CRYSTAL GROWTH & DESIGN
Formation of Infinite Linear Mercury Metal Chains Assisted by Face-to-Face π-π (Aryl-Aryl) Stacking Interactions Jing-Yun Wu,† Hung-Yu Hsu,†,‡ Chun-Chieh Chan,†,§ Yuh-Sheng Wen,† Chiitang Tsai,‡ and Kuang-Lieh Lu*,†
2009 VOL. 9, NO. 1 258–262
Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, Department of Chemistry, Chinese Culture UniVersity, Taipei 111, Taiwan, and Department of Chemistry, National Central UniVersity, Chunli 320, Taiwan ReceiVed April 23, 2008; ReVised Manuscript ReceiVed September 22, 2008
ABSTRACT: Polymeric mercury compounds, [HgCl2(bpym)]n (1, bpym ) 5,5′-bipyrimidine), [Hg2Br4(bpym)]n (2), and [HgX2(bpyz)]n (3-Cl, X ) Cl; 3-Br, X ) Br; bpyz ) 2,2′-bipyrazine), which are composed of linear mercury chains were assembled from HgX2 (X ) Cl, Br) and either 5,5′-bipyrimidine or 2,2′-bipyrazine at ambient temperature. Single-crystal X-ray diffraction analysis revealed that 1 presents a two-dimensional layer structure involved with one-dimensional linear mercury chains at a mercurophilic distance of 3.77 Å. It is linked by bridging chlorides and stabilized by weak, slipped face-to-face π-π (aryl-aryl) interactions between the coordinated bpym ligands. These layers are interdigitated-stacked into a three-dimensional supramolecular architecture through C-H · · · N and C-H · · · Cl-Hg hydrogen bonding interactions. Compound 2 has a two-dimensional (4,4) layer structure comprised of four-connected bpym nodes and linear Br-Hg-Br linkers. The layers are stagger-stacked in a three-dimensional supramolecular network, thereby forming zigzag mercury chains with a Hg · · · Hg separation of 3.94 Å and a Hg · · · Hg · · · Hg angle of 110°. Compounds 3-Cl and 3-Br are isostructural and supported by powder X-ray diffraction (PXRD) data. Crystallographical analysis showed that compound 3-Br adopts a two-dimensional (4,4) layer architecture with linear mercury chains comprised of two types of interlaced Hg(bpyz) and HgBr2 chains. Within the linear mercury chains, the Hg atoms separate at a long distance of 4.01 Å. The bpyz ligand is bridged to two HgII centers with its two exo-N-donors in an anti-conformation and has a dihedral angle of 0° between the two hinged pyrazine rings. It is interesting to note that halide alone is not sufficient to induce linearity and face-to-face π-π (aryl-aryl) interactions between the coordinated organic ligands are the primary influence in the formation of linear mercury chains in 1, 3-Cl, and 3-Br. Introduction Linear chains of transition-metal atoms are intriguing for chemists and physicists because of their unusual optical, electrical, and magnetic properties.1 A useful method for the synthesis of linear metal chains, especially for the preparation of finite metal strings, is to position the metal ions in a linear array using designed ligands, such as polypyridylamine ligands2 and conjugated polyenes.3 An alternative method for the preparation of oligomeric and infinite mixed-valence metal chains, particularly of Rh, Ir, and Pt, based on unsupported M-M interactions has been reported.1c,4-6 In addition, by capitalizing on the “metallophilic attraction” between closed-shelled metal ions, such as AgI, AuI, and HgII, onedimensional oligomeric and/or polymeric d10-metal arrays, or chains, have been obtained in recent years.7-12 Herein, we report the preparation of polymeric coordination compounds, [HgCl2(bpym)]n (1, bpym ) 5,5′-bipyrimidine), [Hg2Br4(bpym)]n (2), and [HgX2(bpyz)]n (3-Cl, X ) Cl; 3-Br, X ) Br; bpyz ) 2,2′bipyrazine), with Hg · · · Hg chainlike architectures through assistance of π-π interactions between coordinated ligands and halide bridges. Although the formation of Hg2X2 bridges is ubiquitous in the structural chemistry of mercury halides, the halide alone is not sufficient to induce linearity. By comparison to other mercury halide structures, we have shown that π-π (aryl-aryl)
* To whom correspondence should be addressed. Fax: +886-2-27831237. E-mail:
[email protected]. † Academia Sinica. ‡ Chinese Culture University. § National Central University.
