9 Flavor of Browning Reaction Products A H M E D FAHMY MABROUK
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
Food Sciences Laboratory, U.S. Army Natick Research and Development Command, Natick, MA 01760
With the exception of fresh vegetables and fruits, most consumed food has to be subjected to processing (boiling, broiling, roasting, canning, baking, concentration, pasteuriza tion,...etc.) to render it edible; to increase its consumer acceptance or to extend its shelf life. Table I lists the consumption of food commodities per capita in the United States (1). About 78% of these comodities are processed, and account for approximately 75% of the American family food budget. Natural food flavors such as terpenes, hydrocarbons, alcohols, aldehydes, ketones, esters, acids, lactones, amines, sulfur compounds are enzymatically produced in fruits and vegetables. On the contrary, processed food develops its characteristic acceptable flavors from chemical reactions within its components at temperatures far below those at which its major components, i.e., lipids, proteins and carbohydrates pyrolyze. Food flavor precursors responsible for the productivity of volatile flavors are given in Table II. Aqueous flavor precursors undergo nonenzymic browning during processing, which is the most important flavor producing reaction. Also, at low temperature pyrolysis, i.e., roasting between 100-270°C, these compounds undergo thermal degradation, producing new compounds some of which have desirable organoleptic notes. Some degradation products r e a c t f u r t h e r . For example, a l l purines are decomposed upon h e a t i n g i n a c i d media a t temperatures above 100°C t o g l y c i n e , formic a c i d , carbon d i o x i d e and ammonia. Methylated p u r i n e s give r i s e to methylamine i n s t e a d o f ammonia. P r o t e i n s and g l y c o p r o t e i n s p a r t i c i p a t e i n the browning r e a c t i o n v i a t h e i r free-NR^ groups. Furthermore, d u r i n g process i n g , compounds o f these two c l a s s e s undergo h y d r o l y s i s and degradation;thus ammonia, hydrogen s u l f i d e , p e p t i d e s , amino a c i d s , amines and sugars are produced. A d e l i c i o u s t a s t e peptide which has the f o l l o w i n g s t r u c t u r e : H-Lys-Glc-Asp-Glu-Ser-Leu-Ala-OH was i s o l a t e d from beef gravy (2). In animal c e l l s , the w i d e l y occurr i n g peptides are c a r n o s i n e , a n s e r i n e , g l u t a t h i o n e , phosphopept i d e s , l i p o p e p t i d e s and nucleopeptides. The l a r g e s t c l a s s o f This chapter not subject to U.S. copyright. Published 1979 American Chemical Society Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Meats : Beef Veal Lamb and mutton Pork (excluding l a r d ) F i s h ( e d i b l y weight) P o u l t r y products: Eggs Chicken (ready-to-cook) Turkey (ready-to-cook) Dairy products: Cheese Condensed and evaporated m i l k F l u i d m i l k and cream (prod.weight) Ice cream (product weight) Fats and o i l s - t o t a l , f a t content B u t t e r ( a c t u a l weight) Margarine ( a c t u a l weight) Lard Shortening Other e d i b l e f a t s and o i l s Fruits: Fresh Citrus Noncitrus
Commodity 151.4 84.1 2.4 2.9 62.0 11.8 39.5 40.5 8.0 11.5 7.1 296.0 17.7 53.0 5.3 11.0 4.7 17.3 18.2 79.1 27.9 51.2
42.4 27.8 6.2 8.3 13.7 321.0 18.3 45.3 7.5 9.4 7.6 12.6 11.5 90.0 32.5 57.5
1970
134.1 64.3 5.2 4.3 60.3 10.3
1960
76.3 26.8 49.5
14.6 5.6 288.0 17.5 53.2 4.6 11.3 3.2 17.0 20.3
36.6 41.1 8.9
152,5 86.4 1.9 2.0 62.2 12.2
1974
81.3 28.7 52.6
14.5 5.0 291.1 18.7 53.3 4.8 11.2 4.0 17.3 20.3
35.4 40.3 8.6
145.4 88.9 3.5 1.8 51.2 12.2
1975
Consumption of Major Food Commodities Per C a p i t a i n USA, l b
Table I
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
83.6 28.6 55.0
15.9 4.7 292.0 18.1 56.1 4.4 12.2 3.6 18.1 22.0
34.9 43.3 9.2
155.3 95.7 3.3 1.7 56.4 12.9
1976
82,4 25.2 57,2
16.3 4.4 289,4 17,7 54.4 4.4 11.6 3.5 17,5 21.6
34.5 44.3 9.2
154.8 93.2 3.2 1.5 56.9 12.8
1977
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Reference (1)
Processed: Canned f r u i t Canned j u i c e Frozen ( i n c l u d i n g j u i c e s ) Chilled citrus juices Dried Vegetables : Fresh Canned, e x c l u d i n g potatoes and sweet potatoes Frozen, e x c l u d i n g potatoes Potatoes, (including fresh e q u i v a l e n t of processed) Sweetpotatoes, ( I n c l u d i n g f r e s h e q u i v a l e n t of processed) Grains : Wheat f l o u r Rice Other: Coffee Tea Cocoa Peanuts ( s h e l l e d ) Dry e d i b l e beans Melons Sugar ( r e f i n e d )
5,0 107 7,8
52.8 10.2 114,7 5.3 111 7.2 9.4 0.8 3.0 6.3 6.3 18.6 94.7
52.1 9.7 120.2 5.3 107 7.7 9.0 0.8 2.6 6.5 6.5 17.5 90.2
53.3 10.2 112.3 5.1 106 7.6 9.5 0.8 3.0 6.4 6.7 17.2 96.6
51.2 9.6 115.3 5.2 110 6.7 10.5 0.7 3.1 5.9 5.9 21.2 101.8
43.4 7.0 105.0 6.5 118 6.1 11.6 0.6 2.9 4.9 7.3 23.2 97.4
6.9 .9 2.7 6.5 6.0 19.0 95.7
120.7
52.8 9.7
93.1
93.9
93.6
91.0
96.0
94.5
19.3 15.3 12.6 5.7 3.0
19.6 14.7 11.3 5.2 2.5
19.5 13.7 12.4 5.8 2,6
1977
23.3 14.6 9.8 4.7 2.7
19.2 15.3 12.2 6.2 2.7
1976
22.6 13.0 9.1 2.1 3.1
Table I (cont'd) Consumption of Major Food Commodities Per C a p i t a i n USA, l b 1974 1975 1970 1960 Commodity
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
O 5
g
Ci
!»
(Ή
S*
g
ta -* ο
1
S
208
FOOD TASTE CHEMISTRY
Table I I Food F l a v o r Precursors and Their F l a v o r Components Possible Flavor Components Produced Number Per Compound Per C l a s s a- Aqueous F l a v o r Precursors
Precursors
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
Class 12345678-
Glycoproteins Glycopeptides Proteins Peptides 60 Amino A c i d s ) Amines ) 35 Nucleotides ) Nucleotide S sugars < 35 9- N u c l e o t i d e J sugaramine < 10- N u c l e o t i d e J acetylsugaraminej 11- Peptide bound 12 nucleotide 12- Nucleosides 12 13- Purines and 12 pyrimidines 14- Sugars \ 15- Sugaramine ) 50 16- Sugar phosphate ) 17- Organic a c i d s 25 Subtotal >241
40
2,400
40
1,400
40
1,400
40 40
480 480
25
300
50 >275
b- Non-Auqeous F l a v o r Precursors 1- N e u t r a l l i p i d s 25 50 2- P o l a r L i p i d s 25 50 3- Isoprenoids 150 5 4- Carotenoids 10 25 5- U n s a p o n i f i a b l e compounds Subtotal >210 22
Grand t o t a l
>451
2,500 >8,960 1,250 1,250 750 250
>3,500 >12,460
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
9.
MABROUK
Browning Reaction Products
209
peptides i n p l a n t s c o n s i s t of γ-glutamyl d i p e p t i d e s along w i t h some t r i p e p t i d e s , one of which i s homoglutathione ( y - g l u t a m y l c y s t e i n y l - g - a l a n i n e ) which r e p l a c e s g l u t a t h i o n e i n some enzymic r e a c t i o n s Q ) . About t h i r t y - f i v e amino a c i d s and amines occur n a t u r a l l y i n foods. D-ribose i s found i n nucleo t i d e s , D - r i b u l o s e , D-lyxose, D - x y l u l o s e , glucose, f r u c t o s e , sedoheptulose, and glyceraldehyde are present as phosphoric a c i d e s t e r s i n the products of carbohydrate metabolism. Fucose i s a c o n s t i t u t e n t of blood group substances which c o n t a i n g a l a c t o s e and mannose. The presence of carbohydrate a l c o h o l s i n vegetables, f r u i t s and animals may be accounted f o r by a r e d u c t i o n of the reducing sugars, or through d e c a r b o x y l a t i o n of the corresponding higher a l d o n i c a c i d s . Sorbose, glucose, sucrose, i n o s i t o l , m a n n i t o l , p e n t i t o l and two u n i d e n t i f i e d sugars were reported i n cocoa beans (4). Sugar a c i d s , mono-, d i - , and t r i - c a r b o x y l i c a c i d s , k e t o - , hydroxy-acids as w e l l as unsaturated organic a c i d s are present i n foods. While u r o n i c a c i d s p a r t i c i p a t e i n the browning r e a c t i o n , others might a c c e l e r a t e or r e t a r d the r e a c t i o n . Non-aqueous f l a v o r p r e c u r s o r s c o n t r i b u t e d i r e c t l y and i n d i r e c t l y to food f l a v o r s . Boar meat l i p i d s c o n t a i n 5-androst16-ene-3-one which i s r e s p o n s i b l e f o r n o t i c e a b l e u n d e s i r a b l e notes (5). The c h a r a c t e r i s t i c f l a v o r s of mutton and goat meat are a t t r i b u t e d to the presence of odd-numbered η-fatty a c i d s , and abnormal p r o p o r t i o n of branched chain f a t t y a c i d s (6). During p r o c e s s i n g of foods, l i p i d s undergo a u t o x i d a t i o n , h y d r o l y s i s , dehydration, d e c a r b o x y l t i o n , and degradation. Thermal degradation of n e u t r a l l i p i d s , p o l a r l i p i d s and f r e e f a t t y a c i d s produce the f o l l o w i n g c l a s s e s o f compounds (7-13) : - ( l ) n - and i s o - a l k a n a l s , (2) a l k a d i a n a l s , (3) o x o - a l k a n a l s , (4) a l k e n a l s , (5) a l k a d i e n a l s , (6) aromatic aldehydes, (7) methyl ketones, (8) s a t u r a t e d and unsaturated a l c o h o l s , (9) γ- and 6- l a c t o n e s , (10) hydrocarbons, (11) keto- and hydroxy-acids, (12) d i c a r b o x y l i c a c i d s , and (13) s a t u r a t e d and unsaturated f a t t y a c i d s , c o n t a i n i n g l e s s carbon atoms than the parent ones. L i p i d s i n foods vary from t r a c e s as i n c e r e a l s to 30-50% as i n nuts. The p h y s i c a l s t a t e and d i s t r i b u t i o n of l i p i d s vary c o n s i d e r a b l y among food items. In each item l i p i d d i s t r i b u t i o n s a f f e c t i t s f l a v o r as i t undergoes chemical r e a c t i o n s and a c t as a f l a v o r components v e h i c l e or p a r t i t i o n i n g medium. Furthermore, l i p i d s have a pronounced e f f e c t upon the s t r u c t u r e of food items. F a t t y a c i d s of n e u t r a l ( t r i g l y c e r i d e s ) and p o l a r l i p i d s of beef and pork are t a b u l a t e d i n Table I I I . Pork f a t contains more unsaturated f a t t y a c i d s than beef and i t s l i n o l e i c a c i d content i s double t h a t i n beef. Heat produced v o l a t i l e s i n red meat f a t s are l i s t e d i n Table IV. The presence of p y r a z i n e s i n the v o l a t i l e s of beef f a t i s due to the presence of nitrogenous compounds i n the f a t amounting to 0.1-0.2%N, ( K j e l d h a l method). These compounds might be p r o t e i n s , p e p t i d e s , amino a c i d s , and amine moitiés i n p o l a r l i p i d s . Such compounds
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
FOOD TASTE CHEMISTRY
210
Table I I I F a t t y Acids Composition of Beef and Pork L i p i d s
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
F a t t y Acids
Triglcerides Polar L i p i d s Beef Pork Beef Pork % of T o t a l F a t t y A c i d Content
a.- Saturated Capric Laurie Myristic Palmitic Stearic
0.1 0.1 2.2 27.5 16.9
0.1 0.2 1.2 23.9 11.6
-
-
2.6 13.2 15.6
2.0 20.0 11.0
Total
46.8
37.0
31.4
33.0
1.0 4.7 41.3
7.4 45.3
0.9 2.2 21.2
0.2 2.3 16.2
47.0
52.6
24.3
18.8
0.6 4.4 -
-
1.3 20.2
-
0.6 27.9 0.9
5.0
8.7
21.5
29.3
b. - Monounsaturated Tetradecenoic Palmitoleic Oleic Total - Dienoic Tetradecenoic Linoleic Docasadienoic Total d. - T r i e n o i c Linolenic Eicosatrienoic Total Tetraenoic Arachidonic Total
8.7
-
1.1
1.6
-
-
1.8 1.9
1.0 1.6
1.1
1.6
3.7
2.6
0.1
0.1
19.1
16.3
0.1
0.1
19.1
16.3
Reference (14)
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
9.
