Full Text HTML - ACS Publications - American Chemical Society

Aug 1, 2017 - A Pd-catalyzed insertion and cycloaddition of CO2 and isocyanide into 2-iodoanilines under atmospheric pressure has been developed and a...
0 downloads 13 Views 909KB Size
Letter pubs.acs.org/OrgLett

Palladium-Catalyzed Incorporation of Two C1 Building Blocks: The Reaction of Atmospheric CO2 and Isocyanides with 2‑Iodoanilines Leading to the Synthesis of Quinazoline-2,4(1H,3H)‑diones Pei Xu, Fei Wang, Tian-Qi Wei, Ling Yin, Shun-Yi Wang,* and Shun-Jun Ji* Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China S Supporting Information *

ABSTRACT: A Pd-catalyzed insertion and cycloaddition of CO2 and isocyanide into 2-iodoanilines under atmospheric pressure has been developed and affords quinazoline-2,4(1H,3H)-diones through the formation of new C−C, C−O, and C−N bonds under mild conditions. This reaction provides a new and practical method not only for the construction of quinazoline-2,4(1H,3H)-diones but also for the efficient utilization of carbon dioxide.

A

Scheme 1. Reaction of CO2 and Isocyanides

part from its role as one of the greenhouse gases leading to global warming, carbon dioxide (CO2) is also an abundant, economical, nontoxic, natural, and renewable C1 source in synthetic chemistry. Over the past decade, the capture and utilization of CO2 in organic transformations have attracted increasing attention.1 However, due to the intrinsic high thermodynamic and kinetic stability of CO2, those transformations always required the employment of relatively harsh conditions such as high temperature and pressure and specific metal catalysts.2 In recent decades, several reports dealing with CO2 fixation by reactions with amino3 or hydroxyl4 groups with limited substrate scopes have been demonstrated. Isocyanides have been utilized as indispensable building blocks in modern organic chemistry. In particular, isocyanides have been widely utilized as synthons for nitrogen-containing heterocyclic compounds through transformations including multicomponent reactions involving isocyanides5 and transition-metal-catalyzed insertion of isocyanides.6−10 Recently, a number of transition metals such as Pd,6 Cu,7 Ag,8 Co,9 and Ni10 have been utilized to promote the insertion of isocyanides for the construction of nitrogen-containing molecules. Quinazoline-2,4(1H,3H)-diones are core scaffolds in many pharmaceutical intermediates;11,12 thus, a number of synthetic methods for their preparation have been developed.13 However, the existing methods suffer from the burdens of multistep procedures and expensive and toxic reagents (CO).13e Recently, the Lu group14 demonstrated a new method to access quinazoline-2,4(1H,3H)-diones utilizing explosive 2,2,2trichloroethoxycarbonyl azide (TrocN3). Therefore, a novel method preferably employing low-cost and stable starting materials is desirable. It is of particular interest to develop reactions that simultaneously employ CO2 and isocyanides. However, only a few relevant works have been reported.15,16 Previously, our group had successfully introduced CO2 into a multicomponent reaction of isocyanides (Scheme 1).16 To the best of our © 2017 American Chemical Society

knowledge, there are no reports of transition-metal-catalyzed insertion of CO2 and isocyanides. Herein, we demonstrate a three-component carboxylation−cyclization−insertion reaction to afford quinazoline-2,4(1H,3H)-diones from C1 building blocks (CO2, isocyanides). This reaction not only provides a new method for the construction of quinazoline-2,4(1H,3H)diones but also shows an efficient use of atmospheric carbon dioxide under mild conditions (Scheme 1). Initially, we tried the reaction of 2-iodoaniline (1a) with tertbutyl isocyanide (2a) in the presence of 10 mol % PdCl2, 20 mol % PPh3, and 2.0 equiv of 1,8-diazabicyclo[5.4.0]undec-7ene (DBU) in 2 mL of MeCN with CO2, under atmospheric pressure, at 80 °C. To our delight, the reaction proceeded smoothly to give 3-(tert-butyl)quinazoline-2,4(1H,3H)-dione (3a) in 84% yield (GC) (Table 1, entry 1). In the absence of the PdCl2, no desired product was detected (Table 1, entry 2). Alternative palladium salts such as Pd(OAc)2 and Pd(PPh3)4 led to 3a in slightly lower yields (Table 1, entries 3−4). Notably, either increasing or decreasing the catalyst loading of PdCl2 resulted in lower yields (Table 1, entries 5−6). Other Received: July 4, 2017 Published: August 1, 2017 4484

