Fillers and Reinforcements for Plastics - ACS Publications

main consideration is to wet the filler uniformly, devolatilize, and discharge. ... cleaning and wipe each other with a minimum clearance. Because of ...
0 downloads 0 Views 1MB Size
12 Compounding of Fillers STAN

JAKOPIN

Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012

Werner & Pfleiderer Corp., W a l d w i c k , N. J. 07463

The several methods available to produce glass-reinforced thermoplastic materials vary greatly in their methods and results. Data obtained on pre-compounded glass-reinforced polypropylene show that physical properties vary signifi­ cantly with vanous compounding techniques. Proper selec­ tion of compounding equipment and optimizing equipment parameters can substantially increase mechanical properties of the final product. Methods of selecting the most efficient equipment for a given compounding operation must take into consideration degree of shear required, temperature sensitivity, residence time distribution, and volume to be produced. When dealing with glassfibers,abrasion or cor­ rosion of the compounding equipment plays a substantial role in economics. The simplicity and accuracy of the com­ pounding process are also important.

' " p h e d e v e l o p m e n t of filled plastics has r e a c h e d a p o i n t w h e r e p r o p e r t i e s ·*- of r a w m a t e r i a l s ( filler a n d p o l y m e r ) as w e l l as final m o l d i n g p a r a m e ters h a v e b e e n t h o r o u g h l y s t u d i e d a n d s u b s t a n t i a l t e c h n i c a l d a t a h a v e b e e n p u b l i s h e d . O n t h e other h a n d the t e c h n o l o g y i n v o l v e d i n c o m p o u n d i n g fillers a n d p o l y m e r s has not b e e n w e l l p u b l i c i z e d , a n d this c r i t i c a l area d i r e c t l y influences b o t h t o t a l e c o n o m i c s a n d final e n d - p r o d u c t q u a l i t y . T h e v o l u m e of p r e c o m p o u n d e d p l a s t i c pellets u s e d a n n u a l l y has b e e n increasi n g at a r e m a r k a b l e rate. S e l e c t i o n of t h e p r o p e r c o m p o u n d i n g

system,

therefore, is a c r i t i c a l e n g i n e e r i n g f u n c t i o n . A v a i l a b l e processes m u s t b e c a r e f u l l y e v a l u a t e d , t a k i n g i n t o c o n s i d e r a t i o n e n d - p r o d u c t q u a l i t y , degree of a u t o m a t i o n possible, a n d r e a l i s t i c p r o d u c t i o n rates as w e l l as v e r s a t i l i t y . A w r o n g d e c i s i o n here c a n cause a n e v e n t u a l c o m m e r c i a l f a i l u r e . A g o o d e v a l u a t i o n c a n p r o v i d e a c o m p e t i t i v e edge. T o d a y nearly a l l important polymers

are a v a i l a b l e as

filled

pre-

c o m p o u n d e d pellets f o r i n j e c t i o n m o l d i n g a n d extrusion. B e a r i n g i n m i n d 114 In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

12.

jAKOPiN

Compounding

of

115

Fillers

process economics, e q u i p m e n t a v a i l a b i l i t y , a n d preference, the d e c i s i o n as to w h a t c o m p o u n d i n g t e c h n i q u e a n d w h a t c o m p o u n d i n g e q u i p m e n t to u t i l i z e often centers a r o u n d t h e q u e s t i o n of h o w m u c h shear is r e q u i r e d , h o w sensitive the c o m p o u n d

a n d / o r c o m p o u n d i n g i n g r e d i e n t s are to

t e m p e r a t u r e , a n d the v o l u m e to b e c o m p o u n d e d .

Q u a l i t y levels, s p a c e

l i m i t a t i o n s , a n d t h r o u g h p u t r e q u i r e m e n t s m u s t also b e c o n s i d e r e d .

The

processor t h e n c a n select e i t h e r a separate or i n - l i n e system, w h i c h e v e r is most efficient for h i s needs. T h i s a r t i c l e r e v i e w s v a r i o u s m e t h o d s of c o m p o u n d i n g

Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012

forced and non-reinforced)

fillers

(rein-

i n t o t h e r m o p l a s t i c or thermoset m a t e r i a l s .

B e f o r e d i s c u s s i n g t h e m e t h o d s of c o m p o u n d i n g , w e c o n s i d e r b r i e f l y the production requirements for compounding

The Compounding The

Production

Processs

e q u i p m e n t for c o m p o u n d i n g

several requirements: (a)

fillers.

fillers

and polymers must fulfill

steady-state r u n n i n g c o n d i t i o n s , ( b )

d u c i b i l i t y of p r o c e s s i n g c o n d i t i o n s , ( c )