MABROUK
Browning Reaction Products
Table IV Heat Produced Carbonyls I n Red Meat Fats
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
V o l a t i l e Compounds ALKANALS Ethanal(Acetaldehyde) n-Propanal n-Pentanal n-Hexanal η-Hep t a n a l n-Octanal n-Nonanal n-Decanal n-Undecanal n-Dodecanal METHYL-ALKANALS Methylpropanal Me t h y l b u t a n a l
Pork
Beef
10 10 7 7,10 7 7,10 7,10 7 7 7
9a, 10 9a, 10 8 8,9,10 8,9 8,9 8,9 8,9
7
9a
OXOALKANAL 2-0xopropanal(Pyruvaldehyde)
9a
2-ALKENAL 2t-Butenal(Crotonal) 2t-Heptenal 2t-0ctenal 2t-Nonenal 2t-Decenal 2t-Undecenal
7 7,10 7,10 7,10 10
9a 8,9 8,9 8,9 8,9 8
2,4-Alkadienal 2,4-Heptadienal 2,4-Nonadienal 2,4-Decadienal
10 10 10
8,10
7
10
10
9a 8,9a
ALKANEDIAL Ethanedial(Glyoxal)
2-ALKAN0NE Acetone 2-Butanone 2-Decanone 2-Undecanone 2-Tridecanone 2-Pentadecanone 2-Hep tadecanone
Lamb
10 10 10
10 9a 7 7 8 8 8
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
212
FOOD TASTE CHEMISTRY
Table IV (cont'd) Heat Produced Carbonyls
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
V o l a t i l e Compounds
i n Red Meat Fats Pork
Beef
HYDROXY-2-ALKANONE 3-Hydroxy-2-butanone(acetoin)
9a
PYRAZINE 2,5-Dimethyl2-Ethyl2-Ethyl-3,6-dimethyl2-Ethyl-5-methyl2,3,5-Trimethyl-
8 8 8 8 8
Lamb
Reference (7,8,9,10) "a designates h e a t i n g i n n i t r o g e n atmosphere, otherwise i n a i r . 11
degrade d u r i n g h e a t i n g and produce ammmonia and b a s i c compounds. When ammonia, amino a c i d s and degraded nitrogenous compounds r e a c t w i t h α-dicarbonyls produced from l i p i d o x i d a t i o n , p y r a z i n e s a r e formed. Cooked chicken f l a v o r concentrate (13) contained the f o l l o w i n g aldehydes; 3c-nonenal; 4c-decenal; 2 t , 4 c - d e c a t r i e n a l ; 2t,5c-undecadienal; 2t-dodecenal; 2 t , 4 c - d o c a d i e n a l ; 2t,6c- and 2t,6t-dodecadienal 2 t - t r i d e c e n a l ; 2 t , 4 c - t r i d e c a n d i e n a l ; 2 t , 4 c , 7 c - t r i d e c a t r i e n a l ; and 2 t , 4 c - t e t r a d e c a d i e n a l . Three of these aldehydes: 4c-decenal; 2t,6c-dodecadienal; and 2 t , 4 c , 7 c - t r i d e c a t r i e n a l a r e t y p i c a l breakdown o f a r a c h i d o n i c a c i d , and to a major extent a l s o 2t,5c-undecadienal. These aldehydes p l a y an important r o l e i n cooked chicken f l a v o r v i a the browning r e a c t i o n . 2,4-Decadienal which i s considered t o be a key compound of chicken aroma, was found i n the v o l a t i l e s of cooked chicken (15,16). 2,4-Heptadienal; 2,4-nonadienal and 2,4-decadienal were i d e n t i f i e d i n heated pork f a t (10) and heated beef f a t (8,10). D i c a r b o n y l s , d i e n a l s , t r i e n a l s undergo amino-carbonyl r e a c t i o n s , r e s u l t i n g probably i n the formation of meaty f l a v o r notes i n s p e c i f i c p r o p o r t i o n s c h a r a c t e r i s t i c of each s p e c i e s . Although t h e i r y i e l d i s s m a l l i n comparison w i t h monocarbonyls, t h e i r h i g h r e a c t i v i t i e s a r e r e s p o n s i b l e f o r t h i e r important r o l e i n f l a v o r p r o d u c t i o n . The complexity of food f l a v o r p r e c u r s o r s i s manifested by the number of compounds estimated i n each c l a s s of compounds and by the p o s s i b l e t o t a l number i n a s i n g l e raw food. The p o s s i b l e number o f f l a v o r components produced p e r one compound of f l a v o r p r e c u r s o r i s estimated i n the range 10-150, but i s reduced t o 5-40 t o e l i m i n a t e compounds that might be produced
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
9.
MABROUK
Browning Reaction Products
by more than one precursor and to account f o r v a r i a t i o n s i n p r o c e s s i n g methods. One hundred compounds were i d e n t i f i e d i n thermal degradation products o f glucose (17,18,19): aldehydes ketones, aromatics, f u r a n s , oxygenated f u r a n s , n o n - v o l a t i l e s . Sugars r e a c t w i t h ammonia at temperatures ranging from 20 t o 260°C., to produce h e t e r o c y c l i c compounds : s u b s t i t u t e d i m i d a z o l e s , s u b s t i t u t e d p y r a z i n e s , s u b s t i t u t e d p i p e r a z i n e s , p y r i d i n e and s u b s t i t u t e d p y r i d i n e s ( 2 0 ) . A t 0-120°C., a-dicarbonyls (2,3-butadione, e t h a n e d i a l " g l y o x a l " , 2-oxopropanal "pyruvaldehyde , and α-hydroxycarbonyl " g l y c o l a l d e h y d e " r e a c t w i t h ammonia i n presence o f formaldehyde to g i v e s u b s t i t u t e d i m i d a z o l e s . Dipeptides r e a c t w i t h sugars e i t h e r as an e n t i t y or as amino a c i d s produced by h y d r o l y s i s during p r o c e s s i n g . I n the f i r s t case, one compound i s formed, pyrazinone (21), i n the second case numerous f l a v o r compounds are produced from the r e a c t i o n of the two amino a c i d s w i t h sugar. The r e a c t i v i t y of d i p e p t i d e s towards r e a c t i o n w i t h carbonyl compounds i s much higher than t h a t of amino a c i d s . The t a s t e o f g l y c y l - L - l e u c i n e i s very b i t t e r , the product o f i t s r e a c t i o n w i t h g l y o x a l has an a s t r i n g e n t , a l i t t l e sour and l a t e r a m i l d t a s t e . Some products from the browning r e a c t i o n and p y r o l y s i s o f f l a v o r precursors r e a c t w i t h ammonia and hydrogen s u l f i d e , thus i n c r e a s i n g the number o f f l a v o r components produced from food p r e c u r s o r s . The molecular s t r u c t u r e o f the amino a c i d i n f l u e n c e s the f l a v o r notes i n the food. For example, thiophenes are reported i n the v o l a t i l e s produced from the p y r o l y s i s of c y s t e i n e o r from i t s r e a c t i o n w i t h glucose or pyruvaldehyde (22,24) but were absent i n the case of c y s t i n e (23,24). Hundreds o f compounds have been i d e n t i f i e d i n the v o l a t i l e f l a v o r components of processed foods. Hydrocarbons, a l c o h o l s , e t h e r s , aldehydes, ketones, a c i d s , a c i d anhydrides, e s t e r s , aromatic, l a c t o n e s , pyrones, f u r a n s , p y r i d i n e s , p y r r o l e s , n-alkylpyrrole-2-aldehydes, pyrazines, s u l f i d e s , d i s u l f i d e s , t h i o l s , thiophenes, t h i a z o l e s , t r i t h i o l a n e s , t h i a l d i n e . . . e t c . Each compound has a c h a r a c t e r i s t i c note and a s p e c i f i c t h r e s h o l d which makes i t s c o n t r i b u t i o n to food f l a v o r unique. But none o f the i n d i v i d u a l compounds were reported to completely produce the c h a r a c t e r i s t i c f l a v o r of the processed food. This i n d i c a t e s that the food f l a v o r s are of mixed f l a v o r notes o f numerous compounds, w h i l e others are necessary f o r i t s s y n e r g i s t i c e f f e c t , others exert a background of modifying e f f e c t . Browning r e a c t i o n has become a major t o p i c o f food research because o f i t s relevance t o the d e s i r a b l e and u n d e s i r a b l e changes ( f l a v o r , c o l o r , t e x t u r e , and n u t r i t i v e value) o c c u r r i n g i n foods during p r o c e s s i n g and storage. During the Second World War and i t s post e r a , research on food d e t e r i o r a t i o n due to nonenzymic browning r e c e i v e d c o n s i d e r a b l e a t t e n t i o n due t o the problems r e s u l t i n g from the n e c e s s i t y to prepare dehydrated foods and food concentrates which had to be s t o r e d under t r o p i c a l c o n d i t i o n s without s e r i o u s d e t e r i o r a t i o n . 11
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
213
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
214
FOOD TASTE CHEMISTRY
The purpose o f t h i s paper i s t o review the numerous papers p u b l i s h e d on f l a v o r s , t a s t e s and odors r e s u l t i n g from the browning r e a c t i o n . I n v e s t i g a t i o n s of model systems which have been observed under l a b o r a t o r y c o n d i t i o n s are considered and t h e i r p o s s i b l e s i g n i f i c a n c e i n b a s i c and i n d u s t r i a l processes w i l l be discussed. S p e c u l a t i o n on the p o s s i b l e c o r r e l a t i o n between model system r e s u l t s and s p e c i f i c processed food items w i l l be presented. R e s u l t s o f recent work i n our l a b o r a t o r y on f l a v o r notes developed upon heating r i b o s e w i t h v a r i o u s amino a c i d s w i l l be discussed. The numerous p u r e l y chemical papers are considered t o be o u t s i d e the scope of t h i s paper. The reader i s r e f e r r e d t o s e v e r a l reviews on the s u b j e c t (25-30). Comprehensive reviews on nonenzymic browning i n r e l a t i o n t o s p e c i f i c food problems had been published (31,32,33). As f l a v o r production i n n a t u r a l food i s governed by too complicated r e a c t i o n s due t o i t s complex components (Table I I ) , chemists concentrated t h e i r research e f f o r t s on simpler systems to understand the r e a c t i o n s i n v o l v e d and t h e i r products. Amino Acids-Sugars Model Systems Model system s t u d i e s o f the r e a c t i o n between s i n g l e amino a c i d s and n a t u r a l l y o c c u r r i n g substances capable of r e a c t i n g w i t h them has f u r n i s h e d v a l u a b l e i n f o r m a t i o n l e a d i n g toward an under standing of food f l a v o r s . The w e l l known S t r e c k e r degradation of α-amino a c i d s , Schonberg and Moubacher (25), has been used as the c e n t r a l r e a c t i o n around which other amino compound degradation systems may be o r i e n t e d . I n t h i s r e a c t i o n α-amino a c i d s a r e deaminated and decarboxylated by s p e c i f i c carbonyl compounds or others t o y i e l d aldehydes and ketones c o n t a i n i n g one carbon atom less. 3-amino a c i d s a l s o undergo o x i d a t i v e deamination and d e c a r b o x y l a t i o n t o a ketone w i t h one l e s s carbon atom; e.g., 3-amino-n-butyric a c i d produces 2-propanone, which a l s o r e s u l t s rrom the S t r e c k e r degradation of α-amino-isobutyric a c i d . Organic d i - and t r i c a r b o n y l s are not the only oxidants e f f e c t i v e i n S t r e c k e r degradations. Hydrogen peroxide i n presence o f f e r r o u s s u l f a t e degrade α-amino a c i d s a t room temperature ; f o r example g l y c i n e y i e l d s formaldehyde. The c o - o x i d a t i o n of s u l f u r c o n t a i n i n g amino a c i d s i n an a u t o - o x i d i z i n g l i p i d system i n d i c a t e s that l i p i d peroxides a c t as oxidants (34). The r e s u l t i n g carbonyl compounds from amino a c i d s through S t r e c k e r degradation p a r t i c i p a t e i n the formation o f d e s i r a b l e c h a r a c t e r i s t i c f l a v o r s during p r o c e s s i n g o r u n d e r s i r a b l e ones r e s p o n s i b l e f o r f l a v o r d e t e r i o r a t i o n d u r i n g storage. F l a v o r s and odors given by amino a c i d s and sugars i n d i l u t e aqueous s o l u t i o n s a t d i f f e r e n t temperatures has been the s u b j e c t of i n t e n s i v e s t u d i e s by v a r i o u s researchers. Tables V and VI summarize the d e s c r i p t i v e aroma evolved from r e a c t i n g carbonyl compounds w i t h amino a c i d s a t 100, and 120/180°C., r e s p e c t i v e l y
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
weak caramelÇ35) strong,yeasty protein
hydrolyzate(35)
α-Alanine Valine
α-Aminobutyr i c Leucine
Phenylglycine Methionine
Threonine
Serine
Isoleucine
baked potato(35)
Glycine
baked potato(35)
moderate c r u s t (35) vaguely breadl i k e (35) v e r y weak(35)
strong,cheesy,
Dihydroxyacetone
Amino Compounds
chocolate(37) maple (38) *" b i t t e r almond(38) overcooked sweet potato(36) potato(37)
objectionable chopped cabbage(36)
overcooked cabbage(36)
obj e c t i o n a b l e weak NH (36)
weak(36)
caramelized sugar unpleasant (36,39), f a i n t carmel beer(40). smell(36). beer aroma(40) rye bread(37) fruity,aromatic (39) maple(38) sweet c h o c o l a t e ( 3 7 ) toast(39),bread(40) rye bread(38) musty(37),fruity, aromatic(39) maple syrup(38)
unpleasant burned wood(36)
3
Sucrose
Maltose
Glucose
Fructose
Aromas Developed by the Reactions of Carbonyl Compounds and V a r i o u s Amino Compounds at 100°C
Table V
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Phenylalanine
Glutamine Me thy lamine Ammonia
Histidine
Arginine
Hydroxyproline
Proline
Cystine
Cysteine
Amino Compounds
9
very s t r o n g , hyacinth(35)
v e r y weak(35)
very s t r o n g cracker,crust, toast(35) weak, vaguely l i k e proline(35) very weak(35)
(35)
mer cap tan
Dihydroxyacetone
Fructose
Maltose
popcorn(37) butterscotch(39) buttery note(39), none(37) chocolate(37) empyreumatic t a s t e ( 4 0 ) t a r r y odor, b i t t e r taste(40) r a n c i d caramel, s t i n g i n g smell, pleasant unpleasant(36) very objecsweet v i o l e t s ( 3 7 ) rose tionable(36) caramel(36) perfume(39)
meat(39) sulfide(37) meat, burnt turkey s k i n ( 3 9 ) corn-like(39) burnt p r o t e i n (37) potato(39)
Glucose
Aromas Developed by the Reactions o f Carbonyl Compounds and V a r i o u s Amino Compounds a t 100°C
Table V (cont'd)
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
unpleasant sweet caramel(36)
Sucrose
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
References
(35,40)
a-Methylaminobutyric a-Aminoisobutyric
s t r o n g dark corn syrup(35)
very weak(35) c h i c k e n broth(35)
Tyrosine Aspartic Glutamic
Arginine Lysine
Dihydroxyacetone
Amino Compounds
maple(38)
maple(38)
caramel(37) rock candy(37) oldwood pleasant(36) b u t t e r y note(39) baked sweet potato(36)
Glucose
objectionable fried butter (36)
too weak(36)
Fructose
Sucrose
unpleasant wet wood (36)
r o t t e n wet potato(36
too weak(36) p l e a s a n t caramel(36)
Maltose
Aromas Developed by the Reactions of Carbonyl Compounds ans V a r i o u s Amino Compounds a t 100°C
Table V (cont'd)
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
References
Glutamic Arginine
(37,38,41)
brunt brunt
sugar(37) sugar(37)
violets,lilac (41) caramel(37)
strong flower (41) s t r o n g breadc r u s t (41) moderate(41) no s i g n i f i c a n t aroma(41)
Phenylalanine
Aspartic
burnt(37)
objectionable burnt cheese(37)
penetrating chocolate(37) burnt cheese(37)
weak(41)
moderate breadcrust(41) moderate breadcrust(41) moderate breadcrust(41)
Aroma D e s c r i p t i o n 120°C 180°C
Threonine
Isoleucine
Leucine
Valine
Amino A c i d
Tryptophan
Glutamine
Histidine
strong(41)
s t r o n g baked potato(41) s t r o n g breadcrust cracker (41) no s i g n i f i c a n t aroma(41)
Methionine Proline
weak(41)
cornbread(37) b u t t e r y note(38) butterscotch(37)
p l e a s a n t bakery aroma(37)
potato(37)
bread-like(37)
Aroma D e s c r i p t i o n 120°C 180°C
Lysine
Amino A c i d
Aromas Developed by Heating Glucose w i t h V a r i o u s Amino A c i d s at 120°C and 180°C
Table VI
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
9.
