5 Genetically Controlled Chemical Factors Involved in Absorption and Transport of
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch005
Iron by Plants JOHN C. BROWN U.S. Department of Agriculture, Agricultural Research Service, Plant Stress Laboratory, Beltsville, Md. 20705 Plant use of iron depends on the plant's ability to respond chemically to iron stress. This response causes the roots to release H and "reductants," to reduce Fe , and to accu mulate citrate, making iron available to the plant. Reduc tion sites are principally in the young lateral roots. Azide, arsenate, zinc, copper, and chelating agents may interfere with use of iron. Chemical reactions induced by iron stress affect nitrate reductase activity, use of iron from Fe phosphate and Fe chelate, and tolerance of plants to heavy metals. The iron stress-response mechanism is adap tive and genetically controlled, making it possible to tailor plants to grow under conditions of iron stress. +
3+
3+
3+
3+
The amount of Fe iron available in the aqueous solutions of most cal A
Fe
careous soils is insufficient for p l a n t g r o w t h ( I ) . A b o v e p H 4.0, t h e 3 +
a c t i v i t y i n s o l u t i o n decreases a t h o u s a n d f o l d for e a c h u n i t increase
i n p H ( 2 ) . O e r t l i a n d J a c o b s o n ( I ) i n d i c a t e t h a t at p H 9, the s a t u r a t i o n c o n c e n t r a t i o n of b o t h c a t i o n forms of i r o n d r o p s b e l o w 1 0 "
20
mol/1. i n a
solution i n e q u i l i b r i u m w i t h atmospheric oxygen. Y e t a n iron-deficient (chlorotic)
a n d iron-sufficient ( g r e e n )
p l a n t of the same species c a n
g r o w side b y side ( F i g u r e 1) i n a n a l k a l i n e e n v i r o n m e n t ( 3 ) .
I n such
instances, the t w o c u l t i v a r s u s u a l l y differ o n l y i n t h e i r g e n e t i c a b i l i t y t o r e s p o n d to i r o n stress.
T h e c h e m i c a l reactions i n d u c e d b y i r o n stress
m a k e i r o n a v a i l a b l e to the p l a n t , a n d p l a n t s are classified iron-efficient i f t h e y r e s p o n d to i r o n stress a n d iron-inefficient i f t h e y d o not.
Plants
r e q u i r e a c o n t i n u i n g s u p p l y o f i r o n to m a i n t a i n p r o p e r g r o w t h . S i n c e i r o n stress occurs i n m a n y a l k a l i n e soils, iron-inefficient p l a n t s often b e c o m e 93
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
94
BIOINORGANIC
CHEMISTRY
II
c h l o r o t i c a n d d i e . T h e c h e m i c a l factors i n v o l v e d i n i r o n a b s o r p t i o n a n d t r a n s p o r t i n p l a n t s are d e s c r i b e d here b y c o n t r a s t i n g iron-inefficient a n d iron-efficient p l a n t s . Iron
Supply I r o n is most c o m m o n l y s u p p l i e d to p l a n t s b y t h e seed, b y t h e g r o w t h
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch005
m e d i u m , or as a spray. T h e g e r m i n a t i n g seed u s u a l l y contains sufficient i r o n to m e e t t h e plant's r e q u i r e m e n t s i n t h e s e e d l i n g stage ( 4 ) . et a l . ( 5 )
Hyde
suggested t h a t p h y t o f e r r i t i n w a s a f o r m of i r o n stored for use
Figure 1. Iron-efficient Hawkeye (left) and iron-ineffi cient Τ203 soybean (right) grown together on an alka line soil (pH 7.5). Only Τ203 soybean developed iron deficiency. b y the y o u n g s e e d l i n g i n c o t y l e d o n s of p e a . showed
Ambler and Brown
(6)
t h a t c h e m i c a l factors t h a t interfere w i t h u p t a k e of i r o n f r o m
t h e g r o w t h m e d i u m d o n o t interfere w i t h p l a n t use of i r o n f r o m
the
cotyledons.
the
I r o n a d d e d as a s p r a y is n o t t r a n s p o r t e d a w a y f r o m
a p p l i c a t i o n area.
T h u s , i r o n n u t r i t i o n p r o b l e m s a p p e a r to b e
centered
i n t h e roots a n d o n c h e m i c a l factors t h a t affect u p t a k e a n d t r a n s l o c a t i o n of i r o n f r o m t h e g r o w t h m e d i u m .
