Chapter 3
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2016 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch003
Hydrocarbon Cracking Selectivities with Dual-Function Zeolite Catalysts K. Rajagopalan and G. W. Young Davison Chemical Division, W. R. Grace & Company, 7379 Route 32, Columbia, MD 21044 High yield of C to C aromatics was obtained with thermally treated ZSM-5 (with a SiO2 to Al2O3 ratio of 47) during n-hexadecane cracking in a fixed bed reactor. After steam treatment, yield of C5 to C7 olefins increased at the expense of aromatics. The effect of the addition of a small concentration (1 Wt.%) of ZSM-5 to a rare earth Y fluid cracking catalyst during cracking of a commercial gas oil was investigated by measurement of yields of gasoline range hydrocarbons. The addition of either thermally treated or steam treated ZSM-5 to the catalyst reduced the concentration of normal and monomethyl paraffins in the product gasoline, thus enriching olefins and aromatics. No evidence of preferential reduction of straight chain paraffins compared to monomethyl paraffins was observed. Experiments using a catalytically cracked gasoline as feedstock suggest that ZSM-5 cracks paraffin precursors (carbonium ion or olefin intermediates) and prevents formation of gasoline range paraffins. These changes in gasoline composition due to ZSM-5 in the dual zeolite catalyst are probably responsible for increased gasoline octane number observed with that catalyst. 6
8
S y n t h e t i c Y f a u j a s i t e z e o l i t e s have been u s e d c o m m e r c i a l l y as c r a c k i n g c a t a l y s t s o v e r t h e p a s t two decades (1) and more r e c e n t l y d u a l z e o l i t e f l u i d c r a c k i n g c a t a l y s t s c o n t a i n i n g f a u j a s i t e and ZSM-5 were d i s c o v e r e d t o i n c r e a s e t h e o c t a n e number o f t h e p r o d u c t g a s o l i n e d u r i n g c a t a l y t i c c r a c k i n g o f gas o i l ( 2 ) . This concept, where ZSM-5 c o n s t i t u t e s o n l y a s m a l l f r a c t i o n (about 1 weight p e r c e n t ) o f t h e c r a c k i n g c a t a l y s t , has been t e s t e d c o m m e r c i a l l y i n Europe (3) and i n t h e U n i t e d S t a t e s ( 4 ) . Cracking of p a r a f f i n i e and o l e f i n i c h y d r o c a r b o n s by ZSM-5 c a t a l y s t s have been s t u d i e d by s e v e r a l i n v e s t i g a t o r s (5-11) o v e r a range o f t e m p e r a t u r e s (350 t o 540°C). These i n v e s t i g a t o r s u s e d e i t h e r n e a r l y p u r e ZSM-5 o r a c a t a l y s t c o n t a i n i n g 50 Wt.% ZSM-5 i n a s i l i c a m a t r i x . The 0097-6156/88/0375-0034$06.00/0 • 1988 American Chemical Society
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
3. RAJAGOPALAN AND YOUNG
Hydrocarbon Cracking Selectivities
35
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2016 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch003
mechanism o f o c t a n e enhancement w i t h t h e d u a l z e o l i t e c a t a l y s t was i n v e s t i g a t e d by examining t h e e f f e c t o f a d d i t i o n o f 1 Wt.% ZSM-5 t o t h e c r a c k i n g c a t a l y s t c o m p o s i t i o n on p r o d u c t s e l e c t i v i t y d u r i n g c a t a l y t i c c r a c k i n g o f a commercial gas o i l a t 500°C. Changes i n c o m p o s i t i o n o f p r o d u c t g a s o l i n e ( p a r a f f i n s , o l e f i n s , naphthenes and a r o m a t i c s ) caused b y ZSM-5 were measured. A model p a r a f f i n compound and a g a s o l i n e o b t a i n e d by c a t a l y t i c c r a c k i n g were used as feedstocks i n c e r t a i n experiments. S i n c e commercial c r a c k i n g c a t a l y s t s undergo c o n t i n u o u s h i g h temperature r e g e n e r a t i o n i n t h e p r e s e n c e o f steam ( 1 ) , t h e e f f e c t o f h y d r o t h e r m a l t r e a t m e n t o f ZSM-5 was a l s o i n v e s t i g a t e d . E x p e r i m e n t a l Methods C a t a l y s t s and P r e t r e a t m e n t . ZSM-5 was p r e p a r e d i n o u r l a b o r a t o r y and was d e t e r m i n e d t o be c r y s t a l l o g r a p h i c a l l y p u r e by X - r a y d i f fraction. Η-form o f t h e z e o l i t e was o b t a i n e d by i o n e x c h a n g i n g w i t h N H 4 N O 3 s o l u t i o n f o l l o w e d by c a l c i n a t i o n t o r e d u c e t h e sodium c o n t e n t below 500 ppm. The d e s i g n a t i o n ZSM-5 w i l l be u s e d i n t h i s m a n u s c r i p t t o denote t h e Η-form o f t h e z e o l i t e . The S 1 O 2 t o A I 2 O 3 r a t i o o f t h e z e o l i t e was a n a l y z e d as 47 and average p a r t i c l e s i z e was about .2 vim. C a t a l y s t s were p r e p a r e d by a t h o r o u g h m i x i n g o f z e o l i t e w i t h a s i l i c a - a l u m i n a s o l b i n d e r and k a o l i n c l a y d i l u e n t f o l l o w e d by d r y i n g . The b i n d e r and c l a y component o f t h e c a t a l y s t w i l l be r e f e r r e d t o as t h e " m a t r i x " . Two c a t a l y s t s c o n t a i n i n g 1 Wt.% and 25 Wt.