Chapter 7
Generation of Nickel and Vanadyl Porphyrins from Kerogen During Simulated Catagenesis Gary J. Van Berkel and Royston H. Filby
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
Department of Chemistry and Nuclear Radiation Center, Washington State University, Pullman, WA 99164-1300
The fate of the Ni and V complexes in Woodford and New Albany oil shale kerogens during simulated catagenesis was studied by laboratory pyrolysis at 100-450°C in toluene. Sequential pyrolysis of the same kerogen aliquot at increasing temperatures allowed a distinction to be made between metal complexes in the pyrolysate which were components of residual bitumen associated with the kerogen (low temperature pyrolysis) and those complexes generated from the kerogen matrix (high temperature pyrolysis). Both Ni(II) porphyrin (NiP) and VO(II) porphyrin (VOP) were generated from the kerogen matrix and in proportion to the amount of organically combined Ni and V in the kerogen. There is no indication that either type of porphyrin is chemically bound to the kerogen matrix, but the porphyrin compositions of the bitumen and pyrolysates are different. The pyrolysate VOP composition shifts to lower carbon number and increases in the amount of etio type porphyrins relative to DPEP type porphyrins as pyrolysis temperature increases. Results also indicate that release of Ni and V complexes from kerogen during catagenesis may substantially alter the Ni and V concentration, porphyrin content, and porphyrin composition of the bitumen accumulating in a source rock. There is increasing evidence that kerogen plays a major role in the geochemistry of biomarker compounds, particularly the porphyrins, in source rocks. Several experimental studies have shown that kerogen liberates a variety of biomarkers upon heating (_l-3), but no data on the porphyrins have been presented. Most of the evidence that indicates a kerogen-porphyrin association is indirect and is based on the analysis of porphyrins from sedimentary rocks, bitumens, and petroleums. For example, high molecular weight geoporphyrins (^33) are hypothesized to originate during catagenesis as thermal cracking 0097-6156/87/0344-0110$07.25/0 © 1987 American Chemical Society
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
7.
VAN B E R K E L A N D FU BY
Generation
of Nickel and Vanadyl
Porphyrins
111
o f C-C b o n d s r e l e a s e s p o r p h y r i n s c h e m i c a l l y b o u n d t o t h e k e r o g e n m a t r i x (_4,5) . S t u d i e s o f p o r p h y r i n d i s t r i b u t i o n s i n b i t u m e n s f r o m rocks at d i f f e r e n t degrees o f thermal maturation i n sedimentary b a s i n s (6,7_) h a v e b e e n i n t e r p r e t e d t o i n d i c a t e t h a t s u b s t a n t i a l q u a n t i t i e s o f VOP a r e g e n e r a t e d f r o m k e r o g e n d u r i n g c a t a g e n e s i s . A l s o , B a k e r a n d L o u d a ( 8 ) h a v e p o s t u l a t e d t h a t N i P a n d VOP f o r m v i a d i f f e r e n t pathways i n sediments. The N i P i s c o n s i d e r e d t o f o r m p r i m a r i l y a s f r e e o r s o l v e n t e x t r a c t a b l e s p e c i e s , w h e r e a s VOP f o r m s i n a bound, o r n o n - e x t r a c t a b l e , s t a t e l i n k e d t o kerogen and i s o n l y l i b e r a t e d when t h e t h e r m a l s t r e s s b r e a k s t h e k e r o g e n - V O P l i n k a g e . At t h e p r e s e n t t i m e , t h e r e i s no s a t i s f a c t o r y e x p l a n a t i o n f o r the apparent u n i q u e kerogen enhanced c h e l a t i o n and/or a s s o c i a t i o n o f VOP. I n f a c t , r e c e n t s t u d i e s ( 9 - 1 1 ) h a v e shown t h a t some k e r o g e n s may c o n t a i n s i g n i f i c a n t q u a n t i t i e s o f b o t h o r g a n i c a l l y b o u n d N i a n d V. M o r e o v e r , S p i r o et_ a l . ( 1 1 ) f o u n d t h a t t h e N i / V r a t i o i n t h e k e r o g e n o f some I s r a e l i o i l s h a l e s a n d t h e N i P / V O P r a t i o i n t h e a s s o c i a t e d bitumen were p r o p o r t i o n a l (but independent o f t h e N i and V contents of themineral phase), i n d i c a t i n g possible c o r r e l a t i o n between t h e p o r p h y r i n c o n t e n t s o f t h e bitumen and t h e N i and V concentrations i n the kerogen. The c h e m i c a l s t a t e s o f N i a n d V i n kerogen have n o t been d e t e r m i n e d , b u t a major f r a c t i o n o f b o t h metals i sp r o b a b l y present as s t a b l e t e t r a p y r r o l e complexes. Whether t h e s e complexes a r e c h e m i c a l l y bound t o t h e k e r o g e n m a t r i x ( a l k y l bonds, e s t e r bonds, e t c . ) , t r a p p e d i n a m o l e c u l a r s i e v e t y p e network, or s t r o n g l y adsorbed i s u n c e r t a i n . The m e c h a n i s m o f i n c o r p o r a t i o n o f t h e s e m e t a l i o n s and/or m e t a l complexes i n t o t h e k e r o g e n i s unknown, and t h e d i a g e n e t i c s t a g e d u r i n g w h i c h i n c o r p o r a t i o n t a k e s p l a c e a n d the f a t e o f t h e s e complexes d u r i n g c a t a g e n e s i s h a s n o t been i n v e s tigated. I n t h i s p a p e r , l a b o r a t o r y p y r o l y s i s was u s e d t o s t u d y t h e r e l e a s e o f N i and V complexes from o i l s h a l e kerogens d u r i n g simulated catagenesis. The o b j e c t i v e s o f t h i s s t u d y were: (1) t o d e t e r m i n e t h e amount a n d t y p e o f N i a n d V c o m p l e x e s r e l e a s e d f r o m a kerogen d u r i n g s i m u l a t e d c a t a g e n e s i s , and (2) t o determine t h e r e l a t i o n s h i p s among t h e N i a n d V c o m p l e x e s i n t h e k e r o g e n , t h e comp l e x e s r e l e a s e d f r o m t h e k e r o g e n d u r i n g p y r o l y s i s , a n d t h o s e complexes present i n t h e a s s o c i a t e d o i l shale bitumen. Sequential p y r o l y s i s o f t h e same k e r o g e n a l i q u o t a t i n c r e a s i n g t e m p e r a t u r e s w a s used t o d i s t i n g u i s h between m e t a l complexes i n t h e p y r o l y s a t e which were components o f r e s i d u a l bitumen a s s o c i a t e d w i t h t h e kerogen ( o r s o l u b l e o r g a n i c m a t t e r (OM) o r i g i n a l l y p r e s e n t o n t h e r o c k m a t r i x but w h i c h a s s o c i a t e d w i t h t h e kerogen a f t e r d e m i n e r a l i z a t i o n ) and those complexes g e n e r a t e d d u r i n g t h e r m a l breakdown o f t h e k e r o g e n . The c o n c e n t r a t i o n s o f N i a n d V w e r e d e t e r m i n e d b y i n s t r u m e n t a l neutron a c t i v a t i o n a n a l y s i s (INAA). The p o r p h y r i n c o n t e n t s o f t h e bitumen and kerogen p y r o l y s a t e s were determined by U V - v i s i b l e spectrometry and high-performance l i q u i d chromatography (HPLC). Experimental Samples S e l e c t i o n and P r e p a r a t i o n . M i s s i s s i p p i a n New A l b a n y S h a l e ( H e n r y v i l l e Bed O u t c r o p , C l a r k County, IN) and M i s s i s s i p p i a n D e v o n i a n W o o d f o r d S h a l e ( S p r i n g e r O u t c r o p , C a r t e r C o u n t y , OK) w e r e the sources o f t h e kerogens used i n t h i s study. D e t a i l e d g e o l o g i c a l
