e r e , i n p r o b a b l y t w o out of t h r e e cases, s i n g l e - s c r e w extruders are a d e q u a t e . A relatively n e w approach i n designing a single-screw compounding e x t r u d e r is r e p r e s e n t e d b y a n e w m e d i u m shear t y p e c o m p o u n d e r c a l l e d
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
116
FILLERS
AND
REINFORCEMENTS FOR
PLASTICS
t h e T r a n s f e r m i x . T h i s is a c o n t i n u o u s , e n f o r c e d o r d e r , stepless extensive, v a r i a b l e intensive m i x e r , a viscous heat exchanger, a n d v e n t e d extruder. T h e T r a n s f e r m i x consists of t w o opposite h a n d e d s c r e w s — a r o t o r t u r n i n g i n s i d e the stator. I n the n a r r o w l a n d e d extensive m i x i n g stages, the g r o o v e d e p t h of the r o t o r decreases f r o m m a x i m u m to m i n i m u m w h i l e , i n the stator, it increases f r o m m i n i m u m to m a x i m u m . S h e a r rate c a n b e a d j u s t e d f r o m 30 to 3,000 r e c i p r o c a l seconds b y speed v a r i a t i o n a n d a r u n n i n g clearance adjustment. F o r some c o m p o u n d i n g operations, t w i n - s c r e w c o m p o u n d i n g
Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012
are the most effective
approach.
systems
If p r o p e r l y d e s i g n e d , t w i n - s c r e w ex-
t r u d e r s p r o v i d e m a x i m u m process controls, e s p e c i a l l y w i t h respect shear a n d stock t e m p e r a t u r e .
Also w i t h twin-screw compounders,
to
large
q u a n t i t i e s of volatiles c a n b e r e m o v e d . Types of Fillers. T h e m a n y fillers u s e d i n the plastics i n d u s t r y t o d a y c a n b e separated i n t o t w o (b)
non-reinforcing
g e n e r a l categories:
fillers.
B o t h categories
reinforcing
fillers,
are a p p l i c a b l e to
(a)
either
t h e r m o p l a s t i c or thermoset resins. C h o p p e d or r o v i n g glass is the most common
t y p e of r e i n f o r c i n g
filler.
Others commonly
u s e d are
cotton,
asbestos, F y b e x , a n d so f o r t h . T h e s e c o n d category contains fillers s u c h as c l a y , C a C 0 , talc, w o o d flour, a n d p i g m e n t s . 3
T h e t y p e of
filler
i n f o r c i n g or n o n - r e i n f o r c i n g ) d r a s t i c a l l y affects t h e c o m p o u n d i n g
(re-
process.
C o m p o u n d i n g of n o n - r e i n f o r c i n g fillers u s u a l l y r e q u i r e s the h i g h e s t d e g r e e of dispersion—e.g., c a r b o n b l a c k i n L D P E .
Therefore, equipment
s h o u l d b e a b l e to generate h i g h shear stresses to separate the a g g l o m e r ates, p a r t i c u l a r l y since these fillers u s u a l l y h a v e v e r y s m a l l p a r t i c l e sizes. I n c o m p o u n d i n g r e i n f o r c i n g fillers, the opposite a p p r o a c h is t a k e n : l o w shear c o m p o u n d i n g m u s t be u s e d to p r e v e n t d a m a g e to the main
consideration
is to
wet
the
filler
fillers.
The
uniformly, devolatilize,
and
discharge. Residence Time and Residence Time Distribution. T h e t w o essential elements i n a successful c o n t i n u o u s s y s t e m are absolute c o n t r o l over r e s i d e n c e t i m e a n d residence t i m e d i s t r i b u t i o n . T o m i n i m i z e heat h i s t o r y , the r e s i d e n c e t i m e m u s t b e short a n d u n i f o r m d u r i n g the entire process. R e s i d e n c e t i m e for thermoset resins, for e x a m p l e , s h o u l d n o t e x c e e d 60 sec. T h i s is also t r u e for m a n y heat- a n d shear-sensitive t h e r m o p l a s t i c m a t e r i a l s . R e s i d e n c e t i m e is p r i m a r i l y a f u n c t i o n of m a c h i n e d e s i g n ,
screw
R P M , a n d t h r o u g h p u t . A s i n a l l continuous m a c h i n e s , extruders d o not h a v e a n e x a c t l y defined r e s i d e n c e t i m e b u t r a t h e r a residence t i m e spect r u m . U n i f o r m i t y of a c o n t i n u o u s o p e r a t i o n is i l l u s t r a t e d b y the t y p e of spectrum.