interactions are the primary structure-directing influence in the formation of linear Hg chains. Experimental Section Materials and General Methods. Reagents were purchased commercially and were used as received without further purification. 5,5′Bipyrimidine (bpym) and 2,2′-bipyrazine (bpyz) were prepared according to literature methods.13 Elemental analyses were performed by use of a Perkin-Elmer 2400 CHN elemental analyzer. Infrared spectra were recorded on a PerkinElmer Spectrum One FT-IR spectrometer. Powder diffraction measurements were recorded on a Siemens D-5000 diffractometer at 40 kV, 30 mA for Cu KR (λ ) 1.5406 Å), with a step size of 0.02° in θ and a scan speed of 1 s per step size. Synthesis of [HgCl2(bpym)]n (1). A solution of bpym ligand (15.8 mg, 0.10 mmol) in CH2Cl2 (3 mL) was slowly layered on the top of CH2Cl2/acetone (v/v 1:1, 10 mL, middle) and a solution of HgCl2 (67.9 mg, 0.25 mmol) in acetone (3 mL, bottom) in a glass tube. Colorless crystals of the product were obtained after the solution was allowed to stand for approximately 4 days at room temperature. Yield: 64% (27.3 mg, 6.4 × 10-2). Found: C, 22.50; H, 1.33; N, 12.91. Calcd. for C8H6Cl2HgN4: C, 22.36; H, 1.41; N, 13.04. IR (KBr, cm-1): ν 3065w, 3027w, 1576m, 1551s, 1447w, 1411s, 1404s, 1346m, 1336m, 1184s, 1160w, 1138w, 1122w, 1059m, 998m, 908m, 719s, 677w, 645s, 631m. Synthesis of [Hg2Br4(bpym)]n (2). A solution of bpym ligand (15.8 mg, 0.10 mmol) in CH2Cl2 (3 mL) was slowly layered on the top of CH2Cl2/acetone (v/v 1:1, 10 mL, middle) and a solution of HgBr2 (90.1 mg, 0.25 mmol) in acetone (3 mL, bottom) in a glass tube. Colorless crystals of the product were obtained after the solution was allowed to stand for approximately 4 days at room temperature. Yield: 70% (61.4 mg, 7.0 × 10-2). Found: C, 10.97; H, 0.66; N, 6.34. Calcd. for C8H6Br4Hg2N4: C, 10.93; H, 0.69; N, 6.37. IR (KBr, cm-1): ν 3056w, 3022w, 1573m, 1548s, 1444w, 1409s, 1400s, 1341m, 1332m, 1181s, 1160w, 1135w, 1122w, 1055m, 996m, 902m, 719s, 678w, 642s, 628m. Synthesis of [HgCl2(bpyz)]n (3-Cl). A solution of bpyz ligand (15.8 mg, 0.10 mmol) in CH2Cl2 (3 mL) was slowly layered on the top of CH2Cl2/acetone (v/v 1:1, 10 mL, middle) and a solution of HgCl2 (67.9
10.1021/cg8004163 CCC: $40.75 2009 American Chemical Society Published on Web 12/09/2008
Formation of Infinite Linear Mercury Metal Chains
Crystal Growth & Design, Vol. 9, No. 1, 2009 259
Table 1. Crystal Structure Refinement Data for Compounds 1, 2, and 3-Br
empirical formula formula weight crystal system space group a (Å) b (Å) c (Å) R (°) β (°) γ (°) V (Å3) Z T (K) λ (Å) Fcalcd (g/cm3) µ (mm-1) F(000) goodness-of-fit R1a [I > 2 σ(I)] wR2b [I > 2 σ(I)] R1a (all data) wR2b (all data) a
1
2
3-Br
C8H6Cl2HgN4 429.66 triclinic P1j 3.7705(1) 10.4396(3) 12.9752(4) 90.8017(9) 91.5785(9) 93.7126(10) 509.41(3) 2 150(1) 0.71073 2.801 15.599 392 1.181 0.0318 0.0402 0.0709 0.0930
C8H6Br4Hg2N4 878.99 orthorhombic Cmcm 14.2449(13) 16.6049(15) 6.3738(6) 90 90 90 1507.6(2) 4 296(2) 0.71073 3.873 30.929 1528 1.154 0.0208 0.0497 0.0252 0.0507
C8H6Br2HgN4 518.58 monoclinic P21/c 10.8936(8) 4.0146(3) 13.0313(10) 90 94.357(2) 90 568.26(7) 2 296(2) 0.71073 3.031 20.545 464 1.114 0.0283 0.0672 0.0333 0.0693
R1 ) ΣFc|/|Fo|. b wR2 ) [Σw(Fo2 - Fc2)2/Σw(Fo2)2]1/2.
