20 Grafting of Styrene and Acrylonitrile onto
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
Ethylene Polymers HEINRICH ALBERTS, HERBERT BARTL, and RAINER KUHN Zentrale Forschung, Wissenschaftliches Hauptlaboratorium der Bayer AG, Leverkusen, West Germany
Styrene was grafted onto low-density polyethylene under swelling conditions. The homogeneity of the graft copolymers depended not only on the temperature of the styrene diffusion, but also on the comonomer content and the crystallinity of the grafting backbone. The grafting efficiencies were affected primarily by the activity of the initiator radical and, to a smaller extent, by the mutual ratio of monomer to initiator to substrate. The supramolecular structure of the graft products could be elucidated by differential thermal analysis and by electron microscopy. The presumed molecular structure of the graft copolymer could be deduced from light scattering measurements.
I
n
1 9 6 8 w e r e p o r t e d o n t h e effect of t h e m o n o m e r r a d i c a l activities o n the g r a f t i n g of various v i n y l m o n o m e r s onto e t h y l e n e - v i n y l acetate c o p o l y m e r s ( E V A ) ( i ) . W e f o u n d that the g r a f t i n g activity of v i n y l m o n o m e r s corresponds to the m o n o m e r radical activity p u b l i s h e d b y M a y o a n d W a l l i n g (2) a n d o t h e r s (3, 4). T h i s f e a t u r e o f v i n y l m o n o m e r s is d e p i c t e d i n F i g u r e 1 . V i n y l c h l o r i d e is o n e of t h e most active m o n o m e r s i n g r a f t i n g reactions. W h e n E V A w a s u s e d as g r a f t i n g s u b s t r a t e , t h e r e s u l t a n t g r a f t c o p o l y m e r h a d i m p r o v e d c o m p a t i b i l i t y w i t h p o l y ( v i n y l c h l o r i d e ) ( P V C ) . B l e n d i n g of these grafts w i t h P V C p r o d u c e d h i g h - i m p a c t P V C . W h e n styrene w a s grafted onto E V A , the graft p r o d u c t h a d a very l o w graft copolymer content. T h e grafting of a c r y l o n i t r i l e o n t o E V A w a s also s t u d i e d b y B a r t l a n d H a r d t ( I ) . U n l i k e the v i n y l c h l o r i d e graft p r o d u c t s , the c o r r e s p o n d i n g a c r y l o n i t r i l e grafts w e r e i n c o m p a t i b l e despite c o m p a r a b l e g r a f t i n g efficiencies. W h e n s t y r e n e - a c r y l o nitrile combinations were grafted onto E V A , the graft products h a d a n average graft c o p o l y m e r content of about 5 0 w t % ; however, the reaction products w e r e i n c o m p a t i b l e i n a l l cases. T h e objective of these studies w a s to o b t a i n m o r e i n f o r m a t i o n about the factors that affect the g r a f t i n g efficiencies a n d the c o m p a t i b i l i t y of graft p o l y mers. Since i n c o m p a t i b l e grafts often h a v e v e r y p o o r m e c h a n i c a l properties, it w a s of interest to explore grafts of i m p r o v e d c o m p a t i b i l i t y w h i c h s h o u l d h a v e i m p r o v e d m e c h a n i c a l properties. O n e a p p r o a c h to this p r o b l e m w a s to obtain i n f o r m a t i o n as e x a c t as p o s s i b l e a b o u t t h e m o l e c u l a r s t r u c t u r e o f t h e g r a f t 214
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
20.
ALBERTS
E T
Grafting
AL.
styrene
Figure 1.
onto Ethylene
methyl methacrylate
ethyl acrylate
215
Polymers
vinyl acetate
vinyl chloride
Grafting of various monomers onto Levapren 450, Bayer AG
a product of
p o l y m e r s a n d t h e n u m b e r of t h e g r a f t c h a i n s p e r m o l e c u l e as w e l l as t h e i r m o l e c u l a r w e i g h t , m o l e c u l a r w e i g h t d i s t r i b u t i o n , a n d c o m p a t i b i l i t y w i t h the g r a f t i n g substrate. F o r this s t u d y , the g r a f t i n g of styrene onto l o w - d e n s i t y p o l y e t h y l e n e ( L D P E ) w a s c h o s e n as t h e m o d e l r e a c t i o n . T h e t h e o r e t i c a l a s s u m p t i o n s u n d e r l y i n g t h e e v a l u a t i o n o f t h e m e a s u r e m e n t s of l i g h t s c a t t e r i n g have been discussed elsewhere (5). Materials
and
Experimental
Techniques