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
5.
95
Absorption and Transport of Iron by Plants
BROWN
Role of the Rootstock in Iron Use R e c i p r o c a l a p p r o a c h grafts o f iron-inefficient o n iron-efficient rootstocks s h o w e d t h a t i r o n t r a n s p o r t is c o n t r o l l e d b y the rootstock of t o m a t o ( T a b l e I ) ( 7 ) a n d o f soybean
( 8 ) . A l t h o u g h the i r o n c o n c e n t r a t i o n o f
iron-inefficient T 3 2 3 8 f e r tomato roots w a s s i m i l a r t o that of iron-efficient T 3 2 3 8 F E R t o m a t o roots T3238fer
(Table
I ) , less i r o n w a s t r a n s p o r t e d t o t h e
tops because T3238fer roots d i d n o t r e s p o n d to i r o n stress.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch005
L i k e w i s e i n soybeans, a u t o r a d i o g r a p h s s h o w e d that p o r t e d t o the n e w leaf that d e v e l o p e d
5 5
F e w a s not t r a n s -
after the iron-efficient t o p w a s
g r a f t e d t o the iron-inefficient rootstock (8). T h e n e w leaf w a s c h l o r o t i c because t h e iron-inefficient rootstock c o u l d not s u p p l y
5 5
F e to i t .
Table I. Iron Concentration i n Tops and Roots of Iron-inefficient T3238fer (t-fer) and Iron-efficient T 3 2 3 8 F E R ( T - F E R ) Tomatoes as Affected by Tomato Rootstock (7) Iron ffig/g) Experiment (a) Approach t - f e r top on t - f e r top on T - F E R top T - F E R top
Grafts
t - f e r root T - F E R root on t - f e r root on T - F E R root
Experiment (b)
top
root
top
root
63 124 43 121
715 340 229 692
12 192 17 130
1160 618 338 740
Physiologia Plantarum
"Plant
Response to Iron Stress S e v e r a l p r o d u c t s or b i o c h e m i c a l reactions o c c u r o n l y i n iron-efficient p l a n t s i n response t o i r o n stress: ( 1 ) H y d r o g e n ions are r e l e a s e d f r o m t h e roots. (2)
R e d u c i n g c o m p o u n d s are r e l e a s e d f r o m the roots.
(3)
F e r r i c i r o n is r e d u c e d at the roots.
(4)
O r g a n i c acids ( p a r t i c u l a r l y c i t r a t e ) are i n c r e a s e d i n roots.
Response (Zea
to i r o n stress is a d a p t i v e a n d g e n e t i c a l l y c o n t r o l l e d i n c o r n
mays L . )
( 9 ) , soybeans
t o m a t o (Lycopersicon
(Glycine max
esculentum M i l l )
Hydrogen Ion Release from Roots.
( L . ) Merr.)
(10),
and
(II). I n n u t r i e n t solutions w i t h n o
a d d e d i r o n a n d n i t r o g e n a v a i l a b l e o n l y as N 0 - N , t h e first i n d i c a t i o n o f 3
i r o n stress is t h a t the t e r m i n a l leaves o f iron-efficient T 3 2 3 8 F E R t o m a t o d e v e l o p i n c i p i e n t chlorosis. A l m o s t s i m u l t a n e o u s l y , h y d r o g e n ions w e r e r e l e a s e d f r o m t h e i r roots.