mg, 0.25 mmol) in acetone (3 mL, bottom) in a glass tube. Colorless crystals of the product were obtained after the solution was allowed to stand for approximately 4 days at room temperature. Yield: 78% (33.3 mg, 7.8 × 10-2). Found: C, 22.11; H, 1.06; N, 12.77. Calcd. for C8H6Cl2HgN4: C, 22.36; H, 1.41; N, 13.04. IR (KBr, cm-1): ν 3069w, 3048w, 3014w, 1571w, 1522w, 1464w, 1444s, 1393w, 1374s, 1184m, 1162m, 1141s, 1092s, 1037s, 1018s, 944w, 850s, 746w, 697w, 631w. Synthesis of [HgBr2(bpyz)]n (3-Br). A solution of bpyz ligand (15.8 mg, 0.10 mmol) in CH2Cl2 (3 mL) was slowly layered on the top of CH2Cl2/acetone (v/v 1:1, 10 mL, middle) and a solution of HgBr2 (90.1 mg, 0.25 mmol) in acetone (3 mL, bottom) in a glass tube. Colorless crystals of the product were obtained after the solution was allowed to stand for approximately 4 days at room temperature. Yield: 72% (63.5 mg, 7.2 × 10-2). Found: C, 18.40; H, 1.08; N, 10.50. Calcd. for C8H6Br2HgN4: C, 18.53; H, 1.17; N, 10.80. IR (KBr, cm-1): ν 3071w, 3056w, 3013, 1628w, 1567w, 1522w, 1447s, 1377s, 1270w, 1188m, 1163m, 1144m, 1089s, 1033s, 1015s, 943w, 853s, 750w, 696w, 629w. Crystallographic Determination. X-ray diffraction data collections were carried out on a Nonius Kappa CCD diffractometer for compound 1 and on a Bruker Smart CCD diffractometer for compounds 2 and 3-Br, using graphite-monochromated Mo KR radiation (λ ) 0.71073 Å). The structures were solved by direct methods and refined by fullmatrix least-squares based on F2 values. All non-hydrogen atoms were subjected to anisotropic refinement. All the hydrogen atoms of the aromatic N-donor groups were assigned by geometric placing. Computations were performed using the WINGX14 and SHELX-9715 program packages. Details of the crystal parameters, data collections and refinements of 1, 2, and 3-Br are summarized in Table 1.
Results and Discussion Compound 1 was assembled from HgCl2 and bpym in a mixed solvent system of CH2Cl2/acetone at ambient temperature. Single-crystal X-ray diffraction analysis revealed that 1 presents a two-dimensional (4,4)-topological layer structure resulting from two types of interlaced Hg(bpym) and HgCl2 chains (Figure 1). Infinite linear mercury chains with weak, slipped face-to-face π-π interactions between juxtaposed pyrimidine rings with a centroid-to-centroid distance of 3.77 Å were observed. The mercury chains are also supported by strong Hg-Cl bonds (2.4042(17) and 2.4212(18) Å) and weak Hg · · · Cl interactions (2.8690(18) and 2.9253(17) Å, Figure 1).16 The Hg · · · Hg distance within the metal chains is short, approximating 3.77 Å, and is close to those observed in other structures with mercurophilic interactions (for example, 3.570-3.636 Å
Figure 1. (a) Two-dimensional (4,4)-topological layer structure viewed slightly off the c-axis in 1. Selected bond lengths (Å): Hg1-Cl1 2.4042(17), Hg1-Cl2 2.4212(18), Hg1-N1 2.570(6), Hg1-N3 2.596(6), Hg1-Cl1a 2.9253(17), Hg1-Cl2b 2.8690(18), Hg · · · Hg 3.77. (b) Perspective view of the infinite linear mercury chains along the crystallographic a axis.
for [(o-C6F4Hg)3...µ3-C3H6O]),17,18 but not as short as the sum of the van der Waals radii of Hg(II) of 3.41 Å.18a The mercury-nitrogen bond lengths of 2.570(6)-2.596(6) Å are significantly shorter than the upper limit of 2.75(2) Å.19 Each bpym ligand exhibits an anti-µ-η2-bridging mode to bind two mercury atoms through two pyrimidine rings with a dihedral angle of 44.07° (Figure 2a). Further inspection of the crystal packing revealed that each layer is interdigitated-stacked and interacts with the other layers through C-H · · · N hydrogen bonding interactions20 (C · · · N, 3.51 Å; C-H · · · N, 139°) between the uncoordinated nitrogen atoms of bpym ligands and thehydrogenatomsinadjacentrings(Figure3a)andC-H · · · Cl-Hg contacts21 (C · · · Cl, 3.58-3.67 Å; C-H · · · Cl, 131-139°, Table 2) to form a three-dimensional supramolecular architecture (Figure 3b). Of particular interest is the clarification of whether it is the π-π interactions of the bpym ligands or the bridging halide that is the main structure-directing factor in permitting