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
112
M E T A L C O M P L E X E S IN FOSSIL FUELS
i n f o r m a t i o n o n t h e s e s h a l e s c a n be f o u n d e l s e w h e r e ( 1 2 , 1 3 ) . The s a m p l e p r e p a r a t i o n scheme i s o u t l i n e d i n F i g u r e 1. E a c h s h a l e was g r o u n d t o 200 m e s h a n d t h e n b i t u m e n - I was e x t r a c t e d b y s o n i c a t i o n w i t h t o l u e n e / m e t h a n o l ( 7 : 3 v / v ; 2 mL s o l v e n t / g s h a l e , 6 χ 45 m i n ) a t 40 C. The e x t r a c t s w e r e c o m b i n e d a n d f i l t e r e d ( 0 . 4 5 ym F l u o r o p o r e ) , and t h e s o l v e n t removed u s i n g a r o t a r y e v a p o r a t o r . B i t u m e n - I f r e e s h a l e (BF S h a l e ) was d r i e d i n v a c u o ( 8 0 C) a n d t h e n d e m i n e r a l i z e d u s i n g a p r o c e d u r e s i m i l a r t o t h a t o f D u r a n d and N i c a i s e (14). A f t e r n e u t r a l i z a t i o n o f r e s i d u a l HC1-HF o n t h e k e r o g e n w i t h d i l u t e ΝΉ3 f o l l o w e d b y s e v e r a l w a s h i n g s w i t h d o u b l e d i s t i l l e d H 2 O , t h e k e r o g e n c o n c e n t r a t e was d r i e d i n v a c u o (80°C). The k e r o g e n was t h e n e x t r a c t e d w i t h t o l u e n e / m e t h a n o l ( 7 : 3 v / v ; 2 mL solvent/g k e r o g e n , 6 χ 45 m i n ) t o r e m o v e b i t u m e n ( J L . £ . , b i t u m e n - I I ) l i b e r a t e d d u r i n g t h e a c i d d i g e s t i o n , a n d a g a i n v a c u u m d r i e d (80°C). Bitumen-II was i s o l a t e d u s i n g t h e same p r o c e d u r e a s f o r b i t u m e n - I . Kerogen P y r o l y s i s . The k e r o g e n s w e r e p y r o l y s e d a t c o n s t a n t t e m p e r a t u r e s w i t h i n t h e r a n g e o f 100-450°C i n a 1 L a u t o c l a v e (Autoclave E n g i n e e r s , E r i e , PA) a s shown i n F i g u r e 1. An a l i q u o t o f k e r o g e n t o g e t h e r w i t h 350 mL o f t o l u e n e was a d d e d t o t h e a u t o c l a v e a n d t h e system s e a l e d . The s y s t e m was p u r g e d w i t h n i t r o g e n f o r 5 m i n w i t h c o n s t a n t s t i r r i n g ( 1 0 0 0 r p m ) , p r e s s u r i z e d t o 250 p s i w i t h n i t r o g e n , then brought to the d e s i r e d temperature. The t e m p e r a t u r e o f t h e s y s t e m was a l l o w e d t o e q u i l i b r a t e (~1 h ) , m a i n t a i n e d f o r 5 h , a n d t h e n a l l o w e d t o c o o l t o b e l o w 80°C b e f o r e o p e n i n g t h e s y s t e m . P y r o l y s e d k e r o g e n was i s o l a t e d f r o m t h e p y r o l y s a t e b y c e n t r i f u g a t i o n a n d f i l t r a t i o n ( 0 . 4 5 ym F l u o r o p o r e ) a n d t h e n f u r t h e r e x t r a c t e d b y s o n i c a t i o n w i t h t o l u e n e ( 1 0 0 mL, 3 χ 20 m i n ) a t 40 C ( t o l u e n e / m e t h a n o l (7:3 v/v) i n t h e c a s e o f W o o d f o r d k e r o g e n ) . The filtered e x t r a c t s were c o m b i n e d and e v a p o r a t e d t o d r y n e s s t o y i e l d t h e pyrolysate. The p y r o l y s a t e i n t h i s c a s e i s d e f i n e d a s t h e s o l u b l e o r g a n i c m a t e r i a l l i b e r a t e d from the k e r o g e n w h i c h has a b o i l i n g point greater than that of toluene. The p y r o l y s e d k e r o g e n was vacuum d r i e d (80 C ) , s a m p l e d , and t r a n s f e r r e d t o t h e a u t o c l a v e f o r subsequent p y r o l y s i s at higher temperature. The p y r o l y s i s p r o c e d u r e was t h e n r e p e a t e d . Elemental A n a l y s i s . E l e m e n t a l a n a l y s i s (C,H,N,0) was c a r r i e d o u t C a n a d i a n M i c r o a n a l y t i c a l , LTD ( V a n c o u v e r , BC) u s i n g a C a r l o E r b a M o d e l 1106 E l e m e n t a l Analyzer. X-Ray D i f f r a c t i o n (XRD). XRD p a t t e r n s w e r e o b t a i n e d powder d e f r a c t o m e t e r u s i n g C u - K radiation.
with a
by
Norelco
a
Trace Element A n a l y s i s . C o n c e n t r a t i o n s o f N i and V w e r e d e t e r m i n e d by INAA. Sample a l i q u o t s and a p p r o p r i a t e s t a n d a r d s w e r e w e i g h e d i n t o c l e a n 1.5 mL p o l y v i a l s , r e - e n c a p s u l a t e d i n 7.5 mL p o l y v i a l s , b o t h o f w h i c h w e r e h e a t s e a l e d , and t h e n i r r a d i a t e d i n t h e W a s h i n g t o n S t a t e U n i v e r s i t y TRIGA I I I r e a c t o r . Gamma-ray s p e c t r a w e r e r e c o r d e d u s i n g t h e N u c l e a r D a t a ND 6 7 0 0 G e ( L i ) γ-ray s p e c t r o m e t e r system. The n u c l e a r r e a c t i o n s a n d m e t h o d s u s e d t o r e d u c e γ-ray s p e c t r a t o m e t a l c o n c e n t r a t i o n s were s i m i l a r t o t h o s e o f J a c o b s and F i l b y ( 1 5 ) . C o r r e c t i o n of the kerogen N i or V content to a m i n e r a l - f r e e b a s i s was c a r r i e d o u t i n a m a n n e r s i m i l a r t o t h a t o f V a n B e r k e l a n d F i l b y
(9).
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Generation
VAN B E R K E L A N D FILBY
of Nickel and Vanadyl
Porphyrins
SHALE 200
I
sonication
mesh toluene/MeOH (7:3v/v)
insoluble
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
BF
soluble
SHALE
BITUMEN-I
HCL/HF soluble
insoluble
WASTE
ORGANIC
sonication
RESIDUE
toluene/MeOH (7:3v/v)
insoluble
soluble
KEROGEN
Kerogen
BITUMEN-II
0
> t
v N
Autoclave
N
2
0 C H
2
0 C H
3
Pyrolysate
1
Pyrolysate
pyrolysis
insoluble
marcasite > covellite ~ rutile
68.22 6.71 2.24 4.83 1.17 0.05
a
-18 w t % pyrite > marcasite > ammonium c h l o r i d e
o f o r g a n i c n i t r o g e n content i s u n c e r t a i n because o f ammonium c h l o r i d e ( N H ^ C l ) i n t h e k e r o g e n m a t r i x .
M i n e r a l i m p u r i t y c o n t e n t u n c o r r e c t e d f o r o r g a n i c a l l y bound m e t a l contents. O r g a n i c a l l y combined N i and V a l o n e a c c o u n t f o r -0.3 w t % o f t h e apparent m i n e r a l component.
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
7. VAN B E R K E L A N D FILBY
Table I I .
Nickel
Generation
of Nickel and Vanadyl Porphyrins
a n d V a n a d i u m C o n t e n t o f New A l b a n y a n d W o o d f o r d Kerogen
Trace Element o r Ratio 3
[Ni]
K
[V] (Ni/V)
K
[Ni]
K
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
K
[v]
M
F
M F K
(Ni/V)
M F K
115
New
Element Content
Albany Shale Kerogen
(yg/g)
Woodford S h a l e Kerogen
2 5 0 0 ± 34 730 ± 16 3.42 + 0.09
505 ± 1 9 3 2 7 0 ± 62 0.154 ± 0.007
2128 ± 8 1 698 ± 26 3.05 ± 0.16
353 ± 3 3 3 2 6 2 ± 97 0.108 ± 0.01
C o n c e n t r a t i o n s ( y g / g ) o f N i a n d V i n t h e k e r o g e n ([Χ]χ) a n d m i n e r a l - f r e e k e r o g e n ([X]MFK)· M i n e r a l - f r e e kerogen v a l u e s were c a l c u l a t e d i n a manner s i m i l a r t o Van B e r k e l and F i l b y ( 9 ) . Ni/V r a t i o s a r eweight/weight r a t i o s .