Materials. L D P E o f g r a d e A or Β w a s u s e d as t h e g r a f t i n g s u b s t r a t e ; it w a s i n t h e f o r m of p e l l e t s . G r a d e A is a h o m o p o l y e t h y l e n e w i t h a w e i g h t average molecular weight M = 5.7 Χ 10 , a m o l e c u l a r n o n u n i f o r m i t y U = (M /M — 1) ~ 18, a m o l e c u l a r w e i g h t of t h e u n b r a n c h e d c h a i n s e c t i o n s ( l o n g - c h a i n b r a n c h i n g ) of M = 3 . 5 Χ 1 0 , a n d a d e n s i t y p = 0 . 9 1 6 g / c m . G r a d e Β is a c h e m i c a l l y u n i f o r m e t h y l e n e - v i n y l a c e t a t e r a n d o m c o p o l y m e r ( E V A ) w i t h h i g h l y b r a n c h e d s h o r t a n d l o n g c h a i n s , v i n y l a c e t a t e c o n t e n t = 8.5 w t % , M = 5 . 2 Χ 1 0 , C7 = 14, M = 5 Χ 1 0 , a n d = 0.925 g / c m . T h e styrene a n d acrylonitrile m o n o m e r s used w e r e freshly distilled. A z o d i (isobutyronitrile) (Porofor Ν ) ( P N ) , benzoyl peroxide ( B P O ) , and tert-butyl p e r o c t o a t e ( f - B O ) w i t h a p u r i t y h i g h e r t h a n 9 9 % w e r e u s e d as i n i t i a t o r s . G r a f t i n g under Swelling Conditions. G r a f t i n g u n d e r s w e l l i n g c o n d i t i o n s was c a r r i e d out i n aqueous dispersion. T h i s g r a f t i n g m e t h o d increased the p r o b l e m of d i f f u s i o n a l c o n t r o l d u r i n g t h e r e a c t i o n . O n t h e o t h e r h a n d , t h i s m e t h o d a v o i d e d t r a n s f e r r e a c t i o n s b y s o l v e n t s a n d p e r m i t t e d t h e use of l o w e r temperatures than d i d b u l k grafting i n the melt. A t constant temperature, the i n d i v i d u a l components diffused into the pellets. S u b s e q u e n t l y , the p o l y m e r i z a t i o n process was started b y increasing 5
w
w
n
3
r
w
5
r
3
3
P
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
3
216
COPOLYMERS,
T a b l e I.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
Initiator Expertment
ΡΕ Grade
M R ZB ZA U A Ν Ε L ZG S G OA 0 OC OE Q
A
a b c
Β
1.0 0.70
t-EO
0.784 0.784
BPO BPO *-BO
0.091 0.70 0.23 0.72 0.784
t-BO t-BO
A N DC O M P O S I T E S
G r a f t i n g Efficiencies" Swelling
Cone, Type mole % T, ° c
PN BPO
POLYBLENDS,
65 50 60 70 70/50 85/50 85/50 50 50 70 70/50 85/50 50 85/50 75 80/50 85/50
Time, hrs
5 24 3 3 3/3 3/1 3/5 3 24 3 3/5 3/1 5 3/5 3 2/3 3/5
merization
T, °C
Time, hrs
80
8
85 85 90 90 85
5 8
„ Grafting PrepStyEffi- arahon rene, ciency , Prowt % % cedure h
38.6 35.9 44.3 41.5 43.9 43.7 42.7 42.4 36.5 44.0 42.9 43.7 20.2 43.2 20.4 18.5 44.3
6.2 12.9 10.9 9.1 10.0 11.0 14.9 56.4 59.7 51.8 52.2 51.6 17.0 23.2 76.0 69.0 68.8
e
I I I I II II II I I I II II III II III III II
Referred to the styrene polymerized in the pellets. See text. Chain regulator, isobutene.
the temperature, a n d it w a s c o m p l e t e d at constant temperature. I n several cases, t h e i n i t i a t o r w a s n o t a d d e d t o t h e s y s t e m u n t i l a f t e r t h e p e l l e t s h a d b e e n swollen w i t h styrene i n order to allow i t to diffuse into t h e pellets at a l o w e r temperature thereby preventing premature, u n w a n t e d decomposition of the p e r o x i d e . T h e s w e l l i n g p e r i o d w a s g e n e r a l l y 3 - 5 h r s , b u t i t w a s also e x t e n d e d u p to 2 4 hrs. Preparation Procedures. P R E P A R A T I O N P R O C E D U R E I. I n a 6-1 s t i r r i n g vessel, 2 0 0 0 g d e i o n i z e d water, 6 0 0 g L D P E , 8 0 m l 1 0 % dispersant solution ( 1 : 1 c o p o l y m e r of m e t h a c r y l i c a c i d a n d m e t h y l methacrylate ) , 4 9 0 g styrene, a n d 8 g r a d i c a l f o r m e r w e r e s t i r r e d u n d e r n i t r o g e n w i t h c o n d i t i o n s as i n d i c a t e d i n T a b l e I. S u b s e q u e n t l y t h e p e l l e t s w e r e c o l l e c t e d o n a s u c t i o n filter, w a s h e d w i t h p l e n t y o f w a t e r , a n d d r i e d f o r 4 8 - 7 2 h r s in vacuo a t 5 0 ° C . T h e s t y r e n e content of the pellets w a s d e t e r m i n e d f r o m the w e i g h t increase of the pellets:
/ χ vield - 600 styrene (wt %) = * ^ j - j PREPARATION PROCEDURE II. I n a 6-1 s t i r r i n g v e s s e l , 2 0 0 0 g d e i o n i z e d water, 6 0 0 g L D P E , 4 0 0 g styrene, a n d 8 0 m l 1 0 % dispersant solution were s t i r r e d u n d e r n i t r o g e n w i t h c o n d i t i o n s as i n d i c a t e d i n T a b l e I. T h e m i x t u r e was then cooled to 5 0 ° C , a n d a solution of 8 g r a d i c a l f o r m e r i n 9 2 g styrene was a d d e d . T h e b a t c h was stirred at 5 0 ° C f o r the time i n d i c a t e d . P o l y m e r i z a tion w a s started b y increasing t h e temperature. A t the e n d of the reaction, t h e p e l l e t s w e r e s u c t i o n e d off, w a s h e d , a n d t h e n d r i e d f o r 4 8 - 7 2 h r s in vacuo at 5 0 ° C . T h e s t y r e n e c o n t e n t o f t h e b e a d s w a s c a l c u l a t e d f r o m t h e w e i g h t i n c r e a s e as i n P r o c e d u r e I. P R E P A R A T I O N P R O C E D U R E III. T h e p r o c e d u r e w a s t h e s a m e as i n I a n d II except that 2 5 0 g styrene a n d 1 0 0 0 g L D P E were used. T h e aliphatic m o n o o l e f i n s u s e d as c h a i n r e g u l a t o r s w e r e p a s s e d t h r o u g h t h e b a t c h via a n a s c e n d i n g pipe. Analysis of the Polymer. G r a f t i n g e f f i c i e n c y a n d d e g r e e o f g r a f t i n g w e r e determined b y fractional precipitation. A f t e r the graft p r o d u c t w a s dissolved
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
20.