T h i s r e d u c e d the p H o f 8 1. o f n u t r i e n t f r o m
a p p r o x i m a t e l y 6.4 t o 4.4 i n 2 4 h r ( i r o n stress) a n d i n c r e a s e d p H f r o m 4.4 t o 6.6 w i t h i n the next 24 h r ( F i g u r e 2 ) , b e c a u s e i r o n r e p r e s s e d the
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
96
BIOINORGANIC C H E M I S T R Y
II
Figure 2. Plant-induced pH changes of nutrient solutions caused by differential iron-stress response of 25-day old T3238fer ( ; and T328FER ( ; tomato plants placed in nutrient solutions lacking iron and contain ing only NO -N. The pH dropped at day 3 when the T3238FER plants developed iron stress.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch005
s
i r o n stress-response m e c h a n i s m w h e n i t w a s m a d e a v a i l a b l e . W i t h i n this same t i m e , the t e r m i n a l leaves c h a n g e d f r o m green to s l i g h t l y c h l o r o t i c a n d t h e n b e c a m e green a g a i n . T h e t e r m i n a l leaves of the iron-inefficient T 3 2 3 8 f e r t o m a t o also d e v e l o p e d
i r o n chlorosis b u t r e m a i n e d
chlorotic
t h r o u g h o u t this p e r i o d b e c a u s e i t d i d n o t r e s p o n d to i r o n stress. Reducing Compound Release from Roots. I n n u t r i e n t solutions w i t h n o i r o n a n d n i t r o g e n as N H - N a n d N 0 - N , iron-efficient s o y b e a n 4
a n d tomato i r o n stress. roots
(7)
(12)
3
released " r e d u c t a n t s " f r o m t h e i r roots i n response
T h e t e r m " r e d u c t a n t s " designates
that r e d u c e
Fe
3 +
to
Fe
2 +
(Figure 3).
compounds released "Reductant"
is
to by
released
i n t o s o l u t i o n i n greatest q u a n t i t y w h e n the p H of the n u t r i e n t is b e l o w 4.5. T h e a m o u n t of r e d u c t a n t released w a s d e t e r m i n e d s p e c t r o c h e m i c a l l y i n vitro using 2,4,6-tripyridyl-5-triazine ( T P T Z )
( 1 3 , 14, 15).
i r o n c o m b i n e s w i t h T P T Z to f o r m the c o l o r c o m p l e x F e i n w a t e r c o n f o r m s to B e e r s l a w u p to a b o u t 60 μτηοΐ F e agents ( i n v i t r o ) i n t e r f e r e d w i t h r e d u c t i o n of F e
3 +
2 +
2 +
The F e
(TPTZ)
(15).
2
which
Chelating
b y the " r e d u c t a n t s , "
b u t t h i s i n t e r f e r e n c e w a s e l i m i n a t e d b y i n c r e a s i n g the c o n c e n t r a t i o n "reductant" i n solution
2 +
of
(14).
I r o n u p t a k e b y iron-inefficient soybeans w a s n o t i n c r e a s e d t h e y w e r e p l a c e d i n n u t r i e n t solutions that c o n t a i n e d " r e d u c t a n t "
when (14).
T h i s may mean that "reductants" i n the external solution indicate a leaky r o o t r e s u l t i n g f r o m the release of h y d r o g e n i n t o the n u t r i e n t s o l u t i o n . M o r e i m p o r t a n t m a y b e the a d a p t i v e p r o d u c t i o n of " r e d u c t a n t s " i n s i d e the root or at the r o o t surface t h a t keeps i r o n i n the m o r e a v a i l a b l e F e form
(13).
We
have concluded
2 +
that i r o n a b s o r p t i o n a n d t r a n s p o r t is
c o n t r o l l e d i n s i d e t h e root, a n d i r o n u p t a k e is greatest w h i l e t h e i r o n stress-response m e c h a n i s m is f u n c t i o n i n g . T h e " r e d u c t a n t " m a i n t a i n e d its r e d u c i n g c a p a c i t y e v e n after b e i n g p a p e r c h r o m a t o g r a p h e d , d r i e d , a n d p l a c e d i n a t h i n film of f e r r i c y a n i d e f e r r i c h l o r i d e s o l u t i o n (10 μΐηοΐ) (14).
T h e f o r m a t i o n of three P r u s s i a n
b l u e spots o n the p a p e r i n d i c a t e d t h a t the roots r e l e a s e d at least three different r e d u c i n g
compounds.
O v e r the past 20 y r , c o m p o u n d s h a v e b e e n i d e n t i f i e d a n d m e c h a n i s m s e s t a b l i s h e d for m i c r o b i a l transport of i r o n .
F o r e x a m p l e , Ito a n d
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch005
5.
