C h a p t e r 11
Germination and Growth Inhibitors as Allelochemicals W. Rüdiger and E. Lohaus
Downloaded via UNIV OF NEW SOUTH WALES on July 14, 2018 at 13:16:30 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Botanisches Institut der Universität München, Menzinger Str. 67, D-8000 München 19, Federal Republic of Germany Germination inhibitors have been discussed for a long time as one of the reasons for dormancy of seeds. Some observations, however, point to the possibility that such inhibitors may also act as allelochemicals. When we tried to germinate oat caryopses we observed a decreasing rate of germination with increasing density of caryopses. Inhibition of germination could also be achieved with aqueous extracts from the caryopses (1). Interestingly, the inhibitory activity of oat caryopses is by no means restricted to germination of oats. We found that the seeds of several other plants (e.g. of Raphanus sp. or of Amaranthus caudatus) are much more sensitive against inhibitors from oat caryopses than oats itself. This means that germination of such seeds is effectively inhibited i f they are in the immediate neighborhood of oat caryopses even i f germination of oats itself can take place. Oats are more active in allelopathy than other cereals (2). Such a l l e l o p a t h i c a c t i v i t y i s d e v e l o p e d d u r i n g m a t u r a t i o n o f o a t p l a n t s . Whereas o n l y l i t t l e a c t i v i t y i s found i n r o o t s , somewhat more
i s found i n stem and leaves. The highest a c t i v i t y , however, i s found i n the caryopses during maturation, e s p e c i a l l y i n the husks {3). In t h e f i r s t p a r t o f t h i s p a p e r , we s h a l l d e s c r i b e i s o l a t i o n and s t r u c t u r a l e l u c i d a t i o n o f t h e main i n h i b i t o r from t h e husks o f Avena s a t i v a , which can be c o n s i d e r e d as an a l l e l o c h e m i c a l a g a i n s t seeds o f s e v e r a l p l a n t s . The second p a r t o f t h e paper d e a l s w i t h a l l e l o c h e m i c a l s from r o s e seeds w h i c h , a l t h o u g h o f d i f f e r e n t chemical s t r u c t u r e , bear some r e l a t i o n s h i p t o t h e a l l e l o c h e m i c a l from o a t s . The b a s i s f o r t h i s t y p e o f i n v e s t i g a t i o n i s a q u a n t i t a t i v e b i o t e s t as d e s c r i b e d i n d e t a i l by Karl and Rudiger [V). The crude aqueous e x t r a c t from o a t husks i n h i b i t s g e r m i n a t i o n o f seeds from s e v e r a l p l a n t s , e . g . Avena s a t i v a , Sorghum s p . , P h a l l e r i s s p . , Raphanus s p . , Amaranthus c a u d a t u s , L e p i d i u m sativum L . . The i n h i b i t o r y a c t i v i t y increases with i n c r e a s i n g c o n c e n t r a t i o n of the e x t r a c t s . F i g u r e 1 shows t h e c o n c e n t r a t i o n dependency o f i n h i b i t i o n o f r o o t growth a f t e r f r a c t i o n a t i o n o f t h e e x t r a c t by e t h e r e x t r a c t i o n . Whereas l e s s a c t i v i t y i s found i n t h e n e u t r a l f r a c t i o n (pH 7 ) , at pH 1 about equal a c t i v i t y i s p r e s e n t i n t h e e t h e r l a y e r and t h e water phase. The l a t t e r c o n t a i n s b i o a c t i v e c o n j u g a t e s o f o r g a n i c 0097-6156/87/0330-0118$06.00/0 © 1987 A m e r i c a n C h e m i c a l Society
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
11.