ALBERTS
E T
Grafting
AL.
onto Ethylene
217
Polymers
i n t o l u e n e or t o l u e n e - d i m e t h y l f o r m a m i d e m i x t u r e s at 1 0 0 ° C , u n g r a f t e d p o l y styrene ( P S ) or p o l y s t y r e n e - a c r y l o n i t r i l e r e m a i n e d i n solution after c o o l i n g a n d was separated. A f t e r t h e p r e c i p i t a t e d p r o d u c t w a s i s o l a t e d a n d d r i e d , its styrene content was d e t e r m i n e d , a n d f r o m this the g r a f t i n g efficiency w a s calculated:
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
grafting efficiency (%)
=
PS grafted X PS grafted + homo-PS
100
T h e l i g h t s c a t t e r i n g of t h i s m a t e r i a l c o u l d b e m e a s u r e d e v e n t h o u g h it s t i l l c o n t a i n e d u n g r a f t e d p o l y e t h y l e n e . I n t h e n e w m e t h o d of l i g h t s c a t t e r i n g , u n g r a f t e d p o r t i o n s of p o l y e t h y l e n e d o n o t i n t e r f e r e w i t h t h e d e t e r m i n a t i o n of the m o l e c u l a r w e i g h t of the graft chains, nor, after r e f r a c t i o n a t i o n a c c o r d i n g to t h e m o l e c u l a r w e i g h t o f t h e g r a f t c h a i n s , w i t h t h e d e t e r m i n a t i o n of t h e m o l e c u l a r w e i g h t d i s t r i b u t i o n of t h e g r a f t c h a i n s ( 5 ) . I n o r d e r to d e t e r m i n e t h e d e g r e e of g r a f t i n g of t h e s u b s t r a t e , h o w e v e r , i t w a s n e c e s s a r y to d e t e r m i n e t h e a m o u n t of u n g r a f t e d p o l y e t h y l e n e . B y c a r e f u l p r e c i p i t a t i o n of t h e g r a f t p r o d u c t a f t e r s e p a r a t i o n of u n g r a f t e d p o l y s t y r e n e f r o m a 1 : 1 t o l u e n e - n - h e p t a n e s o l u t i o n at 9 4 ° C w i t h 1 - b u t a n o l , i t w a s p o s s i b l e to s e p a r a t e t h e f r e e p o l y e t h y l e n e a l m o s t q u a n t i t a t i v e l y since it r e m a i n e d i n solution u n d e r these conditions. T h e p o l y s t y r e n e content of the i n d i v i d u a l fractions w a s d e t e r m i n e d b y Ν M R s t u d i e s i n t e t r a c h l o r o e t h y l e n e at 8 0 ° C f r o m t h e r a t i o of t h e p e a k areas of t h e a r o m a t i c a n d a l i p h a t i c p r o t o n s . W h e n s t y r e n e c o n t e n t w a s l o w , d e t e r m i n a t i o n w a s m a d e b y I R s p e c t r o s c o p y o f films, u s i n g a c a l i b r a t i o n curve. A c r y l o n i t r i l e was d e t e r m i n e d b y nitrogen analysis. L i g h t scattering w a s m e a s u r e d i n t o l u e n e at 9 0 ° C at t h e w a v e l e n g t h λ = 5 4 6 1 A . U n d e r t h e s e c o n d i t i o n s , s o l v e n t s a n d g r a f t i n g bases w e r e a l m o s t i s o r e f r a c t i v e , i.e. o n l y t h e graft chains w e r e visible. T h e solutions used i n a l l measurements w e r e p u r i f i e d b y c e n t r i f u g a t i o n at 9 0 ° C a n d a p p r o x i m a t e l y 1 0 , 0 0 0 g.
Temperature of the crystallisation start [°C]
100
90
80J
701
60H ?
50 λ
cooling rate 0,8
°C/min
AOH
30 0
10
20
30
40
50
60
Concentration of the polyethylene solution [wt%
Figure 2.
70
80
90
100
polyethylene]
Temperature of the start of crystallization as a function of polyethylene concentration in xylene solution • , LDPE
A; and
·,
LDPE
Β
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
218
COPOLYMERS,
POLYBLENDS,
A N D
COMPOSITES
Results Styrene G r a f t i n g .
I n a l l phases of grafting u n d e r s w e l l i n g conditions, the
spherical polyethylene pellets retained their shape; the only changes were a n i n c r e a s e i n d i a m e t e r as a f u n c t i o n o f t h e s t y r e n e c o n t e n t ,
a n d a n increase i n
t r a n s p a r e n c y as a f u n c t i o n o f t h e d e g r e e o f g r a f t i n g a n d t h e s t y r e n e F r o m the increase clude
that
there
i n the transparency w a s a n increase
content.
of the grafted pellets, one c o u l d con
i n compatibility with
increasing
grafting
efficiency. DIFFUSION
PROCESSES.
T h e rate of diffusion of styrene into L D P E w a s a
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
complex function of the temperature LDPE
(8).
(6, 7) a n d also of t h e c r y s t a l l i n i t y of t h e
A s t h e temperature a n d content of solvents like xylene a n d styrene
increased, the degree of crystallinity of polyethylene decreased In other words, w h e n a homogeneous at a c o n s t a n t
rate,
(Figure 2 ) .
polyethylene solution was cooled
the p o i n t of b e g i n n i n g crystallization w a s reached.
p o i n t w a s i n d i c a t e d b y t h e first v i s u a l t u r b i d i t y . A t a l l c o n c e n t r a t i o n s ,
This homo-
p o l y m e r A h a d a p o i n t o f b e g i n n i n g c r y s t a l l i z a t i o n a b o u t 10 ° C h i g h e r t h a n t h a t of c o p o l y m e r B . T h i s
finding
seemed reasonable
since the crystallization tem
perature depends o n the comonomer content a n d o n the degree of short-chain b r a n c h i n g of the polyethylene.
F r o m the curve w e c o n c l u d e d that t h e tem
perature at w h i c h styrene diffused into L D P E
A was about
1 0 ° C above
that
f o r d i f f u s i o n i n t o L D P E Β at a c o m p a r a b l e r a t e o f d i f f u s i o n . T h e homogeneity of styrene distribution i n t h e swollen pellets after i n c i p i ent styrene p o l y m e r i z a t i o n w a s another determinant of p r o p e r process
condi
tions ( F i g u r e 3 ) . W i t h h o m o p o l y e t h y l e n e A , f o r example, 24 hrs of s w e l l i n g
Density of pellets 0,945-
50°C
0,955-J
*x 50°C 24
h
• 65°C x
5
H
•χ.— 85°C x
0,9751
î
2
-i
3
1
1
4
5
3
Γ"
6
~7
8
9
TO"
Number of pellets Figure 3.
