14 The Effects of Moisture on the Properties of High Performance Structural Resins and
Downloaded by EAST CAROLINA UNIV on November 8, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch014
Composites C. E .
BROWNING
and
J.
M.
WHITNEY
A i r Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio 45433
Graphite- and boron-fiber reinforced composites, as well as castings of current resin systems, were evaluated to deter mine the effects of moisture and/or high humidity on their physical properties and their room and elevated temperature mechanical properties. All of the neat resin castings ab sorbed moisture and swelled and showed a loss in elevated temperature tensile strength. All composite systems showed weight and thickness increases when subjected to high humidity. However, the effect of absorbed moisture on the elevated temperature mechanical properties is determined principally by the lay-up of the laminate and/or the test being applied. Thus, fiber controlled composite properties are relatively unaffected by absorbed moisture whereas matrix controlled properties are adversely affected. For both castings and composites the effects of moisture were reversible.
TTigh A
A
performance
s t r u c t u r a l composites
h a v e gone t h r o u g h several
stages o f d e v e l o p m e n t t o w h e r e t h e y a r e b e i n g r e a d i e d f o r u s e i n
actual A i r Force hardware.
A t this stage t h e i r p e r f o r m a n c e d u r i n g ex-
posures to s i m u l a t e d aircraft enviroments m u s t b e e v a l u a t e d .
Important
e n v i r o n m e n t a l factors i n c l u d e m o i s t u r e ( h i g h h u m i d i t y ) a n d extremes i n t e m p e r a t u r e . A m a j o r c o n c e r n is r e t e n t i o n of h i g h t e m p e r a t u r e c o m p o s i t e properties after exposure to h i g h h u m i d i t y . T h i s p r o g r a m w a s u n d e r t a k e n to d e t e r m i n e t h e effects of h i g h h u m i d i t y o n t h e m e c h a n i c a l a n d p h y s i c a l properties of h i g h composites.
G r a p h i t e - a n d boron-fiber r e i n f o r c e d composites
performance as w e l l as
137 Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
138
FILLERS
AND
REINFORCEMENTS FOR
PLASTICS
t h e i r m o r e i m p o r t a n t associated cast r e s i n systems w e r e e v a l u a t e d . F l e x u r a l a n d tensile properties w e r e m e a s u r e d as a f u n c t i o n of m o i s t u r e , t e m p e r a t u r e , t i m e of exposure
to m o i s t u r e , a n d n u m b e r of
exposure
cycles. Q u a s i - i s o t r o p i c l a m i n a t e s w e r e s t u d i e d because the c r i t i c a l d e s i g n p r o p e r t i e s are the i n - p l a n e p r o p e r t i e s of
m u l t i d i r e c t i o n a l composites.
U n i d i r e c t i o n a l p r o p e r t i e s w e r e also o b t a i n e d because c e r t a i n ones flex)
Table I. Cast Downloaded by EAST CAROLINA UNIV on November 8, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch014
(e.g.,
are v e r y sensitive to m a t r i x properties. Materials Systems Evaluated Resins
N a r m c o 2387 Erl-2256 Erla-4617 E p o n 828 X-2546
Table II. Fiber AS HT-S HM-S Boron
Modulus (10* psi) 32.0 38.0 50.0 60.0
Composites B o r o n 5505 ( b o r o n / 2387) HT-S/Erla-4617 HT-S/Adx-516 HT-S/P13N A-S/X-2546 HT-S/X-2546 HM-S/X-2546 HT-S/X-911 HT-S/HT-epoxide A-S/Erla-4617 Fiber Properties Strength (10 psi) s
400 380 320 500
Density (grams/cc) 1.79 1.75 1.90 2.63