DOI: 10.1021/acs.orglett.7b01877 Org. Lett. 2017, 19, 4484−4487

Letter

Organic Letters Table 1. Screening of Reaction Conditionsa

Table 2. Substrate Scopea,b

entry

cat. (mol %)

base (equiv)

solvent

yield (%)b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18c 19d 20e 21e

PdCl2 (10) − Pd(OAc)2 (10) Pd(PPh3)4 (10) PdCl2 (5) PdCl2 (20) PdCl2 (10) PdCl2 (10) PdCl2 (10) PdCl2 (10) PdCl2 (10) PdCl2 (10) PdCl2 (10) PdCl2 (10) PdCl2 (10) PdCl2 (10) PdCl2 (10) PdCl2 (10) PdCl2 (10) PdCl2 (10) PdCl2 (10)

DBU (2) DBU (2) DBU (2) DBU (2) DBU (2) DBU (2) DIPEA (2) DABCO (2) t BuOK (2) Cs2CO3 (2) DBU (1) DBU (3) DBU (2) DBU (2) DBU (2) DBU (2) DBU (2) DBU (2) DBU (2) DBU (2) DBN (2)

MeCN MeCN MeCN MeCN MeCN MeCN MeCN MeCN MeCN MeCN MeCN MeCN DMSO DMA DCE toluene THF MeCN MeCN MeCN MeCN

84 0 73 74 74 78 0 trace trace 8 66 75 67 67 51 81 0 80 80 97(92) (90)

a Reaction conditions: 1 (0.3 mmol), 2a (0.45 mmol), PdCl2 (0.03 mmol), DBU (0.6 mmol), PPh3 (0.06 mmol), dry MeCN (2 mL), Schlenk tube, CO2 balloon, 80 °C, 12 h. bIsolated yields.

CO2 proceeded smoothly to afford the desired products 3g and 3m in 88% and 77% yields, respectively. It is worth noting that the substrate bearing a strong electron-withdrawing group (2iodo-4-nitroaniline) and 3-iodopyridin-2-amine that bears a heteroaromatic ring failed to give the desired products 3h and 3o under the optimized conditions. Next, we further investigated the substrate scope of isocyanides (Table 3). When 1-isocyanoadamantane (2b) was

a Reaction conditions: 1a (0.3 mmol), 2a (0.45 mmol), palladium catalyst, base, PPh3 (0.06 mmol), solvent (2 mL), Schlenk tube, CO2 balloon, 80 °C, 12 h. bYields were determined by GC analysis using biphenyl as an internal standard, and isolated yields are given in parentheses. cThe reaction was carried out for 8 h. dThe reaction was carried out for 16 h. eMeCN was dry.