Effect of swelling conditions on the styrene content of the pellets
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
H
20.
ALBERTS
10090-
E T
Grafting
A L .
onto Ethylene
Polymers
219
A polyethylene A Β EVA copolymer Β
Grafting efficiency 10
80 70Β
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
6050 40 30 20 10 0 α-a'azodiisobutyronitrile Figure 4.
benzoyl peroxide
t-butyl peroctoate
Initiator and substrate activity in grafting styrene
at 5 0 ° C r e s u l t e d i n a m u c h less u n i f o r m s t y r e n e d i s t r i b u t i o n i n t h e p e l l e t s t h a n s w e l l i n g at 8 5 ° C f o r 3 h r s . W h e n s w e l l i n g w a s a c c o m p l i s h e d at a m b i e n t t e m p e r a t u r e w i t h s u b s e q u e n t p o l y m e r i z a t i o n at 6 0 ° - 9 0 ° C , h o m o g e n e o u s s t y r e n e distribution i n the pellets c o u l d not be obtained. T h e polystyrene w a s con centrated at the surface of the pellets f o r m i n g a n outer s k i n ; t h e g r a f t i n g efficiency w a s very poor. H o w e v e r , a homogeneous styrene distribution c o u l d b e o b t a i n e d b y s w e l l i n g at e l e v a t e d t e m p e r a t u r e ( 6 5 ° - 8 5 ° C , see F i g u r e 3 ) . T h i s c o n d i t i o n w a s essential f o r o b t a i n i n g h i g h g r a f t i n g efficiencies. I n 1 9 5 9 , H o f f m a n et al. ( 9 ) r e p o r t e d t h e i m p o r t a n c e o f t h e d i f f u s i o n t e m perature i n r a d i a t i o n - i n d u c e d grafting of styrene under s w e l l i n g conditions. T h e y used the term "diffusion-controlled grafting," a n d they noted that w h e n s t y r e n e w a s g r a f t e d s t e p w i s e (first s w e l l i n g , t h e n g r a f t i n g ) , o n l y t h e first step w a s d i f f u s i o n - c o n t r o l l e d . O f c o u r s e , s i n c e t h e m e d i u m i n s i d e t h e p e l l e t s is highly viscous, the termination reaction should be diffusion-controlled. T h i s is d i s c u s s e d b e l o w . GRAFTING EFFICIENCY. I n a l l the batches mentioned above, polymeriza tion yields exceeded 9 0 % . T h e graft products contained 1 0 - 4 5 w t % poly styrene. W h e n the g r a f t i n g efficiencies attained w i t h t h e various peroxides under otherwise identical conditions were compared, the following activity scale w a s established: a z o d i ( i s o b u t y r o n i t r i l e ) ( I ) < b e n z o y l peroxide (10, 11, 12) < tert-buty\ p e r o c t o a t e ( F i g u r e 4 ) . U n d e r i d e n t i c a l reaction conditions, the v i n y l acetate content of t h e back b o n e p o l y m e r h a d a s l i g h t effect o n t h e g r a f t i n g e f f i c i e n c y . T h e g r a f t i n g effi ciency w i t h E V A w a s about 3 0 w t % greater t h a n that w i t h h o m o p o l y e t h y l e n e A (Figure 4 ) . Saponification of the E V A backbone d i d not change the poly-
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
220
COPOLYMERS,
POLYBLENDS,
A N D COMPOSITES
styrene content of the graft c o p o l y m e r ; this meant that styrene w a s grafted m a i n l y i n the C - c h a i n of t h e substrate m o l e c u l e .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
T h e f a c t o r s t h a t d e c i s i v e l y a f f e c t e d t h e g r a f t i n g e f f i c i e n c y i n g r a f t i n g styr e n e w e r e : (a) t h e a c t i v i t y o f t h e i n i t i a t o r r a d i c a l ( t h e p r e d o m i n a n t f a c t o r ) , a n d (b) t h e a c t i v i t y o f t h e g r a f t i n g s u b s t r a t e , i.e. t h e c h e m i c a l c o m p o s i t i o n , structure, a n d crystallinity of t h e substrate. I n o r d e r t o i n v e s t i g a t e t h e m u t u a l effects o f t h e p o l y e t h y l e n e , s t y r e n e , a n d initiator ratios o n the g r a f t i n g efficiency, the f o l l o w i n g experiments w e r e performed.
40302010-1 0-1
([J]/fMl)x10 1
1
1 2 Figure 5.
1
1
1
3 4 5
1
10
2
r
15
20
Grafting efficiency as a function of monomer concentration [LDPE]
and [I], constant; and [M], decreasing
(a) T h e s t y r e n e c o n c e n t r a t i o n w a s v a r i e d w h i l e t h e q u a n t i t i e s o f i n i t i a t o r a n d polyethylene A w e r e kept constant. T h e grafting efficiency increased l i n e a r l y as s t y r e n e c o n c e n t r a t i o n d e c r e a s e d (see F i g u r e 5 ) . T h i s f i n d i n g c o u l d b e i n t e r p r e t e d as f o l l o w s : w i t h d e c r e a s i n g s t y r e n e c o n c e n t r a t i o n , t h e p r o b a b i l i t y of a transfer reaction b e t w e e n initiator r a d i c a l a n d p o l y m e r c h a i n i n creased, a n d hence the possibility of c h a i n - g r o w i n g started b y substrate radicals also increased. (h) T h e q u a n t i t y o f p o l y e t h y l e n e w a s k e p t c o n s t a n t w h i l e t h e s t y r e n e a n d initiator concentrations were decreased i n such a w a y that the ratio of their concentrations w a s kept constant. T h e grafting efficiency increased u p to a p r a c t i c a l l y c o n s t a n t v a l u e ( F i g u r e 6 ) . T h i s series o f e x p e r i m e n t s s u g g e s t e d t h a t , a l t h o u g h t h e t r a n s f e r r e a c t i o n t o w a r d s t h e s u b s t r a t e w a s p r o m o t e d a t first,
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
20.