MABROUK
Browning Reaction Products
219
(35-41). The aroma produced by the i n t e r a c t i o n o f sugars and amino a c i d s ranged from p l e a s a n t t o o b j e c t i o n a b l e . The molecular s t r u c t u r e o f sugar i n f l u e n c e s the r e s u l t i n g aroma o f the products of i t s r e a c t i o n w i t h the amino a c i d . While a p l e a s a n t caramel sweet aroma developed upon r e a c t i n g p h e n y l a l a n i n e w i t h maltose, an unpleasant caramel aroma developed w i t h f r u c t o s e , and a h y a c i n t h aroma i n case o f dihydroxyacetone. While the aroma o f methionine-sugar browning product was r e m i n i s c e n t o f a p l e a s a n t baked potato i n presence o f dihydroxyacetone, aroma notes o f overcooked potatoes developed w i t h glucose. I n presence o f a reducing d i s a c c h a r i d e (maltose), overcooked cabbage aroma was n o t i c e d and an unpleasant burnt wood aroma developed i n presence of non-reducing d i s a c c h a r i d e (sucrose). P r o l i n e , v a l i n e and i s o l e u c i n e i n presence o f glucose gave a p l e a s a n t bakery aroma (41). Keeney and Day (42) s t u d i e d the c h a r a c t e r odor o f the products of S t r e c k e r Degradation o f amino a c i d s u s i n g i s a t i n as the oxidant (Table V I I ) . Table V I I Aroma o f S t r e c k e r Degradation Products o f α-Amino A c i d s with I s a t i n (Diketodihydroindole) Sensory D e s c r i p t i o n Amino A c i d s Aldehyde Keeney & Day(42) Others(43.44) α-Alanine acetaldehyde reminiscent of wine, malty coffee(43) Valine 2-methy1apple f r u i t y , b a n a n a - l i k e (4 3) propanal green,pungent sweet(44) Leucine 3- methylmalty fruity,peach-like(43) butanal burnt,green,sickly(44) Isoleucine malty-apple 2-methylburnt,sickly(44) butanal Norleucine pentanal flower slightly fruity,herb aceous , n u t - l i k e (43) burnt-green(44) Phenyl h y a c i n t h odor,resenfole phenylacetviolets alanine benzaldehyde i n aldehyde taste(43) Glutamic b a c t e r i a l agar Cystine methional cheesy-brothy References (42,43,44) There i s some agreement and disagreement between the sensory notes s t a t e d i n Tables V and V I I , which may be a t t r i b u t e d t o v a r i a t i o n s i n the c o n c e n t r a t i o n o f the r e a c t a n t s and l a c k o f agreement on d e s c r i p t i o n o f sensory notes. The d i s c r e p a n c i e s can be r e s o l v e d , by a c a r e f u l c o n s i d e r a t i o n of the s p e c i f i c c o n d i t i o n s of the r e a c t i o n . I t i s p o s s i b l e t h a t both the nature and extent o f the
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
220
FOOD TASTE CHEMISTRY
r e a c t i o n vary widely with the p r i n c i p a l v a r i a b l e s ( c o n c e n t r a t i o n , temperature, h e a t i n g p e r i o d , s p e c i f i c r e a c t a n t s ) . U n f o r t u n a t e l y , many of the papers i n s u f f i c i e n t l y d e f i n e the experimental c o n d i t i o n s f o r an adequate e v a l u a t i o n of the r e s u l t s . The d e s c r i p t i o n of odor and t a s t e notes of a product or a compound v a r i e s according to i t s c o n c e n t r a t i o n , the media used f o r e v a l u a t i o n ( water, p a r a f f i n o i l , skim m i l k . . .etc ) > and the sensory e v a l u a t o r . The data i n Table VI i n d i c a t e that the aromas developed when sugars and amino a c i d s were h e a t i n g a t 120 and 180°C, were q u i t e d i f f e r e n t from those produced a t 100°C. N o t i c e a b l e d i f f e r e n c e s e x i s t between aroma notes developed a t 120°C and 180°C, t h i s may be a t t r i b u t e d t o sugar degradation notes which become n o t i c e a b l e i n the system heated a t 135*C and above. A l l a l i p h a t i c compounds c o n t a i n i n g primary o r secondary amine group r e a c t i n browning r e a c t i o n but a t d i f f e r e n t r a t e s depending upon the molecular s t r u c t u r e . The r e a c t i v i t y of the r e a c t a n t s (amino a c i d s , carbonyl compounds) i n the browning r e a c t i o n had been reported i n the l i t e r a t u r e as : a. i n t e n s i t y o f c o l o r developed, b. amount of carbonyl compounds determined by GC o r as dinitrophenylhydrazones. c. percent l o s s of r e a c t a n t s (one r e a c t a n t or both). I t i s very hard t o compare r e s u l t s reported i n the l i t e r a t u r e , as there are v a r i o u s v a r i a b l e s i n f l u e n c i n g the data. Concentrat i o n of r e a c t a n t s , r a t i o of amine compound to sugar o r c a r b o n y l , r e a c t i o n i n b u f f e r o r water, m o l a r i t y and type of b u f f e r used, pH o f b u f f e r , d u r a t i o n o f r e a c t i o n . Rate of carbonyl compounds formation w i l l be the c r i t e r i o n used f o r r e a c t i v i t y except i n few occasions where the percent l o s s of one o f the r e a c t a n t s or both w i l l be r e f e r r e d t o i n the manuscript. Rooney e t a l (£5) reported that the r a t e of carbonyl formation v a r i e d w i t h the molecular s t r u c t u r e of sugar. Xylose was most r e a c t i v e as i t produced the g r e a t e s t q u a n t i t y of c a r b o n y l s , f o l l o w e d by glucose, then maltose. I n the presence of these sugars i s o l e u c i n e was more r e a c t i v e than phenylalanine. In a study on the S t r e c k e r degradation of v a l i n e - c a r b o n y l , d i a c e t y l showed the g r e a t e s t r e a c t i v i t y f o l l o w e d by sorbose> arabinose>xylose>fructose>glucose>sucrose>rhamnose, S e l f ( 4 6 ) . The number of v o l a t i l e carbonyls produced by the r e a c t i o n of glucose and glutamic a t pH 5.0,6.5 and 8.0 a t 100°C was almost equal. When these systems were heated a t 180°C, the number of v o l a t i l e s was g r e a t e r and increased more d r a s t i c a l l y as pH increased to a l k a l i n i t y (36). The amount of aldehydes produced from mixtures of 0.01M amino a c i d and 0.1M glucose i n water was f a r below those produced i n 0.01M phosphate b u f f e r a t pH6.5, which i n t u r n was f a r below the amount obtained a t pH 7.5. The a d d i t i o n of phosphate b u f f e r increased the amount of aldehydes produced s i g n i g i c a n t l y . The amount of aldehyde produced i s a l s o i n f l u e n c e d by the chain l e n g t h of the a c i d . I n g e n e r a l ,
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
9.
MABROUK
Browning Reaction Products
221
s t r a i n g t chain amino acids produced more aldehydes than branched chain amino acids o f the same number o f carbon atoms (k6). Alanine, v a l i n e , s e r i n e , glutamic, glutamine, methionine, t a u r i n e , h i s t i d i n e , c r e a t i n e , c i t r u l l i n e , carnosine, c y s t i n e , s y s t e i n e , a s p a r t i c , asparagine, l e u c i n e , i s o l e u c i n e , t y r o s i n e , p h e n y l a l i n i n e , tryptophan, α-aminobutyric, p r o l i n e , o r n i t h i n e , 2 - p y r r o l i d o n e - 5 - c a r b o x y l i c , threonine, g l y c i n e , l y s i n e , a r g i n i n e , cysteine were i d e n t i f i e d i n aqueous r e d meat f l a v o r precursors ( V f ) . Ribose was a l s o reported as the major sugar. F l a v o r evalu a t i o n o f the browning r e a c t i o n products o f these amino acids and r i b o s e were undertaken. 0.1M s o l u t i o n o f each amino a c i d was pre pared by d i s s o l v i n g the amino a c i d i n 0.05M S^rensen phosphate b u f f e r and r e a d j u s t i n g the pH by the a d d i t i o n o f monopotassium o r dipotassium phosphate. 0.1M r i b o s e s o l u t i o n was prepared i n the same b u f f e r . Ten ml o f amino a c i d and 10ml o f ribose s o l u t i o n s were p i p e t t e d i n 50ml glass ampoule and 50ml round bottom f l a s k with 2k/kO glass j o i n t . 1.0 mMoles o f i n s o l u b l e amino acids were weighed d i r e c t l y i n r e a c t i o n v e s s e l s , and 10ml b u f f e r added. To study the e f f e c t o f heating on f l a v o r o f amino acids i n absence of r i b o s e , 10ml b u f f e r were p i p e t t e d i n glass ampoules and f l a s k s along with the amino a c i d . The ampoules were sealed a f t e r evacu a t i o n , and heated f o r one hour at l80°C. The f l a s k s were heated i n g l y c e r o l bath at 100°C, a f t e r f i t t i n g with condensors. A f t e r the heating p e r i o d , the f l a s k s and the ampoules were removed, cooled i n wet i c e , and the contents t r a n s f e r r e d t o v i a l s and kept at -10°C. A l l experiments were run i n t r i p l i c a t e s . In absence of r i b o s e , while s u l f u r containing amino acids s o l u t i o n s produced s u l f u r y notes upon heating, none o f the others developed any f l a v o r notes. Table VIII l i s t s the s t r i k i n g f l a v o r notes produced by heating various amino a c i d s - r i b o s e s o l u t i o n s at 100° and l80°C. Table VIII F l a v o r Notes Produced by Heating Amino Acid-Ribose AT 100°C and l80°C Amino A c i d
Alanine Valine Serine Glutamic
Methionine Cysteine Taurine
Flavor 100°C
Description
very m i l d caramel s i c k l y sweet sweet b o u i l l i o n brothy, s l i g h t l y sweet, l i n g e r i n g i n mouth s u l f u r y , savory s u l f u r y , r o t t e n egg pleasant t o f f e e
180°C sweet burnt caramelized sugar penetrating burnt chocolate burnt sugar roasted meat
c r u s t o f roast meat s u l f u r y , s p i c y meat s i c k l y , sweet, burnt caramel
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
222
FOOD TASTE CHEMISTRY
Table V I I I (cont'd) F l a v o r Notes Produced by Heating Amino Acid-Ribose At 100°C and 180°C Amino A c i d
Tryptophan
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
Phenylalanine Histidine
Creatine Tyrosine Leucine Aspartic Cystine Glutamine Asparagine a-Aminob u t y r i c γ-Aminobuturic 3-Aminobutyric Arginine Ornithine Proline Cysteic
Flavor Description 100°C 180°C
o i l y aromatic, naphththalene flowery w i t h aromatic and caramel notes, u n d e r s i r a b l e pleasant s l i g h t l y burnt salty, slightly b i t t e r caramelized caramel toffee s l i g h t l y sweet caramel slightly salty custard s l i g h t l y burnt sugar s l i g h t caramel b i t t e r almond toasted bread caramelized bread c r u s t bread crumb meaty w i t h H2S note hard b o i l e d egg yolk butterscotch caramel w i t h burnt sugar note creamy b u t t e r s c o t c h d e s i r a b l e burnt sugar sugar maple undersirable burnt sugar maple burnt sugar maple custard b u t t e r y , burnt sugar burnt sugar bread-like bread crumb cracker, toast bread crumb meaty, s u l f u r y undersirable, sulfury meaty, p l e a s a n t brothy o i l y aromatic, sugar sweet sharp f l o w e r
2-Pyrrolidone -5-carboxylic Isoleucine aromatic, undesirable Glycine caramel, f a i n t Lysine custard Homocystine canned m i l k Threonine c u s t a r d weak Citrulline toffee-like Carnosine buttery-toffee
burnt cheese burnt sugar bread scorched b o i l e d m i l k burnt c u s t a r d meaty meaty
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
9.