organic bases including N,N-diisopropylethylamine (DIPEA) and 1,4-diazabicyclo[2.2.2]octane (DABCO) (Table 1, entries 7−8) as well as inorganic bases such as tBuOK and Cs2CO3 (Table 1, entries 9−10) were also investigated under similar reaction conditions. However, all these bases were significantly less effective. Screening different amounts of the base revealed that 2 equiv of DBU was the ideal amount (Table 1, entries 11−12). Moreover, other solvents, such as DMSO, DMA, DCE, toluene, and THF, were also examined. Unfortunately, no better yields of 3a were obtained (Table 1, entries 13−17). Screening additional reaction times revealed that a 12 h reaction duration gave a higher yield (Table 1, entries 18−19). To our delight, the yield increased to 97% (GC) when dry MeCN was used (Table 1, entry 20). With the optimized conditions in hand, we explored the substrate scope of various 2-iodoanilines 1 (Table 2). The reactions of 2-iodoanilines bearing electron-donating groups such as methyl and methoxy with isocyanide 2a and CO2 afforded the desired products 3b, 3c, and 3i in more than 91% yields. When fluoro- or chloro-substituted 2-iodoanilines were subjected to the reaction, 3d, 3j, 3e, and 3k were obtained in 91% to 95% yields. 4-Bromo-2-iodoaniline and 5-bromo-2iodoaniline resulted in the desired products 3f and 3l in 65% and 81% yields, respectively. In addition, the reaction of 2,4dichloro-6-iodoaniline with isocyanide 2a and CO2 led to the desired product 3n in a somewhat lower yield of 40% due to steric effects. The reactions of 2-iodo-4-(trifluoromethyl)aniline and 2-iodo-5-(trifluoromethyl)aniline with isocyanide 2a and

Table 3. Substrate Scopea,b

a

Reaction conditions: 1 (0.3 mmol), 2a (0.45 mmol), PdCl2 (0.03 mmol), DBU (0.6 mmol), PPh3 (0.06 mmol), dry MeCN (2 mL), Schlenk tube, CO2 balloon, 80 °C, 12 h. bIsolated yields.

employed in the reaction with 1a and CO2 under the optimized conditions, the desired product 4a was obtained in 92% yield. Similar results were observed when the reactions of substituted 2-iodoanilines with isocyanide 2b and CO2 were performed, affording the desired products 4b−f in moderate to excellent yields. 2-Isocyano-2,4,4-trimethylpentane was shown to be a suitable substrate for this reaction, giving the desired quinazoline-2,4(1H,3H)-dione 4g in 77% yield. Unfortunately, the 4485

DOI: 10.1021/acs.orglett.7b01877 Org. Lett. 2017, 19, 4484−4487

Letter

Organic Letters reactions of 2-iodoaniline 1a with isocyanocyclohexane, 1isocyanobutane, 1-((isocyanomethyl)sulfonyl)-4-methylbenzene, and aryl isocyanides failed to furnish the desired products 4h−l under the optimized conditions. To show the potential applications of our method, we tried the reactions of 2-iodoaniline 1a with tert-butyl isocyanide 2a on a half gram scale under the standard reaction conditions. To our delight, the reaction proceeded smoothly to afford 3a in 77% yield (Scheme 2).

Scheme 5. Plausible Reaction Mechanism

Scheme 2. Scale-up Synthesis

practical method not only for the construction of quinazoline2,4(1H,3H)-diones but also for the efficient utilization of CO2.



We further explored the reactions of 2-bromoaniline or 2chloroaniline with isocyanide 2a and CO2 under the optimal reaction conditions. However, poor conversions were observed owing to the lower reactivities of 2-chloroaniline and 2bromoaniline (Scheme 3).

ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.7b01877. Detailed experimental procedures and characterization datum (PDF)

Scheme 3. Reaction of 2-Bromoaniline and 2-Chloroaniline



AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected]. *E-mail: [email protected].

To investigate the mechanism of this reaction, we carried out several control experiments. The reactions of N-(2-iodophenyl)-4-methylbenzenesulfonamide and N-benzyl-2-iodoaniline with isocyanide 2a and CO2 failed to give the desired products, and the reactions were messy (Scheme 4). These results indicate that a primary amine is essential for this reaction.

ORCID

Shun-Yi Wang: 0000-0002-8985-8753 Shun-Jun Ji: 0000-0002-4299-3528 Notes

The authors declare no competing financial interest.