ALBERTS
E T
Grafting
A L .
onto Ethylene
221
Polymers
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
grafting efficiency
-ι
1
1
2
Figure 6.
1
1
1
1
1
r
3
4
5
6
7
8
Grafting efficiency as a function of initiator concentration
[LDPE],
constant; [M] and [I], decreasing; and [M]/[I], constant
Grafting efficiency %
704
I
1
0,5 Figure 7.
1
1
1
1
1
1,0
1,5
2,0
2,5
3,0
Grafting efficiency as a function of initiator concentration [LDPE]
and [M], constant; and [I], increasing
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
222
COPOLYMERS,
POLYBLENDS,
A N D COMPOSITES
Grafting efficiency % 10CM
90 H
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
80
70-
60-
50
2
3
5
Figure 8.
Τ -
6
8
Grafting styrene onto EVA Β
Chain transfer agent, isobutene; [LDPE]
Enthalpies
—Γ"
Initiator wt % T ι— 9 10
and [M], constant; and [I], increasing
[joule/g] 100%
1007.
-ΔΗ,
100T-. 90-I ο
a.
80· 70
βοΗ à'
50· Α0· 3020Η 10
_^
Styrene content
[wt %]
0 20
Figure 9.
40
30
50
Heat of melting ( A H ) and heat of crystallization ( A H ) vs. styrene content of LDPE A-g-styrene m
C
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
20.
ALBERTS
E T A L .
its s t a t i s t i c a l f r e q u e n c y
Grafting decreased
onto Ethylene
223
Polymers
as t h e r e s u l t o f t h e c o n s t a n t
reduction i n
a m o u n t of initiator.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
(c) T h e quantities of p o l y e t h y l e n e a n d styrene w e r e k e p t constant w h i l e the initiator concentration was increased. F i r s t a n increase i n g r a f t i n g efficiency was observed a n d then a decrease ( F i g u r e 7 ) . T h e decrease i n grafting efficiency at v e r y h i g h initiator concentrations suggested a n increase i n the n u m b e r of c h a i n t e r m i n a t i o n reactions b e t w e e n E V A p o l y m e r radicals a n d p r i m a r y r a d i c a l s . O n t h e o t h e r h a n d , w i t h i n c r e a s i n g q u a n t i t y of p r i m a r y radicals, the starting reaction of styrene p o l y m e r i z a t i o n w i l l b e p r o m o t e d . (d) T h e g r a f t i n g r e a c t i o n w a s a c c o m p l i s h e d as i n c b u t i n t h e p r e s e n c e of a c h a i n t r a n s f e r a g e n t s u c h as i s o b u t e n e . G r a f t i n g efficiency r e m a i n e d constant w h e n initiator concentration w a s increased ( F i g u r e 8 ) . T h i s striking effect c o u l d b e i n t e r p r e t e d e a s i l y . B e c a u s e of t h e m e c h a n i s m o f r a d i c a l p o l y m e r i z a t i o n i n t h e p r e s e n c e o f c h a i n t r a n s f e r a g e n t s , t h e i n i t i a t o r first e f f e c t e d t h e f o r m a t i o n of a r e g u l a t o r r a d i c a l . W i t h m o n o o l e f i n s as c h a i n t r a n s f e r a g e n t s , the regulator r a d i c a l d i d n o t initiate c h a i n - g r o w i n g , b u t o n l y t h e transfer reac t i o n to t h e E V A s u b s t r a t e . W h e n i n i t i a t o r c o n c e n t r a t i o n i n c r e a s e d , t h e c o n t e n t of u n g r a f t e d s u b s t r a t e m o l e c u l e s d e c r e a s e d i n a c c o r d a n c e w i t h t h e p o s t u l a t e d transfer m e c h a n i s m . STRUCTURAL INVESTIGATIONS. T h e m e l t i n g a n d crystallization points a n d the m e l t i n g a n d crystallization enthalpies of styrene graft p o l y m e r s w i t h dif ferent styrene contents a n d different g r a f t i n g efficiencies w e r e d e t e r m i n e d b y differential scanning calorimetry. T h e m e l t i n g a n d crystallization points were
% Elongation 700 *
600
500J
400H
300H
200 H
100 wt % Polystyrene 10 Figure 10.
-τ—
20
~30~
Grafting styrene onto EVA Β—elongation styrene content
40
50
at break vs. poly
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
224
COPOLYMERS,
dyn /cm
POLYBLENDS,
A N D COMPOSITES
2
LDPE - Β : a tan$ · G " B-g-styrene: Δ tan $ ο G"( product OC ]
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
10*
temperature °C
ν ° -160
Figure
- K O
11.
-120
-100
Dynamic
- 80
- 60
--.0
- 20
0
+20
+40
+ 100
+ 120
+ KQ
mechanical behavior of LDPE Β and LDPE (Experiment OC in Table I)
+160
+180
B-g-styrene
The transitions were obtained from the maximum in G " at about —25°C. The simultaneous transi tion at about —140°C is the y-transition of polyethylene.
not affected b y t h e g r a f t i n g process ( F i g u r e 9 ) . T h e levels of the c r y s t a l l i z a tion a n d m e l t i n g enthalpies of the graft polymers decreased w i t h increasing polystyrene content. H o w e v e r , w h e n the measured data were standardized to 1 0 0 % p o l y e t h y l e n e , n o d e v i a t i o n f r o m t h e m e l t i n g e n t h a l p y of the o r i g i n a l p o l y e t h y l e n e w a s detectable w i t h i n the l i m i t of error of this m e t h o d . T h e g r a f t i n g process h a d n o a p p r e c i a b l e effect o n t h e c r y s t a l l i n i t y of t h e g r a f t e d s u b s t r a t e , a n d o n l y a s l i g h t effect o n p o s t - c r y s t a l l i z a t i o n . F r o m t h e f a c t t h a t t h e c r y s t a l l i z a t i o n a n d m e l t i n g e n t h a l p i e s d e c r e a s e d l i n e a r l y as s t y r e n e c o n t e n t i n c r e a s e d , i t w a s c o n c l u d e d t h a t p o l y s t y r e n e w a s p r e s e n t as a v i r t u a l l y i n e r t filler i n a c o n t i n u o u s p o l y e t h y l e n e p h a s e .