the formation of infinite linear mercury chains. Many halide-bridged mercury-based structures have been reported in the literature.9,22,23 As shown by their crystallographical data, the formation of Hg2X2 bridges is ubiquitous in the structural chemistry of mercury halides.9,22 However, compounds with mercury metal chains are rare,23,24 particularly in a linear fashion. A few related compounds in the literature are discussed below. Compound [Cu(tren)Hg(CN)2Cl][Hg(Cl/CN)2Cl]23b (tren ) tris(2-aminoethyl)amine) involved cationic ([Cu(tren)Hg(CN)2Cl]+) and anionic ([Hg(Cl/CN)2Cl]-) chain units, and both contained 1D infinite Hg arrays with a Hg · · · Hg distance of 3.96 Å and a Hg · · · Hg · · · Hg angle of 164° in the cationic unit and with a Hg · · · Hg of 4.28 Å and a Hg · · · Hg · · · Hg of 133° in the anionic chain. Compound {[Ni(tren)]4[Hg(CN)2]8Cl6}[HgCl4]23b contained HgCl- (Hg · · · Hg, 4.29 Å; Hg · · · Hg · · · Hg, 142°) and Hg2Cl-chain (Hg · · · Hg, 4.11 Å; Hg · · · Hg · · · Hg, 161°) structures in the 1D cationic ribbon of {[Ni(tren)]4[Hg(CN)2]8Cl6}2+. In addition, inorganic chains of X · · · Hg · · · X · · · Hg with a pseudo 1D Hg arrangement were observed in compound [Hg2Br4(titmb)]23a (titmb ) 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene) (Hg · · · Hg, 5.07 and 5.35 Å; Hg · · · Hg · · · Hg, 70 and 174°) and compound [(HgCl2)2(hmt)]23c (hmt ) hexamethylenetetramine) (Hg · · · Hg, 4.22 Å; Hg · · · Hg · · · Hg, 98 and 102°). These (pseudo) Hg chains, however, all were arranged
260 Crystal Growth & Design, Vol. 9, No. 1, 2009
Wu et al.
Figure 2. Coordination modes of bpym in (a) 1 and (b) 2, as well as that of bpyz in (c) 3-Br. The secondary Hg · · · N coordination interactions in 2 are shown by the yellow dashed lines.
Figure 3. (a) C-H · · · N hydrogen bonding interactions (yellow dashed lines) between the uncoordinated nitrogen atoms of bpym ligands and the hydrogen atoms of the adjacent rings in 1. (b) Three-dimensional supramolecular architecture viewed along the crystallographic a axis in 1, showing the interlayer C-H · · · Cl-Hg interactions (yellow dashed lines). Table 2. Detailed Intermolecular C-H · · · Cl-Hg Interactions in 1 (Å, °)a C-H · · · Cl
d(H · · · Cl)
d(C · · · Cl)
∠(C-H · · · Cl)
C(1)-H(1A) · · · Cl(2)#1 C(1)-H(1A) · · · Cl(2)#2 C(5)-H(5A) · · · Cl(1)#3
2.92 2.90 2.83
3.61 3.67 3.58
131 139 136
a Symmetry codes: #1-1 - x, -y, 1 - z; #2 - x, -y, 1 - z; #3 x, -y, 2 - z.
in a zigzag manner and with long Hg · · · Hg separations. To our knowledge, only in the case of [HgCl2(ptz)]2 · · · HgCl2 (ptz ) phenothiazine)9c was there a near-linear mercury chain (Hg · · · Hg, 3.84 and 3.92 Å, Hg · · · Hg · · · Hg, 172 and 180°). There is no doubt that the bridging halides can connect the mercury metal centers. However, considering the large number of mercury halide compounds in the literature with only the rare case of a linear mercury chain, the halide alone would not be sufficient to induce linearity. When the mercury halide structures were compared, compound 1 was of particular interest. It showed that π-π (aryl-aryl) interactions are the primary structuredirecting influences in the formation of linear Hg chains. As a consequence, we concluded that both π-π (aryl-aryl) interactions and Hg-Cl bonds permit the formation of compound 1. However, it is the π-π (aryl-aryl) interactions that stabilize the infinite linear mercury chains. Compound 2, obtained using a procedure similar to that described for 1, using HgBr2 instead of HgCl2, crystallized in the orthorhombic space group Cmcm. The mercury center adopts a three-coordinated T-shaped geometry, consisting of two transbromides (Hg-Br, 2.4559(10)-2.4837(9) Å; Br-Hg-Br, 170.52(3)°) and one pyrimidyl nitrogen atom almost orthogonal to the linear Br-Hg-Br array (Hg-N, 2.554(7) Å; Br-Hg-N, 94.66(17)-94.81(17)°). Based on the concept of secondary
Figure 4. (a) Space-filling model superimposed on a ball-and-stick representation of the two-dimensional (4,4) layer structure of 2, considering bpym ligands as nodes. (b) Cell-packing diagram of 2, showing the zigzag Hg · · · Hg chains.