Experimental T h e cast resins a n d r e i n f o r c e d composites e v a l u a t e d are s h o w n i n T a b l e I. B o r o n - r e i n f o r c e d composites w e r e f a b r i c a t e d f r o m A v c o 5505 p r e p e g tape. G r a p h i t e fiber-reinforced composites u t i l i z e d H e r c u l e s t y p e A - S , H T - S , or H M - S g r a p h i t e fibers. T h e properties of these r e i n f o r c e ments are g i v e n i n T a b l e I I . E r l a - 4 6 1 7 , E r l - 2 2 5 6 , a n d E p o n 828 w e r e e v a l u a t e d because of t h e i r extensive use as l a m i n a t i n g e p o x y r e s i n systems, p a r t i c u l a r l y w i t h g r a p h i t e fibers. X - 2 5 4 6 is a n e w l y d e v e l o p e d , m o d i f i e d e p o x y r e s i n f r o m U n i o n C a r b i d e h a v i n g a h i g h heat d i s t o r t i o n t e m p e r a t u r e ( 4 8 5 ° F ) a n d c o n c u r r e n t usefulness i n composites at 3 5 0 ° F . A v c o 2387 w a s e v a l u a t e d because i t is the r e s i n system u s e d i n A v c o 5505 b o r o n / e p o x y p r e p r e g t a p e ( t h e m o s t w i d e l y u s e d m a t e r i a l s system i n advanced composite developmental programs). C a s t r e s i n a n d c o m p o s i t e test specimens w e r e s u b j e c t e d to t h e stepw i s e e n v i r o n m e n t a l exposure c y c l e s h o w n i n T a b l e I I I . T h e c y c l i c e x p o sure is representative of t h e severe e n v i r o n m e n t s a n a i r c r a f t c a n see d u r i n g service. D a t a w e r e o b t a i n e d at r o o m t e m p e r a t u r e , 350° F after a 1-hr soak,
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
14.
Moisture
BROWNING A N D WHITNEY
Table III.
139
Effects
Stepwise Environmental Exposure Cycle
Step 1. R e l a t i v e h u m i d i t y = = 2 2 J ^ hrs.
95-100%.
Temperature
=
120°F.
Time
Step 2. Specimens are r e m o v e d f r o m c h a m b e r a n d p l a c e d u n d e r n o r m a l r o o m c o n d i t i o n s for 15 m i n . Step 3. T e m p e r a t u r e = - 6 5 ° F . T i m e = 1 h r . S t e p 4. S t e p 2 repeated. S t e p 5. T e m p e r a t u r e = 250°F. T i m e = Y h r . Downloaded by EAST CAROLINA UNIV on November 8, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch014
2
S t e p 6. S t e p 2 repeated.
a n d at 3 5 0 ° F ( 1 - h r soak) after 2, 10, 15, a n d 3 0 exposure cycles. W h e n o n l y h u m i d i t y a g i n g w a s of c o n c e r n , t h e h u m i d i t y a n d t e m p e r a t u r e c o n d i t i o n s s h o w n i n step 1 w e r e u s e d f o r 24 h r s . A g i n g times g e n e r a l l y consisted of 15 or 30 days. 350° F is t h e m a x i m u m use t e m p e r a t u r e that most of these h i g h p e r f o r m a n c e composites w i l l see i n a c t u a l use a n d , therefore, is t h e test t e m p e r a t u r e of p r i m e concern. B o r o n a n d g r a p h i t e composite test specimens w e r e also subjected to w a t e r b o i l exposures of v a r y i n g d u r a t i o n . Specimens w e r e either b o i l e d u n t i l t h e i r w e i g h t p i c k - u p s w e r e e q u i v a l e n t to t h e i r w e i g h t gains r e c o r d e d d u r i n g cycling—"equivalent water boir—or u n t i l their weight pick-ups r e a c h e d a constant v a l u e — " e q u i l i b r i u m w a t e r b o i l / ' A secondary f a c t o r of interest w a s w h e t h e r o r n o t w a t e r b o i l exposures c o u l d b e u s e d as q u i c k a n d effective screening tests p r i o r to c y c l i c exposures. S p e c i m e n s w e r e tested to d e t e r m i n e i f t h e same m e c h a n i c a l properties w e r e f o u n d for t w o groups of specimens h a v i n g t h e same w e i g h t gains b u t w i t h one set h a v i n g b e e n c y c l e d to t h e p a r t i c u l a r w e i g h t g a i n a n d t h e other set h a v i n g b e e n w a t e r b o i l e d to t h e same w e i g h t g a i n . T a b l e IV shows t h e s h o r t - b e a m shear strengths at r o o m t e m p e r a t u r e a n d 350° F f o r b o t h c y c l e d a n d w a t e r b o i l e d b o r o n / e p o x y specimens. A t 350° F after 30 cycles ( w e i g h t g a i n = 0 . 