repro-

ease of c l e a n i n g , a n d ( d ) v e r s a -

t i l i t y to a d a p t to n e w f o r m u l a t i o n s . T o a c h i e v e o p t i m u m m a t e r i a l q u a l i t y , the e q u i p m e n t s h o u l d h a v e : ( a ) the a b i l i t y to generate sufficiently h i g h i n t e r n a l shear stresses to f a c i l i t a t e g o o d d i s p e r s i o n of t h e a d d i t i v e s ( b ) the c a p a b i l i t y to expose e a c h p a r t i c l e to short a n d e q u a l stresses ( c ) exact t e m p e r a t u r e c o n t r o l to r e g u l a t e a n d m i n i m i z e heat h i s t o r y Compounding Methods. B a s i c a l l y , w e c a n differentiate t w o types of c o m p o u n d i n g : ( 1 ) d i s c o n t i n u o u s system a n d ( 2 ) c o n t i n u o u s system. T h e d i s c o n t i n u o u s system is f a i r l y o l d a n d i n most cases refers to B a n b u r y ( R ) i n t e n s i v e mixers or r o l l m i l l s . T h r o u g h p u t s for these systems r a n g e f r o m 500 to 10,000 l b s / h r , a n d s i z a b l e investments are r e q u i r e d . H o w e v e r , a n efficient p r o c e s s i n g system w i l l a l l o w the c o m p o u n d e r to operate econ o m i c a l l y at h i g h v o l u m e . O n the o t h e r h a n d , c o n t i n u o u s c o m p o u n d i n g systems h a v e capacities u p to 7000 l b s / h r . B e c a u s e of e c o n o m i c s a n d t h e large v o l u m e r e q u i r e m e n t s for

filled

p l a s t i c s , c o n t i n u o u s systems

are

u s u a l l y p r e f e r r e d . F o r q u a l i t y , c o n t i n u o u s systems offer better u n i f o r m i t y of p r o d u c t w i t h less b a t c h - t o - b a t c h v a r i a t i o n t h a n a d i s c o n t i n u o u s system. I n most cases, the p r o p e r p r o c e s s i n g c o n d i t i o n s f o r

compounding

can be filled a d e q u a t e l y w i t h s i n g l e - s c r e w c o m p o u n d i n g t y p e extruders. The

advances of s c r e w d e s i g n t e c h n i q u e s a n d n e w devices that a i d i n

l o c a l i z e d a n d c o n t r o l l e d i n t r o d u c t i o n of shear are n o w a v a i l a b l e to a p o i n t w h e r e , i n p r o b a b l y t w o out of t h r e e cases, s i n g l e - s c r e w extruders are a d e q u a t e . A relatively n e w approach i n designing a single-screw compounding e x t r u d e r is r e p r e s e n t e d b y a n e w m e d i u m shear t y p e c o m p o u n d e r c a l l e d

In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

116

FILLERS

AND

REINFORCEMENTS FOR

PLASTICS

t h e T r a n s f e r m i x . T h i s is a c o n t i n u o u s , e n f o r c e d o r d e r , stepless extensive, v a r i a b l e intensive m i x e r , a viscous heat exchanger, a n d v e n t e d extruder. T h e T r a n s f e r m i x consists of t w o opposite h a n d e d s c r e w s — a r o t o r t u r n i n g i n s i d e the stator. I n the n a r r o w l a n d e d extensive m i x i n g stages, the g r o o v e d e p t h of the r o t o r decreases f r o m m a x i m u m to m i n i m u m w h i l e , i n the stator, it increases f r o m m i n i m u m to m a x i m u m . S h e a r rate c a n b e a d j u s t e d f r o m 30 to 3,000 r e c i p r o c a l seconds b y speed v a r i a t i o n a n d a r u n n i n g clearance adjustment. F o r some c o m p o u n d i n g operations, t w i n - s c r e w c o m p o u n d i n g

Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012

are the most effective

approach.

systems

If p r o p e r l y d e s i g n e d , t w i n - s c r e w ex-

t r u d e r s p r o v i d e m a x i m u m process controls, e s p e c i a l l y w i t h respect shear a n d stock t e m p e r a t u r e .

Also w i t h twin-screw compounders,

to

large

q u a n t i t i e s of volatiles c a n b e r e m o v e d . Types of Fillers. T h e m a n y fillers u s e d i n the plastics i n d u s t r y t o d a y c a n b e separated i n t o t w o (b)

non-reinforcing

g e n e r a l categories:

fillers.

B o t h categories

reinforcing

fillers,

are a p p l i c a b l e to

(a)

either

t h e r m o p l a s t i c or thermoset resins. C h o p p e d or r o v i n g glass is the most common

t y p e of r e i n f o r c i n g

filler.

Others commonly

u s e d are

cotton,

asbestos, F y b e x , a n d so f o r t h . T h e s e c o n d category contains fillers s u c h as c l a y , C a C 0 , talc, w o o d flour, a n d p i g m e n t s . 3

T h e t y p e of

filler

i n f o r c i n g or n o n - r e i n f o r c i n g ) d r a s t i c a l l y affects t h e c o m p o u n d i n g

(re-

process.

C o m p o u n d i n g of n o n - r e i n f o r c i n g fillers u s u a l l y r e q u i r e s the h i g h e s t d e g r e e of dispersion—e.g., c a r b o n b l a c k i n L D P E .

Therefore, equipment

s h o u l d b e a b l e to generate h i g h shear stresses to separate the a g g l o m e r ates, p a r t i c u l a r l y since these fillers u s u a l l y h a v e v e r y s m a l l p a r t i c l e sizes. I n c o m p o u n d i n g r e i n f o r c i n g fillers, the opposite a p p r o a c h is t a k e n : l o w shear c o m p o u n d i n g m u s t be u s e d to p r e v e n t d a m a g e to the main

consideration

is to

wet

the

filler

fillers.