RUDIGER AND LOHAUS
Germination
and Growth
119
Inhibitors
1
S
acids; after a l k a l i n e s a p o n i f i c a t i o n , the b i o a c t i v i t y i s also ext r a c t a b l e i n t o e t h e r a f t e r adjustment t o pH 1. F o r f u r t h e r f r a c t i o n a t i o n and s e a r c h f o r a c t i v e compounds, i t i s i m p o r t a n t t h a t t h e b i o t e s t be made q u a n t i t a t i v e as i n d i c a t e d i n F i g u r e 1. The main com pounds o f t h e a c i d f r a c t i o n a r e p h e n o l i c a c i d s . A f t e r m e t h y l a t i o n , t h e methyl e s t e r s were s e p a r a t e d by gas chromatography and i d e n t i f i e d by comparison w i t h a u t h e n t i c compounds, some o f which a r e shown here ( s t r u c t u r e s 1 - 4 ) . S i n c e t h e s e compounds (and t h e f o l l o w i n g ones) o c c u r n a t u r a l l y as f r e e c a r b o x y l i c a c i d s but a r e i n v e s t i g a t e d as t h e methyl e s t e r s , t h e l e t t e r "R" i s used i n t h e s t r u c t u r e s f o r e i t h e r " H " ( n a t u r a l compound) o r " C H " ( i n v e s t i g a t e d methyl e s t e r ) . 3
P h e n o l i c a c i d s have a l r e a d y been d i s c u s s e d as i n h i b i t o r y compounds. But i n h i b i t i o n o f g e r m i n a t i o n r e q u i r e s a c o n c e n t r a t i o n o f 1 0 ~ t o 10~ M p h e n o l i c a c i d s . (]_). Such high c o n c e n t r a t i o n may l o c a l l y be a c h i e v e d i f oat straw i s accumulated i n t h e f i e l d s ( 4 ) . T h i s c o u l d sometimes be a r e a s o n f o r poor p l a n t growth on f i e l d s a f t e r h a r v e s t o f o a t s w i t h o u t removal o f s t r a w . We d i d not f i n d such c o n c e n t r a t i o n s i n our husk e x t r a c t s , however; they were 100 - 1000 f o l d s m a l l e r than expected from b i o a c t i v i t y . P h e n o l i c a c i d s a r e t h e r e f o r e not t h e a c t i v e compounds i n our i n h i b i t o r y e x t r a c t s . C o n s e q u e n t l y , we undertook t o remove t h e p h e n o l i c compounds and r e t a i n t h e b i o a c t i v i t y as shown i n F i g u r e 2. The a c i d f r a c t i o n was a p p l i e d t o a Sephadex LH-20 column and e l u t e d w i t h w a t e r . The b i o a c t i v i t y was e l u t e d v e r y e a r l y ( F r a c t i o n A a n d A ) whereas most p h e n o l i c compounds were e l u t e d much l a t e r . The compounds o f f r a c tions k (and A , not shown here) were a g a i n i n v e s t i g a t e d by gas chromatography/mass s p e c t r o m e t r y . T h e i r s t r u c t u r e s ( § - 13) a r e g i v e n h e r e . The compounds a r e a l i p h a t i c c a r b o x y l i c a c i d s o f t h e t r i c a r b o x y l i c a c i d c y c l e and s t r u c t u r a l l y r e l a t e d compounds. T h e i r c o n c e n t r a t i o n i n t h e o r i g i n a l e x t r a c t i s at l e a s t one o r d e r o f magnitude s m a l l e r than t h a t o f t h e p h e n o l i c a c i d s . The a l i p h a t i c a c i d s § - 12 do not i n h i b i t g e r m i n a t i o n i η c o n c e n t r a t i o n s up t o 1 0 ~ - 1 0 ~ M . The t r u e i n h i b i t o r ( s ) must t h e r e f o r e be found amongst t h e many minor compounds o f f r a c t i o n A . In another c o n n e c t i o n , we 3
2
x
1
2
2
3
2
x
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
120
ALLELOCHEMICALS: ROLE IN AGRICULTURE AND FORESTRY
1
—ι
1
( Concentration )
1 2
_1
F i g u r e 1. I n h i b i t i o n o f r o o t growth o f Avena s a t i v a by t h e aqueous e x t r a c t from o a t husks a f t e r f r a c t i o n a t i o n . The aqueous e x t r a c t was e x t r a c t e d w i t h e t h e r f i r t a t pH 7 ( 0 - - - 0 ) and then a t pH 1 ( 0 - 0 ) ; ( · - · ) t h e r e m a i n i n g water phase. Lower p a r t : doubly r e c i p r o c a l p l o t . (Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 1. C o p y r i g h t 1982 V e r l a g d e r Z e i t s c h r i f t f u r N a t u r f o r s c h u n g . )
F i g u r e 2 . Column chromatography o f t h e f r a c t i o n e t h e r pH 1 ( s e e F i g u r e 1) on Sephadex L H - 2 0 . F r a c t i o n s w i t h b i o a c t i v i t y (A, and A « ) a r e hatched. (Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 6 . C o p y r i g h t 1982 V e r l a g d e r Z e i t s c h r i f t f u r N a t u r f o r s c h u n g . )
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
11.