MABROUK
Browning Reaction Products
223
The previous d i s c u s s i o n covered S t r e c k e r degradation o f amino a c i d s sugar aqueous s o l u t i o n s . A l i m i t e d number o f i n v e s t i gations were c a r r i e d out on the nature of the browning r e a c t i o n a t h i g h temperature, i . e . low temperature p y r o l y s i s ana at low moisture content. Rohan and coworkers had provided an e x t e n s i v e research on model systems s i m u l a t i n g cocoa n i b r o a s t i n g i n absence of l i p i d . Amino a c i d s and sugars were r e s p o n s i b l e f o r chocolate f l a v o r development (48,49,50,51). While the degradation o f amino a c i d s i n cocoa beans d u r i n g r o a s t i n g was incomplete, the degrading agent, reducing sugar was completely destroyed. In a study on model systems prepared from s i n g l e amino a c i d and glucose i n molar r a t i o 2:1, approximating the composition of s h e l l ~ f r e e cocoa beans, Rohan and Stewart (52) reported t h a t amino a c i d d e s t r u c t i o n from h e a t i n g was temperature dependent and p r a c t i c a l l y ceased a f t e r one hour. Sugar d e s t r u c t i o n c o n t i n t u e d at a r a t e dependent on r e a c t i o n temperature u n t i l the end o f the experiment (Table I X ) . Table IX D e s t r u c t i o n of Amino A c i d s and Ρeducing Sugars on Heating Chocolate Aroma P r e c u r s o r E x t r a c t Heating D e s t r u c t i o n Percent °C Min. Amino A c i d s Red. Sugars T o t a l Sugars Aroma 50 50 50 100 100 100 120 120 120 150 150 150 150
6.2 8.9 8.9 18.8 29.6 30.9 43.0 54.4 54.4 58.8 81.7 85.4 85.1
30 60 120 30 60 120 30 60 120 10 30 60 120
Reference
(52)
27.0 41.1 27.5 56.6 81.4 84.1 100 93.5
35.8 79.6 22.8 38.9 79.2 91.2
Cocoa Cocoa Cocoa Cocoa Cocoa Cocoa Cocoa Cocoa
journal of Food Science
The f a i l u r e of amino a c i d degradation to go to completion and the r e l a t i o n between maximal d e s t r u c t i o n and temperature might be a t t r i b u t e d to the f a c t that i n d i v i d u a l amino a c i d s reacted a t d i f f e r e n t r a t e s at d i f f e r e n t temperatures. For example c e r t a i n amino a c i d s , l e u c i n e , a r g i n i n e , methionine, and l y s i n e showed l i t t l e or no d e t e c t a b l e r e a c t i o n a t 100°C a f t e r one hour, w h i l e others were r e a c t i v e a t t h i s temperature(Table X). At higher temperatures, r a t e o f amino a c i d degradation was measurable and p r o p o r t i o n a l t o the temperature o f the r e a c t i o n .
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
224
FOOD TASTE CHEMISTRY
The e f f e c t of i n c r e a s i n g temperature on the amount of amino a c i d destroyed i n one hour was n o t i c e a b l y greater a t temperatures above 140°C than below 120°C. Between 120° and 140 C,,increase i n r e a c t i o n temperature had l e s s marked e f f e c t on the r e a c t i o n due to changes i n the p h y s i c a l c o n d i t i o n of the r e a c t i o n mixture. At about 150°C. glucose melts and , as i t might be expected, i t s mixture w i t h amino a c i d s would begin to melt a t lower temperature. e
Table X
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
D e s t r u c t i o n of Amino A c i d s A f t e r Heating With Glucose a t D i f f e r e n t Temperatures f o r One Hour Temp. °C 80 90 100 110 120 130 135 140 150
D e s t r u c t i o n Percent Threo G l u Meth Leu V a l A r g L y s
A l PhAl
11.3 24.3 33.4 44.8 76.9
13.9 21.0 22.2 23.2 32.0
2.0 22.9 41.2 42.2 59.4 90.0
59.8
0.9 11.1 0.9 23.1 28.8 28.5 26.2 40.5 39.0 44.3
10.5 19.5 27.2 39.9
7.0 14.7 23.1 26.2 28.2 30.2 42.5
50.9 51.9 62.1
1.5 1.0 14.5 29.0 33.8 40.0
4.5 19.5 28.0 30.2 44.5
51.5
Reference (52)
Journal of Food Science
Table XI i n d i c a t e s that the degree of degradation was i n f l u e n c e d by the molecular s t r u c t u r e of the amino a c i d . A t 120°C the r a t e of d e s t r u c t i o n of amino a c i d s by c l a s s was i n the f o l l o w i n g order: s u l f u r - c o n t a i n i n g , hydroxy>acidic>neutral, basic,aromatic. Table XI Degradation of Amino Compounds A f t e r Heating f o r One Hour i n Presence of Glucose Class of Amino Compounds Percent Degradation a t ^ 120 135 150 Neutral a- n - A l k y l b*- i s o - a l k y l Hydroxy Aromatic Acidic Sulfur-containing Basic
20-28 42 23 36 41 20-29
40 42.5 90 — — —
40-45
45 — —
60 51 52 —
Reference (,52)
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
9.
MABROUK
Browning Reaction Products
225
Moisture content o f the r e a c t i o n mixture i n f l u e n c e d the degradation o f amino a c i d s , Rohan and Stewart (52) reported that chocolate precursor aroma e x t r a c t s when heated i n the dry s t a t e f o r one hour a t 100°C, l o s t 30% o f the amino a c i d s by degradation. When very l i g h t l y moistened the amino a c i d s degradation dropped t o 9% under the same r e a c t i o n c o n d i t i o n s . When the r e a c t i o n mixture was wetted w i t h an equal weight o f water, no amino a c i d degradation was n o t i c e d . Cocoa beans moisture content averaged 5 t o 6 % which might be s u f f i c i e n t to i n h i b i t browning r e a c t i o n a t lower temperatures, thus i n the e a r l y stages o f r o a s t i n g the removal of moisture i s important. Roasting cocoa beans r e s u l t s i n the p r o d u c t i o n of v o l a t i l e and n o n - v o l a t i l e compounds which c o n t r i b u t e t o the t o t a l f l a v o r complex. 5-Methyl-2-phenyl-2-hexenal, which e x h i b i t e d a deep b i t t e r p e r s i s t a n t cocoa note, was reported i n the v o l a t i l e f r a c t i o n (53). I t was p o s t u l a t e d t o be the r e s u l t o f a l d o l condensation of phenylacetaldehyde and i s o v a l e r a l d e h y d e w i t h the subsequent l o s s of water. The two aldehydes were the p r i n c i p a l products o f S t r e c k e r degradation products of phenylal a n i n e and l e u c i n e , r e s p e c t i v e l y . N o n - v o l a t i l e s contained d i k e t o p i p e r a z i n e s ( d i p e p t i d e anhydride) which i n t e r a c t w i t h theobromine and develop the t y p i c a l b i t t e r n e s s o f cocoa (54). Theobromine has a r e l a t i v e l y s t a b l e m e t a l l i c b i t t e r n e s s , b u t cocoa b i t t e r n e s s i s r a p i d l y n o t i c e d and disappears q u i c k l y . While cocoa b i t t e r n e s s i s f e l t i n the whole mouth, theobromine i s recognized by the h i n d p a r t o f the tongue. Furthermore, cocoa b i t t e r n e s s i s more intense than t h a t o f concentrated aqueous s o l u t i o n of theobromine. The f o l l o w i n g d i k e t o p i p e r a z i n e s had been i d e n t i f i e d as the components r e s p o n s i b l e f o r cocoa b i t t e r n e s s : - cyclo(-Pro-Leu-), cyclo(-Val-Phe-), cyclo(-Pro-Phe-), cyclo(-Pro-Gly-) , c y c l o ( - A l a - V a l - ) , c y c l o ( - A l a - G l y - ) , c y c l o (Ala-Phe-), c y c l o ( - P h e - G l y - ) , c y c l o ( - P r o - A s n - ) , and c y c l o (-Asn-Phe-). Those c o n t a i n i n g phenylalanine e x h i b i t e d b i t t e r n e s s resembling that of theobromine. D i k e t o p i p e r a z i n e s have stronger b i t t e r n e s s than the corresponding d i p e p t i d e s o r i t s two i n d i v i d u a l amino a c i d s . They develop upon h e a t i n g p r o t e i n s t o temperature above 100°C Kato e t a l (55) reported that r o a s t i n g s e r i n e a t 280°C f o r 30 min under slow n i t r o g e n stream, r e s u l t e d i n the p r o d u c t i o n o f 2,5-diketo-3,6-dimethylpiperazine, which upon a l k a l i n e h y d r o l y s i s produced the d i p e p t i d e a l a n y l a l a n i n e . A b i t t e r p e p t i d e , cyclo(-L-Leu-L-Trp-), was i s o l a t e d from c a s e i n enzymic d i g e s t (J>6). The formation o f c y c l o (-Pro-Leu-) i n aged sake i s r e s p o n s i b l e f o r i t s b i t t e r n e s s (57)· Recently, f i v e b i t t e r L - p r o l i n e - c o n t a i n i n g d i k e t o p i p e r a z i n e s were reported i n roasted malt (210°C) used i n dark beer brewing. These compounds and t h e i r approximate " b i t t e r t h r e s h o l d % v a l u e s " i n aqueous s o l u t i o n s were: cyclo(-L-Phe-L-Pro-),0.1; cyclo((-L-Leu-L-Pro) , 0.05; cyclo(-L-Pro-L-Pro-),0.1; c y c l o ( - L - V a l - L - P r o - ) , 0 . 1 ; and c y c l o ( - L - I l e - L - P r o - ) , 0 . 0 5 . The authors concluded that these f
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
FOOD T A S T E
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
226
CHEMISTRY
d i k e t o p i p e r a z i n e s d i d not c o n t r i b u t e d i r e c t l y to beer b i t t e r n e s s and questioned t h e i r r o l e i n i n f l u e n c i n g the t a s t e of the product (58). More than 300 compounds had been i d e n t i f i e d i n cocoa v o l a t i l e s , 10% of which were c a r b o n y l compounds (59,60). Acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, phenylacetaldhyde and propanal were products of S t r e c k e r degradation of a l a n i n e , v a l i n e , l e u c i n e , i s o l e u c i n e , phenylacetaldehyde, and α-aminobutyric a c i d , r e s p e c t i v e l y . Eckey (61) reported that raw cocoa beans c o n t a i n about 50-55% f a t s , which c o n s i s t e d of p a l m i t i c (26.2%), s t e a r i c (34.4%), o l e i c (37.3%), and l i n o l e i c (2.1%) a c i d s . During r o a s t i n g cocoa beans these a c i d s were o x i d i z e d and the f o l l o w i n g c a r b o n y l compounds might be produced:- o l e i c : 2-propenal, b u t a n a l , v a l e r a l d e h y d e , hexanal, h e p t a n a l , o c t a n a l , nonanal, decanal, and 2-alkenals of C3 to C - Q . L i n o l e i c : e t h a n a l , p r o p a n a l , p e n t a n a l , hexanal, 2-alkenals of C3 to C , 2 , 4 - a l k a d i e n a l s of Cg to C - Q , methyl e t h y l ketone and h e x e n - l , 6 - d i a l . Carbonyl compounds p l a y a major r o l e i n the formation of cocoa f l a v o r components. Another example of food i n which the browning r e a c t i o n occurs at near anhydrous c o n d i t i o n i s c o f f e e . Coffee beans are u s u a l l y r o a s t e d a t temperatures ranging from 180° to 260°C. f o r s p e c i f i c p e r i o d to o b t a i n the d e s i r e d degree of r o a s t i n g ( l i g h t , medium, and d a r k ) . P r o t e i n , sucrose, and c h l o r o g e n i c a c i d were the compounds d r a s t i c a l l y destroyed i n c o f f e e beans upon r o a s t i n g , Table X I I "the data i n t h i s t a b l e were not c o r r e c t e d f o r dry weight l o s s which v a r i e d from 2 to 5%"(62). 1Q
Table X I I
Composition of Green and Roasted Coffee Percent, Dry B a s i s Roasted Green
Constituent Hemicelluloses Cellulose Lignin Fat Caffeine Sucrose Chlorogenic a c i d Protein(Based on n o n a l k a l o i d nitrogen) Trigonelline Reducing sugars Unknown Total
23.0 12.7 5.6 11.4 1.2 7.3 7.6
24.0 13.2 5.8 11.9 1.3 0.3 3.5
11.6 1.1 0.7 14.0
3.1 0.7 0.5 31.7
100.0 Reference
100.00
(62) Journal of Agricultural and Food Chemistry
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
9.