coordination interactions,25 the effective coordination of mercury is suited to distorted octahedral geometry by additional interactions with one pyrimidyl nitrogen atom (2.88 Å) and two transbromides (Hg · · · Br ) 3.34 Å) in addition to the primary T-shaped donors of Br2N. The bpym ligand showing a dihedral angle of 0° between the two hinged pyrimidine rings is considered a µ4-η4-bridging ligand-two for primary coordination covalent bonds and two for secondary donation bonds (Figure 2b)—resulting in the formation of a two-dimensional (4,4) layer with the bpym ligands acting as four-connected nodes (Figure 4a). Within the layer, the shortest Br · · · Br distance is 3.98 Å, approaching the sum of the van der Waals radii of two Br atoms (3.68-4.02 Å),26 suggesting halogen · · · halogen interactions.27 Examination of the cell-packing diagram of 2 shows a three-dimensional network, assembled from stagger-stacked layers in a separated distance of ca. 3.19 Å, thereby forming zigzag mercury chains with a Hg · · · Hg length of 3.91 Å and a Hg · · · Hg · · · Hg angle of 109° (Figure 4b), which is at the upper limit that allows a weak mercurophilic attraction.17,18 When HgI2 was used, colorless crystals of [Hg2I4(bpym)]n (2-I) were obtained and shown an identical structure with 2, which reveals rational expansions on cell parameters following the increase of halide size from Br- to I- (see Supporting Information). Of particular interest is that compounds 1 and 2 display different structure forms; this can most likely be attributed to the influence of halides, not only due to their size but also the possible Br · · · Br interactions that may interfere with the mercurophilic interactions. Following a similar procedure, compounds 3-Cl and 3-Br were assembled from HgX2 (X ) Cl, Br) and bpyz, a bpym analogue, under mild reaction conditions. Attempts to characterize the solid-state structure of 3-Cl by single-crystal X-ray diffraction were not successful due to poor crystal quality. However, 3-Cl exhibited X-ray powder diffraction (XRPD) patterns similar to those of 3-Br, indicating that the two species crystallized in the same space group and had identical crystal
Formation of Infinite Linear Mercury Metal Chains
Figure 5. (a) Experimental PXRD patterns of 3-Cl and (b) simulated PXRD patterns of 3-Br.
Crystal Growth & Design, Vol. 9, No. 1, 2009 261
Figure 7. C-H · · · N hydrogen bonding interactions (yellow dashed lines) between the uncoordinated nitrogen atoms of bpyz ligands and the hydrogen atoms of the adjacent rings in 3-Br.
tions of the pyrazine rings play important roles in assisting the generation of a linear arrangement of mercury atoms. Conclusion
Figure 6. (a) 2D layer structure of 3-Br viewed slightly off the c-axis. Selected bond lengths (Å): Hg1-Br1 2.4683(7), Hg1-Br1a 2.4683(7), Hg1-Br1b 3.19, Hg1-Br1c 3.19, Hg1-N2 2.72, Hg1-N2b 2.72. Nonbonding Hg · · · Hg distance: 4.02 Å. (b) Perspective viewed the infinite linear mercury chains along the crystallographic b axis.
structures (Figure 5). Single-crystal X-ray diffraction analysis showed that compound 3-Br adopts a two-dimensional (4,4)layer architecture comprised of two types of interlaced Hg(bpyz) and HgBr2 chains (Figure 6). The Hg · · · N distance (2.72 Å) is slightly shorter than the accepted Hg-N bond length of 2.75(2) Å.21 Both strong and weak Hg · · · Br coordination interactions with distances of 2.4683(7) and 3.19 Å, respectively, were observed. Each bpyz ligand is bridged to two HgII centers, with its two exo-N-donors, in an anti-conformation configuration with a dihedral angle of 0° between the two hinged pyrazine rings (Figure 2c). This is probably a consequence of C-H · · · N hydrogen bonding interactions (C · · · N, 3.64 Å; C-H · · · N, 152°) between the uncoordinated nitrogen atoms and the hydrogen atoms of the adjacent pyrazine rings (Figure 7). The eclipsed face-to-face π-π interaction between pyrazine rings is relatively long with a centroid-to-centroid distance of 4.02 Å. It is noteworthy that the mercury atoms in the structure are arranged in a linear configuration. The Hg · · · Hg separates in a distance of 4.02 Å, which is relatively long compared with the distance of 1 (3.77 Å) and is indicative of a lack of metal interactions. This difference may be attributed to the increase in halide size from chloride to bromide. In compound 3-Br, one weak Hg · · · Br interaction as long as 3.19 Å, lies within the sum of van der Waals radii of Hg and Br,18,26 may be helpful in connecting the mercury metal centers. However, there is no guarantee that the mercury atoms can align to form a linear chain structure via halide-bridging alone, as evidenced by data in the literature.9,22,23 As a consequence, the aryl-aryl interac-
In summary, self-assembly of polymeric mercury structures comprised of linear mercury chains from HgX2 (X ) Cl, Br) and either 5,5′-bipyrimidine or 2,2′-bipyrazine at ambient temperature was achieved. Although the formation of Hg2X2 bridges is ubiquitous in the structural chemistry of mercury halides, the halide alone is not sufficient for the inducement of linearity. This study showed that face-to-face π-π (aryl-aryl) stacking interaction of coordinated aromatic ligands (bpym and bpyz) is the primary structure-directing influence in the formation of linear Hg chains. These results demonstrate a new way to synthesize coordination compounds with oligomeric or infinite metal chains. Acknowledgment. We thank Academia Sinica and the National Science Council of Taiwan for financial support. Supporting Information Available: Crystallographic data in CIF format of 1, 2, 2-I, and 3-Br. Synthesis details and crystallographic determination of 2-I. This material is available free of charge via the Internet at http://pubs.acs.org.