The

uniformly, devolatilize,

and

discharge. Residence Time and Residence Time Distribution. T h e t w o essential elements i n a successful c o n t i n u o u s s y s t e m are absolute c o n t r o l over r e s i d e n c e t i m e a n d residence t i m e d i s t r i b u t i o n . T o m i n i m i z e heat h i s t o r y , the r e s i d e n c e t i m e m u s t b e short a n d u n i f o r m d u r i n g the entire process. R e s i d e n c e t i m e for thermoset resins, for e x a m p l e , s h o u l d n o t e x c e e d 60 sec. T h i s is also t r u e for m a n y heat- a n d shear-sensitive t h e r m o p l a s t i c m a t e r i a l s . R e s i d e n c e t i m e is p r i m a r i l y a f u n c t i o n of m a c h i n e d e s i g n ,

screw

R P M , a n d t h r o u g h p u t . A s i n a l l continuous m a c h i n e s , extruders d o not h a v e a n e x a c t l y defined r e s i d e n c e t i m e b u t r a t h e r a residence t i m e spect r u m . U n i f o r m i t y of a c o n t i n u o u s o p e r a t i o n is i l l u s t r a t e d b y the t y p e of spectrum.

W i t h s c r e w m a c h i n e s i n g e n e r a l w e c a n differentiate

four

p r i n c i p a l types of residence t i m e spectra ( F i g u r e 1 ). T h e t w o i d e n t i f y i n g characteristics of a residence t i m e d i s t r i b u t i o n are the d i s t a n c e w b e t w e e n the points of i n f l e c t i o n a n d the o v e r a l l w i d t h b of t h e d i s t r i b u t i o n c u r v e .

In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

12.

Compounding

jAKOPiN

of

Fillers

117

a

J

Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012

w

-

>*



ft

1

TIME

Figure

1.

Four typical residence time curves for extruder processes (see text for discussion)

A s m a l l distance b e t w e e n t h e points o f i n f l e c t i o n indicates l i t t l e b a c k a n d f o r t h m i x i n g ; a great distance i n d i c a t e s a greater l o n g i t u d i n a l m i x i n g . T h e o v e r a l l w i d t h b of t h e d i s t r i b u t i o n c u r v e is i n f l u e n c e d b y s o - c a l l e d d i s t r i b u t i o n tails w h i c h i n d i c a t e t h e c l e a n i n g efficiency of t h e m a c h i n e . L o n g d i s t r i b u t i o n tails i n d i c a t e p o o r s e l f - c l e a n i n g efficiency.

In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

118

FILLERS

AND

REINFORCEMENTS FOR

PLASTICS

T h e best c h a r a c t e r i z a t i o n of s e l f - c l e a n i n g is the s e l f - c l e a n i n g t i m e , s, defined as: s = U s i n g average

b — w. As s increases, t h e c l e a n i n g efficiency decreases. residence t i m e , w e

can obtain a similar

dimensionless

v a l u e for s e l f - c l e a n i n g c h a r a c t e r i z a t i o n w i t h v a r i o u s processes a n d average residence times: s _ b

w



~t

Γ

E x t r u d e r s w i l l a l w a y s h a v e a v a l u e greater t h a n 1. L i k e the t e r m s, as the

Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012

v a l u e increases, the s e l f - c l e a n i n g characteristics deteriorate.

Average

residence t i m e is defined as the t i m e i n w h i c h h a l f of the particles i n t h e residence t i m e s p e c t r u m pass t h r o u g h the m a c h i n e .

When

average

residence t i m e cannot be d e t e r m i n e d f r o m a residence t i m e s p e c t r u m , it c a n be c a l c u l a t e d b y :

where V = c = ψ =

free v o l u m e degree of fill v o l u m e t r i c flow p e r u n i t t i m e

C u r v e a i n F i g u r e 1 is t y p i c a l for a m a c h i n e w i t h little l o n g i t u d i n a l m i x i n g a n d p o o r s e l f - c l e a n i n g characteristics. C u r v e b is t y p i c a l for a m a c h i n e w i t h greater l o n g i t u d i n a l m i x i n g b u t s t i l l p o o r

self-cleaning

characteristics. T h e s e t w o curves are t y p i c a l for s i n g l e - s c r e w extruders a n d for t w i n - s c r e w extruders w i t h o u t a s e a l i n g profile. C u r v e s c a n d d s h o w o n l y short r e s i d e n c e t i m e tails w h i c h i n d i c a t e g o o d s e l f - c l e a n i n g characteristics.

T h e latter curves v a r y o n l y i n the

a m o u n t of b a c k a n d f o r t h m i x i n g a n d are t y p i c a l of t w i n - s c r e w extruders w i t h a s e a l i n g profile. I n m a c h i n e s w i t h g o o d s e l f - c l e a n i n g , n o p a r t i c l e s r e m a i n excessively l o n g i n t h e u n i t w h e r e t h e y m i g h t be subjected

to

severe heat. T h e r e are no d e a d corners w h e r e m a t e r i a l c o u l d a c c u m u l a t e . T h e s e are c r i t i c a l factors, e s p e c i a l l y w h e n p r o c e s s i n g thermoset m a t e r i a l s . A g o o d e x a m p l e of a n e x t r u d e r w i t h a s e a l i n g profile is the t w i n - s c r e w intermeshing and co-rotating compounder.

T h e w o r k i n g p r i n c i p l e of this

u n i t is d e s c r i b e d b e l o w . Twin-Screw

Intermeshing

and

Co-Rotating

Compounder.