polymorph, m a r c a s i t e . I n a d d i t i o n t o t h e s e m i n e r a l s , New A l b a n y kerogen a l s o c o n t a i n e d r u t i l e (T1O2) and c o v e l l i t e (CuS). Rutile was a n e x p e c t e d i m p u r i t y , b u t c o v e l l i t e , w h i c h i s s o l u b l e i n h o t HC1, w a s u n e x p e c t e d . However, because o f t h e h i g h c o n c e n t r a t i o n o f Cu i n t h e s h a l e ( 2 3 6 ppm, 1 3 ) a n d p o s s i b l e i n t e r g r o w t h s o f c o v e l l i t e and p y r i t e , t h e s u r v i v a l o f t h e f o r m e r i n t h e r i g o r o u s a c i d d i g e s tion i s probable. In a d d i t i o n t o p y r i t e and m a r c a s i t e , the Woodford kerogen a l s o c o n t a i n e d ammonium c h l o r i d e ( N H 4 C I ) , w h i c h f o r m e d o n t h e k e r o g e n b y r e a c t i o n o f a d s o r b e d HC1 w i t h d i l u t e N H 3 . The p r e s e n c e o f NH4CI i n the kerogen i m p l i e s t h a t t h e o r g a n i c n i t r o g e n content i n t h i s kerogen is overestimated. The N i a n d V c o n t e n t s o f t h e k e r o g e n s a r e g i v e n i n T a b l e I I . New A l b a n y k e r o g e n i s e n r i c h e d i n N i r e l a t i v e t o V, w h e r e a s f o r Woodford kerogen t h e r e v e r s e i s t r u e . Correction o f t h ekerogen N i o r V c o n t e n t s t o a m i n e r a l - f r e e b a s i s i s s m a l l ( b i t u m e n - I v e r s u s b i t u m e n I + I I ) . Bitumen composition i s a l s o a l t e r e d because o f the d i f f e r e n t compositions o f bitumen-I andbitumen-II , the N i and V concentrations are d i f f e r e n t ) . B i t u m e n - I I i s s o l u b l e OM w h i c h s t r o n g l y a s s o c i a t e s w i t h t h e mineral matrix and i s therefore d i f f i c u l t t o extract before acid digestion. J e o n g a n d K o b y l i n s k i ( 1 9 ) h a v e shown t h a t a s u b s t a n t i a l f r a c t i o n o f s o l u b l e OM i n a s h a l e f o r m s a k e r o g e n - m i n e r a l interf a c i a l l a y e r through chemical bonding o r p h y s i s o r p t i o n t o carbonate and, more s i g n i f i c a n t l y , s i l i c a t e m i n e r a l s . D i s s o l u t i o n o f the mineral matrix i n acid s o l u t i o n r e s u l t s i n i n t e r a c t i o n o f these s o l u b l e p o l a r organic s p e c i e s w i t h the kerogen. S p i r o (20) a l s o s h o w e d t h a t t h e s o l u b l e OM a s s o c i a t e d w i t h t h e m i n e r a l s w a s s y s t e m a t i c a l l y d i f f e r e n t i n composition from the bitumen. This difference was e x p l a i n e d b y t h e p h y s i c a l p r o p e r t i e s o f t h e c o m p o u n d s , a n d b y t h e c a t a l y s i s ( o r i n h i b i t i o n ) o f c e r t a i n r e a c t i o n s o f t h e s e compounds by t h e a s s o c i a t e d m i n e r a l p h a s e s . P y r o l y s i s a t l o w t e m p e r a t u r e (-100 C) r e s u l t s i n f u r t h e r r e m o v a l o f s o l u b l e OM a s s o c i a t e d w i t h t h e k e r o g e n . This m a t e r i a l i s probably s i m i l a r t o bitumen-II. A t t h i s p o i n t , the kerogen i s r e l a t i v e l y f r e e o f a n y s o l u b l e OM o r r e s i d u a l b i t u m e n ( p y r o l y s a t e 1 i s -3.5 w t % a n d -9.0 w t % o f t h e t o t a l s o l u b l e OM e x t r a c t e d f r o m New A l b a n y a n d Woodford s h a l e s , r e s p e c t i v e l y ) . P y r o l y s i s a t higher temperatures begins t o depolymerize the kerogen m a t r i x . T h e s o l u b l e OM p r o d u c e d i s e i t h e r c l e a v e d from t h e k e r o g e n m a t r i x b y bond r u p t u r e o r i s m a t e r i a l so s t r o n g l y adsorbed o r a s s o c i a t e d w i t h the kerogen m a t r i x to be d e f i n e d a s p a r t o f i t ( i n the c o n v e n t i o n a l sense o f s o l u b i l i t y ) , and i s o n l y s o l u b i l i z e d u n d e r t h e s e more d r a s t i c c o n d i t i o n s . Mckay ( 2 1 ) s u g g e s t e d t h a t t h e k e r o g e n o f some s h a l e s i s n o t a n i n s o l u b l e polymer, but m a t e r i a l o f s i m i l a r c o m p o s i t i o n t o the b i t u m e n , w h i c h can o n l y be s o l u b i l i z e d under c o n d i t i o n s d i f f e r e n t than those r e q u i r e d t o e x t r a c t the bitumen component. Neither kerogen produces s u b s t a n t i a l q u a n t i t i e s o f p y r o l y s a t e b e l o w 3 0 0 C. Y i e l d s o f p y r o l y s a t e become s u b s t a n t i a l a t 400°C a n d 4 5 0 C; h o w e v e r , t h e p r e s e n c e o f t o l u e n e p y r o l y s i s p r o d u c t s i n c r e a s e s the p y r o l y s a t e y i e l d . A l s o , a t 450 C the nature o f the p y r o l y s a t e changes from a d a r k , v i s c o u s b i t u m e n t o a n amber, n o n - v i s c o u s material. Other p y r o l y s i s s t u d i e s u s i n g t o l u e n e a s the s o l v e n t have shown l i t t l e e v i d e n c e o f t h e r m a l d e g r a d a t i o n o f t h e p y r o l y s a t e s p r o d u c e d a t 350 C may n o t b e e n t i r e l y
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
118
M E T A L C O M P L E X E S IN FOSSIL FUELS
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
representative of the organic composed.
c o n s t i t u e n t s o f which the kerogen i s
E f f e c t o f P y r o l y s i s on t h e K e r o g e n C o m p o s i t i o n . The c h a n g e i n t h e elemental composition o f the kerogens a f t e r p y r o l y s i s i spresented i n T a b l e I V a n d shown g r a p h i c a l l y i n F i g u r e 2 b y p l o t t i n g t h e H/C v e r s u s 0/C r a t i o s o f t h e k e r o g e n a n d p y r o l y s e d k e r o g e n s . For both New A l b a n y a n d W o o d f o r d k e r o g e n s , t h e p y r o l y s i s - i n d u c e d m a t u r a t i o n f o l l o w s t h e t y p i c a l p a t t e r n o f d e c r e a s i n g H/C a n d 0/C r a t i o s a s thermal maturation increases. The anomalous b e h a v i o r o f Woodford k e r o g e n b e t w e e n 103°C a n d 200°C ( 0 / C r a t i o s g r e a t e r t h a n t h e o r i g i n a l k e r o g e n ) may b e t h e r e s u l t o f a d s o r b e d m e t h a n o l w h i c h w a s u s e d w i t h toluene t o e x t r a c t the p y r o l y s a t e s from t h i s kerogen. Pyrolysates f r o m New A l b a n y k e r o g e n w e r e e x t r a c t e d u s i n g o n l y t o l u e n e . Although t h e e l e m e n t a l c o m p o s i t i o n o f t h e kerogen changes a t each p y r o l y s i s t e m p e r a t u r e , t h e l a r g e s t changes o c c u r above 300 C which i s the point at which the kerogens begin t o generate substant i a l quantities of pyrolysate. E f f e c t o f P y r o l y s i s on t h e N i and V C o n t e n t s o f t h e Kerogen and Pyrolysates. T h e N i a n d V c o n t e n t s o f New A l b a n y a n d W o o d f o r d k e r o g e n a n d p y r o l y s e d k e r o g e n s a r e shown i n T a b l e V. B e l o w 4 5 0 C, the ( N i / V ) K r a t i o i s c o n s t a n t ( w i t h i n ± 3 s.d. o f o r i g i n a l k e r o g e n v a l u e ) , b u t d r a m a t i c a l l y i n c r e a s e s a t 450 C i n b o t h s h a l e s . M F
Table IV.
Elemental Composition o f Kerogens
Pyrolysis T e m p e r a t u r e (°C)
Sample
%C
and P y r o l y s e d
Kerogens
%H
%N
%0
5.74 5.82 5.71 5.47 5.29 4.51 3.32
2,.67 2..73 2..72 2..71 2,.75 2..93 3..01
6.87 6.79 5.98 5.64 5.57 5.34 4.45
6.71 6.59 6.12 6.13 6.00 5.07 3.15
2..24 2..04 1 97 2..02 2. ,12 2. ,34 2. ,81
4.83 5.08 5.16 4.46 4.09 3.92 3.07
New A l b a n y Kerogen Kerogen Kerogen Kerogen Kerogen Kerogen Kerogen
1 2 3 4 5 6
110 210 300 350 400 450
67.90 68.62 70.37 70.98 72.15 72.71 73.85 Woodford
Kerogen Kerogen Kerogen Kerogen Kerogen Kerogen Kerogen
0
_
1 2 3 4 5 6
103 200 300 351 400 450
68.22 67.42 64.64 68.17 69.72 69.11 70.87
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
VAN B E R K E L A N D FILBY
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
New
Generation
Albany
(•)
Woodford
(•)
of Nickel and Vanadyl
•
Porphyrins
103°C Ο 200°C
35 1°C •
1 1 0 ° C
300 C
/ 210 C 300°C B
/ À nn°r
^
A
e
a 300°c
450°C
0.0
I
«
3.0
«
1
4.0
5.0
O / C x 100
'
"
'
6.0
7.0
8.0
(atomic)
F i g u r e 2. V a r i a t i o n o f t h e e l e m e n t a l kerogens w i t h s e q u e n t i a l p y r o l y s i s .
composition of
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
120
M E T A L C O M P L E X E S IN FOSSIL FUELS
T a b l e V.