W i t h s c r e w m a c h i n e s i n g e n e r a l w e c a n differentiate
four
p r i n c i p a l types of residence t i m e spectra ( F i g u r e 1 ). T h e t w o i d e n t i f y i n g characteristics of a residence t i m e d i s t r i b u t i o n are the d i s t a n c e w b e t w e e n the points of i n f l e c t i o n a n d the o v e r a l l w i d t h b of t h e d i s t r i b u t i o n c u r v e .
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
Compounding
jAKOPiN
of
Fillers
117
a
J
Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012
w
-
>*
—
ft
1
TIME
Figure
1.
Four typical residence time curves for extruder processes (see text for discussion)
A s m a l l distance b e t w e e n t h e points o f i n f l e c t i o n indicates l i t t l e b a c k a n d f o r t h m i x i n g ; a great distance i n d i c a t e s a greater l o n g i t u d i n a l m i x i n g . T h e o v e r a l l w i d t h b of t h e d i s t r i b u t i o n c u r v e is i n f l u e n c e d b y s o - c a l l e d d i s t r i b u t i o n tails w h i c h i n d i c a t e t h e c l e a n i n g efficiency of t h e m a c h i n e . L o n g d i s t r i b u t i o n tails i n d i c a t e p o o r s e l f - c l e a n i n g efficiency.
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
118
FILLERS
AND
REINFORCEMENTS FOR
PLASTICS
T h e best c h a r a c t e r i z a t i o n of s e l f - c l e a n i n g is the s e l f - c l e a n i n g t i m e , s, defined as: s = U s i n g average
b — w. As s increases, t h e c l e a n i n g efficiency decreases. residence t i m e , w e
can obtain a similar
dimensionless
v a l u e for s e l f - c l e a n i n g c h a r a c t e r i z a t i o n w i t h v a r i o u s processes a n d average residence times: s _ b
w
—
~t
Γ
E x t r u d e r s w i l l a l w a y s h a v e a v a l u e greater t h a n 1. L i k e the t e r m s, as the
Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012
v a l u e increases, the s e l f - c l e a n i n g characteristics deteriorate.
Average
residence t i m e is defined as the t i m e i n w h i c h h a l f of the particles i n t h e residence t i m e s p e c t r u m pass t h r o u g h the m a c h i n e .
When
average
residence t i m e cannot be d e t e r m i n e d f r o m a residence t i m e s p e c t r u m , it c a n be c a l c u l a t e d b y :
where V = c = ψ =
free v o l u m e degree of fill v o l u m e t r i c flow p e r u n i t t i m e
C u r v e a i n F i g u r e 1 is t y p i c a l for a m a c h i n e w i t h little l o n g i t u d i n a l m i x i n g a n d p o o r s e l f - c l e a n i n g characteristics. C u r v e b is t y p i c a l for a m a c h i n e w i t h greater l o n g i t u d i n a l m i x i n g b u t s t i l l p o o r
self-cleaning
characteristics. T h e s e t w o curves are t y p i c a l for s i n g l e - s c r e w extruders a n d for t w i n - s c r e w extruders w i t h o u t a s e a l i n g profile. C u r v e s c a n d d s h o w o n l y short r e s i d e n c e t i m e tails w h i c h i n d i c a t e g o o d s e l f - c l e a n i n g characteristics.
T h e latter curves v a r y o n l y i n the
a m o u n t of b a c k a n d f o r t h m i x i n g a n d are t y p i c a l of t w i n - s c r e w extruders w i t h a s e a l i n g profile. I n m a c h i n e s w i t h g o o d s e l f - c l e a n i n g , n o p a r t i c l e s r e m a i n excessively l o n g i n t h e u n i t w h e r e t h e y m i g h t be subjected
to
severe heat. T h e r e are no d e a d corners w h e r e m a t e r i a l c o u l d a c c u m u l a t e . T h e s e are c r i t i c a l factors, e s p e c i a l l y w h e n p r o c e s s i n g thermoset m a t e r i a l s . A g o o d e x a m p l e of a n e x t r u d e r w i t h a s e a l i n g profile is the t w i n - s c r e w intermeshing and co-rotating compounder.
T h e w o r k i n g p r i n c i p l e of this
u n i t is d e s c r i b e d b e l o w . Twin-Screw
Intermeshing
and
Co-Rotating
Compounder.