Scheme 4. Investigation of Reaction Mechanism

ACKNOWLEDGMENTS We gratefully acknowledge the National Natural Science Foundation of China (21542015, 21672157), PAPD, the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 16KJA150002), Soochow University, and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials for financial support.

Based on the above results and other literature reports,3,6,15c,16b we proposed a plausible mechanism for this Pd-catalyzed cyclization reaction (Scheme 5). First, the oxidative addition of 2-iodoaniline 1a to Pd(0) affords intermediate A, which undergoes the migratory insertion of tert-butyl isocyanide 2a to generate intermediate B. Then, CO2 reacts with intermediate B in the presence of DBU to give intermediate C. Subsequent reductive elimination of C gives D. Then, deprotonation of D by DBU generates intermediate E. Finally, cyclization of E followed by protonation gives the desired product 3a. In summary, we have developed a practical method to synthesize quinazoline-2,4(1H,3H)-diones in moderate to excellent yields via a multicomponent reaction of 2-iodoanilines with two C1 building blocks, isocyanides, and carbon dioxide, under atmospheric pressure. This reaction provides a new and



REFERENCES

(1) (a) Sakakura, T.; Choi, J. C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. (b) Sakakura, T.; Kohno, K. Chem. Commun. 2009, 45, 1312. (c) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. (d) Fiorani, G.; Guo, W.; Kleij, A. W. Green Chem. 2015, 17, 1375. (e) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933. (2) (a) Boogaerts, I. I. F.; Nolan, S. P. Chem. Commun. 2011, 47, 3021. (b) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Angew. Chem., Int. Ed. 2011, 50, 8510. (c) Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435. (d) Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956. (e) Ahamed, M.; Verbeek, J.; Funke, U.; Lecina, J.; Verbruggen, A.; Bormans, G. ChemCatChem 2016, 8, 3692. (f) Wang, S.; Du, G.; Xi, C. Org. Biomol. Chem. 2016, 14, 3666. (g) Börjesson, M.; Moragas, T.; Gallego, D.; Martin, R. ACS 4486