% ZSM-5 i n t h e m a t r i x were p r e p a r e d . A " p u r e " m a t r i x c a t a l y s t t h a t d i d n o t c o n t a i n any z e o l i t e was a l s o p r e p a r e d so t h a t t h e e f f e c t o f t h e m a t r i x i n t h e ZSM-5 c a t a l y s t s c o u l d be t a k e n i n t o account. C o m m e r c i a l l y a v a i l a b l e Super-D, which c o n t a i n s r a r e e a r t h exchanged Y z e o l i t e (REY) i n t h e m a t r i x and i s m a n u f a c t u r e d by t h e D a v i s o n C h e m i c a l D i v i s i o n o f W. R. Grace & Co., was used as t h e REY catalyst. Steam p r e - t r e a t m e n t o f f l u i d c r a c k i n g c a t a l y s t s has been con v e n t i o n a l l y employed t o r e p r e s e n t t h e d e a c t i v a t i o n o c c u r r i n g i n a commercial FCC u n i t . A p p r o p r i a t e steam p r e - t r e a t m e n t methods have been d e v e l o p e d so t h a t t h e a c t i v i t y and s e l e c t i v i t y o f t h e steam pre-treated c a t a l y s t i s e q u i v a l e n t t o a commercially d e a c t i v a t e d c a t a l y s t (12). However, a u n i q u e steaming method may n o t be s u i t a b l e f o r c a t a l y s t s o f v a r y i n g c o m p o s i t i o n s ( 1 2 ) . Two steaming methods d e s i g n e d t o s i m u l a t e d e a c t i v a t i o n i n a commercial u n i t o f t h e two t y p e s o f c a t a l y s t s used i n t h i s work were employed. Super-D was t r e a t e d f o r 8 h o u r s a t 732°C w i t h a steam p r e s s u r e o f 2 atmospheres. The c a t a l y s t s c o n t a i n i n g ZSM-5 were t r e a t e d f o r 12 h o u r s a t 827°C w i t h a steam p a r t i a l p r e s s u r e o f 0.2 atmosphere. I n a d d i t i o n t o t h e above p r e - t r e a t m e n t s , t h e ZSM-5 c o n t a i n i n g c a t a l y s t s were a l s o t h e r m a l l y t r e a t e d f o r 3 h o u r s a t 704°C i n s t a t i c a i r t o r e p r e s e n t t h e e f f e c t o f f r e s h l y added ZSM-5 i n a commercial FCC u n i t . Dual z e o l i t e c a t a l y s t s were p r e p a r e d by p h y s i c a l l y b l e n d i n g Super-D w i t h t h e c a t a l y s t c o n t a i n i n g 25 Wt.% ZSM-5 so as t o a c h i e v e 1 Wt.% ZSM-5 i n t h e p h y s i c a l b l e n d . Two b l e n d s , one c o n t a i n i n g steam t r e a t e d Super-D and t h e r m a l l y t r e a t e d ZSM-5 c a t a l y s t and t h e o t h e r c o n t a i n i n g steam t r e a t e d Super-D and steam t r e a t e d ZSM-5 c a t a l y s t were p r e p a r e d . E a c h o f t h e b l e n d s was t h e n i n t i m a t e l y mixed.
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
36
FLUID CATALYTIC CRACKING: ROLE IN MODERN REFINING
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2016 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch003
F e e d s t o c k s and R e a c t o r . F e e d s t o c k f o r t h e e x p e r i m e n t s was chosen from among a gas o i l w i t h p r o p e r t i e s d e s c r i b e d i n T a b l e I , a g a s o l i n e o b t a i n e d by c a t a l y t i c c r a c k i n g w i t h t h e c o m p o s i t i o n d e s c r i b e d i n T a b l e VI and 99% p u r e n-hexadecane from A l d r i c h (Milwaukee, WI). A f i x e d bed r e a c t o r d e s c r i b e d i n ASTM D3907 was employed f o r c a t a l y t i c t e s t i n g . E x p e r i m e n t s were c a r r i e d out a t a r e a c t o r t e m p e r a t u r e o f 500°C, Weight H o u r l y Space V e l o c i t y o f 16 and c a t a l y s t r e s i d e n c e t i m e (13) o f 75 seconds. Material b a l a n c e f o r t h e r e a c t o r runs ranged from 95 t o 102 w e i g h t p e r c e n t .
Table I.
P r o p e r t i e s o f a Commercial
Gas O i l
Mass S p e c t r a l A n a l y s i s Paraffins, Vol.% C y c l o p a r a f f i n s ( 1 , 2, and 3 r i n g ) , V o l . % Aromatics, V o l . %
: : :
14.5 33.1 52.4
Boilinft Point D i s t r i b u t i o n Initial 10 V o l . % 50 V o l . % 90 V o l . %
: : : :
187°C 339°C 437°C 544°C
(ASTM:
S p e c i f i c G r a v i t y a t 16°C UOP
M
K
M
Factor
D-1160)
: :
.912 11.78
S u l f u r , Wt.%
:
.39
N i t r o g e n , Wt.%
:
.11
P r o d u c t A n a l y s e s . L i q u i d p r o d u c t from t h e r e a c t o r was s e p a r a t e d i n t o i t s components and a n a l y z e d w i t h t h e a i d o f a H e w l e t t - P a c k a r d (HP) 5880A gas chromatograph u s i n g a 50m D i m e t h y l S i l i c o n e F l u i d c a p i l l a r y column and a flame i o n i z a t i o n d e t e c t o r . A column t e m p e r a t u r e program r a n g i n g from 15°C t o 280°C was u s e d t o e n a b l e adequate r e s o l u t i o n . The components were i d e n t i f i e d u s i n g a HP 5990A GC/MS System. L i g h t h y d r o c a r b o n s ( C i t o C s ) were c o l l e c t e d i n a gas bag and a n a l y z e d on a HP 5710 gas chromatograph w i t h a 20% D i b u t y l m a l e a t e packed column m a i n t a i n e d a t 22°C and a flame i o n i z a t i o n d e t e c t o r . Hydrogen i n t h e gas bag was a n a l y z e d by a Gow-Mac t h e r m a l c o n d u c t i v i t y d e t e c t o r c o n n e c t e d t o a 13X m o l e c u l a r s i e v e packed column. Coke on s p e n t c a t a l y s t was measured by Carbon D e t e r m i n a t o r WR-12 (Leco C o r p o r a t i o n , S t . J o s e p h , MI). R e s u l t s and
Discussion
E f f e c t o f Steam Treatment. X-ray d i f f r a c t i o n analyses i n d i c a t e d t h a t ZSM-5 r e t a i n e d i n e x c e s s o f 90% o f i t s c r y s t a l l i n i t y a f t e r t h e steam t r e a t m e n t d e s c r i b e d i n t h e methods s e c t i o n . Unit c e l l c o n s t a n t o f t h e REY z e o l i t e i n Super-D d e c l i n e d from 24.65& t o 24.38a due t o t h e steam t r e a t m e n t . Independent measurements