97
Absorption and Transport of Iron by Plants
BROWN
N e i l a n d s (16) suggested that e x c r e t i o n of m e t a l - b i n d i n g p h e n o l i c acids d u r i n g i r o n d e p r i v a t i o n of Bacillus substilis m i g h t c o m b a t i r o n deficiency. W a l s h a n d W a r r e n (17) i n d i c a t e d that the p h e n o l i c acids a c c u m u l a t e d b y i r o n - d e f i c i e n t cultures of B. subtilis do n o t seem to be i n v o l v e d i n i r o n u p t a k e b u t serve to s o l u b i l i z e the i r o n i n the g r o w t h m e d i u m . B y e r s a n d L a n k f o r d (18) f o u n d t h a t the a d d i t i o n of i r o n to g r o w t h c u l t u r e s i n h i b i t e d p h e n o l i c a c i d e x c r e t i o n b y B. subtilis. O u r findings w i t h i r o n efficient s o y b e a n a n d tomato agree w i t h the a b o v e observations, except that w e h a v e not i d e n t i f i e d the " r e d u c t a n t s / ' Ferric Iron Reduction at the Root. Sites of F e r e d u c t i o n i n i r o n efficient s o y b e a n (13, 19) a n d t o m a t o (20) are p r i n c i p a l l y i n t h e y o u n g l a t e r a l roots ( F i g u r e 4 ) . Iron-inefficient T 3 2 3 8 f e r tomato s h o w e d p r a c t i c a l l y n o r e d u c t i o n i n these roots. R e d u c t i o n sites w e r e d e t e r m i n e d b y t r a n s f e r r i n g iron-stressed T 3 2 3 8 f e r a n d T 3 2 3 8 F E R tomato to n u t r i e n t solutions c o n t a i n i n g F e H E D T A ( i r o n - h y d r o x y e t h y l e n e d i a m i n e t r i a c e t i c a c i d ) a n d K F e ( C N ) (20). A b l u e p r e c i p i t a t e , P r u s s i a n b l u e , a p p e a r e d i n t h e e p i d e r m a l areas of the root w h e r e F e w a s r e d u c e d b y the root. 3 +
3
6
3 +
M o s t of the F e w a s r e d u c e d outside the root i n areas accessible to B P D S ( b a t h o p h e n a n t h r o l i n e d i s u l f o n a t e ) (20). This was established 3 +
Ό
1
~
2 ~^
3 ' DAYS
4
'
5
'
6
Figure 3. Plant-induced pH changes of nutrient solutions (top) and release of "reductant" Fe to Fe (bottom) caused by differential iron stress response of 25-day old iron-stressed T3238fer and T3238FER tomato phnts placed in nutrient solutions lacking iron and containing NH -N and N0 -N 3+
2+
A
2
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch005
98
BIOINORGANIC
CHEMISTRY
II
Figure 4. Roots of 25-day-old iron-stressed T3238FER (left) and Τ3238fer (right) tomatoes after being phced in a nutrient solution containing 5 mg Fe/l. as FeHEDTA and 33 mg/l. K Fe(CN) . The dark areas on T3238FER roots (left) are Prussian blue precipitates formed when the roots reduced Fe * to Fe . The blue precipitate indicates the reduction sites. Τ3238fer roots (right) showed no reduction of Fe . 3
6
3
2+
3+
b y a d d i n g B P D S to the n u t r i e n t solutions, 1 0 % i n excess of F e . A s t h e 3 +
Fe
w a s r e d u c e d , m o s t of i t w a s t r a p p e d i n s o l u t i o n as F e
3 +
w a s n o t t r a n s p o r t e d to the p l a n t top
2 +
BPDS
3
and
(21).
If the iron-efficient roots w e r e g i v e n i r o n as F e H E D T A for 20 h r , t h e n t a k e n out of t h e n u t r i e n t solutions, r i n s e d free of F e H E D T A , a n d p l a c e d i n n u t r i e n t solutions c o n t a i n i n g K F e ( C N ) , P r u s s i a n b l u e f o r m e d 3
6
t h r o u g h o u t the p r o t o x y l e m of the y o u n g l a t e r a l roots u p to the m e t a x y l e m (13). in
the
root
F e r r o u s i r o n w a s c o n t i n u o u s i n these areas of the roots a n d
regions
of
root
elongation
and
m a t u r a t i o n of
the
primary
Increase in Roots.
Organic
(13,19). Organic A c i d (Particularly Citrate)
acids k e e p i r o n m o b i l e i n e x t e r n a l s o l u t i o n , a n d Rogers a n d S h i v e suggested t h a t t h e y m i g h t f u n c t i o n s i m i l a r l y i n s i d e the p l a n t .
p l a n t s u s u a l l y c o n t a i n m o r e c i t r i c a n d m a l i c acids t h a n n o r m a l plants
(23,24,25,26).
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
(22)
Chlorotic green
5.