DOI: 10.1021/acs.orglett.7b01877 Org. Lett. 2017, 19, 4484−4487

Letter

Organic Letters Catal. 2016, 6, 6739. (h) Butcher, T. W.; McClain, E. J.; Hamilton, T. G.; Perrone, T. M.; Kroner, K. M.; Donohoe, G. C.; Akhmedov, N. G.; Petersen, J. L.; Popp, B. V. Org. Lett. 2016, 18, 6428. (i) Ren, X.; Zheng, Z.; Zhang, L.; Wang, Z.; Xia, C.; Ding, K. Angew. Chem., Int. Ed. 2017, 56, 310. (3) (a) Ishida, T.; Kikuchi, S.; Tsubo, T.; Yamada, T. Org. Lett. 2013, 15, 848. (b) Ishida, T.; Kikuchi, S.; Yamada, T. Org. Lett. 2013, 15, 3710. (c) Ishida, T.; Kobayashi, R.; Yamada, T. Org. Lett. 2014, 16, 2430. (d) Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Hao, L.; Gao, X.; Liu, Z. Angew. Chem., Int. Ed. 2014, 53, 5922. (e) Zhang, W.-Z.; Xia, T.; Yang, X.-T.; Lu, X.-B. Chem. Commun. 2015, 51, 6175. (f) Xiong, W.; Qi, C.; He, H.; Ouyang, L.; Zhang, M.; Jiang, H. Angew. Chem., Int. Ed. 2015, 54, 3084. (g) Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Wang, L.; He, Y.Q.; Ye, J.-H.; Li, J.; Zhi, Y.-G.; Yu, D.-G. Angew. Chem., Int. Ed. 2016, 55, 7068. (h) Wang, S.; Shao, P.; Du, G.; Xi, C. J. Org. Chem. 2016, 81, 6672. (i) Sun, S.; Hu, W.-M.; Gu, N.; Cheng, J. Chem. - Eur. J. 2016, 22, 18729. (j) Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2016, 55, ́ ́ 10022. (k) Garcla-Doml nguez, P.; Fehr, L.; Rusconi, G.; Nevado, C. Chem. Sci. 2016, 7, 3914. (l) Xiong, W.; Qi, C.; Guo, T.; Zhang, M.; Chen, K.; Jiang, H. Green Chem. 2017, 19, 1642. (4) (a) Sugawara, Y.; Yamada, W.; Yoshida, S.; Ikeno, T.; Yamada, T. J. Am. Chem. Soc. 2007, 129, 12902. (b) Qi, C.; Jiang, H.; Huang, L.; Yuan, G.; Ren, Y. Org. Lett. 2011, 13, 5520. (c) Ouyang, L.; Tang, X.; He, H.; Qi, C.; Xiong, W.; Ren, Y.; Jiang, H. Adv. Synth. Catal. 2015, 357, 2556. (d) Vara, B. A.; Struble, T. J.; Wang, W.; Dobish, M. C.; Johnston, J. N. J. Am. Chem. Soc. 2015, 137, 7302. (e) Zhang, Z.; Ju, T.; Miao, M.; Han, J.-L.; Zhang, Y.-H.; Zhu, X.-Y.; Ye, J.-H.; Yu, D.-G.; Zhi, Y.-G. Org. Lett. 2017, 19, 396. (5) (a) Ugi, I. Angew. Chem., Int. Ed. Engl. 1962, 1, 8. (b) Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem. - Eur. J. 2000, 6, 3321. (c) Zhu, J. Eur. J. Org. Chem. 2003, 2003, 1133. (d) Nair, V.; Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.; Mathen, J. S.; Balagopal, L. Acc. Chem. Res. 2003, 36, 899. (e) Dömling, A. Chem. Rev. 2006, 106, 17. (f) Ruijter, E.; Scheffelaar, R.; Orru, R. V. A. Angew. Chem., Int. Ed. 2011, 50, 6234. (g) Fang, Y.; Wang, S.