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2016 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch003
3. RAJAGOPALAN AND YOUNG
Hydrocarbon Cracking Selectivities
37
i n d i c a t e d t h a t RE i o n exchange r e s u l t s i n a l a t t i c e e x p a n s i o n o f 0.04A. Thus, t h e u n i t c e l l s h r i n k a g e due t o steaming cannot be f u l l y e x p l a i n e d by p o s t u l a t i n g r a r e e a r t h m i g r a t i o n o u t s i d e t h e zeolite. I t i s reasonable t o i n f e r that dealumination of the f a u j a s i t e framework o c c u r r e d d u r i n g t h e steam p r e t r e a t m e n t . Unit c e l l s h r i n k a g e o f f a u j a s i t e h a s a l s o been o b s e r v e d d u r i n g u s e i n a commercial u n i t ( 1 4 ) . The e f f e c t o f steam t r e a t m e n t o f ZSM-5 on i t s c r a c k i n g a c t i v i t y and s e l e c t i v i t y was measured w i t h e x p e r i m e n t s u s i n g n-hexadecane feed. W i t h t h e t h e r m a l l y t r e a t e d ZSM-5 c a t a l y s t , c o n c e n t r a t i o n o f t h e u n c o n v e r t e d n-hexadecane i n t h e p r o d u c t was n o t m e a s u r a b l e w h i l e 50% o f t h e f e e d was u n c o n v e r t e d w i t h t h e steam t r e a t e d ZSM-5 c a t a l y s t ( T a b l e I I ) . The lower l i m i t o f c o n v e r s i o n w i t h t h e thermally treated c a t a l y s t corresponding to d e t e c t i o n l i m i t of n-hexadecane i s 99.99%. T h i s lower l i m i t s u g g e s t s a t l e a s t an o r d e r o f magnitude r e d u c t i o n i n a p p a r e n t f i r s t o r d e r r a t e c o n s t a n t o f t h e ZSM-5 c a t a l y s t upon steam t r e a t m e n t . The s m a l l r e d u c t i o n i n c r y s t a l l i n i t y upon steaming cannot f u l l y e x p l a i n t h e d r a m a t i c a c t i v i t y loss. L o s s o f a c t i v e s i t e s due t o d e a l u m i n a t i o n o f ZSM-5 can be p o s t u l a t e d t o e x p l a i n t h e r e d u c t i o n i n a c t i v i t y .
1
TABLE I I .
E f f e c t o f Steam Treatment o f ZSM-5 C a t a l y s t on P r o d u c t S e l e c t i v i t y D u r i n g n-hexadecane C r a c k i n g
Pretreatment:
3 Hours a t 704°C in Static Air
Steaming f o r 12 Hours a t 827°C w i t h Steam p a r t i a l p r e s s u r e = .2 atm.
Y i e l d -r F r a c t i o n a l C o n v e r s i o n , Wt.% Feed Paraffins Plus Ci
Olefins 0.10 1.4 19.8 29.4 22.0 10.0 3.2
:
11.5
0.6
0.4 0.3 0.3 0.2 0.3 100 0.12 1.10
3.0 1.8 1.8 1.5 0.7 50 0.01 0.10
: :
Cs C4 C5 Ce C7 Ce-Ce
Aromatics
Olefin/Paraffin Ratio Cs C4 Cs Ce C? C o n v e r s i o n , Wt.% H 2 , Wt.% Feed Coke, Wt.% Feed
1
: : : :
0.17 5.1 26.7 26.9 14.2 2.7 1.3
C2
25 Wt.% ZSM-5, 75 Wt.% m a t r i x
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2016 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch003
38
FLUID CATALYTIC CRACKING: ROLE IN MODERN REFINING
O b s e r v a t i o n s r e g a r d i n g a c t i v i t y and s e l e c t i v i t y o f steam t r e a t e d ZSM-5 i n t h i s work c o u l d t h u s a p p l y t o d e a l u m i n a t e d ZSM-5. F o r t h e sake o f b r e v i t y , t h e y i e l d d a t a f o r a l l t h e i n d i v i d u a l components a r e n o t r e p o r t e d i n T a b l e I I and subsequent t a b l e s . The y i e l d o f u n r e p o r t e d components ( u s u a l l y Ce+ o l e f i n s and naphthenes) c a n be c a l c u l a t e d as 100 minus p e r c e n t a g e y i e l d o f t h e r e p o r t e d components. R e s u l t s shown i n T a b l e I I i n d i c a t e t h a t t h e r m a l l y t r e a t e d ZSM-5 produced a h i g h y i e l d o f Ce t o Ce a r o m a t i c s , C3 and C4 h y d r o c a r b o n s . Steam t r e a t m e n t o f ZSM-5 r e d u c e d c r a c k i n g a c t i v i t y and i n c r e a s e d t h e s e l e c t i v i t y f o r Cs t o Ci a l i p h a t i c s a t t h e expense o f a r o m a t i c s . The o l e f i n t o p a r a f f i n r a t i o i n t h e p r o d u c t a l s o i n c r e a s e d upon s t e a m i n g . O l e f i n s have been s u g g e s t e d t o be i n t e r m e d i a t e s d u r i n g f o r m a t i o n o f a r o m a t i c s w i t h ZSM-5 ( 6 ) . Hence, as t h e a c t i v i t y o f ZSM-5 was r e d u c e d t h r o u g h steam t r e a t m e n t , consumption o f o l e f i n s t o form a r o m a t i c s d i d n o t t a k e p l a c e . These r e s u l t s a r e thus c o n s i s t e n t w i t h o b s e r v a t i o n s o f Anderson e t a l . ( 6 ) . Gas O i l C r a c k i n g by t h e D u a l Z e o l i t e C a t a l y s t . A f t e r t h e steam p r e - t r e a t m e n t , t h e gas o i l c r a c k i n g a c t i v i t y o f REY was about 100 times g r e a t e r than t h e a c t i v i t y o f t h e "pure" m a t r i x c a t a l y s t . Thus, t h e dominant c o n t r i b u t o r o f c r a c k i n g s e l e c t i v i t y o f Super D i s e x p e c t e d t o be t h e REY z e o l i t e p r e s e n t i n t h e c a t a l y s t . Yields of Cs t o C7 p a r a f f i n isomers measured d u r i n g t h e c r a c k i n g o f t h e gas o i l a t 500°C by t h e steam t r e a t e d REY c a t a l y s t a r e shown i n T a b l e I I I . The y i e l d o f branched p a r a f f i n s was g e n e r a l l y f i v e t o t e n times h i g h e r t h a n t h e y i e l d o f n o r m a l p a r a f f i n s and t h e major (>50%) p o r t i o n o f t h e b r a n c h e d p a r a f f i n y i e l d c o n s i s t e d o f monomethyl p a r a f f i n s .