Figure 12. Electron photomicrograph of styrene grafted onto LDPE Β (Ex periment OC in Table I)
Figure 13. Electron photomicrograph of styrene grafted onto LDPE Β (Ex periment OA in Table I)
Styrene content, 20.4 wt %; and grafting efficieny, 76%
Styrene content, 20.2 wt %; grafting effi ciency, 17%; and ungrafted polystyrene re moved with THF
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
20.
ALBERTS
Grafting
ET AL.
Figure 14. Electron photomicrograph of styrene grafted onto LDPE A (Expériment A in Table I) Styrene content, 43.7 wt %; and grafting efficiency, 11.Οψο
onto Ethylene
225
Polymers
Figure 15. Electron photomicrograph of graft product A at higher magnification after removal of ungrafted polystyrene with THF (cf. Figure 14)
T h i s c o n c e p t i o n w a s s u p p o r t e d b y the elongation measurements of t h e graft p o l y m e r s ( F i g u r e 1 0 ) . A s styrene content increased, the m a x i m u m elongation decreased linearly, regardless of the grafting efficiency. T h i s be h a v i o r is w e l l k n o w n f o r e t h y l e n e p o l y m e r s l o a d e d w i t h f i l l e r s ( 1 3 ) . T h e d a t a suggested a decrease i n the entanglement between the polyethylene crystallites as a r e s u l t o f t h e s u r r o u n d i n g , i n c o m p a t i b l e p o l y s t y r e n e m o l e c u l e s . I n F i g u r e 11, the d y n a m i c m e c h a n i c a l behaviors of E V A Β a n d of the g r a f t p r o d u c t f r o m E x p e r i m e n t O C (see T a b l e I ) , w h i c h h a d a s t y r e n e c o n t e n t of 2 0 . 4 w t % a n d a g r a f t i n g e f f i c i e n c y o f 7 6 . 0 % , a r e c o m p a r e d . T h e glass transition temperature T of t h e graft p o l y m e r w a s — 2 6 ° C whereas the T of E V A Β w a s — 2 7 ° C ; therefore, the difference w a s not significant. T h e m o d u l u s of t h e g r a f t w a s s l i g h t l y c h a n g e d f r o m t h a t o f L D P E B , so a s l i g h t m u t u a l effect of t h e p o l y s t y r e n e a n d p o l y e t h y l e n e regions w a s reasonable. g
g
T h e m o r p h o l o g y of the graft products w a s elucidated f r o m electron p h o t o m i c r o g r a p h s of m i c r o t o m e d , t h i n sections of t h e grafts. I n F i g u r e s 12 a n d 13, the g r a f t i n g p r o d u c t s h a d a styrene content of about 2 0 w t % , a n d E V A Β w a s the substrate i n the g r a f t i n g reaction. D e s p i t e t h e w i d e l y different g r a f t i n g efficiencies, o n l y slight structural differences w e r e apparent. When L D P E A w a s the substrate, it w a s reasonable to assume styrene occlusions i n a polyethylene matrix ( F i g u r e 1 4 ) . T h e styrene content of this graft p o l y m e r was about 4 0 w t % . A f t e r the ungrafted polystyrene units were r e m o v e d w i t h tetrahydrofuran ( T H F ) , the styrene occlusions were clearly visible ( F i g u r e 1 5 ) . S i n c e i n t h i s case t h e s u b s t r a t e w a s L D P E A w h i c h h a s a c o n s i d e r a b l y greater tendency t o w a r d crystallization ( F i g u r e 2) a n d a crystallization t e m perature about 1 0 ° C h i g h e r t h a n that of E V A B , the f o l l o w i n g c o u l d b e assumed. C o o l i n g to 5 0 ° C d u r i n g the peroxide diffusion p e r i o d resulted i n the f o r m a t i o n of crystalline regions w h i c h caused the styrene to a c c u m u l a t e i n occlusions. W h e n p o l y m e r i z a t i o n w a s started b y a n increase i n temperature, the rate of styrene p o l y m e r i z a t i o n w a s faster t h a n that of styrene d i f f u s i o n t h r o u g h the s l o w l y d i s a p p e a r i n g crystalline regions, a n d , hence, the styrene occlusions w e r e retained. W h e n E V A w a s the g r a f t i n g substrate, the styrene o c c l u s i o n s d i d n o t f o r m t o t h e s a m e e x t e n t as i n p r o d u c t A b e c a u s e o f t h e clearly l o w e r crystallization degree, tendency, a n d temperature of E V A . Compatibility of Graft Copolymers. F r o m t h e i n c r e a s e i n t h e t r a n s p a r e n c y of t h e g r a f t e d pellets w i t h i n c r e a s i n g degree of g r a f t i n g , a n increase i n c o m -
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
226
COPOLYMERS,
\
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
2
ο without propylene
3
4
5
6
Fraction no. Figure 16.