The
p r o c e s s i n g section consists of t w o i n t e r m e s h i n g screws, r o t a t i n g i n the same d i r e c t i o n a n d at the same s p e e d i n t h e b a r r e l . T h e screws are selfc l e a n i n g a n d w i p e e a c h other w i t h a m i n i m u m clearance. B e c a u s e of this s e a l i n g profile, d e a d spaces w h e r e m a t e r i a l d e g r a d a t i o n c o u l d o c c u r are m i n i m i z e d , a n d a n e v e n t o r q u e d i s t r i b u t i o n is assured ( F i g u r e 2 ) .
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012
12.
jAKOPiN
Compounding
of
119
Fillers
Figure 2. Twin-screw compounding extruder with co-rotating intermeshing screws. The screws are self-cleaning and wipe each other with a minimum clearance. Screws a n d barrels are b u i l t u p i n a b u i l d i n g b l o c k p r i n c i p l e . T h e s c r e w elements consist of different lengths a n d pitches a n d s p e c i a l k n e a d i n g elements of v a r i o u s w i d t h s w h i c h are i n t e r c h a n g e a b l e .
T h e screw
elements a n d k n e a d i n g b l o c k s are s e c u r e d o n t h e shaft b y a k e y .
The
s c r e w elements are h e l d o n the shaft b y the s c r e w t i p . B y v a r y i n g t h e s c r e w elements a n d k n e a d i n g b l o c k s , the s c r e w c o n f i g u r a t i o n c a n t a i l o r e d to the shear i n t e n s i t y r e q u i r e d b y t h e specific m a t e r i a l . s c r e w b a r r e l consists of i n d i v i d u a l b a r r e l sections.
When
be The
processing
t h e r m o p l a s t i c m a t e r i a l s , t h e b a r r e l b e f o r e t h e d i s c h a r g e is u s u a l l y the v e n t e d one w h e r e v o l a t i l e constituents c a n b e r e m o v e d f r o m the m e l t . E v e r y b a r r e l has c o o l i n g cores, so t h a t close t e m p e r a t u r e c o n t r o l c a n b e
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
120
FILLERS
o b t a i n e d w i t h w a t e r or o i l c o o l i n g . trically.
AND
REINFORCEMENTS FOR
PLASTICS
I n m a n y cases, h e a t i n g is d o n e elec-
T h i s b u i l d i n g b l o c k p r i n c i p l e m a k e s i t p o s s i b l e to d e s i g n the
p r o c e s s i n g section exactly as r e q u i r e d to o b t a i n o p t i m u m p r o c e s s i n g c o n ditions. A h i g h degree of v e r s a t i l i t y is also o b t a i n e d t h r o u g h the a b i l i t y to v a r y the l e n g t h a n d c o n f i g u r a t i o n of the screws a n d k n e a d i n g elements. T h u s , the r e q u i r e d shear stresses c a n b e a d j u s t e d to m e e t processing needs. T h e p r o c e s s i n g features a r e :
Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012
( a ) T h e e n e r g y r e q u i r e d to m e l t a n d h o m o g e n i z e the r e s i n w i t h the a d d i t i v e s c a n b e c r e a t e d b y f r i c t i o n w i t h i n the m a c h i n e . T h i s results i n excellent d i s p e r s i o n a n d h o m o g e n i z a t i o n ( r a t i o w:b is v e r y h i g h ) . ( b ) E n e r g y c a n be c r e a t e d i n a v e r y short t i m e a n d a v e r y short m a c h i n e l e n g t h b y h i g h e n e r g y i n p u t k n e a d i n g elements. A l l this results i n a v e r y short average r e s i d e n c e t i m e — i n m o s t cases, b e l o w 30 seconds.
S e l f - w i p i n g a n d s e l f - c l e a n i n g characteristics of
screw geometry prevent any deposition.
E v e n i n long-term
the
operation,
u n i f o r m m e l t c o n v e y a n c e a n d u n i f o r m p r o d u c t q u a l i t y are m a i n t a i n e d . T h e s e p r o c e s s i n g characteristics are e s p e c i a l l y c r i t i c a l for heat-sensitive materials where
controlling
the
m a t e r i a l t e m p e r a t u r e a c c u r a t e l y w h i l e e n s u r i n g that a l l p a r t i c l e s
are
exposed
successful
compounding
depends
on
to a preset t e m p e r a t u r e for the same t i m e .