The

p r o c e s s i n g section consists of t w o i n t e r m e s h i n g screws, r o t a t i n g i n the same d i r e c t i o n a n d at the same s p e e d i n t h e b a r r e l . T h e screws are selfc l e a n i n g a n d w i p e e a c h other w i t h a m i n i m u m clearance. B e c a u s e of this s e a l i n g profile, d e a d spaces w h e r e m a t e r i a l d e g r a d a t i o n c o u l d o c c u r are m i n i m i z e d , a n d a n e v e n t o r q u e d i s t r i b u t i o n is assured ( F i g u r e 2 ) .

In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012

12.

jAKOPiN

Compounding

of

119

Fillers

Figure 2. Twin-screw compounding extruder with co-rotating intermeshing screws. The screws are self-cleaning and wipe each other with a minimum clearance. Screws a n d barrels are b u i l t u p i n a b u i l d i n g b l o c k p r i n c i p l e . T h e s c r e w elements consist of different lengths a n d pitches a n d s p e c i a l k n e a d i n g elements of v a r i o u s w i d t h s w h i c h are i n t e r c h a n g e a b l e .

T h e screw

elements a n d k n e a d i n g b l o c k s are s e c u r e d o n t h e shaft b y a k e y .

The

s c r e w elements are h e l d o n the shaft b y the s c r e w t i p . B y v a r y i n g t h e s c r e w elements a n d k n e a d i n g b l o c k s , the s c r e w c o n f i g u r a t i o n c a n t a i l o r e d to the shear i n t e n s i t y r e q u i r e d b y t h e specific m a t e r i a l . s c r e w b a r r e l consists of i n d i v i d u a l b a r r e l sections.

When

be The

processing

t h e r m o p l a s t i c m a t e r i a l s , t h e b a r r e l b e f o r e t h e d i s c h a r g e is u s u a l l y the v e n t e d one w h e r e v o l a t i l e constituents c a n b e r e m o v e d f r o m the m e l t . E v e r y b a r r e l has c o o l i n g cores, so t h a t close t e m p e r a t u r e c o n t r o l c a n b e

In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

120

FILLERS

o b t a i n e d w i t h w a t e r or o i l c o o l i n g . trically.

AND

REINFORCEMENTS FOR

PLASTICS

I n m a n y cases, h e a t i n g is d o n e elec-

T h i s b u i l d i n g b l o c k p r i n c i p l e m a k e s i t p o s s i b l e to d e s i g n the

p r o c e s s i n g section exactly as r e q u i r e d to o b t a i n o p t i m u m p r o c e s s i n g c o n ditions. A h i g h degree of v e r s a t i l i t y is also o b t a i n e d t h r o u g h the a b i l i t y to v a r y the l e n g t h a n d c o n f i g u r a t i o n of the screws a n d k n e a d i n g elements. T h u s , the r e q u i r e d shear stresses c a n b e a d j u s t e d to m e e t processing needs. T h e p r o c e s s i n g features a r e :

Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012

( a ) T h e e n e r g y r e q u i r e d to m e l t a n d h o m o g e n i z e the r e s i n w i t h the a d d i t i v e s c a n b e c r e a t e d b y f r i c t i o n w i t h i n the m a c h i n e . T h i s results i n excellent d i s p e r s i o n a n d h o m o g e n i z a t i o n ( r a t i o w:b is v e r y h i g h ) . ( b ) E n e r g y c a n be c r e a t e d i n a v e r y short t i m e a n d a v e r y short m a c h i n e l e n g t h b y h i g h e n e r g y i n p u t k n e a d i n g elements. A l l this results i n a v e r y short average r e s i d e n c e t i m e — i n m o s t cases, b e l o w 30 seconds.

S e l f - w i p i n g a n d s e l f - c l e a n i n g characteristics of

screw geometry prevent any deposition.

E v e n i n long-term

the

operation,

u n i f o r m m e l t c o n v e y a n c e a n d u n i f o r m p r o d u c t q u a l i t y are m a i n t a i n e d . T h e s e p r o c e s s i n g characteristics are e s p e c i a l l y c r i t i c a l for heat-sensitive materials where

controlling

the

m a t e r i a l t e m p e r a t u r e a c c u r a t e l y w h i l e e n s u r i n g that a l l p a r t i c l e s

are

exposed

successful

compounding

depends

on

to a preset t e m p e r a t u r e for the same t i m e .

Since they

these r e q u i r e m e n t s , c o n t i n u o u s h i g h i n t e n s i t y c o m p o u n d e r s

fulfill

with small

free v o l u m e a n d r e l a t i v e l y short residence t i m e h a v e g a i n e d w i d e ceptance.

ac-

T h e t e c h n i q u e s u s e d to c o m p o u n d fiber glass w i l l i l l u s t r a t e the

considerations

involved i n selecting c o m p o u n d i n g

equipment

and

the

influence of v a r i o u s e q u i p m e n t o n final properties. Glass Fiber Reinforced Thermoplastic

Polymers

T h e r e are s e v e r a l m e t h o d s to p r o d u c e glass-reinforced t h e r m o p l a s t i c m a t e r i a l s , a n d t h e y v a r y greatly i n t h e i r t e c h n i q u e s a n d results. obtained on precompounded

glass-reinforced p o l y p r o p y l e n e s h o w

physical properties v a r y significantly w i t h various c o m p o u n d i n g niques.

P r o p e r selection of

compounding

equipment

Data that tech-

and optimizing

e q u i p m e n t parameters c a n s u b s t a n t i a l l y increase m e c h a n i c a l p r o p e r t i e s of the final p r o d u c t .