Table I I I .
Catalyst
Y i e l d o f P a r a f f i n Isomers D u r i n g C r a c k i n g o f t h e Gas O i l by t h e REY C a t a l y s t
Pretreatment
55.8
Wt.% C o n v e r s i o n Product Y i e l d s
Steam t r e a t e d f o r 8 h r s a t 732°C Steam p r e s s u r e = 2 atmospheres.
(Wt.% Feed)
n-Pentane Isopentane n-Hexane
.20 1.2 .32
2- M e t h y l p e n t a n e
1.7
3- M e t h y l p e n t a n e
1.1
2,3-Dimethylbutane n-Heptane
.33 .23
2- Methylhexane
1.5
3- Methylhexane
1.1
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
3.
RAJAGOPALAN AND YOUNG
T a b l e IV.
Catalyst
C r a c k i n g o f t h e Gas O i l b y D u a l Z e o l i t e
Description
: REY
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2016 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch003
C o n v e r s i o n , Wt.%
:
39
Hydrocarbon Cracking Selectivities
Catalyst
1
REY C a t a l y s t + 1% T h e r m a l l y T r e a t e d ZSM-5 2
Catalysts
REY C a t a l y s t + 1% Steam Treated ZSM-5 3
55.8
54.4
50.3
.04 .33 .67 2.4 .9 2.7 3.7 37.4
P r o d u c t Y i e l d s . Wt.% Feed H2
Methane Ethane + E t h y l e n e Propylene Propane C4 O l e f i n s C4 P a r a f f i n s C s Gasoline
: : : : : : : :
.04 .33 1.1 2.2 .9 2.6 3.6 43.2
.04 .32 1.5 6.1 2.2 4.1 6.0 31.9
C5-C12
:
18.8
+
Paraffins
Coke
:
11.5
15.6
2.1
2.4
2.2
G a s o l i n e C o m p o s i t i o n , Wt.% n-hexane Methylpentanes 2,3 D i m e t h y l Butane
: : :
.92 7.9 .94
.97 5.9 .73
.83 7.3 .86
n-heptane Methylhexanes
: :
.65 7.3
.64 4.1
.63 6.8
n-Ce-Ci2
:
2.7
2.9
Total Paraffins Cs-C? O l e f i n s Ce-Ce A r o m a t i c s
: : :
43.4 7.2 11.9
36.0 8.4 16.2
41.6 8.0 12.2
C9-C11
:
20.9
21.8
20.8
Aromatics
1
Steam t r e a t e d f o r 8 h o u r s a t 732°C. Steam p r e s s u r e = 2 atmospheres.
2
Heat t r e a t e d
3
Steam t r e a t e d f o r 12 h o u r s a t 827°C. Steam p a r t i a l p r e s s u r e = .2 atmosphere.
2.5
f o r 3 h o u r s a t 704°C i n s t a t i c a i r .
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2016 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch003
40
FLUID CATALYTIC CRACKING: ROLE IN MODERN REFINING
The e f f e c t o f a d d i n g 1% ZSM-5 t o t h e REY c r a c k i n g c a t a l y s t on p r o d u c t y i e l d s i s d e s c r i b e d by t h e d a t a i n T a b l e IV. Two c a s e s where ZSM-5 was e i t h e r t h e r m a l l y t r e a t e d o r steam t r e a t e d were considered. C o n s i s t e n t w i t h e a r l i e r f i n d i n g s (2, 3 ) , a d d i t i o n o f 1% ZSM-5 t o t h e c r a c k i n g c a t a l y s t i n c r e a s e d t h e y i e l d o f C3 and C4 h y d r o c a r b o n s a t t h e expense o f Cs+ g a s o l i n e . Analysis of t h e g a s o l i n e c o m p o s i t i o n i n d i c a t e d t h a t t h e a d d i t i o n o f ZSM-5 t o t h e c a t a l y s t e n r i c h e d o l e f i n s and a r o m a t i c s ( e s p e c i a l l y Ce t o Cs a r o m a t i c s ) i n t h e g a s o l i n e a t t h e expense o f p a r a f f i n s . W i t h 1% t h e r m a l l y t r e a t e d ZSM-5, about 20% r e d u c t i o n i n t h e c o n c e n t r a t i o n o f p a r a f f i n s was o b s e r v e d i n t h e p r o d u c t g a s o l i n e . The r e d u c t i o n i n t h e y i e l d o f g a s o l i n e range p a r a f f i n s ( a s a p e r c e n t o f f e e d ) due t o 1% t h e r m a l l y t r e a t e d ZSM-5 was about 40%. P a r a f f i n y i e l d r e d u c t i o n t o a l e s s e r e x t e n t was o b s e r v e d w i t h t h e steam t r e a t e d ZSM-5. Thus, e n r i c h m e n t o f o l e f i n s and a r o m a t i c s i n the g a s o l i n e occurred w i t h t h e a d d i t i o n o f e i t h e r t h e r m a l l y t r e a t e d o r steam t r e a t e d ZSM-5. The d a t a i n T a b l e IV and F i g u r e 1 i n d i c a t e t h a t most o f t h e p a r a f f i n c o n c e n t r a t i o n r e d u c t i o n t o o k p l a c e i n t h e Ce t o C* range and i n v o l v e d monomethyl p a r a f f i n s . The b l e n d i n g o c t a n e numbers f o r 2-methyl and 3-methyl hexanes a r e r e p o r t e d as 40 t o 56 by ASTM (15) and a r e lower t h a n t h e b l e n d i n g numbers f o r l i g h t (Cs t o C 7 ) o l e f i n s and Ce t o C u a r o m a t i c s . Thus, r e d u c t i o n i n c o n c e n t r a t i o n o f these branched p a r a f f i n s i s expected t o improve t h e r e s e a r c h o c t a n e number o f t h e g a s o l i n e .
T a b l e V.