8 2 % ) a n d at 3 5 0 ° F after 11 hrs of w a t e r b o i l
Table I V . Comparison of the Shear Strengths of Water-Boiled and Cycled Specimens of A v c o 5505 (Boron/Epoxy) Test Conditions
Shear Strength (10 psi) s
Cyclic Exposures RT 350°F (dry) 350°F (after 30 cycles) Water Boil Exposures RT 350°F ( d r y ) 350°F (after 11 h r s w a t e r boil)
Weight Gain (%)
% Retention of RT Strength
13.3 6.0 5.6
— — 0.82
— 45.1 42.1
14.4 6.9
— —
— 48.0
6.7
0.81
46.5
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
140
FILLERS
AND
REINFORCEMENTS FOR
PLASTICS
( w e i g h t g a i n = 0 . 8 1 % ) the p e r c e n t r e t e n t i o n of r o o m t e m p e r a t u r e shear strength is a p p r o x i m a t e l y t h e same. F l e x u r a l testing was d o n e o n 4.0 i n c h l o n g X 0.5 i n c h w i d e s p e c i mens u s i n g t h e t h r e e - p o i n t l o a d i n g m e t h o d w i t h a s p a n - t o - d e p t h r a t i o of 32 to 1. S h o r t - b e a m shear strengths w e r e m e a s u r e d b y the t h r e e - p o i n t l o a d i n g m e t h o d , u s i n g a s p a n - t o - d e p t h r a t i o of 4 to 1. T e s t specimens w e r e 1.00 i n c h l o n g X 0.25 i n c h w i d e . T a b b e d t e n s i l e test c o u p o n s w e r e 6.0 inches l o n g X 0.5 i n c h w i d e .
Downloaded by EAST CAROLINA UNIV on November 8, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch014
3 0
ω UJ25 Ο >ο
S
ί ^ =;π; I
1-2256
/
^Α-2387
' '
Κ ΙΟΙ-
//
/
'
/ /
i l
'
r
^Χ-2546
7 /
20
(Λ Ο CL
3 Ζ
Γ7/
4617-/
'
y ' '
5
te-T 0.5
I 1.0
I I I I I I I 1.5 2.0 2.5 3.0 3.5 4.0 45
I I L 5.0 5.5 6.0 65
7.0
PERCENT WEIGHT GAIN
Figure
Results and
1.
Effect of cyclic exposures on the gains of cast resin systems
weight
Discussion
C a s t Resins. W e i g h t gains f r o m a b s o r b e d m o i s t u r e f o r the cast resins are p l o t t e d as a f u n c t i o n of the n u m b e r of exposure cycles i n F i g u r e 1. T h e lowest w e i g h t g a i n after 30 cycles w a s a b o u t 1 % b y E p o n 828 w h i l e t h e h i g h e s t w a s a b o u t 6 . 5 % b y X - 2 5 4 6 . T h e shapes of the curves i n d i c a t e that n o n e of the systems has r e a c h e d e q u i l i b r i u m e v e n after 30 cycles. E a c h system also s h o w e d c o n c u r r e n t thickness increases, v a r y i n g f r o m 1.3% for 828 to 2 . 8 % for X - 2 5 4 6 . T h e effect of c y c l i c exposures o n t h e tensile strengths of the cast epoxies is i l l u s t r a t e d i n F i g u r e 2. T h e b a r g r a p h shows p e r c e n t r e t e n t i o n of the u n e x p o s e d r o o m t e m p e r a t u r e ( R T ) tensile strength as a f u n c t i o n of the n u m b e r of exposure cycles.
E a c h system was tested near its p r o
p o s e d use t e m p e r a t u r e — i . e . , 2256 was tested at 2 5 0 ° F w h i l e the others w e r e tested at 350 ° F .
A l l systems s h o w e d
large strength r e d u c t i o n s
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
14.
Moisture
BROWNING A N D W H I T N E Y
141
Effects
c a u s e d b y t e m p e r a t u r e ( 0 exposure c y c l e s ) .