T h e s i m p l i c i t y a n d a c c u r a c y of the

compounding

process are also i m p o r t a n t . W h e n d e a l i n g w i t h glass fibers, a b r a s i o n or c o r r o s i o n of the c o m p o u n d i n g e q u i p m e n t also p l a y a s u b s t a n t i a l r o l e i n t o t a l economics. T h e p r o p e r t i e s of the c o m p o s i t e a r e of course i n f l u e n c e d b y the glass fiber c o n c e n t r a t i o n , the strength of the fibers, a n d t h e effectiveness of the s i z i n g agent. I n the c o m p o u n d i n g o p e r a t i o n , h o w e v e r , the q u a l i t y of the r e i n f o r c e d p o l y m e r is d i r e c t l y affected b y ( a ) the l e n g t h of the glass fibers i n the e n d p r o d u c t , ( b )

t h e u n i f o r m i t y of the glass d i s t r i b u t i o n i n the

p o l y m e r , a n d ( c ) u n i f o r m w e t t i n g of the glass fibers b y the p l a s t i c m e l t .

In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

12.

jAKOPiN

Compounding

of

121

Fillers

T h e r e are t w o b a s i c w a y s of m a k i n g a g l a s s - r e i n f o r c e d t h e r m o p l a s t i c part: ( 1 ) m a t e r i a l c a n b e f e d d i r e c t l y i n t o a n i n j e c t i o n m o l d i n g or e x t r u d i n g m a c h i n e as a p r e b l e n d m a d e p r i o r to m o l d i n g , or ( 2 ) M a t e r i a l c a n b e p u r c h a s e d as p r e - c o m p o u n d e d pellets, w h i c h c a n b e f e d i n t o a n i n j e c t i o n m o l d i n g or e x t r u d i n g m a c h i n e . Single-Screw Extruders. T h e most c o m m o n l y u s e d system for c o m p o u n d i n g glass r e i n f o r c e d t h e r m o p l a s t i c s i n s i n g l e - s c r e w extruders i n volves the use of c h o p p e d glass fibers w h i c h are p r e b l e n d e d w i t h p o l y m e r a n d f e d into the extruder. T h e glass is c o n v e y e d together w i t h t h e p o l y Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012

m e r t h r o u g h a l l three stages of s i n g l e - s c r e w e x t r u s i o n : c o n v e y i n g , c o m pression, a n d m e t e r i n g . D u r i n g c o m p r e s s i o n , w h e n the p o l y m e r m e l t s , the glass fibers are exposed to h i g h shear stresses, a n d most of t h e r e d u c t i o n i n glass fiber l e n g t h takes p l a c e at this t i m e . A f t e r m e l t i n g , u s u a l l y a v e n t i n g section is u s e d to r e m o v e the v o l a t i l e s . T h e c o m p o s i t e is t h e n pushed through a die. C o m p o u n d i n g i n a single-screw extruder depends l a r g e l y o n h e a d pressure w h i c h g r e a t l y influences t h e glass fiber l e n g t h i n the

final

product.

I n c r e a s i n g h e a d pressure damages

the glass

fibers

w h i c h results i n c o n s i d e r a b l y decreased i m p a c t strength. T h e r e f o r e , h e a d p r e s s u r e m u s t b e as l o w as possible. I n s t e a d of u s i n g a p r e m i x , components c a n be f e d s e p a r a t e l y i n t o the extruder.

G l a s s fiber c a n be i n c h o p p e d or r o v i n g f o r m ; h o w e v e r ,

the

s c r e w s h o u l d rotate fast e n o u g h to p r e v e n t b u i l d - u p of m a t e r i a l i n the feed

pocket—so-called

starve f e e d i n g — o t h e r w i s e

the material might

" a r c h " across the f e e d p o c k e t a n d segregate because of v i b r a t i o n s . G l a s s damage d u r i n g melting can be reduced b y using a screw geometry w h i c h p e r m i t s g r a d u a l m e l t i n g b y e x t e r n a l heat a n d not s t r i c t l y b y m e c h a n i c a l e n e r g y i n p u t . W e a r c a n b e e x p e c t e d a l l a l o n g the s c r e w section, p a r t i c u l a r l y i n the u p s t r e a m section. C o m p o u n d i n g of glass fibers c a n also b e d o n e w i t h the T r a n s f e r m i x system. T h e glass fiber l e n g t h c a n b e c o n t r o l l e d to a c e r t a i n extent b y c h o o s i n g the r i g h t shear rate for a p a r t i c u l a r p o l y m e r i n o r d e r n o t to o v e r w o r k the glass fibers. T h e m a c h i n e is u s u a l l y f e d w i t h a p r e m i x of glass feed

fibers-polymer throat.

downstream.

o r b y m e t e r i n g t h e c o m p o n e n t s separately i n t o the

V o l a t i l e s are r e m o v e d Glass compounding

t h r o u g h t h e v e n t section

with

single-screw extruder compounding,

located

the T r a n s f e r m i x is s i m i l a r

b u t i t offers

to

improved versatility

a n d c o n t r o l of fiber l e n g t h . Twin-Screw Extruders. A recent d e v e l o p m e n t i n the p r o d u c t i o n of glass fiber r e i n f o r c e d t h e r m o p l a s t i c c o m p o u n d s intermeshing,

i n v o l v e s the use of the

co-rotating twin-screw compounder.

F o r several

good

reasons, t w i n - s c r e w c o m p o u n d i n g extruders h a v e b e c o m e m o r e a n d m o r e i m p o r t a n t for glass fiber c o m p o s i t e p r o d u c t i o n .