Cracking
o f t h e Gas O i l by 1% ZSM-5 C a t a l y s t
Catalyst Description
:
1% ZSM-5 99%
Matrix
C a t a l y s t Pretreatment
:
Conversion,
:
34.5
: : : : : :
11.5 .39 .16 .06 .40 0
Wt.%
P r o d u c t Y i e l d s . Wt.% Feed Ci-C4 n-hexane Methylpentanes 2,3 D i m e t h y l b u t a n e n-heptane Methylhexanes n-Ce-Ci2
:
Total Paraffins Cs O l e f i n s Ce O l e f i n s C? O l e f i n s Ce-Ce A r o m a t i c s C e - C n Aromatics
: : : : : :
100% M a t r i x
3 h o u r s a t 704°C i n S t a t i c A i r 24.1
.72
2.3 2.2 1.5 .47 5.7 10.0
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
7.5 .10 0 0 .16 0 .80
1.5 .25 .54 .45 1.8 6.4
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2016 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch003
3. RAJAGOPALAN AND YOUNG
Hydrocarbon Cracking Selectivities
ul
C a r b o n Number Figure
1.
P a r a f f i n y i e l d as a f u n c t i o n o f c a r b o n number f o r t h r e e c a t a l y s t s d u r i n g gas o i l c r a c k i n g . REY C a t a l y s t REY C a t a l y s t + 1 Wt.% t h e r m a l l y t r e a t e d ZSM-5 REY C a t a l y s t + 1 Wt.% steam t r e a t e d ZSM-5
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
41
42
FLUID CATALYTIC CRACKING: ROLE IN MODERN REFINING
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2016 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch003
To c l a r i f y t h e mechanism by which g a s o l i n e c o m p o s i t i o n i s changed ( r e d u c t i o n i n c o n c e n t r a t i o n o f t h e p a r a f f i n s and an i n c r e a s e i n c o n c e n t r a t i o n o f o l e f i n s and a r o m a t i c s ) by ZSM-5 i n t h e d u a l z e o l i t e c a t a l y s t , e x p e r i m e n t s were c a r r i e d o u t on c a t a l y s t s c o n t a i n i n g o n l y ZSM-5 d i s p e r s e d i n t h e m a t r i x . The c a t a l y s t c o n t a i n i n g 1 Wt.% ZSM-5 was u s e d i n o r d e r t o d u p l i c a t e t h e c o n c e n t r a t i o n o f ZSM-5 i n t h e d u a l z e o l i t e c a t a l y s t s t u d i e d earlier. E x p e r i m e n t s w i t h t h e " p u r e " m a t r i x c a t a l y s t were u s e d t o d e f i n e t h e c o n t r i b u t i o n o f ZSM-5. Gas O i l and G a s o l i n e C o n v e r s i o n by ZSM-5. R e s u l t s o b t a i n e d d u r i n g c r a c k i n g o f t h e gas o i l i n d i c a t e d t h a t 1 Wt.% t h e r m a l l y t r e a t e d ZSM-5 e x h i b i t e d a h i g h e r a c t i v i t y f o r c o n v e r s i o n o f heavy p a r a f f i n s ( C 2 0 " " ) t h a n 10 Wt.% REY ( F i g u r e 2 ) . The p a r a f f i n s were c o n v e r t e d m a i n l y t o Ce t o C u g a s o l i n e range a r o m a t i c s and l i g h t hydrocarbons (Table V). Smaller concentration of n - p a r a f f i n s and l i g h t o l e f i n s (Cs and Ce) were a l s o p r o d u c e d . Y i e l d s o f monomethyl b r a n c h e d p a r a f f i n s were lower than t h a t o f t h e c o r r e s p o n d i n g η-paraffin u n l i k e r e s u l t s o b t a i n e d ( T a b l e I I I ) d u r i n g c r a c k i n g w i t h t h e REY c a t a l y s t . 1
Table VI.
Conversion
Description
Feed o r P r o d u c t
o f Components i n G a s o l i n e by 1% ZSM-5 a t 500°C
Feed Catalytically Cracked Gasoline Composition.
Product with Matrix Catalyst
Product with 1% ZSM-5 i n Matrix Catalyst
Wt.% Feed
Methane
0
.09
Ethane + E t h y l e n e
0
.33
1.8
Ca
Olefin
0
.92
4.2
Cs
Paraffin
0
.03
C4
Olefin
C4 P a r a f f i n s C5-C7 Cs-Ci2
Olefins Paraffins
C 5 - C 7 Naphthenes Ce-Ce C9-C11
Aromatics Aromatics
Coke, Wt.% F
.60 .32 12.3 33.5 6.2
.68 .24 8.8 30.5
13.5
17.5
19.3
.43 1.4 .27 2.4 27.9
6.0
12.5
.09
5.4 15.2 19.1
.5
.4
M a t r i x c a t a l y s t as w e l l as t h e c a t a l y s t c o n t a i n i n g 1% ZSM-5 were p r e t r e a t e d f o r 3 h o u r s a t 704°C i n s t a t i c a i r .
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2016 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch003
3.
RAJAGOPALAN AND YOUNG
Hydrocarbon Cracking Selectivities
*
*
w
I F i g u r e 2.