A N D COMPOSITES
χ propylene a s chain transfer agent \
1
POLYBLENDS,
7 •
Intrinsic viscosities of different fractions of EVA-g-styreneco-acrylonitrile
p a t i b i l i t y w i t h i n c r e a s i n g g r a f t i n g e f f i c i e n c y c o u l d also b e c o n c l u d e d . A q u a n t i tative measure of p o l y m e r c o m p a t i b i l i t y c o u l d be d e r i v e d f r o m measurements of l i g h t s c a t t e r i n g f r o m t h e d e t e r m i n a t i o n o f t h e s e c o n d v i r i a l c o e f f i c i e n t a n d t h e r a d i i o f g y r a t i o n (5, 14, 15) as w e l l as f r o m t h e d e t e r m i n a t i o n o f t h e first v i s u a l t u r b i d i t y p o i n t ( 5 ) . H e n c e , the shorter the graft chains, the m o r e c o m p a t i b l e they w e r e w i t h the g r a f t i n g base. W h e n t h e ratio of m o n o m e r - t o g r a f t i n g substrate a n d the g r a f t i n g efficiency w e r e k e p t constant, a decrease i n t h e m o l e c u l a r w e i g h t o f t h e g r a f t c h a i n i n c r e a s e d t h e n u m b e r o f g r a f t i n g sites. T h e resultant consequences f o r the p r o p e r t y pattern of graft polymers c o u l d be e x e m p l i f i e d b y t h e g r a f t i n g of s t y r e n e - a c r y l o n i t r i l e c o m b i n a t i o n s onto a n e t h y l e n e - v i n y l acetate c o p o l y m e r . Styrene-Acrylonitrile G r a f t i n g . T h u s , t h e k e y t o i m p r o v i n g t h e c o m p a t i b i l i t y of graft copolymers w a s n o t o n l y a n i m p r o v e m e n t i n the grafting e f f i c i e n c y , b u t i t w a s also c o n t r o l o f t h e n u m b e r a n d m o l e c u l a r w e i g h t o f t h e graft chains. A l t h o u g h the molecular w e i g h t of the graft chains c o u l d be r e d u c e d b y r e g u l a t o r s s u c h as m e r c a p t a n s , a h i g h e r m e r c a p t a n c o n c e n t r a t i o n also r e s u l t e d i n a d e c r e a s e d g r a f t i n g e f f i c i e n c y (16). A n o p t i m u m system of regulators w a s f o u n d ; i t n o t o n l y r e d u c e d the m o l e c u l a r w e i g h t s of the graft c h a i n s b u t also i n c r e a s e d t h e i r n u m b e r t h r o u g h c h a i n t r a n s f e r t o t h e p o l y m e r i c s u b s t r a t e . T h e s e r e g u l a t o r s w e r e m o n o o l e f i n s s u c h as e t h y l e n e , p r o p y l e n e , a n d isobutene. W h e n a c o m b i n a t i o n of styrene a n d acrylonitrile w a s grafted onto ethylene p o l y m e r s i n the presence of these monoolefins, t h e graft p r o d u c t s w e r e e x t r e m e l y h o m o g e n e o u s , as w a s p r o v e d b y a n a l y s i s o f t h e g r a f t p r o d u c t s a f t e r p r e p a r a t i v e p r e c i p i t a t i o n f r a c t i o n a t i o n ( F i g u r e 1 6 ) . B e c a u s e these graft p r o d -
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
20.
ALBERTS
E T
Grafting
A L .
onto Ethylene
227
Polymers
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
ucts have drastically r e d u c e d proportions of free styrene-acrylonitrile c o p o l y m e r a n d because they have more graft chains w i t h r e d u c e d molecular w e i g h t t h a n do t h e graft products o b t a i n e d w i t h o u t regulators, their c o m p a t i b i l i t y w a s c o n s i d e r a b l y i m p r o v e d . A s a result of their h o m o g e n e i t y , their processing has been improved. I n order to obtain a better u n d e r s t a n d i n g of the relations b e t w e e n m o l e c u lar w e i g h t a n d t h e c o m p a t i b i l i t y of t h e g r a f t i n g substrate, it w a s necessary to d e t e r m i n e the m o l e c u l a r w e i g h t of the grafted chains of the graft c o p o l y m e r . S u c h investigations c o u l d be facilitated b y oxidative degradation of the backbone p o l y m e r a n d determination of the molecular weights a n d molecular w e i g h t d i s t r i b u t i o n s o f t h e i s o l a t e d g r a f t c h a i n s w h e n p o l y b u t a d i e n e w a s u s e d as t h e g r a f t i n g s u b s t r a t e ( 1 7 , 18, 19). Ethylene polymers, however, could not be subjected to s u c h d e g r a d a t i o n reactions since this w o u l d l e a d u n a v o i d a b l y to degradation of the grafted chains too. M o l e c u l a r Weights of the Graft Chains. T h e m o l e c u l a r w e i g h t s o f t h e graft chains were d e t e r m i n e d b y m e a s u r i n g the light scattering u n d e r those conditions w h e n the grafting substrate w a s isorefractive w i t h the solvent ( 5 ) . T h i s n e w m e t h o d of determination w a s tried o n E V A - p o l y s t y r e n e graft c o p o l y m e r s w h i c h were o b t a i n e d b y grafting a p p r o x i m a t e l y 2 0 w t % styrene onto L D P E B . W h e n the polyethylene/styrene ratio w a s kept constant, the initiator concentration c o u l d b e v a r i e d to obtain graft chains differing i n length (Figure 17). (5)
E v a l u a t i o n of the anomalous Z i m m diagrams f o r graft p o l y m e r solutions r e v e a l e d o n l y a n e g l i g i b l e d e v i a t i o n of t h e m o l e c u l a r weights of the graft