Germination
RUDIGER AND LOHAUS
^COOR
H C 0
COOR
*C00R
H C
COOR
and Growth
0=C
H ^
COOR
HÇ
COOR
0
HC
H C
2
2
2
121
Inhibitors
H C
COOR
2
H C
COOR
2
7
H
3 v
^ /
C
C
H
8 HC 2
H-CO ο
C
COOR
CH
HO
9
COOR
HO
C
I
2
HC 2
2
I
C
I
HC 2
12
HC 0
2
COOR COOR
H0-
I
Q
3
HC
COOR
2
11
COOR
— C
COOR
H C
COOR
2
CH
I
COOR
io
H HO
COOR
I
C
ι HC
COOR
9
3
13
s t u d i e d minor compounds from t h e a c i d f r a c t i o n o f s e v e r a l cereals (5). We were a b l e t o i d e n t i f y 83 such compounds, but many remained u n i d e n t i f i e d . T h i s a n a l y s i s d i d not h e l p i n t h e i d e n t i f i c a t i o n o f t h e i n h i b i t o r . T o t a l a n a l y s i s i s not t h e b e s t way t o f i n d b i o a c t i v e com pounds. The i n h i b i t o r was i d e n t i f i e d by a c o m b i n a t i o n o f f u r t h e r s e p a r a t i o n by column chromatography and q u a n t i t a t i v e b i o t e s t (6). F i g u r e 3 shows t h e r e s u l t o f a n a l y s i s o f f r a c t i o n s 62-75 from t h e column chromatography by gas chromatography. The χ a x i s i s t h e r e t e n t i o n t i m e , t h e y a x i s i s t h e f r a c t i o n number o f column c h r o m a t o g r a p h y . The v e r t i c a l b a r s i n d i c a t e t h e o c c u r e n c e o f peaks w i t h a g i v e n r e t e n t i o n t i m e i n t h e s i n g l e f r a c t i o n s o f column chromatography. The i n h i b i t o r y a c t i v i t y was found o n l y i n f r a c t i o n s 6 8 - 7 2 . The o n l y peak t h a t o c c u r s e x c l u s i v e l y i n t h e s e f r a c t i o n s i s t h e one w i t h r e t e n t i o n t i m e 2 9 . 5 min ( i n d i c a t e d as b l a c k b a r ) . In F i g u r e 4 t h e r e l a t i o n s h i p between peak s i z e ( c r o s s e s ) and magnitude o f i n h i b i t o r y a c t i v i t y (open c i r c l e s ) i n t h e f r a c t i o n s 68 t o 72 i s g i v e n . The good c o r r e l a t i o n proved t h e i d e n t i t y o f t h e compound c a u s i n g t h i s peak w i t h t h e i n h i b i t o r even b e f o r e t h e i s o l a t i o n o f t h e compound. The approach i s d e s c r i b e d here i n some d e t a i l because i t may be r e l e v a n t f o r t h e s o l u t i o n o f s i m i l a r p r o b l e m s . S u b s e q u e n t l y , t h e compound was i s o l a t e d and i n v e s t i g a t e d by mass s p e c t r o m e t r y . The s t r u c t u r e o f t h e compound was d e r i v e d from t h e f r a g m e n t a t i o n p a t t e r n o f t h e p r o t o nated and t h e d e u t e r a t e d e s t e r ( 6 ) : i t i s p e n t a n e - 1 , 3 , 4 - t r i c a r b o x y l i c a c i d , o r d i h y d r o h e m a t i n i c a c i d ( T 4 h which had not been known b e f o r e as a n a t u r a l compound. I t had been o b t a i n e d by c h e m i c a l d e g r a d a t i o n of c h l o r o p h y l l s (_7, 8) and by t o t a l s y n t h e s i s ( 9 ) . T o t a l s y n t h e s i s