A f t e r 30 exposure
cycles
n o n e of the 350° F systems s h o w e d strength retentions greater t h a n 1 5 % . E r l a - 4 6 1 7 f a r e d so p o o r l y t h a t testing w a s d i c o n t i n u e d after 15 cycles. I n a separate e x p e r i m e n t , specimens of the 4617 system w e r e
ambient
a g e d [ R T a n d 5 0 % r e l a t i v e h u m i d i t y ( R H ) ] f o r six m o n t h s , after w h i c h t h e i r 350° F s t r e n g t h d r o p p e d f r o m a n u n a g e d v a l u e of 5700 p s i to a n a g e d v a l u e of 1330 p s i ( 7 7 %
reduction).
T h e s e specimens w e r e t h e n
d r i e d at 250° F in vacuo to constant w e i g h t , r e s u l t i n g i n the r e c o v e r y of t h e i r o r i g i n a l , u n a g e d 350° F strength. Downloaded by EAST CAROLINA UNIV on November 8, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch014
T h i s r e v e r s i b i l i t y aspect of the m o i s t u r e d e g r a d a t i o n process is f u r t h e r i l l u s t r a t e d i n F i g u r e 3 w h e r e t h e heat d i s t o r t i o n temperatures ( H D T ) of 4617 ° C are p l o t t e d as a f u n c t i o n of h u m i d i t y a g i n g . T h e H D T is the t e m p e r a t u r e at w h i c h a deflection of 0.02 i n c h occurs u n d e r a constant l o a d . T h e s o l i d l i n e is the u n a g e d c o n t r o l . T h e l i n e furthest to the left
ERL-2256 (250°F)
100
80
Li_ Ο
UJ
2 Ο
Lu CC
I-
II I-
Lu
gΟ
X-2546 (350°F)
NARMCO 2387 (350°F)
ERLA-4617 (350°F)
-
80
40
20
ce
LU CL
0
15 30
0
LL
15 30
0 15 30
NUMBER OF EXPOSURE
Figure 2.
0
LL 15
CYCLES
Effect of cyclic exposures on the tensile strengths of cast epoxy resins
w a s r e c o r d e d after 20 days h u m i d a g i n g (step 1 c o n d i t i o n s for 24 h r s ) , s h o w i n g the H D T b e i n g l o w e r e d a p p r o x i m a t e l y 3 5 ° C ; m o r e i m p o r t a n t l y , the t e m p e r a t u r e at w h i c h t h e i n i t i a l deflection o c c u r s — a n i n d i c a t i o n of the softening p o i n t of the r e s i n a n d , i n t u r n , the softening p o i n t of the composite—was
l o w e r e d a p p r o x i m a t e l y 90 ° C .
The corresponding mois
t u r e p i c k - u p after 20 days a g i n g w a s 3 1 / 2 % .
T o illustrate the reversi
b i l i t y of the m o i s t u r e a b s o r p t i o n or p l a s t i c i z i n g process, specimens w h i c h
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
142
FILLERS
A N D REINFORCEMENTS F O R PLASTICS
h a d b e e n a g e d f o r 20 days w e r e d r i e d to constant w e i g h t , g i v i n g t h e d o t t e d c u r v e w h i c h is almost i d e n t i c a l t o t h e c u r v e of the o r i g i n a l , u n -
Downloaded by EAST CAROLINA UNIV on November 8, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch014
exposed specimens.
20
50
100 TEMPERATURE
Figure
3.
150
180
°C
Effect of humid aging on the heat distortion curves of Erla-4617 cast epoxy resin
temperature
Results and Discussion Composites.
T h e effect of c y c l i c exposures o n t h e tensile strengths
of q u a s i - i s o t r o p i c H T - S g r a p h i t e l a m i n a t e s is s h o w n i n F i g u r e 4.
Test
temperatures a n d r e s i n systems are i n d i c a t e d at t h e t o p of t h e
figure.