Since they
these r e q u i r e m e n t s , c o n t i n u o u s h i g h i n t e n s i t y c o m p o u n d e r s
fulfill
with small
free v o l u m e a n d r e l a t i v e l y short residence t i m e h a v e g a i n e d w i d e ceptance.
ac-
T h e t e c h n i q u e s u s e d to c o m p o u n d fiber glass w i l l i l l u s t r a t e the
considerations
involved i n selecting c o m p o u n d i n g
equipment
and
the
influence of v a r i o u s e q u i p m e n t o n final properties. Glass Fiber Reinforced Thermoplastic
Polymers
T h e r e are s e v e r a l m e t h o d s to p r o d u c e glass-reinforced t h e r m o p l a s t i c m a t e r i a l s , a n d t h e y v a r y greatly i n t h e i r t e c h n i q u e s a n d results. obtained on precompounded
glass-reinforced p o l y p r o p y l e n e s h o w
physical properties v a r y significantly w i t h various c o m p o u n d i n g niques.
P r o p e r selection of
compounding
equipment
Data that tech-
and optimizing
e q u i p m e n t parameters c a n s u b s t a n t i a l l y increase m e c h a n i c a l p r o p e r t i e s of the final p r o d u c t .
T h e s i m p l i c i t y a n d a c c u r a c y of the
compounding
process are also i m p o r t a n t . W h e n d e a l i n g w i t h glass fibers, a b r a s i o n or c o r r o s i o n of the c o m p o u n d i n g e q u i p m e n t also p l a y a s u b s t a n t i a l r o l e i n t o t a l economics. T h e p r o p e r t i e s of the c o m p o s i t e a r e of course i n f l u e n c e d b y the glass fiber c o n c e n t r a t i o n , the strength of the fibers, a n d t h e effectiveness of the s i z i n g agent. I n the c o m p o u n d i n g o p e r a t i o n , h o w e v e r , the q u a l i t y of the r e i n f o r c e d p o l y m e r is d i r e c t l y affected b y ( a ) the l e n g t h of the glass fibers i n the e n d p r o d u c t , ( b )
t h e u n i f o r m i t y of the glass d i s t r i b u t i o n i n the
p o l y m e r , a n d ( c ) u n i f o r m w e t t i n g of the glass fibers b y the p l a s t i c m e l t .
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
jAKOPiN
Compounding
of
121
Fillers
T h e r e are t w o b a s i c w a y s of m a k i n g a g l a s s - r e i n f o r c e d t h e r m o p l a s t i c part: ( 1 ) m a t e r i a l c a n b e f e d d i r e c t l y i n t o a n i n j e c t i o n m o l d i n g or e x t r u d i n g m a c h i n e as a p r e b l e n d m a d e p r i o r to m o l d i n g , or ( 2 ) M a t e r i a l c a n b e p u r c h a s e d as p r e - c o m p o u n d e d pellets, w h i c h c a n b e f e d i n t o a n i n j e c t i o n m o l d i n g or e x t r u d i n g m a c h i n e . Single-Screw Extruders. T h e most c o m m o n l y u s e d system for c o m p o u n d i n g glass r e i n f o r c e d t h e r m o p l a s t i c s i n s i n g l e - s c r e w extruders i n volves the use of c h o p p e d glass fibers w h i c h are p r e b l e n d e d w i t h p o l y m e r a n d f e d into the extruder. T h e glass is c o n v e y e d together w i t h t h e p o l y Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012
m e r t h r o u g h a l l three stages of s i n g l e - s c r e w e x t r u s i o n : c o n v e y i n g , c o m pression, a n d m e t e r i n g . D u r i n g c o m p r e s s i o n , w h e n the p o l y m e r m e l t s , the glass fibers are exposed to h i g h shear stresses, a n d most of t h e r e d u c t i o n i n glass fiber l e n g t h takes p l a c e at this t i m e . A f t e r m e l t i n g , u s u a l l y a v e n t i n g section is u s e d to r e m o v e the v o l a t i l e s . T h e c o m p o s i t e is t h e n pushed through a die. C o m p o u n d i n g i n a single-screw extruder depends l a r g e l y o n h e a d pressure w h i c h g r e a t l y influences t h e glass fiber l e n g t h i n the
final
product.
I n c r e a s i n g h e a d pressure damages
the glass
fibers
w h i c h results i n c o n s i d e r a b l y decreased i m p a c t strength. T h e r e f o r e , h e a d p r e s s u r e m u s t b e as l o w as possible. I n s t e a d of u s i n g a p r e m i x , components c a n be f e d s e p a r a t e l y i n t o the extruder.