References (1) (a) Chen, I.-W. P.; Fu, M.-D.; Tseng, W.-H.; Yu, J.-Y.; Wu, S.-H.; Ku, C.-J.; Chen, C.-h.; Peng, S.-M. Angew. Chem., Int. Ed. 2006, 45, 5814. (b) Mitsumi, M.; Golo, H.; Umebayashi, S.; Ozawa, Y.; Kobayashi, M.; Yokoyama, T.; Tanaka, H.; Kuroda, S.-i.; Toriumi, K. Angew. Chem., Int. Ed. 2005, 44, 4164. (c) Tanaka, H.; Okano, Y.; Kobayashi, H.; Suzuki, W.; Kobayashi, A. Science 2001, 291, 285. (d) Bera, J. K.; Dunbar, K. R. Angew. Chem., Int. Ed. 2002, 41, 4453. (2) (a) Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A. J. Am. Chem. Soc. 2002, 124, 3212. (b) Shieh, M.; Liou, Y.; Hsu, M.-H.; Chen, R.-T.; Yeh, S.-J.; Peng, S.-M.; Lee, G.-H. Angew. Chem., Int. Ed. 2002, 41, 2384. (c) Rohmer, M.-M.; Strich, A.; Be´nard, M.; Malrieu, J. P. J. Am. Chem. Soc. 2001, 123, 9126. (d) Chen, Y.-H.; Lee, C.-C.; Wang, C.-C.; Lee, G.-H.; Lai, S.-Y.; Li, F.-Y.; Mou, C.Y.; Peng, S.-M. Chem. Commun. 1999, 1667. (e) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. Chem. Commun. 1999, 2461. (3) (a) Murahashi, T.; Nagai, T.; Mino, Y.; Mochizuki, E.; Kai, Y.; Kurosawa, H. J. Am. Chem. Soc. 2001, 123, 6927. (b) Murahashi, T.; Nagai, T.; Okuno, T.; Mastsutani, T.; Kurosawa, H. Chem. Commun. 2000, 1689. (4) (a) Uemura, K.; Fukui, K.; Nishikawa, H.; Arai, S.; Matsumoto, K.; Oshio, H. Angew. Chem., Int. Ed. 2005, 44, 5459. (b) Buss, C. E.; Mann, K. R. J. Am. Chem. Soc. 2002, 124, 1031. (c) Sakai, K.; Takeshita, M.; Tanaka, Y.; Ue, T.; Yanagisawa, M.; Kosaka, M.; Tsubomura, T.; Ato, M.; Nakano, T. J. Am. Chem. Soc. 1998, 120, 11353. (d) Sakai, K.; Tanaka, Y.; Tsuchiya, Y.; Hirata, K.; Tsubomura, T.; Iijima, S.; Bhattacharjee, A. J. Am. Chem. Soc. 1998, 120, 8366. (e) Barton, J. K.; Rabinowitz, H. N.; Szalda, D. J.; Lippard, S. J. J. Am. Chem. Soc. 1977, 99, 2827.