99
Absorption and Transport of Iron by Plants
BROWN
S c h m i d a n d G e r l o f f (27)
reported a naturally occurring iron-com-
p l e x i n g agent i n t o b a c c o x y l e m e x u d a t e that p r e v e n t e d i r o n p r e c i p i t a t i o n a n d w a s a v e h i c l e for t r a n s p o r t i n g i r o n i n the p l a n t . T i f f i n a n d B r o w n s h o w e d that i r o n i n x y l e m exudate is m o s t l y i n n e g a t i v e l y c h a r g e d
(28) forms.
I r o n stress, as i t controls i r o n s u p p l y to t h e p l a n t , m a y b e
c o n t r o l l i n g factor affecting the a p p e a r a n c e of citrate i n x y l e m (21, 29).
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch005
exudate
the
exudate
T h e p a r a l l e l b e t w e e n i o n t r a n s p o r t e d a n d citrate i n the x y l e m was
striking.
When
i r o n i n c r e a s e d , the c i t r a t e i n c r e a s e d ;
a
decrease i n i r o n w a s p a r a l l e l e d b y a decrease i n citrate. T h i s r e l a t i o n s h i p h e l d true w h e t h e r i r o n stress w a s p r o d u c e d i n the p l a n t b y l i m i t i n g the i r o n s u p p l y or b y u s i n g z i n c , a z i d e , or arsenate to i n d u c e i r o n stress Trapping F e
2 +
at the root as F e
2 +
BPDS
p l a n t a n d s i m u l t a n e o u s l y decreased
3
(29).
decreased the i r o n s u p p l y to the
the citrate i n stem exudate
(21).
T i f f i n (30, 31,32) i d e n t i f i e d f e r r i c citrate i n the x y l e m exudate of s e v e r a l p l a n t species b y u s i n g electrophoresis
to f o l l o w
the m i g r a t i o n of
the
c h e l a t e d i r o n . Sufficient citrate w a s a l w a y s present to chelate the m e t a l , and
any
excess m i g r a t e d
as a n iron-free
fraction
behind
the
iron-
citrate b a n d . C l a r k et a l . (33) w e r e ineffective
f o u n d that m a l i c , acetic, a n d frans-aœnitic acids
in moving
5 9
F e electrophoretically
isocitrate, frans-aconitate, a n d m a l a t e buffers. anodically whenever
i n acetate,
citrate,
Citric acid moved
present o n the e l e c t r o p h e r o g r a m
and
iron
successfully
c o m p e t e d w i t h the other acids for i r o n . C l a r k et a l . ( 33 ) f u r t h e r s h o w e d t h a t iron-efficient c o r n a b s o r b e d a n d t r a n s p o r t e d m o r e i r o n i n t h e x y l e m exudate t h a n iron-inefficient c o r n . B u t w h e n x y l e m exudate
5 9
F e w a s a d d e d i n v i t r o to
f r o m the iron-inefficient c o r n , the
5 9
F e moved
as
5 9
citrate, i n d i c a t i n g that there w a s sufficient c i t r i c a c i d i n t h e exudate chelate the a d d e d
5 9
Fe.
T h e iron-inefficient c o r n roots d o not
Fe to
respond
t o i r o n stress a n d l a c k the m e c h a n i s m to s u p p l y i r o n for m o v e m e n t
into
t h e root. T h e t r a n s l o c a t i o n of i r o n i n the p l a n t i n v o l v e s m o r e t h a n citrate c h e l a t i o n of i r o n i n the root. Mechanism
of Iron Absorption
and
Transport
Iron-efficient a n d iron-inefficient p l a n t s c a n h a v e several h u n d r e d / x g F e / g of root, b u t the iron-inefficient p l a n t m a y d i e f r o m l a c k of i r o n i n its tops.