G l a s s fiber c a n be i n c h o p p e d or r o v i n g f o r m ; h o w e v e r ,
the
s c r e w s h o u l d rotate fast e n o u g h to p r e v e n t b u i l d - u p of m a t e r i a l i n the feed
pocket—so-called
starve f e e d i n g — o t h e r w i s e
the material might
" a r c h " across the f e e d p o c k e t a n d segregate because of v i b r a t i o n s . G l a s s damage d u r i n g melting can be reduced b y using a screw geometry w h i c h p e r m i t s g r a d u a l m e l t i n g b y e x t e r n a l heat a n d not s t r i c t l y b y m e c h a n i c a l e n e r g y i n p u t . W e a r c a n b e e x p e c t e d a l l a l o n g the s c r e w section, p a r t i c u l a r l y i n the u p s t r e a m section. C o m p o u n d i n g of glass fibers c a n also b e d o n e w i t h the T r a n s f e r m i x system. T h e glass fiber l e n g t h c a n b e c o n t r o l l e d to a c e r t a i n extent b y c h o o s i n g the r i g h t shear rate for a p a r t i c u l a r p o l y m e r i n o r d e r n o t to o v e r w o r k the glass fibers. T h e m a c h i n e is u s u a l l y f e d w i t h a p r e m i x of glass feed
fibers-polymer throat.
downstream.
o r b y m e t e r i n g t h e c o m p o n e n t s separately i n t o the
V o l a t i l e s are r e m o v e d Glass compounding
t h r o u g h t h e v e n t section
with
single-screw extruder compounding,
located
the T r a n s f e r m i x is s i m i l a r
b u t i t offers
to
improved versatility
a n d c o n t r o l of fiber l e n g t h . Twin-Screw Extruders. A recent d e v e l o p m e n t i n the p r o d u c t i o n of glass fiber r e i n f o r c e d t h e r m o p l a s t i c c o m p o u n d s intermeshing,
i n v o l v e s the use of the
co-rotating twin-screw compounder.
F o r several
good
reasons, t w i n - s c r e w c o m p o u n d i n g extruders h a v e b e c o m e m o r e a n d m o r e i m p o r t a n t for glass fiber c o m p o s i t e p r o d u c t i o n .
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
122
FILLERS
material feed
chopped glass or roving feed
kneading elements
Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012
A N D R E I N F O R C E M E N T S F O R PLASTICS
material feed
vacuum
left handed kneading element
chopped glass or roving feed
m
ρ
(θ)
kneading elements
Figure
neutral kneading element
3.
left handed flights
Typical screw configuration for compounding roving glass downstream into the melt
chopped or
V a r i a b i l i t y of s c r e w d e s i g n is p a r t i c u l a r l y i m p o r t a n t f o r p r o d u c i n g glass fiber r e i n f o r c e d composites since i t is possible to v a r y t h e r e q u i r e d average glass fiber l e n g t h , d e p e n d i n g o n p o l y m e r a n d t h e p e r c e n t a g e of glass used.
P o l y m e r s w i t h h i g h m e l t viscosities or h i g h glass l o a d i n g s
( 4 0 % b y weight or more) require m i l d e r screw configuration than p o l y mers of l o w m e l t v i s c o s i t y o r l o w p e r c e n t glass fiber ( 3 0 % b y w e i g h t o r l e s s ) . F i g u r e 3 shows a t y p i c a l s c r e w c o n f i g u r a t i o n a r r a n g e m e n t f o r t w o Table I.