262 Crystal Growth & Design, Vol. 9, No. 1, 2009 (5) (a) Heyduk, A. F.; Krodel, D. J.; Meyer, E. E.; Nocera, D. G. Inorg. Chem. 2002, 41, 634. (b) Prater, M. E.; Pence, L. E.; Cle´rac, R.; Finniss, G. M.; Campana, C.; Auban-Senzier, P.; Je´rome, D.; Canadell, E.; Dunbar, K. R. J. Am. Chem. Soc. 1999, 121, 8005. (6) (a) Tejel, C.; Ciriano, M. A.; Villarroya, B. E.; Gelpi, R.; Lo´pez, J. A.; Lahoz, F. J.; Oro, L. A. Angew. Chem., Int. Ed. 2001, 40, 4084. (b) Tejel, C.; Ciriano, M. A.; Oro, L. A. Chem.—Eur. J. 1999, 5, 1131. (7) (a) Kolb, A.; Bissiier, P.; Schmidbaur, H. Inorg. Chem. 1993, 32, 5132. (b) Schmidbaur, H.; Graf, W.; Mu¨ller, G. Angew. Chem. Int., Ed. Engl. 1988, 27, 417. (c) Schmidbaur, H. Angew. Chem. Int., Ed. Engl. 1976, 15, 728. (8) (a) White-Morris, R. L.; Olmstead, M. M.; Attar, S.; Balch, A. L. Inorg. Chem. 2005, 44, 5021. (b) White-Morris, R. L.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2003, 125, 1033. (c) WhiteMorris, R. L.; Olmstead, M. M.; Balch, A. L.; Elbjeirami, O.; Omary, M. A. Inorg. Chem. 2003, 42, 6741. (d) White-Morris, R. L.; Stender, M.; Tinti, D. S.; Balch, A. L.; Rios, D.; Attar, S. Inorg. Chem. 2003, 42, 3237. (e) Hayashi, A.; Olmstead, M. M.; Attar, S.; Balch, A. L. J. Am. Chem. Soc. 2002, 124, 5791. (f) White-Morris, R. L.; Olmstead, M. M.; Jiang, F.; Tinti, D. S.; Balch, A. L. J. Am. Chem. Soc. 2002, 124, 2327. (9) (a) Eisler, D. J.; Puddephatt, R. J. Cryst. Growth Des. 2005, 5, 57. (b) McArdle, C. P.; Van, S.; Jennings, M. C.; Puddephatt, R. J. J. Am. Chem. Soc. 2002, 124, 3959. (c) Brandys, M.-C.; Puddephatt, R. J. J. Am. Chem. Soc. 2002, 124, 3946. (d) Hunks, W. J.; Jennings, M. C.; Puddephatt, R. J. Inorg. Chem. 2000, 39, 2699. (e) MacDonald, M.A.; Puddephatt, R. J.; Yap, G. P. A. Organometallics 2000, 19, 2194. (10) (a) Yeh, T.-T.; Wu, J.-Y.; Wen, Y.-S.; Liu, Y.-H.; Twu, J.; Tao, Y,T.; Lu, K.-L. Dalton Trans. 2005, 656. (b) Hannon, M. J.; Painting, C. L.; Plummer, E. A.; Childs, L. J.; Alcock, N. W. Chem.—Eur. J. 2002, 8, 2225. (c) Lee, K. M.; Wang, H. M. J.; Lin, I. J. B. J. Chem. Soc., Dalton Trans. 2002, 2852. (d) Yang, S.-P.; Chen, X.-M.; Ji, L.N. J. Chem. Soc., Dalton Trans. 2000, 2337. (11) (a) Chen, J.-X.; Zhang, W.-H.; Tang, X.-Y.; Ren, Z.-G.; Li, H.-X.; Zhang, Y.; Lang, J.-P. Inorg. Chem. 2006, 45, 7671. (b) Lee, Y.-A.; McGarrah, J. E.; Lachicotte, R. J.; Eisenberg, R. J. Am. Chem. Soc. 2002, 124, 10662. (12) (a) Chen, J.-X.; Zhang, W.-H.; Tang, X.-Y.; Ren, Z.-G.; Zhang, Y.; Lang, J.-P. Inorg. Chem. 2006, 45, 2568. (b) Patel, U.; Singh, H. B.; Wolmersha¨user, G. Angew. Chem., Int. Ed. 2005, 44, 1715. (c) Zhang, X.; Xie, Y.; Yu, W.; Zhao, Q.; Jiang, M.; Tian, Y. Inorg. Chem. 2003, 42, 3734. (13) Percec, V.; Bae, J.-Y.; Zhao, M.; Hill, D. H. J. Org. Chem. 1995, 60, 176. (14) Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837. (15) SheldrickG. M. SHELX-97 (including SHELXS and SHELXL), A Program for Crystal Structure Solution and Refinement; University of Gottingen: Gottingen, Germany, 1997. (16) (a) Henry, M.; Hosseini, M. W. New J. Chem. 2004, 28, 897. (b) Gardinier, J. R.; Gabbaı¨, F. P. J. Chem. Soc., Dalton Trans. 2000, 2861. (17) (a) Das, S.; Hung, C.-H.; Goswami, S. Inorg. Chem. 2003, 42, 8592. (b) King, J. B.; Haneline, M. R.; Tsunoda, M.; Gabbaı¨, F. P. J. Am.
Wu et al.