Nickel
and Vanadium C o n c e n t r a t i o n s and N i / V R a t i o s f o r Kerogens and P y r o l y s e d Kerogens
Pyrolysis Temperature
(yg/g)
u
< c)
Sample
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
M i n e r a l - F r e e Kerogen Concentration
[ N i ]
( N i / V )
MFK
MFK
New A l b a n y Kerogen Kerogen Kerogen Kerogen Kerogen Kerogen Kerogen
0
_
1 2
110 210 300 350 400 450
3 4 5 6
2128 ± 81 2187 2209 2289 2297 2729 3132
6 9 8 ± 26 669 676 730 765 830 851
3.05 ± 0.16 3.27 3.27 3.14
3 2 6 2 ± 97 3357 3663 3609 3513 4541 5479
0.108 ± 0.01 0.115 0.103 0.100 0.115 0.120 0.163
3.00 3.29 3.68
Woodford Kerogen Kerogen Kerogen Kerogen Kerogen Kerogen Kerogen
0
-
1 2 3 4 5 6
103 200 300 350 400 450
353 + 33 385 378 362 403 543 892
C o n c e n t r a t i o n s (yg/g) o f N i and V i n t h e m i n e r a l - f r e e kerogen ([X]MFK)» M i n e r a l - f r e e k e r o g e n v a l u e s were c a l c u l a t e d i n a manner s i m i l a r t o Van B e r k e l and F i l b y ( 9 ) . M i n e r a l - f r e e N i and V c o n t e n t s o f t h e p y r o l y s e d k e r o g e n s were c a l c u l a t e d by m u l t i p l y i n g the measured m e t a l content by t h e percent o f t h e t o t a l m e t a l c o n t e n t w h i c h was o r g a n i c . The o r g a n i c f r a c t i o n o f t h e m e t a l was estimated by a d j u s t i n g t h e o r g a n i c f r a c t i o n o f t h e m e t a l i n k e r o g e n 0 t o a c c o u n t f o r t h e amount o f t h e e l e m e n t e x p e l l e d (organic) w i t h t h e p y r o l y s a t e a t each temperature. Percent r e l a t i v e s t a n d a r d d e v i a t i o n (% RSD) o f t h e p y r o l y s e d k e r o g e n v a l u e s i s .> t h e % RSD o f t h e o r i g i n a l k e r o g e n v a l u e s i n e a c h r e s p e c t i v e column.
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
7.
VAN B E R K E L A N D FILBY
Generation
of Nickel and Vanadyl Porphyrins
121
A f t e r t h e k e r o g e n s t a r t s t o t h e r m a l l y b r e a k down (~300°C), t h e c o n centration o f both metals i n the residue increases s i g n i f i c a n t l y above t h a t i n t h e o r i g i n a l kerogen. This i n d i c a t e s that as catagenes i s proceeds, themetals p r o g r e s s i v e l y concentrate i n t h e i n s o l u b l e kerogen f r a c t i o n . The p e r c e n t a g e o f t h e N i a n d V o r g a n i c a l l y b o u n d i n t h e k e r o g e n which i sexpelled with the pyrolysates (i-J^., expulsion y i e l d ) i s shown i n T a b l e V I . E x p u l s i o n y i e l d s f o r b o t h e l e m e n t s a r e l o w a t each temperature. T h e maximum e x p u l s i o n y i e l d f o r e a c h k e r o g e n w a s observed f o r t h e element i n h i g h e s t c o n c e n t r a t i o n i n t h a t kerogen ( N i f o r New A l b a n y ; V f o r W o o d f o r d ) . A s s e e n i n F i g u r e 3, t h e e x p u l s i o n y i e l d s o f b o t h e l e m e n t s show a p a r a l l e l b e h a v i o r . In fact, f o r New A l b a n y k e r o g e n t h e e x p u l s i o n y i e l d s f o r N i a n d V a t e a c h t e m p e r a t u r e a r e n o t s t a t i s t i c a l l y d i f f e r e n t (± 3 s . d . ) . F o r Woodford kerogen, however, t h e e x p u l s i o n y i e l d s a r e d i f f e r e n t w i t h g r e a t e r V e x p u l s i o n t h a n N i a t e a c h t e m p e r a t u r e , e x c e p t 4 5 0 C. H o w e v e r , a s p y r o l y s i s temperature i n c r e a s e s , t h e N i e x p u l s i o n y i e l d does i n c r e a s e r e l a t i v e t o t h e V e x p u l s i o n y i e l d (New A l b a n y k e r o g e n a p p e a r s t o show a s i m i l a r t r e n d ) . Since f o r both kerogens t h e e x p u l s i o n r a t e s o f N i and V (yg e l e m e n t / g TOC) a t e a c h t e m p e r a t u r e v a r y , t h e c o n c e n t r a t i o n s o f t h e elements i n t h e p y r o l y s a t e s vary. F o r p y r o l y s i s between 200 C and 4 0 0 C, t h e N i / V r a t i o s o f t h e New A l b a n y p y r o l y s a t e s a r e e q u a l t o t h e corresponding kerogen ( N i / V ) - ^ ^ r a t i o s w i t h i n t h e experimental e r r o r . However, t h e N i / V r a t i o s o f t h e bitumen ( I , I I , o r I + I I ) and t h e p y r o l y s a t e s produced a t these temperatures a r e n o t equal. In the case o f Woodford, t h e N i / Vr a t i o o f t h e p y r o l y s a t e s produced i n t h i s temperature range i s lower than t h e kerogen ( N i / V ) j ^ r a t i o , but equal t o t h e N i / V r a t i o o f bitumen-I. It i spossible that the organic Ni/V r a t i o o f the i n s i t u k e r o g e n i s a l t e r e d b y HC1-HF d e m i n e r a l i z a t i o n o f t h e s h a l e . This e f f e c t may e x p l a i n why t h e r e a p p e a r s t o b e n o s y s t e m a t i c c o r r e l a t i o n among t h e N i / V r a t i o s o f t h e b i t u m e n , p y r o l y s a t e s , a n d k e r o g e n c o n c e n t r a t e b e t w e e n t h e two s a m p l e s . However, i n t h e absence o f a documented model f o r t h e a s s o c i a t i o n o f m e t a l s p e c i e s w i t h t h e k e r o g e n , i t cannot be d e t e r m i n e d g e o c h e m i c a l l y whether t h e N i / V r a t i o o f t h e b i t u m e n , p y r o l y s a t e s , a n d k e r o g e n s h o u l d b e t h e same o r different. F K
Metalloporphyrins. UV-visible s p e c t r a l examination of the pyrolys a t e s r e v e a l e d t h e p r e s e n c e o f N i P a n d VOP. F i g u r e 4 s h o w s t h e s p e c t r a o f b i t u m e n - I a n d t h e p y r o l y s a t e s i n t o l u e n e a t t h e same concentrations. T h e New A l b a n y s a m p l e s c o n t a i n s i g n i f i c a n t q u a n t i t i e s o f b o t h N i P a n d VOP, b u t t h e N i P / V O P r a t i o i n c r e a s e s w i t h i n c r e a s i n g temperature from bitumen-I t o t h e p y r o l y s a t e s a s i n d i c a t e d by t h e a b s o r b a n c e a t t h e N i P a n d VOP S o r e t p e a k s ( 3 9 6 a n d 4 1 0 nm, r e s p e c tively). T h i s same t r e n d i s s e e n i n t h e N i / V r a t i o o f t h e p y r o l y s a t e s , w h i c h s u g g e s t s t h a t t h e NiP/VOP r a t i o and t h e N i / V r a t i o o f the p y r o l y s a t e s a r e p r o p o r t i o n a l . F u r t h e r support f o r t h i s c o n t e n t i o n i s shown i n F i g u r e 5 w h e r e t h e c o m b i n e d N i P a n d VOP Soret peak i n t e g r a t e d absorbance i sp l o t t e d v e r s u s t h e combined c o n c e n t r a t i o n o f N i and V i n the p y r o l y s a t e s . The e x c e l l e n t c o r r e l a t i o n o f S o r e t p e a k a b s o r b a n c e w i t h m e t a l c o n t e n t ( r = 0.98) i n d i c a t e s t h a t t h e NiP/VOP r a t i o o f t h e p y r o l y s a t e s i s p r o p o r t i o n a l
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
VI.
103 200 300 350 400 450
--
-
96.5
1.63 8.36 9.52 31.45 7.7
16.57 1.50 18.07 1.41
165.1 24.4
-
30.0 126.5 2.96 25.81 115.8
Expulsion yield defined i n the kerogen e x p e l l e d
-
5.19 0.633
0.810 3.69
0.272 0.286 1.43 1.79 5.44 0.98
-
3.34+0.20 7.16+0.33
1.15+0.06 1.69+0.31 1.24+0.07 1.62+0.06 3.20+0.08 3.63+0.19
Ni/V
0. 062+0.008 0. 040+0.003 0. 059+0.006 0.520 0. 057+0.002 0.603 0. 054+0.003 2.38 0. 062+0.004 2.91 0. 062+0.005 8.00 0. 078+0.003 0.95 0. 012+0.02
-
4.67 0.291
0.1774 0.828 3.32
V MFK
-
0.108+0.01 0.115 0.103 0.100 0.115 0.120 0.163
_
3.27 3.14 3.00 3.29 3.68
3.05+0.16 3.27
_
_
( N 1 / V )
i n the Bitumens,
a s w e i g h t p e r c e n t o f t h e o r g a n i c a l l y combined with the p y r o l y s a t e .