Effect of Compounding on Mechanical Compounding Single-Screw Extruder
G l a s s fiber, w t % T y p e of fiber Tensile strength, psi Flex, modulus, m psi Izod impact, ft l b / i n c h notched H e a t defl. t e m p . , ° F a t 264 p s i % of F i b e r s smaller t h a n 0.5 m m Remarks
Technique Continuous
Mixer
25 1/8-inch c h o p p e d glass 6100 580
25 1/4-inch c h o p p e d glass 4700 460
1.45
0.7
264
153
glass w a s fed i n t o the feed section
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
Compounding
jAKOPiN
of
123
Fillers
different p o l y m e r s : ( a ) l o w v i s c o s i t y p o l y m e r ( b ) h i g h v i s c o s i t y p o l y m e r . T h e s m a l l k n e a d i n g elements or s c r e w elements w i t h r e v e r s e d flights c a n b e u s e d to d e t e r m i n e the final fiber l e n g t h d i s t r i b u t i o n as w e l l as the p h y s i c a l properties. T h e effect of a s c r e w c o n f i g u r a t i o n o n p h y s i c a l p r o p erties is s h o w n i n T a b l e I. T h e properties are r e l a t i v e , a n d no s p e c i a l l y t r e a t e d p o l y p r o p y l e n e was u s e d . S i m i l a r to other p r o c e s s i n g m e t h o d s , t w i n - s c r e w i n t e r m e s h i n g extruders c a n also b e f e d w i t h a p r e m i x e d p o l y m e r / g l a s s b l e n d , or c o m ponents c a n be m e t e r e d separately i n t o the f e e d throat. A g a i n , the e q u i p -
Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012
m e n t is u s u a l l y starve-fed to p r e v e n t segregation. S i n c e these c o m p o u n d ers u s u a l l y h a v e h i g h s c r e w s p e e d ( 2 0 0 - 3 0 0 r p m ) , there is no d a n g e r of b e i n g l i m i t e d b y the c o n v e y i n g c a p a c i t y of the screws. T o p r e v e n t excess w e a r , t w i n - s c r e w c o m p o u n d e r s
are u s u a l l y not
f e d w i t h glass fibers into the f e e d p o r t b e c a u s e of the abrasiveness of the glass. T h e w e a r to w h i c h the screws a n d the barrels are s u b j e c t e d i n the p l a s t i c i z i n g z o n e m a y b e v e r y severe. T o p r o l o n g the e q u i p m e n t l i f e t i m e a n d to m i n i m i z e t h e glass fiber l e n g t h r e d u c t i o n d u r i n g p l a s t i c i z i n g , glass c a n b e f e d d o w n s t r e a m i n t o the m e l t t h r o u g h the degassing p o r t or via a side feeder
flanged
r o v i n g or c h o p p e d
onto the side of the b a r r e l .
form.
T h e glass c a n b e i n
T h e p o l y m e r is m e t e r e d i n t o the f e e d
port
i n the c o n v e n t i o n a l w a y a n d p l a s t i c i z e d i n the first section of the m a c h i n e b y a s u i t a b l e s c r e w c o n f i g u r a t i o n . I f necessary, other a d d i t i v e s s u c h as flame retardants, p i g m e n t s , p l a s t i c i z e r s , or s t a b i l i z e r s , c a n be t h o r o u g h l y b e f o r e the glass is f e d .
compounded
A l s o , a n y volatiles c a n b e
removed
i n that section. Roving Process. T h e r o v i n g process uses c o n t i n u o u s r o v i n g strands i n t r o d u c e d i n t o the m e l t t h r o u g h a n o p e n degassing a d a p t o r , w i t h o u t Properties of Fiber Glass-Filled Polypropylene Compounding Twin-Screw Compounder 1
Turin-Screw Compounder 2
Technique Twin-Screw Compounder S
25 roving
23 roving
25 roving
4900 600 0.9 203
5800 550 1.1 184 — m o d e r a t e screw after a d d i t i o n of glass
8000 550 1.2 268 29 m i l d screw after a d d i t i o n of glass ( N o . 14)
screw w i t h v e r y s t r o n g sections after a d d i t i o n of glass
Twin-Screw Compounder 4
25 1/8-inch chopped glass 8000 550 1.3 266
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
124
FILLERS
material feed
AND
REINFORCEMENTS FOR
glass fiber rovings vacuum vent port
strand cutter
strand die
5
Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012
Figure
4.
PLASTICS
J
Typical
-jjJJ^woterbath
Ψ arrangement for feeding fiber rovings
continuous
glass
Figure 5. Feeding glass fiber roving into a melt down stream through a vent opening of a twin-screw compounder s p e c i a l m e t e r i n g devices.
S t r a n d s are u n w o u n d f r o m the cores c o n t i n u
o u s l y a n d p u l l e d i n t o the m a c h i n e b y t h e r o t a t i n g screws. i n t a k e of glass strands d e p e n d s
Since the
d i r e c t l y o n s c r e w r o t a t i o n , the d e s i r e d
a m o u n t of glass c a n be c o n t r o l l e d b y the n u m b e r of strands a n d the r p m of t h e screws.
T h e a m o u n t of glass p e r h o u r of one s t r a n d c a n a c t u a l l y
b e p l o t t e d as a f u n c t i o n of r p m . I f the f e e d rate of the p o l y m e r is k n o w n , the n u m b e r of strands c a n b e easily d e t e r m i n e d to m a t c h the r i g h t p e r c e n t a g e
of glass l o a d i n g .
F i g u r e s 4 a n d 5 s h o w a t y p i c a l a r r a n g e m e n t for f e e d i n g continuous glass fiber r o v i n g s . T h e p o l y m e r f e e d rate c a n b e r e a d i l y v a r i e d because t w i n s c r e w extruders are g e n e r a l l y starve-fed w i t h n o a d j u s t m e n t r e q u i r e d i n s c r e w speed.