MABROUK
227
Browning Reaction Products
The degree of r o a s t i n g i n f l u e n c e d the magnitude of degradation of sucrose, the major sugar present i n c o f f e e , Table X I I I . Table X I I I E f f e c t of Roasting On Sucrose Content I n Coffee (Percent Dry B a s i s )
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
Colombian Sucrose % Loss Content Green 4.59 L i g h t Roast 0.45 Medium Roast 0.17 Dark Roast 0.06 Reference (62)
90.20 96.30 98.69
Santos Sucrose % Loss Content 5.47 0.68 0.27 0.10
87.57 95.06 98.17
Feldman et a l (62) found no n o t i c e a b l e changes i n the contents of the f o l l o w i n g amino a c i d s i n roasted c o f f e e beans proteins: alanine, glutamic, g l y c i n e , i s o l e u c i n e , l e u c i n e , p h e n y l a l a n i n e , p r o l i n e , t y r o s i n e , and v a l i n e . These f i n d i n g s are i n agreement w i t h those reported by Underwood and Deatherage (63). Table XIV showed the degree of d e s t r u c t i o n of amino a c i d s i n c o f f e e bean a f t e r r o a s t i n g . I t i s q u i t e obvious that the magnitude of nonenzymic browning of amino a c i d s was i n f l u e n c e d by i t s molecular s t r u c t u r e and degree of r o a s t i n g . Coffee o i l contains about 47% l i n o l e i c , 8% o l e i c , 1% hexadecenoic, 32% p a l m i t i c , 8% s t e a r i c , and 5% behenic and longer c h a i n f a t t y a c i d s (64). As l i n o l e i c a c i d i s the major unsaturated f a t t y a c i d i n c o f f e e o i l , i t s major o x i d a t i o n products 2,4a l k a d i e n a l s and hexen-1,6-dial would p l a y a major r o l e i n v o l a t i l e p r o d u c t i o n . Green c o f f e e beans c o n t a i n 50 to 60% carbohydrates: 18% nonhydrolyzable c e l l u l o s e , 13% h y d r o l y z a b l e c e l l u l o s e , 13% starches and p e c t i n s e a s i l y s o l u b l i z e d , and 9-12% s o l u b l e carbohydrates of which sucrose i s the major component. R a f f i n o s e and stachyose are the t r i - and t e t r a saccharides reported i n robusta c o f f e e beans. Arabinogalactan and galactomannon are the w a t e r - s o l u b l e p o l y s a c c h a r i d e s reported i n c o f f e e beans (62). The above mentioned carbohydrates, amino a c i d s , l i p i d s along w i t h other f l a v o r p r e c u r s o r s produce s e v e r a l hundreds of v o l a t i l e and n o n v o l a t i l e compounds through d i f f e r e n t r e a c t i o n s during r o a s t i n g . Molecular s t r u c t u r e s , q u a n t i t i e s , and r a t i o s of these compounds i n f l u e n c e c o f f e e f l a v o r . The v a r i e t y of c o f f e e as w e l l as the degree of r o a s t i n g e x e r t c h a r a c t e r i s t i c f l a v o r s . The molecular s t r u c t u r e of carbonyls i n f l u e n c e the type of p r y a z i n e formed. While r e f l u x i n g rhamnose (100g) and ammonia (28%; 40ml) i n water (100g) produced methyl- and e t h y l - s u b s t i t u t e d p y r a z i n e s , glucose and ammonia r e a c t i o n r e s u l t e d i n formation of m e t h y l - s u b s t i t u t e d
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
5.60 3.73
Serine Threonine
Reference (62)
Loss %
39.09
2.85 6.19 2.06
Histidine Lysine Methionine
Total
4.72 10.50 3.44
Green
Arginine Asparagine Cysteine
Amino A c i d
47.56
20.50
1.77 2.43
1.99 2.54 2.32
0.00 9.07 0.38
Roast I
Haita
51.80
18.84
1.26 1.83
2.17 2.74 1.48
0.00 9.02 0.34
Roast I I
37.85
5.88 3.82
2.79 6.81 1.44
3.61 10.61 2.89
Green
40.79
22.41
2.60 2.71
2.27 3.46 1.08
0.00 9.53 0.76
Roast I
Columbia
(After Acid Hydrolysis),%
60.02
15.63
0.80 1.38
1.61 2.76 1.26
0.00 7.13 0.69
Roast I I
17.73
32.48
55.26
14.53
0.00 1.08
0.85 2.56 1.71
0.00 8.19 0.14
Roast I I
Journal of Agricultural and Food Chemistry
45.41
0.14 2.37
2.23 2.23 1.68
0.00 8.94 0.14
4.97 3.48
1.79 5.36 1.29
2.28 9.44 3.87
Roast I
Angola Robusta Green
Composition of Amino A c i d s i n Green and Roasted Coffee
Table XIV
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
9.
MABROUK
Browning Reaction Products
229
p y r a z i n e s o n l y (53). The f l a v o r s o f the products o f c y s t e i n e glucose and cysteine-pyruvaldehyde i n anhydrous c o n d i t i o n at d i f f e r e n t temperatures 80-190°C. are l i s t e d i n Table XV (24). Five-mM cysteine+5-mM glucose or pyruvaldehyde r e a c t e d a t d i f f e r e n t temperatures f o r 5 minutes and then evaluated by f l a v o r panel.
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
Table XV F l a v o r s Produced by Cysteine-glucose And Cysteine-pyruvaldehyde a t D i f f e r e n t Temperatures F l a v o r D e s c r i p t i o n , a t °C. Reactants 80° 100° 130° 160° Japanese rice cracker with sesamelike.
Cysteine & Pyruvaldehyde
Japanese rice cracker weak.
Sesame, weak
Sesame,
Cysteine & Glucose
no odor
no odor
Japanese Japanese rice rice cracker cracker with with seasame- sesamelike. like, sweet.
Reference (24)
190° Sesameburnt,
Sweet sesame, burnt,
Agricultural and Biological Chemistry
Pyruvaldehyde i s a l i q u i d a t room temperature and b o i l s a t 72°C, thus when cysteine-pyruvaldehyde mixture was heated a t 80°C, the components are i n s o l u t i o n and f l a v o r notes r e m i n i s c e n t o f Japanese r i c e c r a c k e r developed. As r e a c t i o n temperatures i n c r e a s e d g r a d u a l l y other f l a v o r notes developed. I n the case o f c y s t e i n e - g l u c o s e system, no r e a c t i o n took p l a c e u n t i l the r e a c t i o n temperature reached 130°C. The f l a v o r o f c y s t e i n e - g l u c o s e was comparable t o that o f cysteine-pyruvaldehde a t 160°C, w i t h one e x c e p t i o n , the glucose system had a sweet note. As temperature increased the f l a v o r impression of both systems increased i n s i m i l a r i t y . The v o l a t i l e compounds produced a t 160°C i n the presence of pyruvaldehyde were d i f f e r e n t from those i n presence of glucose. While t h i a z o l e and t h a z o l i n e s were absent i n the v o l a t i l e s o f c y s t e i n e - g l u c o s e , cysteine-pyruvaldehyde v o l a t i l e s were devoid o f p y r i d i n e s , p i c o l i n e s and furans (24).
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
230
FOOD TASTE CHEMISTRY
Food f l a v o r s c o n s i s t of numerous compounds, none of which alone i s c h a r a c t e r i s t i c o f s p e c i f i c food. Classes of compounds which emcompass food f l a v o r s are:- hydrocarbons ( a l i p h a t i c , a l i c y c l i c , aromatic); carbonyls (aldehydes, ketones); c a r b o x y l i c a c i d s , e s t e r s , imides, anhydrides; a l c o h o l s , phenols, e t h e r s ; alkylamines, a l k y l i m i n e s ; a l i p h a t i c s u l f u r compounds ( t h i o l s , mono-, d i - and t r i - s u l f i d e s ) ; n i t r o g e n h e t e r o c y c l i c s ( p y r r o l e s , p y r a z i n e s , p y r i d i n e s ) ; s u l f u r h e t e r o c y l i c s (thiophenes, t h i a z o l e s , t r i t h i o l a n e , t h i a l i d i n e ) ; and oxygen-heterocyclics (lactone, pyrone, furan). D i s c u s s i o n w i l l be l i m i t e d to s t r i k i n g developments i n h e t e r o c y c l i c s .
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
H e t e r o c y c l i c Compounds During browning r e a c t i o n i n foods, h e t e r o c y c l i c compounds of known f i v e - and six-membered r i n g systems c o n t a i n i n g one or more atoms than carbon as r i n g members, are produced. These compounds encompass s e v e r a l c l a s s e s o f compounds that e x h i b i t d e s i r a b l e c h a r a c t e r i s t i c o r g a n o l e p t i c notes, i . e . t o a s t e d , b r e a d - l i k e , roasted, brothy, mushroom-like, nutty, ... e t c . , or undesirable notes, e.g. peppery ammoniacal, obnoxious, ... e t c . The nomenc l a t u r e s and the molecular formulas of h e t e r o c y c l i c compounds that most f r e q u e n t l y encountered i n food v o l a t i l e s are given i n Figures 1 and 2. Nitrogen-heterocyclic P y r r o l e and p y r r o l e d e r i v a t i v e s . The chemical and b i o l o g i c a l value o f p y r r o l e and i t s d e r i v a t i v e s cannot be overemphasized, n a t u r a l pigments, heme, c h l o r o p h y l l , b i l e pigments and enzymes l i k e cytochromes, contain p y r r o l e nucleus. A l s o , many a l k a l o i d s , p r o l i n e and hydroxyproline contain the reduced p y r r o l e r i n g (pyrrolidine). P y r r o l e and i t s d e r i v a t i v e s are found among the products of the browning r e a c t i o n products i n processed foods. A l k y l p y r r o l e s have intense petroleum-like odor, but they give sweet, s l i g h t l y burnt aroma on extreme d i l u t i o n . On the other hand a c y l p y r r o l e s have c h a r a c t e r i s t i c sweet smoky, and a l i t t l e m e d i c i n e - l i k e odor (65). Although a l k y l - and a c y l - p y r r o l e s do not e x h i b i t favorable aroma l i k e tne d e s i r a b l e roasty aroma o f p y r a z i n e s , they may p l a y an important r o l e i n the c h a r a c t e r i s t i c r o a s t y f l a v o r o f processed foods. In anhydrous c o n d i t i o n , Na c e t o n y l p y r r o l e , which had a b r e a d - l i k e aroma was i s o l a t e d from the r o a s t i n g products of p r o l i n e - g l u c o s e , hydroxyproline-glucose, and pyrrolidine-pyruvaldehyde (66). 1 - P y r r o l i n e which e x h i b i t e d an amine l i k e or c o r n - l i k e odor was the product of Strecker degradation of p r o l i n e - , and ornithione-sugar or- polycarbonyl reagents i n aqueous s o l u t i o n s ( 6 j ) . 2-Pyrrolealdehyde, 2 - a c e t y l p y r r o l e , 2 - p r o p i o n y l p y r r o l e , N-methyl-2-pyrrolealdehyde, N-methyl-2-acetyl p y r r o l e , 5-methyl-2-pyrrolealdehyde, N-methyl-5-methyl-2-pyrrole-
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
9.
Browning Reaction Products
MABROUK
ο ο
Η pyrrole (azole)
o
Η pyrrolidine (azolidine)
Η 2,3-dihydropyrrole (2,3-dihydroazole)
ο Ο
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
thiophene (thiole)
/r-N
ΟΗ
imidazole (1,3-diazole)
tetrahydrothiophene (thiolane)
trithiolane
tetrahydrofuran (oxolone)
Figure 1.
Q
2,5-dihydrofuran 2,5-dihydroxole
o
0
t-pyran
S
S
piperidine perhydroazine
pyridazine (1,2-diazine)
1,3,5oxadithiane
S
1,3,5dithiazine
1,3,5trithione
0
pyrimidine (1,3-diazine)
ΗΝ
0
pyrazine (1,4-diazine)
NH
1,3,5thiadiazine
0 0
y-pyran
9
isoxazole
oxazole (1,3-oxazole)
Fwe-membered ring heterocyclics
S 1,2,6trithiane
Η 3H-pyrazole (3H-I,2-diazole)
thiazole (1,3-thiazole)
O O G O
pyridine (azine)
f
0
S-S
Q Q
furan (oxole)
231
a-pyrone
y-pyrone
9
1,3,5dioxathiane Figure 2.