N i and V
TOC f o r t h e b i t u m e n s and p e r g k e r o g e n TOC
269 37.66 307 24.85 30.0 134.7 153.8 403.0 62.5
Woodford
-
49.5 3.32
8.08 31.9
0.0946
Albany
New 84.2 17.8 102.0 1.82
Ni
1 0 0
Yield
W
Expulsion (ug X/ug
V
Expulsion rate c a l c u l a t e d per g shale f o r the kerogen samples.
Bitumen-I Bitumen-II Bitumen-I+II Pyrolysate 1 Pyrolysate 2 Pyrolysate 3 Pyrolysate 4 Pyrolysate 5 Pyrolysate 6
400 450
210 300 350
110
Ni
E x p u l s i o n Rate (ug X/g TOC)
R a t e s and Y i e l d s f o r N i c k e l and Vanadium P y r o l y s a t e s , and R e s p e c t i v e Kerogens
Pyrolysis Temperature (°C)
Expulsion
Bitumen-I Bitumen-II Bitumen-I+II Pyrolysate 1 Pyrolysate 2 Pyrolysate 3 Pyrolysate 4 Pyrolysate 5 Pyrolysate 6
Sample
Table
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
7.
VAN B E R K E L A N D FILBY
Generation of Nickel and Vanadyl Porphyrins
123
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
e.o
100
200 300 Pyrolysis Temperature ( C)
400
500
200 300 Pyrolysis Temperature ( C)
400
500
e
8.0
6.0
2.0
0.0
e
F i g u r e 3. W e i g h t p e r c e n t o f o r g a n i c N i a n d V i n New A l b a n y ( A ) and W o o d f o r d (B) k e r o g e n e x p e l l e d w i t h t h e p y r o l y s a t e ( E x p u l s i o n Y i e l d ) a t each p y r o l y s i s temperature ( E r r o r b a r s = ± 1 s.d.).
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
M E T A L C O M P L E X E S IN FOSSIL FUELS
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
124
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
VAN B E R K E L A N D FILBY
Generation
of Nickel and Vanadyl Porphyrins
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
7.
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
125
126
M E T A L C O M P L E X E S IN FOSSIL FUELS
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
t o t h e N i / V r a t i o ; h o w e v e r , t h e [ N i ] a n d [V] n e e d n o t be e q u a l t o t h e [ N i P ] and [VOP], r e s p e c t i v e l y (i.e_. , " n o n - p o r p h y r i n " N i and V may be p r e s e n t , b u t i n t h e same r e l a t i v e p r o p o r t i o n s t o N i P a n d VOP in each sample). The d e v i a t i o n o f t h e b i t u m e n - I p o i n t on t h i s p l o t i n d i c a t e s t h a t t h e f r a c t i o n o f N i and V i n t h e b i t u m e n p r e s e n t as p o r p h y r i n complexes i s l e s s than that i n the p y r o l y s a t e s . The U V - v i s i b l e s p e c t r a o f W o o d f o r d b i t u m e n - I a n d pyrolysates show t h e p r e s e n c e o f o n l y VOP. H o w e v e r , c o l u m n c h r o m a t o g r a p h y on S1O2 a l l o w s s e p a r a t i o n o f a N i P f r a c t i o n f r o m t h e s a m p l e s . Because the NiP Soret peak i s not d e t e c t a b l e i n the b u l k samples, a v i s u a l c o r r e l a t i o n o f N i P / V O P r a t i o w i t h N i / V r a t i o c a n n o t be made. However, p l o t t i n g Soret peak a b s o r b a n c e v e r s u s m e t a l content of the p y r o l y s a t e s , a s f o r t h e New A l b a n y s a m p l e s , g i v e s a s t r a i g h t l i n e p l o t ( r = 0.96) i n d i c a t i n g t h a t t h e NiP/VOP r a t i o o f the p y r o l y s a t e s i s p r o p o r t i o n a l to the Ni/V r a t i o . In t h i s case, the p l o t i n d i c a t e s t h a t t h e f r a c t i o n o f N i and V i n t h e b i t u m e n p r e s e n t a s p o r p h y r i n complexes i s g r e a t e r than that i n the p y r o l y s a t e s . F o r New A l b a n y k e r o g e n ^ t h e N i / V r a t i o o f t h e p y r o l y s a t e s p r o d u c e d b e t w e e n 200 C a n d 400 C i s a p p r o x i m a t e l y e q u a l t o t h e (Ni/V) ratio. S i n c e t h e N i / V r a t i o and NiP/VOP r a t i o i n t h i s t e m p e r a t u r e r a n g e a r e p r o p o r t i o n a l , t h e k e r o g e n m u s t be generating t h e N i P a n d VOP i n t h e same r a t i o a s t h e i r c o n t e n t s i n t h e k e r o g e n (ji.e:. , ( N I / V ) M F r a t i o ~ N i P / V O P r a t i o o f t h e k e r o g e n ) . Interest i n g l y , t h e s e r a t i o s a r e o v e r 2.5 t i m e s t h a t o f t h e b i t u m e n - I N i / V ratio. Over t h i s t e m p e r a t u r e range, however, the Ni/V r a t i o s of b i t u m e n - I and t h e p y r o l y s a t e s f o r W o o d f o r d a r e e q u a l and p r o p o r t i o n a l t o the NiP/VOP r a t i o o f the p y r o l y s a t e s , but d i f f e r e n t from the (Ni/V)j4pK r a t i o . The r e a s o n f o r t h e d i f f e r e n t b e h a v i o r o f t h e two k e r o g e n s i s n o t o b v i o u s , b u t may r e f l e c t d i f f e r e n c e s i n t h e s p e c i a t i o n a n d m o d e s o f a s s o c i a t i o n f o r t h e N i a n d V i n t h e New A l b a n y a n d Woodford kerogens. M F K
K
The p o r p h y r i n c o m p o s i t i o n s o f b i t u m e n - I a n d t h e p y r o l y s a t e s w e r e i n v e s t i g a t e d u s i n g HPLC ( 1 7 ) . R e l a t i v e abundances of f o u r v a n a d y l p o r p h y r i n s ( C 2 g t i o , C 2 9 e t i o , C 3 1 D P E P , and C 3 2 D P E P ) w e r e measured i n each sample (see T a b l e V I I ) . Porphyrin compositions of b i t u m e n - I and t h e p y r o l y s a t e s a r e d i f f e r e n t and c h a n g e w i t h p y r o l y s i s temperature. The n a t u r e o f t h e c o m p o s i t i o n a l c h a n g e i s s i m i l a r f o r t h e New A l b a n y a n d W o o d f o r d s a m p l e s . As p y r o l y s i s t e m p e r a t u r e i n c r e a s e s , two m a j o r c h a n g e s i n p o r p h y r i n d i s t r i b u t i o n are noted: (1) t h e r e l a t i v e a b u n d a n c e o f t h e l o w e r c a r b o n number p o r p h y r i n i n b o t h p o r p h y r i n s e r i e s i n c r e a s e s , and ( 2 ) t h e a b u n d a n c e o f e t i o p o r p h y r i n i n c r e a s e s r e l a t i v e t o DPEP. I n t e r p r e t a t i o n o f t h e s e changes must t a k e i n t o a c c o u n t not o n l y the p o s s i b l e g e n e r a t i o n of d i f f e r e n t p o r p h y r i n s from the kerogen at d i f f e r e n t t e m p e r a t u r e s , but a l s o t h e r m a l a l t e r a t i o n o f b o t h the s o l v e n t s o l u b l e and k e r o g e n - a s s o c i a t e d porphyrins. e
Discussion The e f f e c t o f HC1-HF d e m i n e r a l i z a t i o n o f t h e s h a l e o n t h e t r a c e element c o n t e n t o f t h e i s o l a t e d k e r o g e n c o n c e n t r a t e has not been assessed. However, b o t h k e r o g e n samples c o n t a i n h i g h concentrations o f o r g a n i c a l l y c o m b i n e d N i a n d V. V a r i a b l e amounts of m i n e r a l i m p u r i t y i n the kerogen samples w i l l cause the c a l c u l a t e d m i n e r a l -
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
7.