-Y.; Shen, X.-B.; Ji, S.-J. Org. Chem. Front. 2015, 2, 1338. (h) Fang, Y.; Zhu, Z.-L.; Xu, P.; Wang, S.Y.; Ji, S.-J. Green Chem. 2017, 19, 1613. (i) Hu, Z.; Yuan, H.; Men, Y.; Liu, Q.; Zhang, J.; Xu, X. Angew. Chem., Int. Ed. 2016, 55, 7077. (6) (a) Kosugi, M.; Migita, T. Chem. Lett. 1986, 15, 1197. (b) Wang, J.; Luo, S.; Huang, J.; Mao, T.; Zhu, Q. Chem. - Eur. J. 2014, 20, 11220. (c) Li, J.; He, Y.; Luo, S.; Lei, J.; Wang, J.; Xie, Z.; Zhu, Q. J. Org. Chem. 2015, 80, 2223. (d) Pan, Y.-Y.; Wu, Y.-N.; Chen, Z.-Z.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. J. Org. Chem. 2015, 80, 5764. (e) Senadi, G. C.; Hu, W.-P.; Boominathan, S. S. K.; Wang, J.-J. Chem. - Eur. J. 2015, 21, 998. (f) Yang, Q.; Li, C.; Cheng, M. X.; Yang, S.-D. ACS Catal. 2016, 6, 4715. (g) Chen, Z. B.; Zhang, Y.; Yuan, Q.; Zhang, F. L.; Zhu, Y. M.; Shen, J. K. J. Org. Chem. 2016, 81, 1610. (h) Vlaar, T.; Cioc, R. C.; Mampuys, P.; Maes, B. U. W.; Orru, R. V. A.; Ruijter, E. Angew. Chem., Int. Ed. 2012, 51, 13058. (i) Fang, T.; Tan, Q.; Ding, Z.; Liu, B.; Xu, B. Org. Lett. 2014, 16, 2342. (j) Jiang, H.-F.; Gao, H.; Liu, B.; Wu, W. Chem. Commun. 2014, 50, 15348. (k) Qiu, G.; Mamboury, M.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2016, 55, 15377. (l) Hu, W.; Li, J.; Xu, Y.; Li, J.; Wu, W.; Liu, H.; Jiang, H. Org. Lett. 2017, 19, 678. (m) Kong, W.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2016, 55, 9714. (n) Peng, J.; Gao, Y.; Hu, W.; Gao, Y.; Hu, M.; Wu, W.; Ren, Y.; Jiang, H. Org. Lett. 2016, 18, 5924. (o) Qiu, G.; Wang, Q.; Zhu, J. Org. Lett. 2017, 19, 270. (p) Senadi, G. C.; Lu, T.-Y.; Dhandabani, G. K.; Wang, J.-J. Org. Lett. 2017, 19, 1172. (q) Gu, Z.-Y.; Zhu, T.-H.; Cao, J.-J.; Xu, X.-P.; Wang, S.-Y.; Ji, S.-J. ACS Catal. 2014, 4, 49. (r) Gu, Z.-Y.; Wang, X.; Cao, J.-J.; Wang, S.-Y.; Ji, S.-J. Eur. J. Org. Chem. 2015, 2015, 4699. (s) Tian, M.; He, Y.; Zhang, X.; Fan, X. J. Org. Chem. 2015, 80, 7447. (7) (a) Saegusa, T.; Ito, Y.; Kobayashi, S.; Hirota, K.; Yoshioka, H. Tetrahedron Lett. 1966, 7, 6121. (b) Huang, X.; Xu, S.; Tan, Q.; Gao, M.; Li, M.; Xu, B. Chem. Commun. 2014, 50, 1465. (c) Mampuys, P.; Zhu, Y.; Vlaar, T.; Ruijter, E.; Orru, R. V. A.; Maes, R. B. U. W. Angew. Chem., Int. Ed. 2014, 53, 12849. (d) Kanazawa, C.; Kamijo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2006, 128, 10662. (e) Pooi, B.; Lee, J.;