Gas chromatographs o f p r o d u c t s from gas o i l c r a c k i n g with three c a t a l y s t s : 100% m a t r i x c a t a l y s t ( a b o v e ) , 1 Wt.% ZSM-5 i n t h e m a t r i x ( m i d d l e ) and 10 Wt.% REY i n the m a t r i x (below). Peaks marked w i t h * i n d i c a t e heavy ( C 2 o ) p a r a f f i n s . +
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
43
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2016 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch003
44
FLUID CATALYTIC CRACKING: R O L E IN M O D E R N REFINING
The c o m p o s i t i o n o f t h e g a s o l i n e o b t a i n e d by c a t a l y t i c c r a c k i n g and u s e d as a f e e d s t o c k f o r t h e ZSM-5 c a t a l y s t i s g i v e n i n Table VI. P r o d u c t a n a l y s e s , a l s o g i v e n i n T a b l e V I , show t h a t 8 0 % o f t h e o l e f i n s and l e s s t h a n 1 0 % o f t h e p a r a f f i n s a r e c o n v e r t e d by t h e ZSM-5 c a t a l y s t w i t h about 30% o f t h e o l e f i n c o n v e r s i o n a t t r i b u t a b l e to the matrix present i n the c a t a l y s t . This i s not s u r p r i s i n g due t o t h e well-known h i g h e r r e a c t i v i t y o f o l e f i n s . L i g h t h y d r o c a r b o n s ( C i t o C O and a r o m a t i c s ( m a i n l y Ce t o Ce) were p r o d u c e d by ZSM-5 due t o t h e t h e c o n v e r s i o n o f o l e f i n s and p a r a f f i n s . T h u s , t h e s e r e s u l t s p r o v i d e e v i d e n c e f o r c r a c k i n g o f o l e f i n s , p a r a f f i n s and c y c l i z a t i o n o f o l e f i n s by ZSM-5 a t 500°C. The steam d e a c t i v a t e d ZSM-5 c a t a l y s t e x h i b i t e d r e d u c e d o l e f i n c o n v e r s i o n and n e g l i g i b l e p a r a f f i n c o n v e r s i o n a c t i v i t y . I s o m e r i z a t i o n o f l i n e a r o l e f i n s t o b r a n c h e d o l e f i n s by ZSM-5 has been o b s e r v e d u n d e r c e r t a i n c o n d i t i o n s ( 3 ) . An a n a l y s i s o f t h e d i s t r i b u t i o n o f Cs and Ce o l e f i n isomers i n t h e f e e d g a s o l i n e as w e l l as t h e p r o d u c t from steam d e a c t i v a t e d ZSM-5 show no s t r o n g e v i d e n c e f o r d e a c t i v a t e d ZSM-5 t o p r o d u c e b r a n c h e d o l e f i n s from t h e α-olefins ( T a b l e V I I ) . The d i s t r i b u t i o n o f isomers o b t a i n e d w i t h t h e c a t a l y s t c o n t a i n i n g 1% steam d e a c t i v a t e d ZSM-5 i n a m a t r i x was e q u i v a l e n t t o t h a t o b t a i n e d w i t h t h e "pure** m a t r i x c a t a l y s t . Discussion. F i x e d bed c r a c k i n g r e a c t o r s as w e l l as commercial moving bed r e a c t o r s o p e r a t e under s t e a d y s t a t e o r p s e u d o - s t e a d y s t a t e c o n d i t i o n s (13). Observed s e l e c t i v i t y (eg., r a t i o o f y i e l d o f b r a n c h e d t o η-paraffin) i n a s t e a d y s t a t e c a t a l y t i c r e a c t o r i s i n d e p e n d e n t o f space v e l o c i t y (16, 1 7 ) . The s e l e c t i v i t y depends on i n t r i n s i c r a t e c o n s t a n t s and d i f f u s i v i t i e s o f t h e r e a c t i n g s p e c i e s which depend on t e m p e r a t u r e . Thus, t h e s e l e c t i v i t y o b s e r v a t i o n s r e p o r t e d h e r e a r e a p p l i c a b l e t o commercial FCC u n i t s o p e r a t i n g a t space v e l o c i t i e s d i f f e r e n t from t h a t employed i n t h i s s t u d y . A comparison o f t h e y i e l d o f g a s o l i n e range ( C 3 - C 1 2 ) p a r a f f i n s o b t a i n e d d u r i n g gas o i l c r a c k i n g u s i n g t h e d u a l z e o l i t e c a t a l y s t with that obtained during gasoline conversion with the s i n g l e z e o l i t e (ZSM-5) c a t a l y s t c a n be c a r r i e d o u t f o r b o t h f r e s h ( t h e r m a l l y t r e a t e d ) and aged (steam t r e a t e d ) ZSM-5. When gas o i l was c r a c k e d w i t h t h e d u a l z e o l i t e c a t a l y s t c o n t a i n i n g t h e r m a l l y t r e a t e d ZSM-5, a p p r o x i m a t e l y 4 0 % r e d u c t i o n i n t h e y i e l d o f g a s o l i n e range p a r a f f i n s compared t o t h e f a u j a s i t e c a t a l y s t was o b s e r v e d ( T a b l e I V ) . However, when t h e g a s o l i n e o b t a i n e d by c a t a l y t i c c r a c k i n g was f e d t o a c a t a l y s t c o n t a i n i n g t h e r m a l l y t r e a t e d ZSM-5 (no REY) under t h e same c o n d i t i o n s , o n l y 10% r e d u c t i o n i n t h e y i e l d o f p a r a f f i n s was o b s e r v e d ( T a b l e V I ) . Steam t r e a t e d 1% ZSM-5 c a t a l y s t d i d n o t p r o d u c e any m e a s u r a b l e r e d u c t i o n i n t h e y i e l d o f p a r a f f i n s during gasoline cracking. However, a s i g n i f i c a n t r e d u c t i o n i n t h e y i e l d o f p a r a f f i n s due t o 1% steamed ZSM-5 was o b s e r v e d d u r i n g gas o i l c r a c k i n g w i t h t h e d u a l z e o l i t e c a t a l y s t . Thus, p a r a f f i n y i e l d r e d u c t i o n o b s e r v e d w i t h t h e d u a l z e o l i t e c a t a l y s t cannot be f u l l y e x p l a i n e d by r e a c t i v i t y o f ZSM-5 t o g a s o l i n e range p a r a f f i n s . A mechanism t h a t p o s t u l a t e s p r e v e n t i o n o f p a r a f f i n f o r m a t i o n d u r i n g gas o i l c r a c k i n g w i t h t h e d u a l z e o l i t e c a t a l y s t c a n e x p l a i n t h e above d a t a . Such a p r e v e n t i o n c o u l d t a k e p l a c e b y more t h a n one r o u t e . ZSM-5 p r e s e n t i n t h e c a t a l y s t c o u l d p r e v e n t c e r t a i n s e c o n d a r y r e a c t i o n s t h a t l e a d t o t h e f o r m a t i o n o f g a s o l i n e range
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
3. RAJAGOPALAN AND YOUNG
Table VII.