Generation
VAN B E R K E L A N D FILBY
Table V I I .
of Nickel and Vanadyl Porphyrins
R e l a t i v e Abundance of Four V a n a d y l P o r p h y r i n s i n B i t u m e n - I and t h e P y r o l y s a t e s a
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
R e l a t i v e Abundance C g.etio
Sample
2
C
2 9
etio
C DPEP 3 1
(%) C DPEP 3 2
New A l b a n y Bitumen-I Pyrolysate Pyrolysate Pyrolysate Pyrolysate Pyrolysate Pyrolysate
1 2 3 4 5 6
(110°C) (210°C) ( 3 0 0 C) (350°C) (400°C) ( 4 5 0 C)
13.6 25.0 24.5 40.2 93.2 100 100
21.1 23.7 23.1 43.3 100 68.2 56.5
40.4 62.9 66.4 82.0 83.2 50.9 60.1
100 100 100 100 87.4 34.7 56.5
Woodford Bitumen-I Pyrolysate Pyrolysate Pyrolysate Pyrolysate Pyrolysate Pyrolysate
a
1 2 3 4 5 6
(103°C) (200°C) (300°C) (350°C) (400°C) (450°C)
21.0 26.4 25.9 24.2 35.2 100 100
DPEP = d e o x o p h y l l o e r y t h r o e t i o
29.0 24.4 24.1 32.3 35.8 64.2 37.0
82.3 100 100 96.8 100 90.2
porphyrin; etio
= etio
100 91.4 92.0 100 97.4 57.5
porphyrin.
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
111
128
M E T A L C O M P L E X E S IN FOSSIL FUELS
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
f r e e kerogen t r a c e element c o n t e n t s to d i f f e r because as the m i n e r a l i m p u r i t y content of the kerogen i n c r e a s e s , the t r a c e element content of the kerogen i s d i l u t e d . T h i s e f f e c t c a n be o v e r c o m e b y e x p r e s s i n g c o n c e n t r a t i o n s p e r g o f k e r o g e n TOC i n s t e a d o f p e r g o f kerogen. However, i f k e r o g e n t r a c e element d a t a a r e e x p r e s s e d as e l e m e n t a l r a t i o s ( e . j * . , N i / V ) t h e m i n e r a l d i l u t i o n e f f e c t i s o f no consequence. The e f f e c t o f v a r i o u s d e m i n e r a l i z a t i o n p r o c e d u r e s on the t r a c e element content of kerogen i s c u r r e n t l y under i n v e s t i g a t i o n in this laboratory. D u r i n g t h e s i m u l a t e d c a t a g e n e s i s N i P a n d VOP w e r e g e n e r a t e d from the kerogens i m p l y i n g t h a t the concept of s e l e c t i v e kerogen b i n d i n g o f VOP p r o p o s e d b y B a k e r a n d L o u d a (8) n e e d s t o be r e v i s e d . S i n c e b o t h N i P a n d VOP a r e s h o w n t o a s s o c i a t e w i t h t h e k e r o g e n , i t would a p p e a r t h a t t h e d e p o s i t i o n a l e n v i r o n m e n t o f t h e s e d i m e n t and t h e p o s t - d e p o s i t i o n a l e v o l u t i o n o f t h e k e r o g e n a r e more i m p o r t a n t f a c t o r s i n t h e k e r o g e n - p o r p h y r i n a s s o c i a t i o n t h a n any c h e m i c a l p r o p e r t y o f e i t h e r N i P o r VOP f a v o r i n g k e r o g e n e n h a n c e d c h e l a t i o n or association. The d a t a f r o m t h i s s t u d y s u g g e s t t h a t b o t h N i P a n d VOP a s s o c i a t e w i t h t h e k e r o g e n i n a s i m i l a r m a n n e r . The most l i k e l y modes o f a s s o c i a t i o n a r e : - Physisorption of discrete porphyrins - Chemisorption of discrete porphyrins - Molecular sieve trapping of discrete porphyrins - Chemical bonding of p o r p h y r i n s to the kerogen through a l k y l bonds, e s t e r l i n k a g e s , e t c . or t h r o u g h a x i a l bonding to the metal ion. Any " n o n - p o r p h y r i n " N i and V c o m p l e x e s g e n e r a t e d f r o m t h e kerogen are probably part of the asphaltene f r a c t i o n of the p y r o l y s a t e and, t h e r e f o r e , would bear a c l o s e resemblance t o the "nonp o r p h y r i n " complexes t h a t have been d e s c r i b e d i n a s p h a l t e n e s ( 2 4 ) . T h e s e a s p h a l t e n e m e t a l c o m p l e x e s h a v e b e e n c o n s i d e r e d t o be e i t h e r d i s c r e t e complexes ( a d s o r b e d , c h e m i s o r b e d , o r a c t u a l l y bound c h e m i c a l l y to the asphaltenes) or part of the asphaltene s t r u c t u r e . H o w e v e r , t h e y may be p o r p h y r i n s i n o n e o f t h e a s s o c i a t i o n m o d e s a b o v e ( o r y e t a n o t h e r ) w h i c h c a n n o t be l i b e r a t e d f r o m t h e k e r o g e n o r a s p h a l t e n e as a d i s c r e t e p o r p h y r i n s p e c i e s . T o o u l a k o u and F i l b y (25) h a v e shown t h a t t h i s i s t h e c a s e f o r a t l e a s t 2 5 % o f t h e V i n A t h a b a s c a o i l sand a s p h a l t e n e s . A c o m p a r i s o n o f t h e VOP c o m p o s i t i o n o f b i t u m e n - I a n d t h e p y r o l y s a t e s r e v e a l s a g e n e r a l s h i f t t o l o w e r c a r b o n number f o r e t i o and DPEP t y p e p o r p h y r i n s , a n d a n a p p a r e n t i n c r e a s e i n e t i o r e l a t i v e t o DPEP t y p e p o r p h y r i n s a s p y r o l y s i s t e m p e r a t u r e i n c r e a s e s . It is p o s s i b l e t h a t k e r o g e n g e n e r a t e s p o r p h y r i n s o f l o w e r c a r b o n number as p y r o l y s i s t e m p e r a t u r e i n c r e a s e s . Lower c a r b o n number f o r a g i v e n porphyrin type r e s u l t s i n increased p o l a r i t y . Thus, more p o l a r p o r p h y r i n s may be g e n e r a t e d p r e f e r e n t i a l l y a t h i g h e r p y r o l y s i s temperatures because of a s t r o n g e r a s s o c i a t i o n w i t h kerogen than h i g h e r c a r b o n number s p e c i e s . However, d e a l k y l a t i o n o f p o r p h y r i n s d u r i n g t h e r m a l m a t u r a t i o n has been demonstrated i n o t h e r l a b o r a t o r y s t u d i e s (26-29) and i s c o n s i s t e n t w i t h p o r p h y r i n d a t a o b t a i n e d from the a n a l y s i s o f bitumens from sample s u i t e s o f i n c r e a s i n g m a t u r a t i o n (6,7,28). T h e r e f o r e , t h e s h i f t t o l o w e r c a r b o n number p o r p h y r i n s a s p y r o l y s i s t e m p e r a t u r e i n c r e a s e s may be a s e c o n d a r y t h e r m a l e f f e c t which a l t e r s the p o r p h y r i n s as they are generated from the kerogen.