In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

122

FILLERS

material feed

chopped glass or roving feed

kneading elements

Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012

A N D R E I N F O R C E M E N T S F O R PLASTICS

material feed

vacuum

left handed kneading element

chopped glass or roving feed

m

ρ

(θ)

kneading elements

Figure

neutral kneading element

3.

left handed flights

Typical screw configuration for compounding roving glass downstream into the melt

chopped or

V a r i a b i l i t y of s c r e w d e s i g n is p a r t i c u l a r l y i m p o r t a n t f o r p r o d u c i n g glass fiber r e i n f o r c e d composites since i t is possible to v a r y t h e r e q u i r e d average glass fiber l e n g t h , d e p e n d i n g o n p o l y m e r a n d t h e p e r c e n t a g e of glass used.

P o l y m e r s w i t h h i g h m e l t viscosities or h i g h glass l o a d i n g s

( 4 0 % b y weight or more) require m i l d e r screw configuration than p o l y ­ mers of l o w m e l t v i s c o s i t y o r l o w p e r c e n t glass fiber ( 3 0 % b y w e i g h t o r l e s s ) . F i g u r e 3 shows a t y p i c a l s c r e w c o n f i g u r a t i o n a r r a n g e m e n t f o r t w o Table I.

Effect of Compounding on Mechanical Compounding Single-Screw Extruder

G l a s s fiber, w t % T y p e of fiber Tensile strength, psi Flex, modulus, m psi Izod impact, ft l b / i n c h notched H e a t defl. t e m p . , ° F a t 264 p s i % of F i b e r s smaller t h a n 0.5 m m Remarks

Technique Continuous

Mixer

25 1/8-inch c h o p p e d glass 6100 580

25 1/4-inch c h o p p e d glass 4700 460

1.45

0.7

264

153

glass w a s fed i n t o the feed section

In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

12.

Compounding

jAKOPiN

of

123

Fillers

different p o l y m e r s : ( a ) l o w v i s c o s i t y p o l y m e r ( b ) h i g h v i s c o s i t y p o l y m e r . T h e s m a l l k n e a d i n g elements or s c r e w elements w i t h r e v e r s e d flights c a n b e u s e d to d e t e r m i n e the final fiber l e n g t h d i s t r i b u t i o n as w e l l as the p h y s i c a l properties. T h e effect of a s c r e w c o n f i g u r a t i o n o n p h y s i c a l p r o p erties is s h o w n i n T a b l e I. T h e properties are r e l a t i v e , a n d no s p e c i a l l y t r e a t e d p o l y p r o p y l e n e was u s e d . S i m i l a r to other p r o c e s s i n g m e t h o d s , t w i n - s c r e w i n t e r m e s h i n g extruders c a n also b e f e d w i t h a p r e m i x e d p o l y m e r / g l a s s b l e n d , or c o m ponents c a n be m e t e r e d separately i n t o the f e e d throat. A g a i n , the e q u i p -

Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012

m e n t is u s u a l l y starve-fed to p r e v e n t segregation. S i n c e these c o m p o u n d ers u s u a l l y h a v e h i g h s c r e w s p e e d ( 2 0 0 - 3 0 0 r p m ) , there is no d a n g e r of b e i n g l i m i t e d b y the c o n v e y i n g c a p a c i t y of the screws. T o p r e v e n t excess w e a r , t w i n - s c r e w c o m p o u n d e r s

are u s u a l l y not

f e d w i t h glass fibers into the f e e d p o r t b e c a u s e of the abrasiveness of the glass. T h e w e a r to w h i c h the screws a n d the barrels are s u b j e c t e d i n the p l a s t i c i z i n g z o n e m a y b e v e r y severe. T o p r o l o n g the e q u i p m e n t l i f e t i m e a n d to m i n i m i z e t h e glass fiber l e n g t h r e d u c t i o n d u r i n g p l a s t i c i z i n g , glass c a n b e f e d d o w n s t r e a m i n t o the m e l t t h r o u g h the degassing p o r t or via a side feeder

flanged

r o v i n g or c h o p p e d

onto the side of the b a r r e l .

form.

T h e glass c a n b e i n

T h e p o l y m e r is m e t e r e d i n t o the f e e d

port

i n the c o n v e n t i o n a l w a y a n d p l a s t i c i z e d i n the first section of the m a c h i n e b y a s u i t a b l e s c r e w c o n f i g u r a t i o n . I f necessary, other a d d i t i v e s s u c h as flame retardants, p i g m e n t s , p l a s t i c i z e r s , or s t a b i l i z e r s , c a n be t h o r o u g h l y b e f o r e the glass is f e d .

compounded

A l s o , a n y volatiles c a n b e

removed

i n that section. Roving Process. T h e r o v i n g process uses c o n t i n u o u s r o v i n g strands i n t r o d u c e d i n t o the m e l t t h r o u g h a n o p e n degassing a d a p t o r , w i t h o u t Properties of Fiber Glass-Filled Polypropylene Compounding Twin-Screw Compounder 1

Turin-Screw Compounder 2

Technique Twin-Screw Compounder S

25 roving

23 roving

25 roving

4900 600 0.9 203

5800 550 1.1 184 — m o d e r a t e screw after a d d i t i o n of glass

8000 550 1.2 268 29 m i l d screw after a d d i t i o n of glass ( N o . 14)

screw w i t h v e r y s t r o n g sections after a d d i t i o n of glass

Twin-Screw Compounder 4

25 1/8-inch chopped glass 8000 550 1.3 266

In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

124

FILLERS

material feed

AND

REINFORCEMENTS FOR

glass fiber rovings vacuum vent port

strand cutter

strand die

5

Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012

Figure

4.