T h e s e are e i g h t - p l y l a m i n a t e s h a v i n g p l y orientations of 0 ° , + 4 5 ° ,
—45°,
9 0 ° , 9 0 ° , - 4 5 ° , + 4 5 ° , 0 ° , w i t h t h e test d i r e c t i o n p a r a l l e l to t h e outer 0 ° p l y . 4617 a n d A D X - 5 1 6 ( a n e p o x y - p o l y a r y l s u l f o n e )
composites are
so a d v e r s e l y affected b y t h e t e m p e r a t u r e t h a t p l a s t i c i z a t i o n b y m o i s t u r e c o u l d cause n o f u r t h e r s t r e n g t h r e d u c t i o n s . H T - S composites w i t h P 1 3 N (a polyimide from C i b a - G e i g y ) , X-2546, a n d X-911 ( a n epoxy-phenolic f r o m F i b e r i t e ) s h o w n e g l i g i b l e 350° F s t r e n g t h losses as a f u n c t i o n of cycling.
P 1 3 N composites
reductions.
w e r e also tested at 5 0 0 ° F w i t h n o strength
B e c a u s e o f t h e p l y orientations (fiber d i r e c t i o n )
a n d test
d i r e c t i o n , this p a r t i c u l a r p r o p e r t y ( q u a s i - i s o t r o p i c t e n s i o n ) is fiber d o m i n a t e d ( o r c o n t r o l l e d ) to s u c h a n extent t h a t s u b s t a n t i a l m o i s t u r e a b s o r p t i o n b y t h e m a t r i x does n o t cause significant strength r e d u c t i o n s .
Even
t h e 4617 system w h i c h r e t a i n e d o n l y 5 % o f its p u r e r e s i n c a s t i n g s t r e n g t h w h e n tested at 350° F composite
after 15 cycles, g a v e a q u a s i - i s o t r o p i c g r a p h i t e
t h a t r e t a i n e d 5 0 % of its tensile strength at 3 5 0 ° F after 30
cycles.
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
14.
BROWNING A N D W H I T N E Y
Moisture
143
Effects
T h e effects of m o i s t u r e o n t h e flexural o r b e n d i n g strengths of b o t h u n i d i r e c t i o n a l a n d q u a s i - i s o t r o p i c g r a p h i t e composites F i g u r e 5. A l l tests w e r e d o n e at 350 ° F .
are i l l u s t r a t e d i n
Here, however, a n equivalent
w a t e r b o i l (see e x p e r i m e n t a l ) w a s u s e d as a n a c c e l e r a t e d s c r e e n i n g test. F l e x o r b e n d i n g d a t a s h o w h o w t h e test m e t h o d , fiber orientations, a n d r e s i n H D T a l l influence t h e effects of a b s o r b e d m o i s t u r e . Several interesting comparisons c a n be made w i t h the data i n F i g u r e 5.
T h e quasi-isotropic tension i n F i g u r e 4 c a n b e compared w i t h the
q u a s i - i s o t r o p i c flex i n F i g u r e 5. T h e X - 2 5 4 6 a n d X - 9 1 1 composites
after
Downloaded by EAST CAROLINA UNIV on November 8, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch014
being given equivalent water boils showed substantial reductions i n their R T a n d 3 5 0 ° F b e n d i n g s t r e n g t h because of a b s o r b e d
moisture. T h e
X - 9 1 1 system w h i c h p r e v i o u s l y s h o w e d n o tensile losses, lost over 4 0 %
HT-S/4617 (350°F)
HT-S/ADX-516 HT-S/PI3N HT-S/PI3N (350°F) (350°F) (500°F)
HT-S/X-2546 HT-S/X-9II (350°F) (350°F)
100
80
>=!
60-
40
-
20
-
0 15 30
0 15 30
0 15 30
0 15 30
0
15 30
0 15 30
NUMBER OF EXPOSURE CYCLES
Figure
4.