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
7. VAN B E R K E L A N D FILBY
Generation
of Nickel and Vanadyl Porphyrins
129
The a p p a r e n t i n c r e a s e i n e t i o r e l a t i v e t o DPEP t y p e p o r p h y r i n s w i t h i n c r e a s i n g p y r o l y s i s t e m p e r a t u r e ( m a t u r a t i o n ) must be i n t e r p r e t e d w i t h c a u t i o n s i n c e t h i s t r e n d i s based on a n a l y s i s o f o n l y f o u r m e m b e r s o f t h e VOP s e r i e s i n t h e s a m p l e s . The EDPEP/Zetio r a t i o d e t e r m i n e d f r o m t h e DPEP a n d e t i o m a s s s p e c t r a l e n v e l o p e s i s a more r e l i a b l e i n d i c a t o r o f a c o m p o s i t i o n a l change a n d work i s i n progress t o determine t h i s r a t i o f o r both metalloporphyrins. The a p p a r e n t i n c r e a s e i n e t i o r e l a t i v e t o DPEP t y p e p o r p h y r i n s with increasing temperature has several possible explanations: (1) E t i o p o r p h y r i n s a r e p r e f e r e n t i a l l y a s s o c i a t e d w i t h k e r o g e n . Therefore, t h e kerogen p y r o l y s a t e i senriched i n e t i o type p o r p h y r i n s r e l a t i v e t o t h e bitumen. I t h a s been suggested t h a t o x i d a t i v e c l e a v a g e o f t h e DPEP i s o c y c l i c r i n g p r o d u c e s f u n c t i o n a l i z e d e t i o intermediates which could bind t o t h e kerogen m a t r i x (30). ( 2 ) DPEP a n d e t i o t y p e p o r p h y r i n s a r e g e n e r a t e d f r o m t h e k e r o g e n a t t h e same r a t e a t e a c h t e m p e r a t u r e , b u t : ( a ) DPEP p o r p h y r i n s a r e thermally converted t o e t i o porphyrins after being generated, o r ( b ) DPEP p o r p h y r i n s a r e t h e r m a l l y d e g r a d e d a t a f a s t e r r a t e t h a n e t i o porphyrins. Recent work (6,31) i n d i c a t e s t h a t t h e t h e r m a l c o n v e r s i o n o f DPEP t o e t i o i s o n l y a m i n o r s o u r c e o f e t i o t y p e p o r p h y r i n s . P r e f e r e n t i a l t h e r m a l d e g r a d a t i o n o f DPEP v e r s u s e t i o t y p e p o r p h y r i n s h a s b e e n shown i n t h e l a b o r a t o r y (31) a n d i s t h e more p l a u s i b l e e x p l a n a t i o n o f t h e two. ( 3 ) T h e s h i f t t o l o w e r c a r b o n n u m b e r (e._g. , d e a l k y l a t i o n ) o c c u r s m o r e r a p i d l y f o r t h e e t i o r e l a t i v e t o t h e DPEP t y p e p o r p h y r i n s . However, i f t h e e n t i r e homologous s e r i e s e n v e l o p e f o r b o t h p o r p h y r i n t y p e s s h i f t s t o l o w e r c a r b o n number t h e Z D P E P / E e t i o r a t i o w i l l n o t change. Of t h e e x p l a n a t i o n s a b o v e , p r e f e r e n t i a l d e g r a d a t i o n o f k e r o g e n g e n e r a t e d DPEP t y p e p o r p h y r i n s r e l a t i v e t o e t i o t y p e p o r p h y r i n s i s p r o b a b l y t h emajor mechanism p r o d u c i n g t h e changes i n c o m p o s i t i o n . The d a t a i n d i c a t e t h a t b o t h t y p e s o f p o r p h y r i n a r e p r e s e n t i n t h e s a m p l e s up t o a t l e a s t 400°C. N o t u n t i l 200-300°C d o e s t h e r a p i d change i n r e l a t i v e abundance o f t h e two p o r p h y r i n t y p e s a p p e a r . B u r k o v a e t a l . ( 3 1 ) showed t h a t s u b s t a n t i a l c h a n g e s i n D P E P / e t i o r a t i o s t a k e p l a c e w i t h t e m p e r a t u r e s a s l o w a s 200-250 C due t o p r e f e r e n t i a l d e g r a d a t i o n . Another i n d i c a t i o n t h a t t h i s change i s d u e t o t h e r m a l d e g r a d a t i o n comes f r o m t h e r e l a t i v e i n c r e a s e i n N i expulsion yield relative t o V expulsion yield with increasing p y r o l y s i s temperature. R o s s c u p a n d Bowman ( 3 2 ) s h o w e d t h a t VOP w a s more t h e r m a l l y l a b i l e t h a n N i P ; h e n c e , t h e d e c r e a s e i n V e x p u l s i o n y i e l d w i t h i n c r e a s i n g p y r o l y s i s t e m p e r a t u r e may b e d u e t o p r e f e r e n t i a l d e s t r u c t i o n o f l i b e r a t e d VOP r e s u l t i n g i n r e a s s o c i a t i o n o f the " i n o r g a n i c " V w i t h t h e kerogen. The r e l e a s e o f N i a n d V f r o m t h e k e r o g e n d u r i n g p y r o l y s i s o c c u r s a t a r a t e s u c h t h a t t h e t o t a l amount g e n e r a t e d p e r g o f k e r o g e n TOC i s m u c h l a r g e r t h a n t h e a m o u n t o f N i a n d V i n t h e b i t u m e n i s o l a t e d from an e q u i v a l e n t weight o f kerogen i n t h e shale. Theref o r e , t h e e x p u l s i o n o f t h e complexes from t h e kerogen c o u l d s u b s t a n t i a l l y a l t e r ( i g n o r i n g m i g r a t i o n and i n s i t u m a t u r a t i o n ) t h e N i and V c o n t e n t , p o r p h y r i n c o n t e n t , and p o r p h y r i n c o m p o s i t i o n o f t h e bitumen accumulating i n a source rock. Using t h e p y r o l y s a t e y i e l d s and m e t a l e x p u l s i o n r a t e s a t e a c h t e m p e r a t u r e , a n d a s s u m i n g : a) a c l o s e d s y s t e m , b ) a s a m p l e c o n t a i n i n g 1 g k e r o g e n TOC, a n d c ) n o
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
130
M E T A L C O M P L E X E S IN FOSSIL FUELS
i n s i t u m a t u r a t i o n , t h e N i and V c o n t e n t s o f t h e a c c u m u l a t i n g b i t u mens w e r e e s t i m a t e d . The v a r i a t i o n o f t h e m e t a l c o n t e n t o f t h e accumulating bitumen i s p l o t t e d versus p y r o l y s i s temperature ( m a t u r a t i o n ) i n F i g u r e 6, a n d t h e N i / V r a t i o i s p l o t t e d i n F i g u r e 7. The d a t a a t 4 5 0 C w e r e n o t i n c l u d e d b e c a u s e o f p y r o l y t i c e f f e c t s w h i c h may h a v e s u b s t a n t i a l l y a l t e r e d t h e s a m p l e s . For Woodford, the e x p u l s i o n r a t e of the metals i s such that catagenesis reduces t h e i r c o n c e n t r a t i o n s i n the accumulating bitumen. H o w e v e r , t h e N i / V r a t i o r e m a i n s c o n s t a n t up t o 4 0 0 C, w h e r e i t i n c r e a s e s b y ~12% o v e r t h e o r i g i n a l b i t u m e n . The t r e n d f o r New Albany, however, i s d i f f e r e n t . The V c o n c e n t r a t i o n d e c r e a s e s a s t h e b i t u m e n a c c u m u l a t e s , b u t t h e N i c o n c e n t r a t i o n i n c r e a s e s up t o 300 C then decreases. Therefore, the Ni/V r a t i o of the accumulating b i t u men s h o w s a c o n s i s t e n t i n c r e a s e . The s u b s t a n t i a l q u a n t i t i e s o f p o r p h y r i n l i b e r a t e d f r o m k e r o g e n d u r i n g m a t u r a t i o n w i l l a l t e r t h e p o r p h y r i n c o n t e n t , and p o r p h y r i n c o m p o s i t i o n , of the accumulating bitumen. Although kerogen i s the source of the p o r p h y r i n s , i t i s probably thermal e f f e c t s which cause the c o m p o s i t i o n a l change i n the l i b e r a t e d p o r p h y r i n s r a t h e r than l i b e r a t i o n of c o m p o s i t i o n a l l y d i f f e r e n t porphyrins w i t h i n c r e a s i n g temperature. N o n e t h e l e s s , as m a t u r a t i o n (temperature) i n c r e a s e s , the VOP s e r i e s w i l l s h i f t t o l o w e r c a r b o n n u m b e r a n d e t i o t y p e p o r p h y r i n s w i l l i n c r e a s e r e l a t i v e t o DPEP t y p e p o r p h y r i n s . The b e h a v i o r f o r N i P i s e x p e c t e d t o be s i m i l a r , b u t d i f f e r e n c e s h a v e b e e n n o t i c e d b y o t h e r s ( 7 ) i n t h e r e l a t i v e o f r a t e s o f N i P a n d VOP d e a l k y l a t i o n d u r i n g m a t u r a t i o n , f o r example. Changes i n t h e p o r p h y r i n c o m p o s i t i o n and c o n t e n t o f t h e b i t u m e n s f r o m s a m p l e s u i t e s o f i n c r e a s i n g m a t u r i t y (e.g/? _»]) h a v e b e e n hypothesized to r e s u l t , at l e a s t i n p a r t , from the r e l e a s e of p o r p h y r i n s from the kerogen d u r i n g c a t a g e n e s i s . This study provides e x p e r i m e n t a l e v i d e n c e o f t h e g e n e r a t i o n o f N i P a n d VOP f r o m k e r o g e n . However, the e x a c t n a t u r e o f the changes i n the bitumen w i l l depend on t h e k e r o g e n a n d i t s t h e r m a l h i s t o r y a n d c a n n o t be g e n e r a l i z e d t o a l l sample s u i t e s . Conclusions S e v e r a l c o n c l u s i o n s a b o u t t h e g e o c h e m i s t r y o f N i and V c o m p l e x e s i n k e r o g e n c a n be d r a w n f r o m t h i s s t u d y . (1) The W o o d f o r d a n d New A l b a n y o i l s h a l e k e r o g e n s c o n t a i n s u b s t a n t i a l q u a n t i t i e s o f o r g a n i c a l l y c o m b i n e d N i a n d V. (2) K e r o g e n c a t a g e n e s i s s i m u l a t e d u s i n g l a b o r a t o r y p y r o l y s i s i s e f f e c t i v e i n l i b e r a t i n g o r g a n i c N i and V c o m p l e x e s f r o m k e r o g e n , i n c l u d i n g s u b s t a n t i a l a m o u n t s o f N i P a n d VOP. The r e s p e c t i v e a m o u n t s o f N i P a n d VOP g e n e r a t e d a r e d i r e c t l y p r o p o r t i o n a l t o t h e a m o u n t o f o r g a n i c a l l y combined N i and V i n t h e k e r o g e n . ( 3 ) The c o m p o s i t i o n o f t h e VOP g e n e r a t e d f r o m t h e k e r o g e n changes as a f u n c t i o n of p y r o l y s i s temperature. As p y r o l y s i s temp e r a t u r e i n c r e a s e s , the p o r p h y r i n s e r i e s s h i f t to lower carbon n u m b e r a n d t h e r e i s a n i n c r e a s e i n t h e a b u n d a n c e o f t h e C28 ^ C29 e t i o p o r p h y r i n s r e l a t i v e t o C32 a n d C32 DPEP p o r p h y r i n s . The a p p a r e n t i n c r e a s e i n g e n e r a t i o n o f e t i o r e l a t i v e t o DPEP t y p e p o r p h y r i n s w i t h i n c r e a s i n g p y r o l y s i s t e m p e r a t u r e c a n o n l y be c o n f i r m e d b y d e t e r m i n i n g t h e c a r b o n number d i s t r i b u t i o n s o f e a c h p o r p h y r i n t y p e for both metalloporphyrins. a n
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987. 1600
400
• ο = Accumulating Bitumen
£
>> ο ι_
Φ «»
1500
1
Β
1
ι 2500
• Ο
•
200
ι
Γ
400
ι
4500
1
h-- ο — I
(ppm)
3500
[V]
ι
ΚΗ
•
A
m
(ppm)
300
[Ni]
F i g u r e 6. C a l c u l a t e d e f f e c t o f k e r o g e n m a t u r a t i o n o n t h e N i a n d V c o n c e n t r a t i o n o f New A l b a n y ( A ) a n d W o o d f o r d ( B ) accumulating bitumen.