Six-membered ring heterocyclics
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
232
FOOD TASTE CHEMISTRY
aldehyde were i d e n t i f i e d i n the p y r r o l i c f r a c t i o n o f coffee v o l a t i l e c o n s t i t u e n t s (68, 69). N- ethylpyrrole-2-aldehyde and 5-methylpyrrole-2-aldehyde are two o f the eighteen compounds r e ported i n s t o r e d dehydrated orange j u i c e c r y s t a l s due to nonenzymic browning (JO). The type o f p y r r o l e d e r i v a t i v e s produced de pended on r e a c t i o n temperature, i t s d u r a t i o n , i t s c o n d i t i o n , i . e . , anhydrous, aqueous, or a l c o h o l i c ; pH o f the media, and molecular s t r u c t u r e o f r e a c t a n t s . While, N - a l k y l p y r r o l e - 2 - a l d e h y d e s were produced upon h e a t i n g D-xylose and alkylamine or amino a c i d i n n e u t r a l aqueous or methanolic s o l u t i o n s at 55 100°C; the c o r r e sponding 5-methyl d e r i v a t i v e s o f N - s u b s t i t u t e d pyrrole-2-aldehydes were formed i n the presence o f L-rhamnose (71, 72). Odor o f the products were: N-methylpyrrole-2-aldehyde (formed from D-xylose and methylamine) cinnamonaldehyde-like, N-n b u t y l p y r r o l e - 2 - a l d e hyde (a product o f butylamine-xylose); and l - n - b u t y l - 5 - m e t h y l pyrrole-2-aldehyde (rhamnose and butylamine i n t e r a c t i o n s product) x y l e n e - l i k e . 2 - F o r m y l p y r r o l - l - y l - a l k y l a c i d s were i s o l a t e d from the products o f the browning r e a c t i o n o f xylose and alkylamines or amino acids i n aqueous s o l u t i o n s (73). N-substituted-5-(hydroxymethyl)-pyrrole-2-aldenydes were formed from the r e a c t i o n o f the aldohexose "glucose" and alkylamines or amino a c i d s c o n t a i n i n g primary amino group at 70 t o 100°C, i n n e u t r a l i z e d aqueous, methanolic or e t h a n o l i c s o l u t i o n s . The r e s u l t i n g compounds were considerably unstable and had no odor i n the pure s t a t e but d e v e l oped r o a s t e d aroma with browning (jh). Upon r o a s t i n g glucose and s e v e r a l alkyl-n-amino a c i d ( g l y c i n e , α-alanine, α-amino-n-butyric, v a l i n e , l e u c i n e , α-amino-n-caproic) at 200-250°C i n two components systems; 2 - 5 - h y d r o x y - m e t h y l - 2 ' - f o r m y l p y r r o l - l ^ y l ) a l k a n o i c a c i d lactones were formed as the main v o l a t i l e products (75)· The aroma d e s c r i p t i o n o f the prepared l a c t o n e d e r i v a t i v e s were: pro p i o n i c a c i d l a c t o n e (from α-alanine and glucose) caramel and a l i t t l e s c o r c h i n g ; i s o b u t y r i c a c i d l a c t o n e (α-amino-n-butyric and glucose) maple and strong sweet; i s o v a l e r i c a c i d lactone ( v a l i n e and glucose) and i s o c a r p r o i c a c i d l a c t o n e (leucine and glucose) miso, soy sauce and a c h o c o l a t e - l i k e . The y i e l d o f p r o p i o n i c a c i d l a c t o n e a f t e r h e a t i n g an equimolar mixture o f 0.01 mole o f glucose and α-alanine at 150, 200, and 250°C were: 1
Temperature, °C
Heating p e r i o d , min.
Y i e l d , unmoles h2
1 5 3 5 5
250 250 200 200 150
3 - h 50 6 16*
I t i s q u i t e obvious from the above data that the p r o p i o n i c a c i d lactone disappeared during the r e a c t i o n f o r longer periods and at higher temperatures. 2-(5 -hydroxymmethyl-2 -formylpyrrol-1 -yl) -3-methylbutanoate, and 2 -(5 -hydroxymethyl-2 -formyl1
,
f
f
1
f
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
9.
Browning Reaction Products
MABROUK
233
p y r r o l - l - y l ) - 3 - m e t h y l b u t a n o i c a c i d lactone were i d e n t i f i e d i n the products o f the browning r e a c t i o n o f glucose and v a l i n e i n aqueous s o l u t i o n at 65°C f o r three weeks (76). Reducing d i s a c c h a r i d e s ( l a c t o s e , maltose and melibiose) r e a c t e d with alkylamine i n aqueous s o l u t i o n s o f pH 6 . 5 , to form l-alkyl-5-hydroxymethylpyrrole-2-aldehyde (77)· N - A l k y l - 2 - a c y l p y r r o l e s and a l i p h a t i c a l d i mines were the products o f the r e a c t i o n between f u r f u r a l and i t s homologs with α-amino acids (78). Reactions o f f u r f u r a l and 2a c e t y l f u r a n with g l y c i n e and v a l i n e produced a small amount of the corresponding a c y l a l k y l p y r r o l e s which had pleasant aromas r e m i n i scent of benzaldehyde. The r e s u l t i n g considerable amount o f a l i phatic aldimines from the r e a c t i o n o f f u r f u r a l with v a l i n e and l e u c i n e possessed a strong odor from b i t i n g and unpleasant t o m i l d and f o o d - l i k e . Nine a l k y l p y r r o l e s , three a c y l p y r r o l e s , three a l k y l p y r r o l e - 2 - a l d e h y d e s , three f u r f u r y l p y r r o l e , eight a l k y l p y r a z i n e s , and one oxazoline were i d e n t i f i e d i n the v o l a t i l e flavorous products o f r o a s t i n g DL-alanine and glucose at 250°C f o r one hour i n n i t r o g e n atmosphere (79). Many o f the compounds i d e n t i f i e d i n the r e a c t i o n products of model systems had been i s o l a t e d from roasted and cooked foods. For example, p y r r o l e , 1-methylpyrrole, 2-methylpyrrole, 1-formylpyrrole, 2 - f o r i L y l p y r r o l e , l - f o r m y l - 2 methylpyrrole, 2-fοrmyl-1-methylpyrrole, 2-fοrmyl-1-methylpyrrole, 2-formyl-5-methylpyrrole, 2 - f o r m y l - l - e t h y l p y r r o l e , 1-acetylpyrr o l e , 2 - a c e t y l p y r r o l e , 1 - f u r f u r y l p y r r o l e , 2 - p r o p i o n y l p y r r o l e , 2f o r m y l - 1 - f u r f u r y l p y r r o l e were reported i n roasted peanut (8θ). Roasted f i l b e r t s v o l a t i l e s contained 1-methylpyrrole, 2-pentylpyrr o l e , 2 - i s o b u t y l p y r r o l e , and 2 - p e n r y l p y r r i d i n e ( 8 l ) .
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
f
P y r i d i n e and i t s d e r i v a t i v e s . The most unique p y r i d i n e d e r i v a t i v e i s o l a t e d from processed food i s l , ^ , 5 6 - t e t r a h y d r o - 2 - a c e t o p y r i d i n e . This compound was prepared by r o a s t i n g p r o l i n e and dihydroxyacetone at 92°C i n presence o f sodium b i s u l f a t e , and ex h i b i t e d a strong odor reminiscent o f f r e s h l y backed soda crackers (J32). 2 - E t h y l p y r i d i n e and 2 - p e n t y l p y r i d i n e were reported i n v o l a t i l e f l a v o r components of shallow f r i e d (83). P y r i d i n e , 2methylpyridine, 3-methylpyridine, 2 - e t h y l p y r i d i n e , 3 - e t h y l p y r i dine, 5-ethyl-2-methylpyridine, 2 - b u t y l p y r i d i n e , 2 - a c e t y l p y r i d i n e , 2- p e n t y l p y r i d i n e , 2 - h e x y l p y r i d i n e , 3 - p e n t y l p y r i d i n e , 5-methyl-2p e n t y l p y r i d i n e , and 5 - e t h y l - 2 - p e n t y l p y r i d i n e were i d e n t i f i e d i n the v o l a t i l e s of roasted lamb f a t (Qh). 2,5-Dimethylpyridine and 3,5-dimethylpyridine were t e n t a t i v e l y i d e n t i f i e d i n roasted lamb f a t v o l a t i l e s . The odor t h r e s h o l d o f 2 - p e n t y l p y r i d i n e was 0 . 5 - 0 . 7 parts per 1 0 p a r t s o f water. The d i l u t e s o l u t i o n o f 2-pentylpy r i d i n e has a f a t t y or t a l l o w - l i k e odor. The authors a t t r i b u t e the unacceptance of lamb by some consumers to the high content o f a l k y l p y r i d i n e s i n roasted lamb. While p y r i d i n e d e r i v a t i v e s have burnt, heavy f r u i t y odors (JB5 ) ; p y r i d i n e has a disagreeable char a c t e r i s t i c odor and sharp t a s t e ; and p i p e r i d i n e has a peppery ammoniacal odor (06). P y r i d i n e , α-picoline (2-methylpyridine), 3- p i c o l i n e (^-methylpyridine), and U-ethylpyridine were i d e n t i f i e d 5
9
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
234
FOOD TASTE CHEMISTRY
i n c o f f e e aroma
(87).
P y r a z i n e s . In the t h i r t i e s , the a t t e n t i o n on p y r a z i n e s was focused on i t s i n d u s t r i a l r o l e i n dyes, photographic emulsions and chemotherapy. I t s importance i n l i f e processes was i n d i c a t e d i n i t s derivative, vitamin B ( r i b o f l a v i n , 6,7-dimethyl-9-(l -Dr i b i t y l i s o a l l o x a z i n e ) . L a t e r , i n the m i d s i x t i e s , i t was i d e n t i f i e d i n foods and i t s c o n t r i b u t i o n s t o the unique f l a v o r and aroma o f raw and processed foods a t t r a c t e d the a t t e n t i o n o f f l a v o r chemista Pyrazine d e r i v a t i v e s c o n t r i b u t e to the r o a s t i n g , t o a s t i n g , n u t t y , chocolaty, c o f f e e , earthy, caramel, m a p l e - l i k e , b r e a d - l i k e , and b e l l pepper notes i n foods. The reader i s r e f e r r e d t o the reviews on Krems and S p o e r r i (88) on the chemistry o f p y r a z i n e s , and the review o f pyrazines i n foods by Maga and S i z e r (89, 90.)· Table XVI summaries sensory d e s c r i p t i o n and t h r e s h o l d o f s e l e c t e d pyrazines. f
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
2
Oxygen H e t e r o c y c l i c s . During heat p r o c e s s i n g , sugars degrade to aldehydes and ketones which might r e a c t with amino compounds forming caramelized sugar f l a v o r s . C y c l i c diketones, pyrones, and furan d e r i v a t i v e s are examples o f the products o f t h i s r e a c t i o n . Table XVII gives the o r g a n o l e p t i c d e s c r i p t i o n o f s e l e c t e d compounds. U-Hydroxy-2,5-dimethyl(2H)-furanone has intense f r a g r a n t caramel note described as burnt sweet t a s t e (TO ), burnt pineapple ( l O l ) , beef b r o t h (lOO), strawberry preserve (103), nutty sweet aroma o f almonds (lOU), and major c o n t r i b u t o r to sponge cake f l a v o r (105). Seven terms were used to describe the o r g a n o l e p t i c note o f one compound. The question a r i s e s , what was the concent r a t i o n and media used f o r e v a l u a t i o n ? Change i n c o n c e n t r a t i o n alone can be quite s u f f i c i e n t t o a l t e r the c h a r a c t e r o f the f l a v o r or odor note. For example, t r i m e t h y l a m i n e - a i r mixtures only smell f i s h y over a narrow range o f d i l u t i o n s (1:1,500-1:8,000), with a maximum at about ( 1 : 6 , 0 0 0 ) , a l s o ammonia at a d i l u t i o n o f about (1:2,000) smells f i s h y (106). Hodge and Moser (107) r e p o r t e d that i n s p i t e o f the f a c t that the aromas o f pure m a l t o l , e t h y l m a l t o l , i s o m a l t o l , and h-hydroxy-2,5-dimethyl-3(2H)-furanone vary s i g n i f i c a n t l y from each o t h e r , p a n e l i s t s d e s c r i p t i o n was caramel or burnt sugar. The f r u i t y caramel aroma o f i s o m a l t o l i s weaker than that o f 4-hydroxy-2,5-dimethyl-3(2H)-furanone (108). Our sensory vocabulary should be adequate t o express the impact o f f l a v o r , odor, t a s t e notes components. This could be achieved by the p a r t i c i p a t i o n o f food chemist, organic chemist, sensory a n a l y s t and f l a v o r ist. Soy sauce (Shoyu) contains tautomers U-hydroxy-2-ethyl-5ethyl-3(2H)-furanone and U-hydroxy-5-ethyl-2-methyl-3(2H)-furanone (about 3:2 r a t i o ) which has sweet odor s i m i l a r t o that o f short cake (109). The same tautomers were s y n t h e s i z e d and described as possessing the f l a v o r o f cooked f r u i t s (103). M a l t o l , i s o m a l t o l and 2-methyl-5-hydroxy-6-ethyl-a-pyrone are c o n t r i b u t o r s to the c h a r a c t e r i s t i c aroma of molasses (110).