I n other w o r d s , s c r e w s p e e d c a n b e v a r i e d i n d e p e n d e n t l y
of p o l y m e r f e e d rate, to adjust glass fiber feed.
R o v i n g spools c a n b e
set a l o n g the m a c h i n e , o r i n l a r g e r p r o d u c t i o n ( 2 0 or m o r e strands i n t r o -
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
jAKOPiN
Compounding
125
of Fillers
d u c e d ) the spools c a n b e p l a c e d i n the creels a n d p u l l e d i n t o the m a c h i n e from one end. T h e s c r e w g e o m e t r y i n this p a r t is d e s i g n e d so t h a t the s c r e w threads are o n l y p a r t i a l l y filled w i t h p o l y m e r . T h i s p a r t i a l filling makes i t p o s s i b l e f o r t h e s c r e w to take u p t h e glass fibers a d d e d at t h e f e e d p o i n t , w h i l e b l o c k a g e of the glass fiber f e e d p o r t b y t h e p l a s t i c m e l t is a v o i d e d . T h e s c r e w g e o m e t r y d o w n s t r e a m f r o m the r o v i n g f e e d p o r t is l a r g e l y r e s p o n sible f o r t h e fiber l e n g t h a n d t h e h o m o g e n e i t y of t h e c o m p o u n d .
Glass
fiber is i n endless f o r m a n d m u s t b e c h o p p e d to a c e r t a i n l e n g t h i n t h e
Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012
machine a n d homogenized geometry
with polymer.
m u s t b e selected
T o d o this, p r o p e r
to m e e t these r e q u i r e m e n t s .
screw
Rheological
p r o p e r t i e s of p o l y m e r a n d l o a d i n g of glass m u s t b e c o n s i d e r e d , a n d this can b e done b y installing k n e a d i n g components or right- a n d left-hand s c r e w elements i n s u i t a b l e c o m b i n a t i o n s .
A c c u r a c y of t h e glass c o n t e n t
is w i t h i n ± 1 . 5 % o r less as l o n g as t h e p o l y m e r f e e d is constant a n d t h e u n w i n d i n g rate o f t h e r o v i n g r e m a i n s constant. Chopped Glass Process. C h o p p e d r a t h e r t h a n r o v i n g glass c a n also b e f e d d o w n s t r e a m into t h e m o l t e n p o l y m e r , b u t m e t e r i n g e q u i p m e n t is r e q u i r e d . A s m e n t i o n e d , the glass c a n b e f e d b y g r a v i t y t h r o u g h a r e g u l a r v e n t p o r t or s i d e f e d w i t h a d e l i v e r y u n i t w h i c h is flanged t o t h e b a r r e l at a d e s i r e d l o c a t i o n . polymer & additives
-
a
Arrangement
t
vacuum
s chopped glass feed
•m
Figure 6.
t
vacuum
for forced feeding of chopped glass downstream the melt
into
F e e d i n g b y g r a v i t y has l i m i t a t i o n s as f a r as t h r o u g h p u t is c o n c e r n e d . U s i n g 2 - i n c h extruders, f e e d i n g glass b y g r a v i t y is s a t i s f a c t o r y — 7 0 - 1 0 0 l b s / h r c a n b e f e d easily except f o r p o l y m e r s w i t h s h a r p m e l t i n g points (e.g., p o l y a m i d e s o r p o l y e s t e r s ) .
W h e n scaling u p to a 3-inch extruder,
the t o t a l t h r o u g h p u t is l i m i t e d b y the glass feed. A m a x i m u m of 2 0 0 - 2 5 0 l b s / h r of glass c a n b e f e d b y g r a v i t y . T o o v e r c o m e this l i m i t a t i o n , a s m a l l side f e e d i n g u n i t c a n b e a t t a c h e d to t h e side of t h e b a r r e l . T h e glass is f o r c e d i n t o t h e m a c h i n e , as i l l u s t r a t e d i n F i g u r e 6, a n d t h e t h r o u g h p u t rate c a n b e almost d o u b l e d f r o m t h a t of the g r a v i t y - f e d rate.
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
126
FILLERS
A N DR E I N F O R C E M E N T S F O RPLASTICS
W i t h c h o p p e d glass, s c r e w g e o m e t r y c a n b e q u i t e different f r o m that u s e d w i t h r o v i n g . H e r e , t h e glass fiber has to b e o n l y w e t t e d b y p o l y m e r , the volatiles r e m o v e d a n d d i s c h a r g e d t h r o u g h a d i e . U s u a l l y , s t r a i g h t c o n v e y i n g sections a r e u s e d w i t h v a r i o u s leads. F o r those p o l y m e r s t h a t are difficult to h o m o g e n i z e a s m a l l n e u t r a l k n e a d i n g section is i n c o r p o rated.