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
122
ALLELOCHEMICALS: ROLE IN AGRICULTURE AND FORESTRY
Gas Chromatography: RT [min] F i g u r e 3. A n a l y s i s by gas chromatography ( G O o f f r a c t i o n s 62-75 o f t h e l i q u i d chromatography. The o n l y GC peak which o c c u r s i n a l l i n h i b i t o r y f r a c t i o n s i s t h a t w i t h r e t e n t i o n time 2 9 . 5 m i n . (Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 6. C o p y r i g h t 1982 V e r l a g der Z e i t s c h r i f t f u r N a t u r f o r s c h u n g . )
·
68
1
69
1
1
F 70r a c t i o71n
»
72
V -
73
F i g u r e 4. C o r r e l a t i o n o f seed g e r m i n a t i o n i n h i b i t i o n (x-x) w i t h GC peak s i z e o f compound RT = 2 9 . 5 min (o-o) o f f r a c t i o n s 68-73 of t h e l i q u i d chromatography (see F i g u r e 3 ) . (Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 6. C o p y r i g h t 1982 V e r l a g der Z e i t s c h r i f t fur Naturforschung.)
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Germination
11. RUDIGER AND LOHAUS
and Growth
Inhibitors
123
y i e l d s two p a i r s o f d i a s t e r e o m e r s (14§> 1 4 ^ · n a t u r a l compound from o a t s i s t h e t h r e o i s o m e r . We have not y e t e l u c i d a t e d t h e a b s o l u t e c o n f i g u r a t i o n o f t h e n a t u r a l compound. The s y n t h e t i c racemate has a somewhat s m a l l e r a c t i v i t y than t h e n a t u r a l compound. D u r i n g our s y n t h e t i c a p p r o a c h , we found t h a t s e v e r a l t r i c a r b o x y l i c a c i d s have b i o a c t i v i t y s i m i l a r t o t h a t o f d i h y d r o h e m a t i n i c a c i d . Some o f t h e s t r u c t u r e s ( ] J - 1Z) and t h e c o r r e s p o n d i n g a c t i v i t i e s ( T a b l e I) a r e g i v e n h e r e . E s s e n t i a l i s t h e p r e s e n c e o f t h r e e c a r b o x y l i c a c i d groups near each o t h e r and a c e r t a i n c h a i n l e n g t h o f t h e a l i p h a t i c r e s i d u e . Recent i n v e s t i g a t i o n s showed some i n h i b i t i o n o f r e s p i r a t i o n by t h e s e t r i c a r b o x y l i c a c i d s . G e r m i n a t i o n i s p o s s i b l y i n h i b i t e d v i a t h i s i n h i b i t i o n . A l t h o u g h t h e s e s y n t h e t i c compounds are not n a t u r a l a l l e l o c h e m i c a l s they c o u l d be used f o r t h e same p u r p o s e , namely f o r i n h i b i t i o n o f seed g e r m i n a t i o n . T
n
e
CH C00R 2
14 R
14§
146
1
1 1 1
1§:
R
1
=
(CH ) CH
3
1§:
R
1
=
(CH ) CH
3
1Z:
R
1
=
(CH )
2
3
CHCOOR 2
7
CHCOOR 2
1 5
CH
3
COOR
Table
I.