Effect
of cyclic exposures on the tensile strengths of quasiisotropic graphite composites
of its R T flex s t r e n g t h a n d 3 0 % o f its 3 5 0 ° F strength. U n i d i r e c t i o n a l X - 2 5 4 6 d a t a s h o w h o w m o i s t u r e affects a m a t r i x c o n t r o l l e d p r o p e r t y s u c h as flex. T h e r e is a c o n t i n u a l , stepwise decrease i n t h e 350° F u n i d i r e c t i o n a l flex strength w i t h i n c r e a s i n g w a t e r b o i l exposure t i m e u n t i l , after 26 h r s , t h e strength r e t e n t i o n w a s o n l y a b o u t 5 0 % . A c o m p a r i s o n c a n also b e m a d e of fiber d o m i n a t e d vs. r e s i n d o m i n a t e d l a y - u p s . U n i d i r e c t i o n a l 4617 composites w i t h a l l o f t h e i r fibers i n t h e 0 ° d i r e c t i o n a r e n o t n e a r l y as a d v e r s e l y affected b y t h e t e m p e r a t u r e as are t h e q u a s i - i s o t r o p i c composites w h i c h h a v e o n l y t w o plies o f e i g h t o r i e n t e d at 0 ° . R e s i n H D T
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
144
FILLERS
AND
REINFORCEMENTS FOR
PLASTICS
c a n also be c o m p a r e d . T h e 4617 system w h i c h has a H D T of a b o u t 350° F gave a q u a s i - i s o t r o p i c c o m p o s i t e h a v i n g a 350° F less t h a n 2 0 %
s t r e n g t h r e t e n t i o n of
w h i l e X - 2 5 4 6 w h i c h has a + 4 5 0 ° F H D T g a v e q u a s i -
i s t o t r o p i c composites h a v i n g 350° F s t r e n g t h retentions greater t h a n 8 0 % . HT-S/4617 QUASI-ISOTROPIC (350°F)
HT-S/4617 UNIDIRECTIONAL (350°F)
Downloaded by EAST CAROLINA UNIV on November 8, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch014
l i l O O p
!fc
80
HT-S/X-9II QUASI-ISOTROPIC (350°F)
HT-S/X-2546 QUASI-ISOTROPIC (350°F) HT-S/2546 UNIDIRECTIONAL (350°F)
-
60
40
20
0.5 0 0.5 0 2 16 0 2 16 26 WATER BOIL EXPOSURE TIME (HOURS)
Figure
5.
Effect of moisture (water-boil strengths of graphite/epoxy
0
22
exposure) on the composites
ftexural
S t r e n g t h r e t e n t i o n i n b o t h t e n s i o n a n d flex for b o r o n / e p o x y
com-
posites is s h o w n i n F i g u r e 6. T h e t e n s i o n d a t a w e r e o b t a i n e d o n q u a s i i s o t r o p i c coupons,
a n d the flex d a t a o n u n i d i r e c t i o n a l specimens.
s h o w n , strength r e d u c t i o n s are n e g l i g i b l e at 350° F after 30
As
exposure
cycles for the q u a s i - i s o t r o p i c tension, e v e n t h o u g h the system h a d a w e i g h t p i c k - u p of a b o u t 1 % .
In
flexure,
however, a drastic strength
r e d u c t i o n of ca. 5 5 % o c c u r r e d because of a b s o r b e d m o i s t u r e ( e q u i v a l e n t water b o i l ) .
F i g u r e 7 shows t h e l o a d - d e f l e c t i o n curves f r o m this same
flex testing of the b o r o n / e p o x y c o m p a r e d w i t h t h e 350° F
specimens.
If the 350° F " d r y " c u r v e is
" w e t " c u r v e , there is a c o n s i d e r a b l e loss i n
l o a d - c a r r y i n g a b i l i t y w i t h a s i m u l t a n e o u s large increase i n deflection caused b y absorbed
moisture.
T h e test w a s a c t u a l l y s t o p p e d
deflection s h o w n w i t h o u t h a v i n g b r o k e n a n y of the b o r o n
at the filaments.
W h e n tested at 350° F d r y there is a l w a y s filament b r e a k a g e i n the t e n s i o n ( b o t t o m ) face of the c o u p o n . I n other w o r d s , m o i s t u r e a b s o r p t i o n c a u s e d
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
BROWNING A N D WHITNEY
Moisture
QUASI-ISOTROPIC TENSION (350°F)
Effects
UNIDIRECTIONAL FLEX (350°F)
100 Γ -
80
Downloaded by EAST CAROLINA UNIV on November 8, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch014
60
z
ce
LU LU H CL LU 5 * LU
-
40
20
0 15 30 0 II EXPOSURE CYCLES( Nr.) WATER BOIL(Hrs.)