Choi, K.; Hirao, H.; Hong, S. H. J. Org. Chem. 2014, 79, 9231. (f) Kim, S.; Hong, S. H. Adv. Synth. Catal. 2015, 357, 1004. (g) Takamatsu, K.; Hirano, K.; Miura, M. Org. Lett. 2015, 17, 4066. (h) Lei, J.; Wu, X.; Zhu, Q. Org. Lett. 2015, 17, 2322. (i) Li, D.; Mao, T.; Huang, J.; Zhu, Q. Chem. Commun. 2017, 53, 1305. (8) (a) Liu, J.; Liu, Z.; Wu, N.; Liao, P.; Bi, X. Chem. - Eur. J. 2014, 20, 2154. (b) Liu, J.; Liu, Z.; Liao, P.; Zhang, L.; Tu, T.; Bi, X. Angew. Chem., Int. Ed. 2015, 54, 10618. (c) Wang, H.; Kumar, R. K.; Yu, Y.; Zhang, L.; Liu, Z.; Liao, P.; Bi, X. Chem. - Asian J. 2016, 11, 2841. (d) Hu, Z.; Dong, J.; Men, Y.; Lin, Z.; Cai, J.; Xu, X. Angew. Chem., Int. Ed. 2017, 56, 1805. (e) Zhang, X.; Wang, X.; Gao, Y.; Xu, X. Chem. Commun. 2017, 53, 2427. (9) (a) Sugano, K.; Tanase, T.; Kobayashi, K.; Yamamoto, Y. Chem. Lett. 1991, 20, 921. (b) Gao, Q.; Zhou, P.; Liu, F.; Hao, W.-J.; Yao, C.; Jiang, B.; Tu, S.-J. Chem. Commun. 2015, 51, 9519. (c) Zhu, T.-H.; Wang, S.-Y.; Wang, G.-N.; Ji, S.-J. Chem. - Eur. J. 2013, 19, 5850. (d) Zhu, T.-H.; Xu, X.-P.; Wang, G.-N.; Cao, J.-J.; Wei, T.-Q.; Wang, S.-Y.; Ji, S.-J. Adv. Synth. Catal. 2014, 356, 509. (e) Zhu, T.-H.; Wang, S.-Y.; Wei, T.-Q.; Ji, S.-J. Adv. Synth. Catal. 2015, 357, 823. (f) Zhu, T.H.; Wang, S.-Y.; Tao, Y.-Q.; Wei, T.-Q.; Ji, S.-J. Org. Lett. 2014, 16, 1260. (g) Xu, P.; Zhu, T.-H.; Wei, T.-Q.; Wang, S.-Y.; Ji, S.-J. RSC Adv. 2016, 6, 32467. (h) Gu, Z.-Y.; Liu, C.-G.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. 2017, 82, 2223. (i) Gu, Z.-Y.; Liu, Y.; Wang, F.; Bao, X.; Wang, S.-Y.; Ji, S.-J. ACS Catal. 2017, 7, 3893. (10) (a) Shinde, A. H.; Arepally, S.; Baravkar, M. D.; Sharada, D. S. J. Org. Chem. 2017, 82, 331. (b) Wang, G.-N.; Zhu, T.-H.; Wang, S.-Y.; Wei, T.-Q.; Ji, S.-J Tetrahedron 2014, 70, 8079. (11) Malik, M.; Marks, K. R.; Mustaev, A.; Zhao, X.; Chavda, K.; Kerns, R. J.; Drlica, K. Antimicrob. Agents Chemother. 2011, 55, 2335. (12) Lowe, J. A.; Archer, R. L.; Chapin, D. S.; Cheng, J. B.; Helweg, D.; Johnson, J. L.; Koe, B. K.; Lebel, L. A.; Moore, P. F.; Nielsen, J. A. J. Med. Chem. 1991, 34, 624. (13) (a) Jiarong, L.; Xian, C.; Daxin, S.; Shuling, M.; Qing, L.; Qi, Z.; Jianhong, T. Org. Lett. 2009, 11, 1193. (b) Dou, G.; Wang, M.; Shi, D. J. Comb. Chem. 2009, 11, 151. (c) Li, Z.; Huang, H.; Sun, H.; Jiang, H.; Liu, H. J. Comb. Chem. 2008, 10, 484. (d) Larksarp, C.; Alper, H. J. Org. Chem. 2000, 65, 2773. (e) Houlden, C. E.; Hutchby, M.; Bailey, C. D.; Ford, J. G.; Tyler, S. N. G.; Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Angew. Chem., Int. Ed. 2009, 48, 1830. (14) Zhang, T.; Wang, Z.; Hu, X.; Yu, M.; Deng, T.; Li, G.; Lu, H. J. Org. Chem. 2016, 81, 4898. (15) (a) Keating, T. A.; Armstrong, R. W. J. Org. Chem. 1998, 63, 867. (b) Lygin, A. V.; de Meijere, A. J. Org. Chem. 2009, 74, 4554. (c) Kaicharla, T.; Thangaraj, M.; Biju, A. T. Org. Lett. 2014, 16, 1728. (16) (a) Zhao, L.-L.; Wang, S.-Y.; Xu, X.-P.; Ji, S.-J. Chem. Commun. 2013, 49, 2569. (b) Fang, Y.; Wang, S.-Y.; Ji, S.-J. Tetrahedron 2015, 71, 2768.

4487

DOI: 10.1021/acs.orglett.7b01877 Org. Lett. 2017, 19, 4484−4487