I n h i b i t i o n o f G e r m i n a t i o n o f Amaranthus caudatus Seeds by S y n t h e t i c T r i c a r b o x y l i c A c i d T r i m e t h y l E s t e r s
~ ~
% I n h i b i t i o n of Germination
Compound
1θ" Μ
ΊΟ M
14 a , b
100
54
15
100
20
16
100
50
17
5
0
4
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
124
ALLELOCHEMICALS: ROLE IN AGRICULTURE AND FORESTRY
The second example d e s c r i b e d here i s dormant seeds from Rosa c a n i n a . E x t r a c t s o f t h e s e seeds a l s o i n h i b i t g e r m i n a t i o n o f seeds o f s e v e r a l p l a n t s ( 1 0 ) . In F i g u r e 5 a scheme i s g i v e n f o r e x t r a c t i o n and s e p a r a t i o n oT~~three d i f f e r e n t i n h i b i t o r compounds. A l l t h e s e a r e p r e s e n t i n t h e a c i d f r a c t i o n . The f i r s t e s s e n t i a l s t e p i s chromatography on Sephadex LH-20, which s e p a r a t e s i n h i b i t o r I from i n h i b i t o r I I and I I I . I n h i b i t o r I was i d e n t i f i e d as a b s c i s i c a c i d . The o t h e r two i n h i b i t o r s were s e p a r a t e d by m e t h y l a t i o n w i t h diazomethane, f r a c t i o n a l d i s t i l l a t i o n , and column chromatography. The second i n h i b i t o r i s t h e α-pyrone 1§. R e a c t i o n w i t h diazomethane t r a n s f o r m s i t i n t o t h e b i c y c l i c compound 1§. T h i s b i c y c l i c compound i s even more a c t i v e than t h e p a r e n t α-pyrone 1§. S i n c e we sought s t r u c t u r a l r e q u i r e m e n t s f o r b i o a c t i v i t y here a l s o , w e t e s t e d s e v e r a l s y n t h e t i c α-pyrones (£0 - 2g) f o r b i o a c t i v i t y . These compounds had no i n h i b i t o r y a c t i v i t y . Be aTso t e s t e d t h e c y c l o p r o p a n e d e r i v a t i v e s £3 and 2 4 . In T a b l e I I , t h e b i o a c t i v i t y o f t h e b i c y c l i c compound T§ and two such d e r i v a t i v e s i s compared. The presence o f s e v e r a l c a r B o x y l i c a c i d groups seems t o be e s s e n t i a l ( o r a t l e a s t h e l p f u l ) f o r b i o a c t i v i t y i n t h i s case a l s o . COOR
COOR
11
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
11.
Germination
RUDIGER AND LOHAUS
and Growth
Inhibitors
125
Extraction with H 0 at 100'C 9
I crude extract Ether extract pH 7 Ether extract pH 1 Chromatography on Sephadex LH-20
y
\
RC-B
RC-A Inhibitor
methylation with diazomethane fractionation by distillation
/
RC-B 50 Lichroprep
1
Inhibitor III
\
RC-B 150 Lichroprep
I
Inhibitor II
F i g u r e 5. Scheme o f i s o l a t i o n o f g e r m i n a t i o n o f Rosa c a n i n a .
i n h i b i t o r s from
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
hips
126 Table
ALLELOCHEMICALS: ROLE IN AGRICULTURE AND FORESTRY II.
I n h i b i t i o n o f G e r m i n a t i o n o f Amaranthus Seeds by C a r b o x y l i c A c i d Methyl E s t e r s
caudatus
% I n h i b i t i o n of Germination Compound
10~ M J
10
M
10 M
19
100
100
30
U
100
90
10
|4
90
40
10
Il
100
90
50
CH
3
2| (Product
o f r i n g opening o f 19)
u (unfavored
conformation
o f 14b)
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
11.