PLASTICS

J

Typical

-jjJJ^woterbath

Ψ arrangement for feeding fiber rovings

continuous

glass

Figure 5. Feeding glass fiber roving into a melt down­ stream through a vent opening of a twin-screw compounder s p e c i a l m e t e r i n g devices.

S t r a n d s are u n w o u n d f r o m the cores c o n t i n u ­

o u s l y a n d p u l l e d i n t o the m a c h i n e b y t h e r o t a t i n g screws. i n t a k e of glass strands d e p e n d s

Since the

d i r e c t l y o n s c r e w r o t a t i o n , the d e s i r e d

a m o u n t of glass c a n be c o n t r o l l e d b y the n u m b e r of strands a n d the r p m of t h e screws.

T h e a m o u n t of glass p e r h o u r of one s t r a n d c a n a c t u a l l y

b e p l o t t e d as a f u n c t i o n of r p m . I f the f e e d rate of the p o l y m e r is k n o w n , the n u m b e r of strands c a n b e easily d e t e r m i n e d to m a t c h the r i g h t p e r c e n t a g e

of glass l o a d i n g .

F i g u r e s 4 a n d 5 s h o w a t y p i c a l a r r a n g e m e n t for f e e d i n g continuous glass fiber r o v i n g s . T h e p o l y m e r f e e d rate c a n b e r e a d i l y v a r i e d because t w i n s c r e w extruders are g e n e r a l l y starve-fed w i t h n o a d j u s t m e n t r e q u i r e d i n s c r e w speed.

I n other w o r d s , s c r e w s p e e d c a n b e v a r i e d i n d e p e n d e n t l y

of p o l y m e r f e e d rate, to adjust glass fiber feed.

R o v i n g spools c a n b e

set a l o n g the m a c h i n e , o r i n l a r g e r p r o d u c t i o n ( 2 0 or m o r e strands i n t r o -

In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

12.

jAKOPiN

Compounding

125

of Fillers

d u c e d ) the spools c a n b e p l a c e d i n the creels a n d p u l l e d i n t o the m a c h i n e from one end. T h e s c r e w g e o m e t r y i n this p a r t is d e s i g n e d so t h a t the s c r e w threads are o n l y p a r t i a l l y filled w i t h p o l y m e r . T h i s p a r t i a l filling makes i t p o s s i b l e f o r t h e s c r e w to take u p t h e glass fibers a d d e d at t h e f e e d p o i n t , w h i l e b l o c k a g e of the glass fiber f e e d p o r t b y t h e p l a s t i c m e l t is a v o i d e d . T h e s c r e w g e o m e t r y d o w n s t r e a m f r o m the r o v i n g f e e d p o r t is l a r g e l y r e s p o n sible f o r t h e fiber l e n g t h a n d t h e h o m o g e n e i t y of t h e c o m p o u n d .

Glass

fiber is i n endless f o r m a n d m u s t b e c h o p p e d to a c e r t a i n l e n g t h i n t h e

Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012

machine a n d homogenized geometry

with polymer.

m u s t b e selected

T o d o this, p r o p e r

to m e e t these r e q u i r e m e n t s .

screw

Rheological

p r o p e r t i e s of p o l y m e r a n d l o a d i n g of glass m u s t b e c o n s i d e r e d , a n d this can b e done b y installing k n e a d i n g components or right- a n d left-hand s c r e w elements i n s u i t a b l e c o m b i n a t i o n s .

A c c u r a c y of t h e glass c o n t e n t

is w i t h i n ± 1 . 5 % o r less as l o n g as t h e p o l y m e r f e e d is constant a n d t h e u n w i n d i n g rate o f t h e r o v i n g r e m a i n s constant. Chopped Glass Process. C h o p p e d r a t h e r t h a n r o v i n g glass c a n also b e f e d d o w n s t r e a m into t h e m o l t e n p o l y m e r , b u t m e t e r i n g e q u i p m e n t is r e q u i r e d . A s m e n t i o n e d , the glass c a n b e f e d b y g r a v i t y t h r o u g h a r e g u l a r v e n t p o r t or s i d e f e d w i t h a d e l i v e r y u n i t w h i c h is flanged t o t h e b a r r e l at a d e s i r e d l o c a t i o n . polymer & additives

-

a

Arrangement

t

vacuum

s chopped glass feed

•m

Figure 6.

t

vacuum

for forced feeding of chopped glass downstream the melt

into

F e e d i n g b y g r a v i t y has l i m i t a t i o n s as f a r as t h r o u g h p u t is c o n c e r n e d . U s i n g 2 - i n c h extruders, f e e d i n g glass b y g r a v i t y is s a t i s f a c t o r y — 7 0 - 1 0 0 l b s / h r c a n b e f e d easily except f o r p o l y m e r s w i t h s h a r p m e l t i n g points (e.g., p o l y a m i d e s o r p o l y e s t e r s ) .