(18) (19)
(20) (21)
(22)
(23)
(24)
(25) (26)
(27)
Chem. Soc. 2002, 124, 9350. (c) Haneline, M. R.; Tsunoda, M.; Gabbaı¨, F. P. J. Am. Chem. Soc. 2002, 124, 3737. (d) Zamora, F.; Sabat, M.; Janik, M.; Siethoff, C.; Lippert, B. Chem. Commun. 1997, 485. (a) Pyykko¨, P.; Straka, M. Phys. Chem. Chem. Phys. 2000, 2, 2489. (b) Pyykko¨, P. Chem. ReV. 1997, 97, 597. (a) Canty, A. J.; Chaichit, N.; Gatehouse, B. M.; George, E. E.; Hayhurst, G. Inorg. Chem. 1981, 20, 2414. (b) Canty, A. J.; Chaichit, N.; Gatehouse, B. M.; George, E. E. Inorg. Chem. 1981, 20, 4293. Marjo, C. E.; Scudder, M. L.; Craig, D. C.; Bishop, R. J. Chem. Soc., Perkin Trans. 2 1997, 2099. (a) Balamurugan, V.; Hundal, M. S.; Mukherjee, R. Chem.—Eur. J. 2004, 10, 1683. (b) Su, C.-Y.; Smith, M. D.; zur Loye, H.-C. Angew. Chem., Int. Ed. 2003, 42, 4085. (c) Gibb, C. L. D.; Stevens, E. D.; Gibb, B. C. J. Am. Chem. Soc. 2001, 123, 5849. (d) Thallapally, P. K.; Nangia, A. CrystEngComm 2001, 3, 114. (e) Freytag, M.; Jones, P. G. Chem. Commun. 2000, 277. (a) Lee, S. Y.; Park, S.; Kim, H. J.; Jung, J. H.; Lee, S. S. Inorg. Chem. 2008, 47, 1913. (b) Bharara, M. S.; Bui, T. H.; Parkin, S.; Atwood, D. A. Inorg. Chem. 2005, 44, 5753. (c) Burchell, T. J.; Puddephatt, R. J. Inorg. Chem. 2005, 44, 3718. (d) Su, C.-Y.; Goforth, A. M.; Smith, M. D.; zur Loye, H.-C. Inorg. Chem. 2003, 42, 5685. (e) Ara, I.; Falvello, L. R.; Fornie´s, J.; Sicilia, V.; Villarroya, P. Organometallics 2000, 19, 3091. (f) Tschinkl, M.; Schier, A.; Riede, J.; Gabbaı¨, F. P. Angew. Chem., Int. Ed. 1999, 38, 3547. (g) Gudat, D.; Nieger, M.; Schrott, M. Inorg. Chem. 1997, 36, 1476. (a) Wang, X.-F.; Lv, Y.; Okamura, T.-a.; Kawaguchi, H.; Wu, G.; Sun, W.-Y.; Ueyama, N. Cryst. Growth Des. 2007, 7, 1125. (b) Draper, N. D.; Batchelor, R. J.; Leznoff, D. B. Cryst. Growth Des. 2004, 4, 621. (c) Batten, S. R.; Harris, A. R.; Murray, K. S.; Smith, J. P. Cryst. Growth Des. 2002, 2, 87. (d) Zhang, X.; Yu, W.; Xie, Y.; Zhao, Q.; Tian, Y. Inorg. Chem. Commun. 2003, 6, 1338. (e) Liu, Q.-X.; Yin, L.-N.; Wu, X.-M.; Feng, J.-C.; Guo, J.-H.; Song, H.-B. Polyhedron 2008, 27, 87. (a) Wong, W.-Y. Coord. Chem. ReV. 2007, 251, 2400. (b) Liu, L.; Wong, W.-Y.; Lam, Y.-W.; Tam, W.-Y. Inorg. Chim. Acta 2007, 360, 109. (c) Liu, L.; Poon, S.-Y.; Wong, W.-Y. J. Organomet. Chem. 2005, 690, 5036. (d) Wong, W.-Y.; Lu, G.-L.; Liu, L.; Shi, J.-X.; Lin, Z. Eur. J. Inorg. Chem. 2004, 2066. (e) Wong, W.-Y.; Choi, K.-H.; Lu, G.-L.; Lin, Z. Organometallics 2002, 21, 4475. Grdenic´, D. Quart. ReV. 1965, 19, 303. (a) Bondi, A. J. Phys. Chem. 1964, 68, 441. (b) Batsanov, S. S. J. Chem. Soc., Dalton Trans. 1998, 1541. (c) Nyburg, S. C.; Faerman, C. H. Acta Crystallogr., Sect. B 1985, 41, 274. (a) Awwadi, F. A.; Willett, R. D.; Haddad, S. F.; Twamley, B. Cryst. Growth Des. 2006, 6, 1833. (b) Zaman, M. B.; Udachin, K. A.; Ripmeester, J. A. Cryst. Growth Des. 2004, 4, 585. (c) Fan, J.; Sun, W.-Y.; Okamura, T.-a.; Zheng, Y.-Q.; Sui, B.; Tang, W.-X.; Ueyama, N. Cryst. Growth Des. 2004, 4, 579. (d) Lieberman, H. F.; Davey, R. J.; Newsham, D. M. T. Chem. Mater. 2000, 12, 490.
CG8004163