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
sweet f r i e d odor
2 . 6 - Dimethyl
2-Ethyl-3methyl2 - E t h y l -5methyl 2-Ethyl-3,6dimethyl-
2,3,5-Trimethyl 2,3,5,6-Tetramethyl 2-Ethyl
earthy raw potato (2)
(3)
deep b i t t e r p e r s i s t e n t notes (5)
Sensory D e s c r i p t i o n
2,3-Dimethyl2 . 5 - Dimethyl-
2-Methyl-
Pyrazine
cocoa
17 (91)
60 (92) 22 (91) 0.13 (92)
O.OOOU (92)
0.10 (92)
38 (91)
10 (91)
8 (91)
7 (91)
27 (91)
27 (91)
(92)
(91)
0.02U (92)
0.32
2.6
Odor Threshold ppm Mineral O i l Vegetable O i l
(91) (92) (92) (91) (92) (91) (92) (91)
105 60 2.5 3.5 1.8 5^ 1.5 9
Water
P y r a z i n e s , Sensory D e s c r i p t i o n and Odor Threshold
Table XVI
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
8 ox
ο
δ*
§
I'
β
to 3
d
>
CD
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
2-methylamino-3methyl 2-dimethylamino-3methyl 2-dimethylamino-6methyl
2,6-dimethoxy-3isopropyl-5-methyl 2,5-dimethoxy-3i sopropyl-6-methyl 5-methyl 5H-6,7dihydrocyclopenta 5-methyl-2H-3,U,5,7retrahydrocyclopenta 2-acetyl2-methoxy-3-ac e t y l -
Pyrazine
(53)
breadcrust, nutty (96) weak breadcrust, nutty notes (96) r o a s t e d peanuts, green cocoa notes (96) P e a n u t - l i k e more green and l e s s cocoa notes (96) p e a n u t - l i k e , no cocoa notes reminiscent o f burnt c o f f e e (96)
r o a s t e d nuts, burnt
nutty with g r e e n - l i k e b e l l pepper, woody notes (96) nutty notes, green ( b e l l p e p p e r - l i k e ) (96) peanuts (53)
Sensory D e s c r i p t i o n
Water
(Cont.)
Odor Threshold ppm Mineral O i l Vegetable O i l
P y r a z i n e s , Sensory D e s c r i p t i o n and Odor Threshold
Table XVI
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
MABROUK
Browning Reaction Products
OJ ON
cd
OJ
Φ
d
-Ρ
tiO 0)
>
cd U Φ OJ
OJ
Ο
ο —' Η
OJ
Ο
ω
ο
Φ
-ρ cd
U ΕΗ
?Η
ΟΛ
H
VO OJ O
O
o
•
»
y—.
H
ON
ON
O
·
N "
m
o
H
Ο
Τ) Ο
H
τ3 β cd
3
?s
ft Φ
o
•H
ft
•Η
-P
ft
*Η
•H
CO 0)
O
Ο
Ρ
LT\ Lf\ ON ON
m ON
Φ
ω
> ο
ω
CO
CO
ω
H o o o
ο ο ο
cd
co Φ
ON
cd
ο
ΰ
β
Φ Φ
cd
ο
Ο
ο
ON
O N ^
-Ρ
u
IT
Φ
cd
CO
u u Ο w w
•Η
Ο Ν ^
^-^ t—
Φ
φ ft
ο Φ VO cd ο -P ON ο ο ο —^ ο
ο Φ Φ
o
ΰ
Φ
cd cd
Φ
-ρ
νο
-Ρ -Ρ o ο ο u
-P φ Φ
ω Ρ
φ
no
-Ρ
CO
EH
Ο •Η
St
Φ
Η ,q ce
sor
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
-P
-Ρ
U cd Φ
ο cd U ο
Φ Φ
CO *Η CO
φ Η
CQ cd
I
& ο -Ρ φ I
I on I H
cd
ι
I H
-P -P d) 0)
H OJ
I
•H - H
I ifWD
j?
H
1
LTN
Η
φ
Φ
Λ -P I -Ρ Φ Ρ
00
•P
-P
•H
•Η
Η ΡP Η I ^ | ^ ^ ^ r! Ο «Ι +)Φ Ο ν ί. ρΦ ^Φ Η- ΡΟ Η
>5
I
I
Η -Ρ Λ . φ - Ρ >s S Φ Λ ·Η I Φ I -Ρ s ϋ ^ Ο Μ Φ Ο ΛI
j?
I on I ο
•Η
-Ρ Η -Ρ φ -Ρ I φ
OJ
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
238
FOOD TASTE CHEMISTRY
Table XVII Oxygen H e t e r o c y c l i c Compounds
Compound
Sensory D e s c r i p t i o n
Spicy, smoky, s l i g h t l y cinnamonl i k e odor (98).
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
Fur an
Sweet b r e a d - l i k e , caramel-like t a s t e (98_). (99)»
Furfury1 a l c o h o l
Coconut
5-methyl-2-furfural
Sharp grape (98) ·
M a l t o l (3-hydroxy-2methyl-pyrone)
P l e a s i n g strong f r u i t s y f r e s h bread (99)»
Isomaltol
F r u i t y caramel, f r e s h bread odor, overtone m e d i c i n a l grassy (99)»
N-Furfuryl pyrrole
Green h a y - l i k e aroma
^-hydroxy-5-methy13(2H)-Furanone
Beef broth (lOO) burning sweet t a s t e (JO), burnt pineapple (101).
2,5-Dimethyl-U-hydroxy3(2H)-Furanone
Odor of roasted c h i c o r y roots (102).
References (98
-
(98).
102).
S u l f u r H e t e r o c y c l i c s . S u l f u r c o n t a i n i n g compounds ( t h i o l s , thiophenes, t h i a z o l e s , ... etc.) p l a y a major r o l e i n the f l a v o r o f raw and processed foods. These compounds have c h a r a c t e r i s t i c f l a v o r notes and the f l a v o r thresholds are mostly low. Several reviews ( i l l , 112, 113) demonstrate the important r o l e o f s u l f u r compounds i n food f l a v o r s . Organoleptic p r o p e r t i e s of these compounds may be pleasant, strong n u t - l i k e odor of i+-methyl-5v i n y l t h i a z o l e which i s present i n cocoa (ilk); objectionable p y r i d i n e - l i k e odor o f t h i a z o l e (115.); q u i n o l i n e - l i k e odor of benzothiazole ( l l 6 ) ; strong tomato l e a f - l i k e odor of i s o b u t y l t h i a z o l e (ill); and bread c r u s t f l a v o r o f a c e t y l - 2 - t h i a z o l i n e ( l l 8 ) . A mixture o f oxazoles, t h i a z o l e s , t h i a z o l i n e s , imidazoles, t r i t h i o l a n e s and
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
9.
MABROUK
Browning Reaction Products
239
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
d i t h i a n e s which had a meaty f l a v o r was obtained from a model sys tem c o n s i s t i n g o f α-dicarbonyls, e t h a n a l , hydrogen s u l f i d e and ammonia (119)« Unsaturated aldehydes r e a c t with hydrogen s u l f i d e and t h i o l s t o give mainly a d d i t i o n products t o the carbon-carbon double bond (120). The nomenclature o f the r e s u l t i n g compounds and t h e i r o r g a n o l e p t i c d e s c r i p t i o n s are given i n Table XVIII. T h i o l s , thiophenes, t h i a z o l e s , s u l f i d e s and furans were i d e n t i f i e d i n the v o l a t i l e s o f heating glucose, hydrogen s u l f i d e , and ammonia at 100°C f o r two hours (121). These v o l a t i l e s gave a roast beef l i k e aroma. Complex mixtures o f mercapto-substituted furans and thiophene d e r i v a t i v e s , which were reminiscent o f r o a s t meat were produced upon h e a t i n g t-hydroxy-5 methyl-3(2H)-furanone and i t s t h i o analog with hydrogen s u l f i d e (122). L i p i d Browning. L i p i d browning r e a c t i o n s o f the M a i l l a r d type between carbonyl groups (provided by sugars o r sugar degradation products and those r e s u l t i n g from unsaturated f a t t y a c i d s o x i d a t i o n ) and the f r e e amino groups present i n phospholipids have been recognized as potent causes o f undesirable f l a v o r , c o l o r and t e x t u r e changes i n dehydrated foods (123). Phosphatidyl ethanolamine, p h o s h a t i d y l s e r i n e , ethanolamine and s e r i n e plasmalogens c o n t a i n f r e e amino groups which can undergo l i p i d browning r e a c t i o n s . Phospolipids are u s u a l l y r i c h i n h i g h l y unsaturated f a t t y acids i n comparison with n e u t r a l l i p i d s , thus they are good sources o f carbonyls. A l s o , the primary amine moitiés o f p o l a r l i p i d s c a t a l y z e the a l d o l condensation o f C i ^ - C i e aldehydes r e s u l t i n g from plasmalogen h y d r o l y s i s , thus forming a,3-unsaturated aldehydes (12k). Phosp h a t i d y l ethanolamine r e a c t e d with propanal and n-hexanal forming phosphatidyl l - ( 2 - h y d r o x y e t h y l ) - 2 - e t h y l - 3 , 5 - d i m e t h y l p y r i d i n i u m , and p h o s p h a t i d y l - l - ( 2 - h y d r o x y e t h y l ) - 2 - h e x y l - 3 , 5 - d i p e n t y l p y r i d i nium, r e s p e c t i v e l y (125). The p e r i d i n i u m r i n g i s formed by the r e a c t i o n between one mole o f amino-N o f p h o s p h a t i d y l ethanolamine and three moles o f n-alkanals. The same r e a c t i o n took p l a c e i n the s y n t h e s i s o f s u b s t i t u t e d p y r i d i n e s by condensation o f carbonyl compounds with ammonia (126, 1 2 7 ) ·
Abstract In processed foods, non-enzymic browning reaction is the major source of its desirable flavors. Flavors of the products of this reaction depend upon: the molecular structure of nitrogenous com pounds (amines, amino acids, peptides, glycopeptides, proteins, . . . etc.); aldoses, ketoses, non-reducing, deoxy sugars, sugar acids, ... etc.); heating temperature; duration of the reaction; initial hydrogen ion concentration, moisture content, and the media of the reaction (alcoholic, aqueous, or anhydrous). The ratio of the nitrogenous compound to sugar or carbonyl compound has great effect on the flavor notes. Comparison betwen browning
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Reference
(120)
1-Methyl thiooctan-3-one
l-Octene-3-one
thiobutanal thiohexanal thioheptanal thiononal
3-methyl 3-Methyl 3-Methyl 3-Methyl
A d d i t i o n Product
2-Butenal 2-Hexenal 2-Hebtenal 2-Nonenal
Carbonyl Added Impression
Cheese-like ( B r i t e ) Cabbage (Rubbery) Unripe tomato Bast-like, slightly floral Radish-like
Flavor
0.5 5 5 3
Water
0.5 50 80 20
Paraffin O i l
F l a v o r o f Products o f the A d d i t i o n Between Unsaturated Carbonyls and Methanethiol
Table XVIII
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
9.
MABROUK
Browning Reaction Products
241
reaction products and rate of degradation of reactants under anhy drous condition, aqueous and alcoholic media was discussed. Flavor notes of products of amino compounds-sugars reaction were reviewed with emphasis on amino-ribose system. Meat-like flavor was imparted by browning reaction products of carnosine-, citrul line-, histidine-, glutamic-, 2-pyrrolidone-5-carboxylic-, methionine-, cysteine-, cysteic-, and taurine-ribose. Recent advancements in nitrogen-, oxygen- and sulfur hetercyclics and lipid browning were presented. Literature Cited.
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.
Economics, Statistics, and Cooperative Service, USDA, National Review, 1978, April; p. 53. Yamasaki, Y.; Kaekawa, Κ., Agr. Biol. Chem., 1978, 42, 1761. Waley, S.G., Advan. Protein Chem., 1966, 21, 1. Reineccius, G.A.; Andersen, D.A.; Kavanagh, T.E.; Keeney, P.G., J. Agr. Food Chem., 1972, 20, 1. Patterson, R.L.S., J. Sc. Food Agr., 1968, 19, 31. Wong, E . ; Nixon, L.N.; Johnson, C.B., J. Agr. Food Chem., 1975, 23, 495. Watanabe, K.; Sato, Υ., Agr. Biol. Chem., 1970, 34, 88. Watanabe, K.; Sato, Υ., Agr. Biol. Chem., 1971, 35, 756. Yamato, T.; Tadao, K.; Kato, H.; Fujimaki, Μ., Agr. Biol. Chem., 1970, 34, 88. Hornstein, J., Chemistry and Physiology of Flavors, Schultz, H.W.; Day, E.A.; Libbey, L.M., Eds., Avi Publishing Co., Westport, CT, 1967; pp. 228-250. Watanabe, K.; Sato, Υ., Agr. Biol. Chem., 1970, 34, 467. Watanabe, K.; Sato, Υ., Agr. Biol. Chem., 1971, 35, 278. Harkes, P.D.; Begemann, W.J., J. Am. Oil Chemists' Soc., 1974, 51, 356. Hornstein, I.; Crowe, P.F.; Heimberg, M.J., J. Food Sci., 1961, 26, 581. Pippen, E.L.; Nonaka, M.; Jones, F.T.; Stitt, F., Food Res., 1958, 23, 103. Pippen, E.L.; Nonaka, Μ., Food Res., 1960, 25, 764. Heyns, K.; Stute, R.; Paulsen, Η., Carbohydrate Res., 1966, 2, 132. Heyns, K.; Klier, Μ., Carbohydrate Res., 1968, 6, 436. Walter, R.; Fagerson, I.S., J. Food Sci., 1968, 33, 294. Kort, M.J., Advan. Carbohydrate Chem. Biochem., 1970, 25, 311. Chuyen, N.V.; Kurata, T.; Fujimaki, Μ., Agr. Biol. Chem., 1973, 37, 327. Kato, S.; Kurata, T.; Fujimaki, Μ., Agr. Biol. Chem., 1973, 37, 1759. Fujimaki, M.; Kato, S.; Kurata, T., Agr. Biol. Chem., 1969, 33, 1144. Kato, S.; Kurata, T.; Fujimaki, Μ., Agr. Biol. Chem., 1973, 37, 539.