Y i e l d s o f O l e f i n Isomers D u r i n g G a s o l i n e C o n v e r s i o n by 1% ZSM-5 a t 500°C
Description
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2016 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch003
Hydrocarbon Cracking Selectivities
Feed Catalytically Cracked Gasoline
Product with Matrix Catalyst
Product w i t h 1% ZSM-5 in Matrix Catalyst
Feed o r P r o d u c t C o m p o s i t i o n . Wt.% Feed Pentene
Isomers
1- Pentene
:
.27
.21
.29
2- Pentenes
:
1.8
1.0
1.2
Methylbutenes
:
2.1
2.5
2.6
Cyclopentene
:
Hexene
.20
.17
.57
.55
.19
Isomers
1-Hexene 2 & 3- Hexenes
1.6
Methylpentenes
2.3
2,3-Dimethyl 2-butene
.62
.85 2.4
.69
.63 1.0 2.4
.75
M a t r i x c a t a l y s t as w e l l as t h e c a t a l y s t c o n t a i n i n g ZSM-5 were steamed f o r 12 hours a t 827°C w i t h steam p a r t i a l p r e s s u r e = .2 atmosphere.
paraffins. These s e c o n d a r y r e a c t i o n s i n c l u d e t h e c h a i n t r a n s f e r r e a c t i o n i n v o l v i n g a carbonium i o n s u g g e s t e d by G a t e s , e t a l . (18) and t h e hydrogen t r a n s f e r r e a c t i o n i n v o l v i n g an o l e f i n , s u g g e s t e d by Thomas and Barmby ( 1 9 ) . B o t h c h a i n t r a n s f e r and hydrogen t r a n s f e r have been s u g g e s t e d t o o c c u r r e a d i l y o v e r f a u j a s i t e l e a d i n g t o t h e f o r m a t i o n o f g a s o l i n e range p a r a f f i n s . ZSM-5 c o u l d p r e v e n t t h e s e b i m o l e c u l a r hydrogen and c h a i n t r a n s f e r r e a c t i o n s by p r e f e r e n t i a l l y c a t a l y z i n g t h e monomolecular c r a c k i n g o f t h e carbonium i o n o r o l e f i n i n t e r m e d i a t e t o produce l i g h t ( C 2 t o C 4 ) hydrocarbons. These i n t e r m e d i a t e s a r e more r e a c t i v e t h a n t h e p a r a f f i n s and c a n a l s o be c r a c k e d by steam d e a c t i v a t e d ZSM-5. Thus, t h i s mechanism c a n e x p l a i n t h e r e d u c t i o n i n p a r a f f i n y i e l d
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
45
FLUID CATALYTIC CRACKING: ROLE IN MODERN REFINING
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2016 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch003
46
( T a b l e IV) a t t r i b u t a b l e t o 1% steam d e a c t i v a t e d ZSM-5 - a c a t a l y s t t h a t had n e g l i g i b l e a c t i v i t y f o r c r a c k i n g g a s o l i n e range p a r a f f i n s a t 500°C. T h i s mechanism c a n a l s o e x p l a i n t h e i n c r e a s e d y i e l d o f l i g h t h y d r o c a r b o n s ( C 2 t o C O when t h e d u a l z e o l i t e c a t a l y s t c o n t a i n i n g e i t h e r t h e r m a l l y t r e a t e d o r steam d e a c t i v a t e d ZSM-5 i s employed. The c o n c e n t r a t i o n s o f b o t h n o r m a l and monomethyl p a r a f f i n s i n t h e p r o d u c t g a s o l i n e were r e d u c e d by t h e a d d i t i o n o f ZSM-5 t o t h e REY c a t a l y s t , b u t p r e f e r e n t i a l r e d u c t i o n o f η-paraffins was n o t observed. T h i s r e s u l t c a n be e x p l a i n e d by t h e c o n c e p t o f c o n s t r a i n t index ( 5 ) , which i s t h e r a t i o o f r a t e constant f o r conversion of a s t r a i g h t chain p a r a f f i n to that f o r conversion of a b r a n c h e d p a r a f f i n o f t h e same c a r b o n number. The c o n s t r a i n t i n d e x o f ZSM-5 was found t o be i n d e p e n d e n t o f c r y s t a l s i z e o v e r a range s p a n n i n g two o r d e r s o f magnitude ( 9 ) . I t i s thus c o n s i d e r e d t o be a measure o f shape s e l e c t i v i t y which d e s c r i b e s t h e a p p a r e n t p o r e o p e n i n g o f t h e z e o l i t e ( 9 ) . The c o n s t r a i n t index o f ZSM-5 d e c l i n e d w i t h t e m p e r a t u r e (5) from n e a r l y 10 a t 365°C t o n e a r l y u n i t y a t 500°C. H i g h c o n s t r a i n t i n d e x i s e x p e c t e d t o r e s u l t i n p r e f e r e n t i a l c o n v e r s i o n o f s t r a i g h t c h a i n m o l e c u l e s (carbonium i o n s , o l e f i n s ) and p r e s e r v a t i o n o f b r a n c h e d m o l e c u l e s . When t h e c o n s t r a i n t i n d e x i s n e a r u n i t y , b o t h t y p e s o f m o l e c u l e s have e q u i v a l e n t r e a c t i v i t y and c o n v e r s i o n w i l l be d e t e r m i n e d by concentration (or a v a i l a b i l i t y ) of molecules. Monomethyl p a r a f f i n s a r e produced a t an o r d e r o f magnitude h i g h e r c o n c e n t r a t i o n t h a n η-paraffins by t h e REY c a t a l y s t ( T a b l e I I I ) . Thus, a d d i t i o n o f ZSM-5 t o t h e c a t a l y s t r e s u l t e d i n a s i g n i f i c a n t r e d u c t i o n o f monomethyl p a r a f f i n s i n t h e p r o d u c t g a s o l i n e . The r e s u l t s on o l e f i n isomers ( T a b l e V I I ) c a n a l s o be e x p l a i n e d by t h e o b s e r v a t i o n t h a t t h e c o n s t r a i n t i n d e x o f ZSM-5 i s approximately u n i t y under t h e c o n d i t i o n s o f t h i s study. Shape s e l e c t i v i t y o r p r e f e r e n t i a l c o n v e r s i o n o f s t r a i g h t c h a i n o l e f i n s by ZSM-5 cannot be e x p e c t e d a t 500°C. Thus, under t h e c o n d i t i o n s o f t h i s s t u d y , o l e f i n isomer d i s t r i b u t i o n was n o t s i g n i f i c a n t l y a f f e c t e d by d e a c t i v a t e d ZSM-5. A t t e m p e r a t u r e s lower t h a n t h a t employed i n t h e p r e s e n t s t u d y , i t i s c o n c e i v a b l e t h a t d i s t r i b u t i o n o f o l e f i n isomers c o u l d be a l t e r e d by steam d e a c t i v a t e d ZSM-5. Conclusions Cs t o C 7 o l e f i n s a r e i n t e r m e d i a t e s d u r i n g c o n v e r s i o n o f C i e η-paraffins t o a r o m a t i c s by ZSM-5. A d d i t i o n o f 1 Wt.% ( t h e r m a l l y t r e a t e d o r steam t r e a t e d ) ZSM-5 t o a REY f l u i d c r a c k i n g c a t a l y s t r e s u l t s i n an i n c r e a s e i n t h e y i e l d o f C3 and C4 h y d r o c a r b o n s a t t h e expense o f Cs t o C 1 2 h y d r o c a r b o n s ( g a s o l i n e ) . The g a s o l i n e p r o d u c e d from t h e d u a l z e o l i t e c a t a l y s t has a lower c o n c e n t r a t i o n o f n o r m a l , monomethyl p a r a f f i n s and a h i g h e r c o n c e n t r a t i o n o f o l e f i n s and a r o m a t i c s compared t o t h e g a s o l i n e p r o d u c e d from t h e REY c a t a l y s t . Preference of the dual z e o l i t e c a t a l y s t to monomolecular c r a c k i n g o f p a r a f f i n p r e c u r s o r s (carbonium i o n s and o l e f i n s ) a t t h e expense o f b i m o l e c u l a r r e a c t i o n s l i k e hydrogen t r a n s f e r and c h a i n t r a n s f e r c o n t r i b u t e s t o t h e p a r a f f i n r e d u c t i o n . ZSM-5 e x h i b i t s n e a r l y e q u i v a l e n t r e a c t i v i t y f o r s t r a i g h t c h a i n and monomethyl b r a n c h e d p a r a f f i n p r e c u r s o r s a t 500°C. Observed +
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
3.