symbols) Α Δ = Bitumen-MI
2000
V (open
(ppm) • • = Bitumen-I
1200 and [ v ]
800
[Ni]
Ni ( s o l i d s y m b o l s )
400
α
Ε 300
200
2 φ
100 h -
ϋ
100
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
1
τ
1 5500
1
-ι
500
Γ"
3
I
•s,
r
D
>
w
m *> m r
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Φ
ε
α
400
300
200
100
1.2
h
_l
I
1.6
I 2.0
Ratio
1.8 Ni/V
L 2.2
2.4
F i g u r e 7. Calculated Ni/V ratio (B) a c c u m u l a t i n g b i t u m e n .
1.4
I
Bitumen-
Ρ
h
h
Ni/V
0.062
0.064 Ratio
(A) and Woodford
0.060
o f New A l b a n y
0.058
400
300
200
ιοο h
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
0.066
m
G
x m
i
m r η
2
Κ)
7.
VAN B E R K E L A N D FILBY
Generation
of Nickel and Vanadyl Porphyrins
133
(4) G e n e r a t i o n o f N i a n d V c o m p l e x e s from k e r o g e n d u r i n g c a t a genesis can s u b s t a n t i a l l y a l t e r t h eN iand V contents, porphyrin c o n t e n t s , and p o r p h y r i n composition o f t h e bitumen accumulating i n a source rock. The e x a c t n a t u r e o f t h e changes w i l l be dependent o n the p a r t i c u l a r kerogen and i t s p o s t - d e p o s i t i o n a l h i s t o r y .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
Acknowledgments The a u t h o r s t h a n k D r . P. S u n d a r a r a m a n ( C h e v r o n O i l F i e l d Research Co.) f o r t h e H P L C a n a l y s e s a n d D r . M.D. L e w a n (Amoco P r o d u c t i o n Company, R e s e a r c h C e n t e r ) a n d D r . R.K. L e i n i n g e r ( I n d i a n a G e o l o g i c a l S u r v e y ) f o r t h e s a m p l e s o f W o o d f o r d a n d New A l b a n y S h a l e , r e s p e c tively. The a s s i s t a n c e o f D r . F.F. F o i t , G e o l o g y Department, Washington State U n i v e r s i t y , i nperforming t h eX-ray d i f f r a c t i o n work i s acknowledged.
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
13.
14. 15. 16. 17. 18.
Gallegos, E . J . Anal. Chem. 1975, 47, 1524-28. Seifert, W.K. Geochim. Cosmochim. Acta 1978, 42, 473-84. Burnham, A.K.; Clarkson, J.E.; Singleton, M.F.; Wong, C.M.; Crawford, R.W. Geochim. Cosmochim. Acta 1982, 46, 1243-51. Quirke, J.M.E.; Shaw, G . J . ; Soper, P.D.; Maxwell, J.R. Tetrahedron 1980, 36, 3261-7. Blumer, M.; Rudrum, M. J . Inst. Petrol. 1970, 56, 99-106. Barwise, A . J . G . ; Roberts, I. Org. Geochem. 1984, 6, 167-76. Mackenzie, A.S.; Quirke, J.M.E.; Maxwell, J.R. In "Advances in Organic Geochemistry 1979"; Douglas, A.G.; Maxwell, J . R . , Eds.; Pergamon Press: Oxford, 1980; pp. 239-48. Baker, E.W.; Louda, J.W. In "Advances in Organic Geochemistry 1981"; Bjorøy, M., Ed.; John Wiley: London, 1983; pp. 401-21. Van Berkel, G . J . ; Filby, R.H. In "Geochemical Biomarkers"; Yen, T . F . ; Moldowan, J.M., Eds.; Gordon and Breach Publishers: London (in press). Riley, K.W.; Saxby, J.D. Chem. Geol. 1982, 37, 265-75. Spiro, B.; Dinur, D.; Aizenshtat, Z. Chem. Geol. 1983, 39, 189-214. Ham, W.E.; Amsden, T.W.; Denison, R . E . ; Derby, J . R . ; Fay, R.O.; Graffham, A.A.; Rowland, T . L . ; Squires, R . L . ; Stitt, J . H . ; Wiltse, E.W. "Regional Geology of the Arbuckle Mountains, Oklahoma"; Oklahoma Geological Survey Special Publication 73-3, 1973; 61 p. Hasenmueller, N.R.; Woodward, G.S. "Studies of the New Albany Shale (Devonian and Mississippian) and equivalent strata in Indiana"; Indiana Geological Survey Contract Report to U.S. Department of Energy, Contract DE-AC-21-76MC05204, 1981; 100 p. Durand, B.; Nicaise, G. In "Kerogen: Insoluble Organic Matter from Sedimentary Rocks"; Durand, B . , Ed.; Editions Technip: Paris, 1980; pp. 35-53. Jacobs, F . S . ; Filby, R.H. Anal. Chem. 1982, 55, 74-7. Filby, R.H. In "The Role of Trace Metals in Petroleum"; Yen, T . F . , Ed.; Ann Arbor Science: Ann Arbor, 1975; pp. 31-58. Sundararaman, P. Anal. Chem. 1985, 57, 2204-06. Van Berkel, G . J . , unpublished data.
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 8, 2016 | http://pubs.acs.org Publication Date: July 6, 1987 | doi: 10.1021/bk-1987-0344.ch007
134
METAL COMPLEXES IN FOSSIL FUELS
19. Jeong, K.M.; Kobylinski, T.P. In "Geochemistry and Chemistry of Oil Shales"; Miknis, F . P . ; Mckay, J.F., Eds.; ACS SYMPOSIUM SERIES NO. 230, American Chemical Society: Washington, D.C., 1983; pp. 493-512. 20. Spiro, B. Org. Geochem. 1984, 6, 543-59. 21. Mckay, J . F . Energy Sources 1984, 7, 257-70. 22. Compton, L . E . ACS Div. Fuel Chem. Preprints 1983, 28, 205-11. 23. Erdem-Senatalar, Α.; Kadioglu, E . ; Tolay, M.; Bartle, K.D.; Snape, C.E.; Taylor, N. Fuel 1985, 64, 1748-53. 24. Yen, T.F. In "The Role of Trace Metals in Petroleum"; Yen, T . F . , Ed.; Ann Arbor Science: Ann Arbor, 1975; pp. 1-30. 25. Tooulakou, D.; Filby, R.H. In "Geochemical Biomarkers"; Yen, T . F . ; Moldowan, J . M . , Eds.; Gordon and Breach Publishers: London (in press). 26. Casagrande, D . J . ; Hodgson, G.W. Nature 1971, 233, 123-24. 27. Casagrande, D . J . ; Hodgson, G.W. Geochim. Cosmochim. Acta 1974, 38, 1745-58. 28. Didyk, B.M.; Alturki, Y . I . Α . ; Pillinger, C.T.; Eglington, G. Nature 1975, 256, 563-65. 29. Bonnett, R.; Brewer, P.; Noro, K.; Noro, T. Tetrahedron 1978, 34, 379-85. 30. Barwise, A.J.G. (this volume). 31. Burkova, V.N.; Ryadovaya, L . V . ; Serebrennikova, O.V.; Titov, V.I. Geokhimiya 1980, 9, 1417-21. 32. Rosscup, R . J . ; Bowman, D.H. Preprints Div. Pet. Chem. A.C.S. 1967, 12, 77-81. RECEIVED March 11, 1987
Filby and Branthaver; Metal Complexes in Fossil Fuels ACS Symposium Series; American Chemical Society: Washington, DC, 1987.