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
242
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59.
FOOD TASTE CHEMISTRY
Schonberg, Α.; Moubacher, R., Chem. Rev., 1952, 50, 261. Hodge, J.E., J. Agr. Food Chem., 1953, 1, 928. Hodge, J.E., Advan. Carbohydrate Chem., 1955, 10, 169. Ellis, G.P., Advan. Carbohydrate Chem., 1959, 14, 163. Reynolds, T.M., Advan. Food Res., 1963, 12, 1. Reynolds, T.M., Advan. Food Res., 1965, 14, 167. Lightbody, H.D.; Feuold, H.R., Advan. Food Res., 1948, 1, 149. Ross, A.F., Advan. Food Res., 1948, 1, 325. Stadman, E.R., Advan. Food Res., 1948, 1, pp. 325-372. Wodemeyer, G.A.; Dollar, A.M., J. Food Sci., 1963, 28, 537. Wiseblatt, L.; Zoumut, H.F., Cereal Chem., 1963, 40, 162. El'Ode, K.E.; Dornseifer, T.P.; Keith, E.S.; Powers, J.J., J. Food Sci., 1966, 31, 351. Herz, W.J.; Shallenberger, R.S., Food Res., 1960, 25, 491. Barnes, H.M.; Kaufman, C.W., Ind. Eng. Chem., 1947, 39, 1167. Kiley, P.J.; Nowlin, A.C.; Mariarty, J.H., Cereal Sci. Today, 1960, 5, 273. Buckdeschel, W.Z., Ges Brau, 1914, 430, thru Chem. Abs., 1915, 9, 118. Morimoto, T . ; Johnson, J.A., Cereal Chem., 1966, 43, 627. Keeney, M.; Day, E.A., J. Dairy Sci., 1957, 40, 847. Actander, S., Perfume and Flavor Chemicals (Aroma Chemicals); Published by the Author, Montclair, NJ, 1969; two volumes. Persson, T . ; von Sydow, E . , J. Food Sci., 1973, 38, 377. Rooney, L.W.; Salem, Α.; Johnson, J.A., Cereal Chem., 1967, 44, 539. Self, R., Chemistry and Physiology of Flavors, Schultz, H.W.; Day, E.A.; Libbey, L.M., Eds., Avi Publishing Co., Westport, CT, 1967; pp. 362-389. Mabrouk, A.F.; Holms, L.G., Abstracts of Papers, 159, Division of Agricultural and Food Chemistry, 172nd ACS National Meet ing, San Francisco, CA, September 1976. Rohan, T.A.; Stewart, T., J. Food Sci., 1966, 31, 202. Rohan, T.A.; Stewart, T., J. Food Sci., 1966, 31, 206. Rohan, T.A.; Stewart, T., J. Food Sci., 1967, 32, 395. Rohan, T.A.; Stewart, T., J. Food Sci., 1967, 32, 399. Rohan, T.A.; Stewart, T., J. Food Sci., 1967, 32, 625. van Praag, M.; Stein, S.H.; Tibbets, M.S., J. Agr. Food Chem., 1968, 16, 1005. Pickenhagen, W.; Dietrich, P.; Keil, B.; Polansky, J.; Nouaille, F.; Lederer, Ε., Helv. Chem. Acta., 1975, 58, 1078. Kato, S.; Kurata, T . ; Ishitsuka, R.; Fujimaki, Μ., Agr. Biol. Chem., 1970, 34, 1826. Shiba, T . ; Nunami, K.I., Tetrahedron Letters, 1974, 6, 509. Takanishi, K.; Tadenuma, M.; Kitamoto, K.; Sato, S., Agr. Biol. Chem., 1974, 38, 927. Sakamura, S.; Furukawa, K.; Kasai, T., Agri. Biol. Chem., 1978, 42, 607. Boyd, E.N.; Keeney, P.G.; Patton, S., J. Food Sci., 1965, 30, 854.
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
9.
60. 61. 62. 63. 64.
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88.
MABROUK
Browning Reaction Products
van Straten, S.; de Vrijer, F., List of Volatile Compounds in Food, Central Institute for Nutrition and Food Research, Zeist, Holland, 1973. Eckey, E.W., Vegetable Fats and Oils, Reinhold Publishing Corp., NY, 1954; p. 676, 760. Feldman, J.R.; Ryder, W.S.; Kung, J.T., J. Agr. Food Chem., 1969, 17, 733. Underwood, G.E.; Deatherage, F.E., Food Res., 1952, 17, 425. Khan, N.A.; Brown, J.B., J. Am. Oil Chemists' Soc., 1953, 30 606. Shigematsu, H.; Kurata, T.; Kato, H.; Fujimaki, Μ., Agr. Biol. Chem., 1972, 36, 1631. Kobayasi, N.; Fujimaki, Μ., Agr. Biol. Chem., 1965, 29, 1059. Yoshikawa, K.; Libbey, L.M.; Cobb, W.Y.; Day, E.A., J. Food Sci., 1965, 30, 991. Gianturco, M.A.; Giammarino, A.S.; Friedel, P.; Flanagan, V., Tetrahedron, 1964, 20, 2951. Gianturco, M.A.; Giammarino, A.S.; Friedel, P., Nature, 1966, 210, 1358. Tatum, J.H.; Shaw, P.E.; Berry, R.E., J. Agr. Food Chem., 1967, 15, 773. Kato, Η., Agr. Biol. Chem., 1966, 30, 822. Kato, H., Agr. Biol. Chem., 1967, 31, 1086. Kato, H.; Fujimaki, M., J. Food Sci., 1968, 33, 445. Kato, H.; Fujimaki, Μ., Agr. Biol. Chem., 1970, 34, 1071. Shigematsu, H.; Kurata, T.; Kato, H.; Fujimaki, Μ., Agr. Biol. Chem., 1971, 35, 2097. Kato, H.; Sonobe, H.; Fujimaki, Μ., Agr. Biol. Chem., 1977, 41, 711. Sonobe, H.; Kato, H.; Fujimaki, Μ., Agr. Biol. Chem., 1977, 41, 609. Rizzi, G.P., J. Agr. Food Chem., 1974, 22, 279. Shigematsu, K.; Kurata, T.; Kato, H.; Fujimaki, Μ., Agr. Biol. Chem., 1972, 36, 1631. Walradt, J.P.; Pittet, A.O.; Kinlin, T.E.; Muralidhara, R.; Sanderson, Α., J. Agr. Food Chem., 1971, 19, 972. Kinlin, T.E.; Muralidhara, R.; Pittet, A.O.; Sanderson, Α.; Walradt, T.P., J. Agr. Food Chem., 1972, 20, 1021. Hunter, I.R.; Walden, M.K.; Scherer, J.R.; Lundin, R.E., Cereal Chem., 1969, 46, 189. Watanabe, K.; Sato, Y., J. Agr. Food Chem., 1971, 19, 1017. Buttery, R.G.; Ling, L.C.; Teranishi, R.; Mont, T.R., J. Agr. Food Chem., 1977, 25, 1277. MacLeod, G.; Coppock, B.M., J. Agr. Food Chem., 1977, 25, 113. Webster's Third New International Dictionary, G&C Merriam Co., Publishers, Springfield, MA, 1967. Goldman, I.M.; Seibl, J.; Flament, I.; Gautschi, F.; Winter, M.; Willham, B.; Stoll, Μ., Helv. Chem. Acta., 1967, 50, 694. Krems, I.J.; Spoerri, P.E., Chem. Rev., 1947, 40, 279.
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
244
FOOD TASTE CHEMISTRY
89.
Maga, J.A.; Sizer, C.E., Crit. Rev. Food Technol., 1973, 4, 39. Maga, J.A.; Sizer. C.E., J. Agr. Food Chem., 1973, 21, 22. Seifert, R.M.; Buttery, R.G.; Guadagni, D.G.; Black, D.R.; Harris, J.G., J. Agr. Food Chem., 1970, 18, 246. Seifert, R.M.; Buttery, R.G.; Guadagni, D.G.; Black, D.R.; Harris, J.G., J. Agr. Food Chem., 1972, 20, 135. Deck, R.E.; Chang, S.S., Chem. Ind., 1965, 1343. Buttery, R.G.; Seifert, R.M.; Guadagni, D.G.; Ling, L.C., J. Agr. Food Chem., 1969, 17, 1322. Polak's Fruital Works, Improvements relating to flavorings, Br. Patent 1,248,380, September 29, 1971. Takken, H.J.; van der Linde, L.M.; Boelens, M.; van Dort, J. Μ., J. Agr. Food Chem., 1975, 23, 638. Parliment, T.H.; Epstein, Μ., J. Agr. Food Chem., 1973, 21, 714. Guadagni, D.G.; Buttery, R.G., J. Sci. Food Agr., 1972, 23, 1435. Shaw, P.E.; Tatum, J.H.; Berry, R.E., J. Agr. Food Chem., 1969, 17, 907. Tonsbeek, C.H.T.; Planchen, A.J.; van de Weerdhof, T., J. Agr. Food Chem., 1968, 16, 1016. Rodin, J.O.; Himel, C.M.; Silverstein, R.M.; Leeper, R.W.; Gortner, W.A., J. Food Sci., 1965, 30, 280. Tonsbeek, C.H.T.; Koenders, Ε.Β.; van der Zijden, Α.S.M.; Losekoot, J.A., J. Agr. Food Chem., 1969, 17, 397. Re, V.L.; Maurer, B.; Ohloff, G., Helv. Chem. Acta., 1973, 56, 1882. Takei, Y.; Yamanishi, T., Agr. Biol. Chem., 1974, 38, 2329. Takei, Y., Agr. Biol. Chem., 1977, 41, 2361. Stansby, M.E., Food Technol., 1962, 16, 28. Hodge, J.E.; Moser, H.A., Cereal Chem., 1961, 38, 221. Hodge, J.E.; Mills, F.D.; Fisher, B.E., Cereal Sci. Today, 1972, 17, 34. Numomura, N.; Saaki, M.; Asao, Y.; Yokotsuka, T., Agr. Biol. Chem., 1976, 40, 491. Ito, H., Agr. Biol. Chem., 1976, 40, 827. Schutte, L . , Crit. Rev. Food Technol., 1974, 4, 457. Maga, J.A., Crit. Rev. Food Sci. Nutr., 1975, 6, 153. Maga, J.A., Crit. Rev. Food Sci. Nutr., 1975, 6, 241. Maga, J.A., Crit. Rev. Food Sci. Nutr., 1976, 7, 147. Stoll, M.; Dietrich, P.; Sunte, E.; Winter, M., Helv. Chem. Acta., 1967, 50, 2065. Merck Index 9th ed., 1976; p. 1313. Viani, R.; Bricout, J.; Marion, J.P.; Muggler-Chavan, F.; Reymond, D.; Egli, R.H., Helv. Chem. Acta., 1969, 52, 887. Tonsbeek, C.H.T.; Copier, H.; Plancken, A . J . , J. Agr. Food Chem., 1971, 19, 1014.
90. 91. 92. 93. 94. 95.
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118.
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
9.
MABROUK
Browning Reaction Products
Downloaded by IOWA STATE UNIV on April 19, 2017 | http://pubs.acs.org Publication Date: December 14, 1979 | doi: 10.1021/bk-1979-0115.ch009
119.
245
Boelens, M.; van der Linde, L.M.; de Valois, P.J.; van Dort, H.M.; Takken, H.J., Proc. Int. Symp. Aroma Research, Zeist, Netherland, 1975; pp. 95-100. 120. Badings, H.T.; Maarse, H.; Kleipool, R.J.C.; Tas, A.C.; Neeter, R.; ten Noever de Brauw, M.C., Proc. Int. Symp. Aroma Research, Zeist, Netherland, 1975; pp. 63-73. 121. Shibamoto, T.; Russell, G.F., J. Agr. Food Chem., 1976, 24, 843. 122. van den Ouweland, G.A.M.; Peer, H.G., J. Agr. Food Chem., 1975, 23, 501. 123. Lea, C.H., J. Sci. Food Agr, 1957, 8, 1. 124. Nakanishi, T.; Suyama, Κ., Nippon Chikusan Gakkai-Ho, 1970, 41, 29. 125. Nakanishi, T.; Suyama, Κ., Agr. Biol. Chem., 1974, 38, 1141. 126. Frank, R.L.; Seven, R.P., J. Amer. Chem. Soc., 1949, 71, 2629. 127. Farley, C.P.; Eliel, E.L., J. Amer. Chem. Soc., 1956, 78, 3477. RECEIVED August 2, 1979.
Boudreau; Food Taste Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1979.