D o w n s t r e a m f e e d i n g c a n also b e u s e d f o r other r e i n f o r c i n g o r
n o n - r e i n f o r c i n g fillers, p a r t i c u l a r l y i f t h e y a r e abrasive. Conclusion
Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012
To compound
fillers
properly, the equipment used must maintain
steady-state r u n n i n g c o n d i t i o n s a n d m i n i m i z e b a t c h t o b a t c h v a r i a t i o n s . It s h o u l d b e versatile a n d r e a d i l y a d a p t to n e w a n d different f o r m u l a t i o n s . T h e c o m p o u n d i n g process c a n a d v e r s e l y affect e n d - p r o d u c t p r o p e r t i e s . T w o types o f c o m p o u n d i n g m e t h o d s are a v a i l a b l e : d i s c o n t i n u o u s a n d c o n tinuous. C o n t i n u o u s systems are p r e f e r r e d because t h e y m e e t the t h r o u g h p u t , e c o n o m i c , a n d r i g i d p r o d u c t q u a l i t y r e q u i r e m e n t s o f most
com
p o u n d e r s . T h e essential elements i n a c o n t i n u o u s system a r e c o n t r o l o v e r residence t i m e a n d residence t i m e d i s t r i b u t i o n . E a c h process d e s c r i b e d here has its advantages a n d disadvantages. I n m a n y cases, c o m p o u n d i n g r e q u i r e m e n t s c a n b e m e t b y a s i n g l e - s c r e w extruder. I n other cases, w h e r e several p r o c e s s i n g functions m u s t b e p e r f o r m e d i n a single o p e r a t i o n , t w i n - s c r e w systems a r e essential.
T h e intermeshing, twin-screw
com
p o u n d e r w i t h its i n t e r c h a n g e a b l e s c r e w configurations offers t h e processor p r o d u c t i o n v e r s a t i l i t y . I t p r o v i d e s o p t i m u m shear a n d stock t e m p e r a t u r e control and devolatilizing capabilities needed for many of today s complex formulations.
Bibliography
1. Bernardo, A. C., "How to Get More from Glass-Fiber Reinforced HD,PE," SPE J. (Oct. 1970) 26, 39-45. 2. Davis, J. H., "Fundamentals of Fiber-Filled Thermoplastics," Plastics Polymers (April 1971) 137-143. 3. Ross, Guenther, "Glasfaserverstaerktes Polypropylen," Kunststoffe (1970) 60, 924-930. 4. Lees, J. K., "A Study of the Tensile Strength of Short Fiber Reinforced Plastics," Polymer Eng. Sci. (1968) 8 (3). 5. Schlich, W. R., Hagan, R. S., Thomas, J. R., Thomas, D. P., Musselman, Κ. Α., "Critical Parameters for Direct Injection Molding of Glass-Fiber Thermoplastic Powder Blends," SPE J. (Feb. 1968) 24, 43-53. 6. Cessna, L. C., Thomson, J. B., Hanna, R. D., "Chemically Coupled GlassReinforced Polypropylene," SPE J. (1969) 25, 35-39. 7. Krautz, F. G., "Polypropylene Theory & Practice," Intensive Short Course, PIA, Inc., July 21-23, 1971, University of Massachusetts, Amherst. 8. Coneys, Τ. Α., "Coupled Glass Reinforced Polypropylene—A New Struc tural Composite Material," Society of Automotive Engineers Meeting, Detroit, Jan. 13-17, 1969.
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
jAKOPiN
Compounding of Fillers
127
9. Ehrenstein, G. W., "Glasfaserverstaerkte Thermoplastiche Kunststoffe— Grenze und Anwendungsmoeglichkeiten," Kunststoffe (1970) 60, 917924. 10. Olmstead, B. S., "How Glass-Fiber Fillers Affect Injection Machines," SPE J. (Feb. 1970) 26, 42-43. 11. Filbert, W. C., Jr., "Reinforced 66 Nylon—Molding Variables vs. Fiber Length vs. Physical Properties," SPE J. (Jan. 1969) 25, 65-69. 12. Herrmann, H., "Schneiken Machinen," in "Der Verfahrenstechnik," Springer Verlag, Berlin, 1972.
Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012
RECEIVED October 11, 1973.
In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.