I n contrast, iron-efficient p l a n t s r e s p o n d to i r o n stress, a n d
the root makes i r o n a v a i l a b l e for t r a n s p o r t a n d use i n tops. w a y , i r o n m a y r e m a i n i n the n u t r i e n t s o l u t i o n as F e
3 +
In a similar
chelate or F e
3 +
p h o s p h a t e a n d not be t r a n s p o r t e d to the p l a n t top u n t i l i t is m a d e a v a i l a b l e for transport t h r o u g h c h e m i c a l reactions i n d u c e d b y i r o n stress. T h e s e observations stress the i m p o r t a n c e of a p l a n t b e i n g a b l e to r e s p o n d to i r o n stress. I r o n is u s u a l l y u s e d i n p l a n t tops once i t is m a d e a v a i l a b l e for t r a n s p o r t b y the roots.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
100
BIOINORGANIC C H E M I S T R Y
II
T h e i n d i v i d u a l reactions affected b y i r o n stress c a n b e c o n s i d e r e d as regulated biochemical pathways, although regulation b y understood.
i r o n is
not
T h e m e c h a n i s m of i r o n a b s o r p t i o n a n d t r a n s p o r t i n v o l v e s
the release of h y d r o g e n ions b y the root, w h i c h lowers the p H of the root zone.
T h i s favors F e
3 +
s o l u b i l i t y a n d r e d u c t i o n of F e ' to
Fe .
3
2 +
" R e d u c t a n t s " are released b y roots or a c c u m u l a t e i n roots of p l a n t s t h a t are u n d e r i r o n stress. T h e s e " r e d u c t a n t s , " a l o n g w i t h F e
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch005
the root, r e d u c e F e
3 +
to F e , a n d F e 2 +
2 +
3 +
reduction by
c a n enter the root.
Ferrous iron
has b e e n d e t e c t e d t h r o u g h o u t the p r o t o x y l e m of the y o u n g l a t e r a l roots. The Fe
2 +
is p r o b a b l y k e p t r e d u c e d b y t h e " r e d u c t a n t " i n the root, a n d
i t m a y or m a y n o t h a v e e n t e r e d the root b y a c a r r i e r m e c h a n i s m . root-absorbed F e
2 +
The
is b e l i e v e d to b e o x i d i z e d to F e , c h e l a t e d b y c i t r a t e , 3 +
a n d t r a n s p o r t e d i n the m e t a x y l e m to the tops of the p l a n t for use. assume F e
2 +
measureable F e exudate (30,
We
is o x i d i z e d as i t enters t h e m e t a x y l e m b e c a u s e t h e r e is n o 2 +
there ( 13), a n d F e
citrate is t r a n s p o r t e d i n the x y l e m
3 +
31,32).
Effect of Iron Stress—Response Mechanism Biochemical Reactions
on Other
I n d u c e d i r o n stress alters b i o c h e m i c a l reactions m o r e i n iron-efficient than i n iron-inefficient plants, w h i c h makes the former more versatile t h a n the latter. L i s t e d b e l o w are some examples w h e r e this m a y occur. Nitrate Reductase A c t i v i t y . T h e r e are s i m i l a r i t i e s b e t w e e n i n d u c e d n i t r a t e reductase a c t i v i t y a n d i n d u c e d i r o n stress response.
In both,
b i o c h e m i c a l reactions are i n d u c e d , a n d a substrate is r e d u c e d ; N 0 N0
2
b y nitrate reductase a n d F e
response to i r o n stress.
to F e
3 +
2 +
3
to
by a reductant activated i n
C h e m i c a l reactions i n d u c e d b y i r o n stress i n -
creased the use of i r o n , a n d s i m u l t a n e o u s l y i n c r e a s e d n i t r a t e r e d u c t a s e a c t i v i t y i n roots ( F i g u r e 5 )
a n d i n tops o f iron-efficient t o m a t o .
i n d u c e d n i t r a t e reductase a c t i v i t y d e c l i n e d w h e n i r o n w a s m a d e
This avail-
a b l e to t h e p l a n t s . Use of Iron from F e
3+
Phosphate.
u s e d b y iron-efficient soybeans w h e n F e Fe
2 +
w a s d e t e c t e d i n s o l u t i o n as F e
bis(4-phenylsulfonic acid)-1,2,4,
2 +
Iron phosphate precipitate was 3 +
w a s r e d u c e d to F e
ferrozine
trizine]. 3 +
T h e iron-inefficient soybeans
3 +
acid)).
3 +
to F e , a n d 2 +
phosphate.