Figure 6. Effect of moisture on the tensile (quasi-isotropic) and flexural (unidirectional) strengths of boron/epoxy composites
250
r
-RT CONTROL 350°F
CONTROL
3 5 0 ° F AFTER II Hr. WATER BOIL (EQUIVALENT WATER BOIL )
J0.05
0.10
0.15
0.20
DEFLECTION (in.)-^
Figure
7.
Load-deflection curves for unidirectional epoxy composite test specimens
boron/
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
146
FILLERS
AND
REINFORCEMENTS FOR
PLASTICS
a different f a i l u r e m o d e to o c c u r ; t h e " d r y " 350° F c o n t r o l gave a s h a r p tensile f a i l u r e w i t h fiber b r e a k a g e i n the tensile f a c e of the c o u p o n ; t h e w e t ( e q u i v a l e n t w a t e r b o i l ) 3 5 0 ° F s p e c i m e n s h o w e d o n l y p l a s t i c defor m a t i o n w i t h n o filament b r e a k a g e (i.e., t h e m o i s t u r e has p l a s t i c i z e d the e p o x y m a t r i x to s u c h a n extent t h a t at 3 5 0 ° F i t cannot efficiently transfer l o a d f r o m fiber to
fiber).
QUASI-ISOTROPIC
σ
±45°
90° Ε
Downloaded by EAST CAROLINA UNIV on November 8, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch014
lOOr-
80
Q_ 60 ' CL
40-
20
-
0 30
0 30
0 30
0 30
0 30
0
30
0 30
0
30
DAYS AT l 2 0 ° F / 9 5 - I O O % R.H.
Figure 8. Effects of humid aging on the strengths (σ) and moduli (E) of A-S/Erh-4617 composites as a function of composite stacking sequence
T h e effects of m o i s t u r e as a f u n c t i o n of c o m p o s i t e s t a c k i n g sequence, l a y - u p or p l y fiber orientations are i l l u s t r a t e d i n F i g u r e 8. S h o w n is the p e r c e n t r e t e n t i o n of o r i g i n a l , u n e x p o s e d r o o m t e m p e r a t u r e tensile strength (σ)
a n d m o d u l u s (E)
b e f o r e a n d after 30 days h u m i d a g i n g
(120°F/
9 5 - 1 0 0 % R H ) . T h e c o m p o s i t e system is t y p e A - S g r a p h i t e a n d E r l a - 4 6 1 7 e p o x y r e s i n w i t h a l l t e s t i n g d o n e i n t e n s i o n at 3 0 0 ° F .
A s the g r a p h is
v i e w e d f r o m l e f t - t o - r i g h t , there are t w o sets of c o l u m n s f o r the strengths a n d m o d u l i f o r e a c h s t a c k i n g sequence shown—i.e., the test goes f r o m fiber
c o n t r o l l e d to m a t r i x c o n t r o l l e d .
U n i d i r e c t i o n a l a n d quasi-isotropic
specimens, w i t h a l a r g e p e r c e n t a g e of t h e i r fibers p a r a l l e l to t h e d i r e c t i o n of t h e test, s h o w less i l l effects f r o m t h e h u m i d i t y ( e v e n t h o u g h t h e y h a d s u b s t a n t i a l w e i g h t g a i n s ) t h a n d o the ± 4 5 ° a n d 9 0 ° composites
which
h a v e n o 0 ° p l i e s . T h e strength a n d m o d u l u s r e t e n t i o n values for b o t h t h e 0 ° a n d q u a s i - i s o t r o p i c specimens w e r e over 6 0 % after 3 0 days h u m i d
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
14.
Moisture
BROWNING A N D WHITNEY
147
Effects
a g i n g w h i l e the ± 4 5 ° a n d 90° specimens s h o w e d less t h a n 1 0 % r e t e n t i o n after e q u i v a l e n t a g i n g . O n e d i s t u r b i n g r e s u l t of this s t u d y w a s that q u a s i i s o t r o p i c specimens t h a t h a d b e e n h u m i d a g e d for 30 days l a r g e cracks after setting i n a m b i e n t c o n d i t i o n s .