RUDIGER AND LOHAUS
Germination
and Growth
127
Inhibitors
The b i o a c t i v i t y i s s i m i l a r t o t h a t o f i s o h e m a t i n i c a c i d ( 2 § ) ( s e e T a b l e I I ) . We t h e r e f o r e r a i s e d t h e q u e s t i o n whether t h e r e c o u l d be some c l o s e r r e l a t i o n s h i p between t h e i n v e s t i g a t e d compounds from r o s e s and o a t s . Such r e l a t i o n s h i p i s i n d i c a t e d above. Opening o f t h e l a c t o n e r i n g o f 9 would l e a d t o t h e t r i c a r b o x y l i c a c i d derivative 2|. T h i s has a s t r u c t u r e l i k e a c e r t a i n c o n f o r m a t i o n o f d i h y d r o Rematinic a c i d [27). T h i s c o n f o r m a t i o n i s c e r t a i n l y d i s f a v o r e d b e cause o f s t e r i c h i n d r a n c e , but c o u l d e x i s t at a b i n d i n g s i t e o f an enzyme o r a r e c e p t o r . The p r e s e n c e o f a c y c l o p r o p a n e r i n g as i n 2§ c o u l d s t a b i l i z e such an o t h e r w i s e u n f a v o r a b l e c o n f o r m a t i o n t h a t Ts e v e n t u a l l y needed f o r high b i o a c t i v i t y . The l a s t i n h i b i t o r from r o s e seeds was i d e n t i f i e d as 2 , 5 - d i h y d r o f u r a n - 2 - c a r b o x y l i c a c i d ( 2 § ) . The s p e c i f i c a c t i v i t y o f t h i s compound i s not v e r y h i g h , but r o s e seeds c o n t a i n enough o f i t t o e x e r t measurable i n h i b i t i o n o f seed g e r m i n a t i o n . The b i o a c t i v i t y seems t o depend on t h i s p a r t i c u l a r s t r u c t u r e because a number o f s i m i l a r compounds (29 - 3Z) have no a c t i v i t y o r much lower a c t i v i t y than 2§.
28
32
29:
R
30:
R
31:
R
H
00H
33
R = H
34
R = Br
3Z
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
128
A L L E L O C H E M I C A L S : R O L E IN A G R I C U L T U R E A N D FORESTRY
The i d e n t i f i c a t i o n o f n a t u r a l g e r m i n a t i o n i n h i b i t o r s e n a b l e s us t o study t h e i r e f f e c t as a l l e l o c h e m i c a l s i n d e t a i l . Because most o f t h e s e compounds a r e n a t u r a l p r o d u c t s not p r e v i o u s l y known, they have t o be s y n t h e s i z e d at f i r s t i n o r d e r t o o b t a i n s u f f i c i e n t m a t e r i a l f o r such i n v e s t i g a t i o n s . T h i s work i s i n p r o g r e s s .
Acknowledgments The work was s u p p o r t e d by t h e BMFT, Bonn ( A z . : PTB 038519). We thank t h e BASF AG, Ludwigshafen, f o r s p e c i a l s u p p o r t and a of r e f e r e n c e compounds.
gift
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
Karl, R.; Rüdiger, W. Z. Naturforsch. 1982, 37c, 793. Putnam, A.R. and Weston, A.R. Abstracts of Papers, 190th National Meeting of the American Chemical Society, Chicago, IL, American Chemical Society: Washington DC, 1985; AGFD 201. Rüdiger, W.; Blos, I. unpublished results. Guenzi, W.D.; McCalla, T.M. Soil Sci. Soc. Am. Proc. 1966, 30, 214. Lohaus, E.; Blos, I.; Rüdiger, W. Z. Naturforsch. 1983, 38c, 524. Lohaus, E.; Blos, I.; Schäfer, W.; Rüdiger, W. Z. Naturforsch. 1982, 37c, 802. Ficken, G.E.; Jones, R.B.; Linstead, R.P. J. Chem. Soc. (London) 1956, 2272. Brockmann, H. Angew. Chemie 1968, 80, 233. Gray, C.H.; Nicholson, P.C. J. Chem. Soc. (London) 1958, 3085. Lohaus, E.; Zenger, C.; Rüdiger, W. Z. Naturforsch. 1985, 40c, 490.
RECEIVED
April 16,1986
Waller; Allelochemicals: Role in Agriculture and Forestry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.