Use of Iron from F e E D D H A (Iron-ethylenediamine phenylacetic
(19). The
[Fe 3-(2-pyridyl)-5,6-
d e v e l o p e d i r o n chlorosis b e c a u s e t h e y d i d n o t r e d u c e F e t h e y c o u l d n o t use the i r o n f r o m F e
2 +
2 +
Iron-inefficient T 3 2 3 8 f e r
tomato
di(o-hydroxydeveloped
d e f i c i e n c y because i t c o u l d n o t a b s o r b i r o n f r o m F e E D D H A
(7).
iron In
contrast, t h e iron-efficient T 3 2 3 8 F E R t o m a t o u s e d i r o n f r o m F e E D D H A because it c o u l d reduce F e
3 +
to F e . C h a n e y et a l . (34) 2 +
showed that for
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch005
5.
Absorption and Transport of Iron by Phnts
BROWN
101
Fe, mg/l Figure 5. Nitrate reductase activity and nutri ent solution pH for 28-day-old T3238fer and T3238FER tomatoes grown for 8 days at vari ous levels of iron stress. In solutions lacking iron and where iron had been removed from the roots, iron stress developed in T3238FER tomato, and the pH of the nutrient solution decreased from 7.1 (day 2) to 4.35 (day 4). Nitrate reductase activity (NRA) increased in the roots from 2.8 (day 2) to 8.5 (day 4). No significant differences were noted between NRA of T3238fer and T3238FER roots when they did not respond to iron stress. *, signifi cantly different at 1% level according to Dun cans multiple range test. **, some iron was removed from roots with 21 μΜ NaEDDHA (ethyleneaiamine di( o-hydroxyphenylacetic acid)) before these plants were placed in the nutrient solution. p l a n t s t o use F e reduce F e
3 +
3 +
f r o m several F e
chelate to F e
2 +
3 +
chelates, i t w a s first necessary to
chelate. T h e l a t t e r u s u a l l y has a m u c h l o w e r
s t a b i l i t y constant t h a n t h e f o r m e r . Tolerance to H e a v y Metals.
I n m a n y p l a n t s , h e a v y metals i n d u c e
i r o n stress. T h e s e metals s e e m to interfere w i t h t h e i r o n stress-response m e c h a n i s m (13)
a n d i n this w a y cause i r o n chlorosis to d e v e l o p .
Plants
u n d e r these c o n d i t i o n s w i l l d i e unless t h e y c a n r e s p o n d to i r o n stress and make more iron available (35).
A d d i t i o n a l i r o n counteracts t h e effect
of the h e a v y m e t a l s . Zinc Stress Induction of Iron Uptake. F o r some u n e x p l a i n e d rea son, z i n c stress m a y i n d u c e s y m p t o m s s i m i l a r to, i f n o t the same, as i r o n stress (36).
I n these p l a n t s , i r o n u p t a k e m a y i n c r e a s e so m u c h t h a t i r o n
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
102
BIOINORGANIC
toxicity symptoms develop.
CHEMISTRY
II
A d d e d z i n c decreases the a b s o r p t i o n a n d
t r a n s p o r t of i r o n (13, 29) b y d e c r e a s i n g the efficiency of the i r o n s t r e s s response m e c h a n i s m s . Future
Needs
S o m e of the c h e m i c a l factors i n v o l v e d i n the m e c h a n i s m of i r o n absorption a n d transport i n plants have been established. These reactions Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch005
are g e n e t i c a l l y c o n t r o l l e d , w h i c h m a k e s i t p o s s i b l e to select o r d e v e l o p iron-efficient plants for use i n s o i l that causes i r o n stress. I n a d d i t i o n w e n e e d to k n o w : ( 1 ) H o w a n d w h e r e i r o n stress changes the m e t a b o l i s m o f the p l a n t to a c c e n t u a t e i r o n u p t a k e . ( 2 ) T h e source of h y d r o g e n ions r e l e a s e d b y roots. ( 3 ) T h e i d e n t i t y of "reductants" r e l e a s e d b y roots. 3 +
( 4 ) T h e reason y o u n g l a t e r a l roots are so effective i n r e d u c i n g F e . (5 ) How Fe
2 +
(6) Where F e
m o v e s i n the root. 2 +
is o x i d i z e d to F e
3 +
a n d c h e l a t e d b y citrate.
( 7 ) H o w h e a v y metals, arsenate, a n d a z i d e i n h i b i t c h e m i c a l reac tions i n d u c e d b y i r o n stress. ( 8 ) H o w the c h e m i c a l reactions i n d u c e d b y i r o n stress are r e l a t e d to n i t r a t e n u t r i t i o n a n d the a c t i v i t y of n i t r a t e reductase. ( 9 ) H o w iron from F e
3 +
is u s e d i n leaves.