developed
F i g u r e 9 is a
photo-
m i c r o g r a p h ( s i d e v i e w ) of one of these c r a c k e d specimens, s h o w i n g the c r a c k r u n n i n g i n the 90° p l i e s . Conclusions
Downloaded by EAST CAROLINA UNIV on November 8, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch014
T h e effect of a b s o r b e d m o i s t u r e o n t h e e l e v a t e d t e m p e r a t u r e
me-
c h a n i c a l properties of composites is d e t e r m i n e d p r i n c i p a l l y b y the l a y - u p of the l a m i n a t e a n d / o r the test b e i n g a p p l i e d — i . e . , the m e t h o d b y w h i c h l o a d is i n t r o d u c e d i n t o the l a m i n a t e . T h i s means t h a t a g i v e n t y p e of l a m i n a t e u n d e r g o i n g a specific m e t h o d of e l e v a t e d t e m p e r a t u r e m e c h a n i c a l t e s t i n g m a y s h o w n o loss i n the p a r t i c u l a r m e c h a n i c a l p r o p e r t y b e i n g measured amount
of
(at temperature) moisture.
e v e n t h o u g h i t has a b s o r b e d a significant
O n the other
h a n d , this same
system, h a v i n g
a n e w l a y - u p , u n d e r g o i n g a different h i g h t e m p e r a t u r e m e c h a n i c a l test (different m e t h o d of l o a d i n t r o d u c t i o n ) a n d h a v i n g a b s o r b e d a n e q u i v a l e n t a m o u n t of m o i s t u r e m a y s h o w a s u b s t a n t i a l loss i n t h e p a r t i c u l a r
Figure 9. Photomicrograph of humid-aged isotropic tension specimen (side view, 112.5 mechanical property value being measured. d e m o n s t r a t e d b y the b o r o n / e p o x y
composite
quasiX)
T h i s b e h a v i o r is most a p t l y system.
A
quasi-isotropic
l a m i n a t e tested i n tension at 350° F after 30 exposure cycles has essentially the same tensile p r o p e r t i e s as i t d i d at 3 5 0 ° F b e f o r e a n y exposure e v e n t h o u g h i t has a b s o r b e d
a significant a m o u n t of m o i s t u r e .
This
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
same
148
FILLERS A N D R E I N F O R C E M E N T S FOR PLASTICS
b o r o n / e p o x y system, h a v i n g a u n i d i r e c t i o n a l l a y - u p a n d b e i n g tested i n flexure,
shows almost a 5 0 % loss i n its 350° F flexural s t r e n g t h after i t has
absorbed
a n a m o u n t of m o i s t u r e e q u i v a l e n t to t h a t p i c k e d u p b y
the
quasi-isotropic/tension laminate. W a t e r behaves as a p l a s t i c i z i n g agent, a p p a r e n t l y d i s r u p t i n g the strong hydrogen
bonding
present i n the h i g h l y p o l a r e p o x y
systems.
E v i d e n c e for this are t h e r e v e r s i b i l i t y of the w a t e r a b s o r p t i o n effect a n d t h e c h a n g e of f a i l u r e m o d e f r o m d r y to w e t specimens.
T h e test results
after w a t e r b o i l exposures c a n be c o r r e l a t e d w i t h those of h i g h h u m i d i t y Downloaded by EAST CAROLINA UNIV on November 8, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch014
exposures b a s e d o n e q u i v a l e n t w a t e r w e i g h t gains. T h e use temperatures of several r e s i n systems are too close to t h e i r heat d i s t o r t i o n temperatures. The
h i g h heat
distortion temperature
resins are not
as significantly
affected b y m o i s t u r e at 350° F as are t h e l o w e r heat d i s t o r t i o n t e m p e r a t u r e resins.
T h e m e c h a n i c a l properties of b o t h " w e t " a n d " d r y " composites
( a l l systems) are essentially unaffected u p to 2 5 0 ° F . T h e effect of m o i s t u r e is r e v e r s i b l e .
D r y i n g of w e t test
results i n t h e r e c o v e r y of the o r i g i n a l d r y strengths.
specimens
T h e cast r e s i n sys-
tems are not h y d r o l y t i c a l l y u n s t a b l e as e v i d e n c e d b y the r e v e r s i b i l i t y of moisture absorption. RECEIVED October 11, 1973.
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.