W h e n scaling u p to a 3-inch extruder,

the t o t a l t h r o u g h p u t is l i m i t e d b y the glass feed. A m a x i m u m of 2 0 0 - 2 5 0 l b s / h r of glass c a n b e f e d b y g r a v i t y . T o o v e r c o m e this l i m i t a t i o n , a s m a l l side f e e d i n g u n i t c a n b e a t t a c h e d to t h e side of t h e b a r r e l . T h e glass is f o r c e d i n t o t h e m a c h i n e , as i l l u s t r a t e d i n F i g u r e 6, a n d t h e t h r o u g h p u t rate c a n b e almost d o u b l e d f r o m t h a t of the g r a v i t y - f e d rate.

In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

126

FILLERS

A N DR E I N F O R C E M E N T S F O RPLASTICS

W i t h c h o p p e d glass, s c r e w g e o m e t r y c a n b e q u i t e different f r o m that u s e d w i t h r o v i n g . H e r e , t h e glass fiber has to b e o n l y w e t t e d b y p o l y m e r , the volatiles r e m o v e d a n d d i s c h a r g e d t h r o u g h a d i e . U s u a l l y , s t r a i g h t c o n v e y i n g sections a r e u s e d w i t h v a r i o u s leads. F o r those p o l y m e r s t h a t are difficult to h o m o g e n i z e a s m a l l n e u t r a l k n e a d i n g section is i n c o r p o ­ rated.

D o w n s t r e a m f e e d i n g c a n also b e u s e d f o r other r e i n f o r c i n g o r

n o n - r e i n f o r c i n g fillers, p a r t i c u l a r l y i f t h e y a r e abrasive. Conclusion

Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012

To compound

fillers

properly, the equipment used must maintain

steady-state r u n n i n g c o n d i t i o n s a n d m i n i m i z e b a t c h t o b a t c h v a r i a t i o n s . It s h o u l d b e versatile a n d r e a d i l y a d a p t to n e w a n d different f o r m u l a t i o n s . T h e c o m p o u n d i n g process c a n a d v e r s e l y affect e n d - p r o d u c t p r o p e r t i e s . T w o types o f c o m p o u n d i n g m e t h o d s are a v a i l a b l e : d i s c o n t i n u o u s a n d c o n ­ tinuous. C o n t i n u o u s systems are p r e f e r r e d because t h e y m e e t the t h r o u g h ­ p u t , e c o n o m i c , a n d r i g i d p r o d u c t q u a l i t y r e q u i r e m e n t s o f most

com­

p o u n d e r s . T h e essential elements i n a c o n t i n u o u s system a r e c o n t r o l o v e r residence t i m e a n d residence t i m e d i s t r i b u t i o n . E a c h process d e s c r i b e d here has its advantages a n d disadvantages. I n m a n y cases, c o m p o u n d i n g r e q u i r e m e n t s c a n b e m e t b y a s i n g l e - s c r e w extruder. I n other cases, w h e r e several p r o c e s s i n g functions m u s t b e p e r f o r m e d i n a single o p e r a t i o n , t w i n - s c r e w systems a r e essential.

T h e intermeshing, twin-screw

com­

p o u n d e r w i t h its i n t e r c h a n g e a b l e s c r e w configurations offers t h e processor p r o d u c t i o n v e r s a t i l i t y . I t p r o v i d e s o p t i m u m shear a n d stock t e m p e r a t u r e control and devolatilizing capabilities needed for many of today s complex formulations.

Bibliography

1. Bernardo, A. C., "How to Get More from Glass-Fiber Reinforced HD,PE," SPE J. (Oct. 1970) 26, 39-45. 2. Davis, J. H., "Fundamentals of Fiber-Filled Thermoplastics," Plastics Polymers (April 1971) 137-143. 3. Ross, Guenther, "Glasfaserverstaerktes Polypropylen," Kunststoffe (1970) 60, 924-930. 4. Lees, J. K., "A Study of the Tensile Strength of Short Fiber Reinforced Plastics," Polymer Eng. Sci. (1968) 8 (3). 5. Schlich, W. R., Hagan, R. S., Thomas, J. R., Thomas, D. P., Musselman, Κ. Α., "Critical Parameters for Direct Injection Molding of Glass-Fiber Thermoplastic Powder Blends," SPE J. (Feb. 1968) 24, 43-53. 6. Cessna, L. C., Thomson, J. B., Hanna, R. D., "Chemically Coupled GlassReinforced Polypropylene," SPE J. (1969) 25, 35-39. 7. Krautz, F. G., "Polypropylene Theory & Practice," Intensive Short Course, PIA, Inc., July 21-23, 1971, University of Massachusetts, Amherst. 8. Coneys, Τ. Α., "Coupled Glass Reinforced Polypropylene—A New Struc­ tural Composite Material," Society of Automotive Engineers Meeting, Detroit, Jan. 13-17, 1969.

In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

12.

jAKOPiN

Compounding of Fillers

127

9. Ehrenstein, G. W., "Glasfaserverstaerkte Thermoplastiche Kunststoffe— Grenze und Anwendungsmoeglichkeiten," Kunststoffe (1970) 60, 917924. 10. Olmstead, B. S., "How Glass-Fiber Fillers Affect Injection Machines," SPE J. (Feb. 1970) 26, 42-43. 11. Filbert, W. C., Jr., "Reinforced 66 Nylon—Molding Variables vs. Fiber Length vs. Physical Properties," SPE J. (Jan. 1969) 25, 65-69. 12. Herrmann, H., "Schneiken Machinen," in "Der Verfahrenstechnik," Springer Verlag, Berlin, 1972.

Downloaded by GEORGETOWN UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch012

RECEIVED October 11, 1973.

In Fillers and Reinforcements for Plastics; Deanin, R., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.