( 10) H o w l i g h t affects i r o n use. A n u n d e r s t a n d i n g o f the b a s i c p h y s i o l o g y , b i o c h e m i s t r y , genetics, a n d nutrient element interactions involved i n iron nutrition w i l l con t r i b u t e t r e m e n d o u s l y to o u r u n d e r s t a n d i n g of p e r t i n e n t b i o l o g i c a l processes.
Literature Cited 1. Oertli, J. J., Jacobson, L., Plant Physiol. (1960) 35, 683. 2. Lindsay, W. L., Micronutrients Agri, Proc. Symp. (1972) 341-357. 3. Brown, J. C., Ambler, J. E., Chaney, R. L., Foy, D. D., Micronutrients Agri., Proc. Symp. (1972) 389-418. 4. Brown, J.C.,Adv. Agron. (1961) 13, 329. 5. Hyde, Β. B., Hodge, A. J., Kahn, Α., Birnstiel, M. L., J. Ultrastruct. Res. (1963) 9, 248. 6. Ambler, J. E., Brown, J.C.,Agron.J.(1974) 66, 476. 7. Brown, J.C.,Chaney, R. L., Ambler, J. E., Physiol. Plant. (1971) 25, 48. 8. Brown, J.C.,Holmes, R. S., Tiffin, L. O., Soil Sci. (1958) 86, 75. 9. Bell, W. D., Bogorad, L., McIlrath, W. J., Bot. Gaz. Chicago (1958) 120, 36. 10. Weiss, M.G.,Genetics (1943) 28, 253. 11. Wann, Ε. V., Hills, W. Α.,J.Hered. (1973) 64, 370. 12. Brown, J.C.,Holmes, R. S., Tiffin, L. O., Soil Sci. (1961) 91, 127. 13. Ambler, J. E., Brown, J.C.,Gaugh, H.C.,Agron. J. (1971) 63, 95. 14. Brown, J.C.,Ambler, J. E., Agron. J. (1973) 65, 311. 15. Diehl, Α., Smith, G. H., "The Iron Reagents," pp 41-56, G. Frederick Smith Chem. Co., Columbus, 1965.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch005
5. BROWN
Absorption and Transport of Iron by Plants 103
16. Ito, T., Nielands, J. B.,J.Am. Chem. Soc. (1958) 80, 4645. 17. Walsh, B. L., Warren, R. A. J.,J.Bacteriol. (1968) 95, 360. 18. Byers, B. R., Lankford, C. E., Biochim. Biophys. Acta (1968) 165, 563. 19. Brown, J.C.,Agron. J. (1972) 64, 240. 20. Brown, J.C.,Ambler, J. E., Physiol. Plant. (1974) 31, 221. 21. Brown, J.C.,Chaney, R. L., Plant Physiol. (1971) 47, 836. 22. Rogers, C. H., Shive, J. W., Plant Physiol. (1932) 7, 227. 23. DeKock, P.C.,Morrison, R. J., Biochem. J. (1958) 70, 272. 24. Iljin, W. S., Plant Soil (1951) 3, 239. 25. Ibid. (1952) 4, 11. 26. Rhoades, W. Α., Wallace, Α., Soil Sci. (1960) 89, 248. 27. Schmid, W. E., Gerloff, G.C.,Plant Physiol. (1961) 36, 226. 28. Tiffin, L. O., Brown, J.C.,Plant Physiol. (1961) 36, 710. 29. Brown, J.C.,Tiffin, L. O., Plant Physiol. (1965) 40, 395. 30. Tiffin, L. O., Plant Physiol. (1966) 41, 510. 31. Ibid. (1966) 41, 515. 32. Ibid. (1970) 45, 280. 33. Clark, R. B., Tiffin, L. O., Brown, J.C.,Plant Physiol. (1973) 52, 147. 34. Chaney, R. L., Brown, J.C.,Tiffin, L. O., Plant Physiol. (1972) 50, 208. 35. Brown, J.C.,Jones, W. E., Commun. Soil Sci. Plant Anal. (1975) 6, 421. 36. Ambler, J. E., Brown, J.C.,Agron.J.(1969) 61, 41. RECEIVED July 26, 1976.
Raymond; Bioinorganic Chemistry—II Advances in Chemistry; American Chemical Society: Washington, DC, 1977.