RAJAGOPALAN AND YOUNG
47
Hydrocarbon Cracking Selectivities
enhancement o f g a s o l i n e o c t a n e number (2, 3) w i t h t h e u s e o f a s m a l l c o n c e n t r a t i o n o f ZSM-5 ( e i t h e r f r e s h o r steam d e a c t i v a t e d ) p r o b a b l y due t o t h e r e d u c t i o n i n c o n c e n t r a t i o n o f p a r a f f i n s ( n o r m a l , monomethyl) and r e s u l t a n t enrichment o f o l e f i n s and a r o m a t i c s i n the g a s o l i n e . The same mechanism can be used t o e x p l a i n the changes i n g a s o l i n e c o m p o s i t i o n w i t h e i t h e r f r e s h o r steam d e a c t i v a t e d ZSM-5.
is
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2016 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch003
Acknowledgments The a u t h o r s thank D r . M. G . Sanchez f o r h i s v a l u a b l e c o n t r i b u t i o n s t o t h i s work which i n c l u d e d p r e p a r a t i o n o f ZSM-5 and d i s c u s s i o n o f t h e e x p e r i m e n t a l methods. We thank Ms. C . R. P e t r , M r . A . L . Wadsworth and Ms. G . B . L u n d q u i s t f o r t h e i r e x p e r i m e n t a l work. We a l s o acknowledge h e l p f u l d i s c u s s i o n s w i t h D r . A . W. P e t e r s and M r . J . E . C r e i g h t o n .
Literature Cited 1. Venuto, P. B.; Habib, Jr., Ε. T. Fluid Catalytic Cracking with Zeolite Catalysts; Marcel Dekker, Inc.: New York, 1979. 2. Rosinski, E. J.; Plank, C. J.; Schwartz, A. B. U.S. Patent 3 758 403, 1973. 3. Anderson, C. D.; Dwyer, F. G.; Koch, G; Niiranen, P. Proc. Ninth Iberoamerican Symposium on Catalysis, Lisbon, 1984. 4. Dwyer, F. G.; Schipper, P. H.; Gorra, F. NPRA Annual Meeting, AM 87-63, San Antonio, March, 1987. 5. Chen, Ν. Y.; Garwood, W. Ε. J. Catalysis 1978, 52, 453. 6. Anderson, J. R.; Foger, K; Mole, T.; Rajadhyaksha, R. Α.; Sanders, J. V. J. Catalysis 1979, 58, 114. 7. Abbot, J.; Wojciechowski, Β. W. Can. J. Chem. Eng. 1985, 63, 462. 8. Corma, Α.; Monton, J. B.; Orchilles, Α. V. Applied Catalysts 1985, 16, 59. 9. Frillette, V. J.; Haag, W. O.; Lago, R. M. J. Catalysis 1981, 62, 218. 10. Wang, I.; Chen, T-J.; Chao, K-J.; Tsai, T-C. J. Catalysis 1979, 60, 140. 11. Borade, R. B.; Hegde, S. G.; Kulkarni, S. B.; Ratnasamy, P. Applied Catalysis 1984, 13, 27. 12. Magee, J. S.; Blazek, J. J. In Zeolite Chemistry and Catalysis; Rabo, J. Α., Ed.; ACS Monograph 171, p. 615. American Chemical Society, Washington, D.C., 1976. 13. Weekman, Jr., V. W. Ind. Eng. Chem. Proc. Des. Dev. 1968, 1, 90. 14. Ritter, R. E.; Creighton, J. E.; Roberie, T. G.; Chin, D. S.; Wear, C. C., NPRA Annual Meeting, AM 86-45, Los Angeles, CA, March, 1986. 15. ASTM Special Technical Publication No. 225, Knocking Characteristics of Pure Hydrocarbons, ASTM, Philadelphia. 16. Satterfield, C. N. Mass Transfer in Heterogeneous Catalysis; M.I.T. Press: Cambridge, MA, 1970. 17. Wheeler, A. Advan. Catalysis 1951, 3, 249.
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
48
FLUID CATALYTIC CRACKING: ROLE IN MODERN REFINING
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2016 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch003
18. Gates, B. C.; Katzer, J. R.; Schuit, G. C. A. Chemistry of Catalytic Processes; McGraw-Hill: New York, 1979. 19. Thomas, C. L.; Barmby, D. S. J. Catalysis 1968, 12, 341. RECEIVED March 17, 1988
Occelli; Fluid Catalytic Cracking ACS Symposium Series; American Chemical Society: Washington, DC, 1988.