1 Figure 17.
2
3
4
5
6
7
8
9
10
Molecular weight of grafted and ungrafted chains as a function of initiator concentration (wt % )
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
228
COPOLYMERS,
POLYBLENDS,
A N D COMPOSITES
chains f r o m those of the u n g r a f t e d p o l y s t y r e n e . I n a d d i t i o n to t h e e x p e c t e d d e c r e a s e i n m o l e c u l a r w e i g h t s as i n i t i a t o r c o n c e n t r a t i o n i n c r e a s e d , t h e r e w a s a decrease i n the a m o u n t of u n g r a f t e d polyethylene a n d a n increase i n the c o m p a t i b i l i t y of the graft chains w i t h the g r a f t i n g substrate ( 5 ) . F i g u r e 18 repre sents t h e i n t e g r a l m o l e c u l a r w e i g h t d i s t r i b u t i o n s o f t h e g r a f t c h a i n s as d e t e r m i n e d b y m e a s u r i n g the light scattering after preparative fractionation. T h e w e i g h t averages of the m o l e c u l a r w e i g h t s c a l c u l a t e d f r o m these d i s t r i b u t i o n s a g r e e d w e l l w i t h t h e v a l u e s o b t a i n e d f o r t h e u n g r a f t e d p o l y s t y r e n e as w e l l as f o r t h a t f r a c t i o n f r o m w h i c h o n l y t h e u n g r a f t e d p o l y s t y r e n e w a s r e m o v e d by fractionation. I n a d d i t i o n , the m o l e c u l a r non-uniformities of the graft c h a i n s c a l c u l a t e d f r o m F i g u r e 18 w e r e t h e s a m e as t h o s e d e t e r m i n e d f o r t h e u n g r a f t e d polystyrene b y g e l permeation c h r o m a t o g r a p h y ( 5 ) . F r o m the corre s p o n d e n c e of the w e i g h t averages of the m o l e c u l a r w e i g h t s a n d of the n o n uniformities of the grafted a n d ungrafted polystyrenes, it w a s c o n c l u d e d that, at b e s t , o n e g r a f t c h a i n w a s l i n k e d t o o n e s u b s t r a t e m o l e c u l e . Conformation of the Graft Chains in Solution. T h e f i n d i n g s f r o m d i f f e r e n t i a l t h e r m a l a n a l y s i s ( D T A ) c o u l d b e i n t e r p r e t e d to m e a n t h a t g r a f t c h a i n s were practically not incorporated into the polyethylene crystalline regions. I n f o r m a t i o n a b o u t t h e g r a f t i n g site, i.e., w h e t h e r t h e g r a f t i n g p r o c e s s o c c u r r e d in fact w i t h i n the polyethylene molecule, c o u l d be derived f r o m the measured r a d i i of g y r a t i o n of the graft chains. A s the m o l e c u l a r w e i g h t of the graft chains decreased, the values for the r a d i i of gyration of the grafted polystyrene increased relative to those f o r the h o m o p o l y s t y r e n e ( F i g u r e 1 9 ) . T h i s increase c o u l d b e i n t e r p r e t e d as f o l l o w s . T h e L D P E Β u s e d as t h e g r a f t i n g s u b s t r a t e was h i g h l y l o n g - c h a i n - b r a n c h e d . E v e n i n solution, this p o l y e t h y l e n e m o l e c u l e was rather compact. T h e graft c o p o l y m e r ( p r o d u c t O C i n T a b l e I) contained 2 0 w t % styrene. A f t e r r e m o v a l of the u n g r a f t e d polystyrene a n d fractional p r e c i p i t a t i o n of the graft c o p o l y m e r , the r a d i i of g y r a t i o n of the fractions were measured. B y the n e w m e t h o d of l i g h t scattering measurements, o n l y the polystyrene molecules were visible. T h e radii of gyration of the polystyrene molecules d e p e n d o n their conformation i n solution. Molecules w i t h coiled c o n f o r m a t i o n i n solution have smaller r a d i i of gyration than d o stretched molecules w i t h the same molecular weight.
Figure 18.
Molecular weight distributions of grafted chains
Initiator concentration: X, 0.48 wt % and ·, 5.0 wt %
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
20.
A L B E R T S
E T
Grafting
A L .
onto Ethylene
229
Polymers
100 τ
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
10 -=- * · 10"
[
1
/ / /
0,1
:
^ M ^ w 1—ι
10* Figure 19. ·,
1—ι—I
M i l l
10
1—ι 5
1—I
ι
ι ι ι 11
10
1—ι
1—ι—I
6
I I I 11
10
7
Radii of gyration of polystyrene grafted onto different substrates
LDPE B; A, EVA (vinyl acetate content, 45 wt %); and polystyrene with a molecular non-uniformity of zero
, homo-
W h e n the polystyrene graft c h a i n w a s a n c h o r e d to the substrate w i t h i n the c o m p a c t p o l y e t h y l e n e m o l e c u l e , the graft c h a i n s h o u l d h a v e one section w i t h i n a n d one section outside the polyethylene molecule. T h e conformations of t h e s e s e c t i o n s w o u l d b e d i f f e r e n t . T h e i n n e r s e c t i o n w a s f o r c e d t o e n t e r i n t o as f e w i n t e r a c t i o n s w i t h t h e s u r r o u n d i n g p o l y e t h y l e n e m o l e c u l e as p o s s i b l e , w h i c h s h o u l d l e a d to stiffening of the i n n e r p o l y s t y r e n e c h a i n . T h e section of graft c h a i n outside the polyethylene molecule w o u l d be free a n d m o v a b l e , a n d it w o u l d have a n ordinary, c o i l e d conformation i n solution. T h e m e a s u r e d v a l u e of g y r a t i o n s h o u l d be c o n s i d e r e d the c o m b i n e d v a l u e f o r a n e x t e n d e d c h a i n component a n d a coiled c h a i n component. I n order to explain the increas i n g d e v i a t i o n of t h e r a d i i of g y r a t i o n of the graft chains f r o m those of h o m o p o l y s t y r e n e as t h e m o l e c u l a r w e i g h t d e c r e a s e d , w e h a v e t o a s s u m e t h a t t h e a v e r a g e l e n g t h o f t h e i n n e r g r a f t c h a i n w a s c o n s t a n t . T h e n , as t h e m o l e c u l a r w e i g h t of the graft c h a i n decreased, the c o i l e d c h a i n c o m p o n e n t of the radius of g y r a t i o n d e c r e a s e d , t o o , a n d t h e e x t e n d e d c h a i n c o m p o n e n t i n c r e a s e d .
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 16, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch020
230
COPOLYMERS,
POLYBLENDS,
AND
COMPOSITES
If t h i s i n t e r p r e t a t i o n i s c o r r e c t , t h e e f f e c t o f i n n e r g r a f t - c h a i n s t i f f e n i n g should be reduced w h e n the grafted polymer becomes more compatible w i t h t h e g r a f t e d s u b s t r a t e a n d / o r w h e n t h e s u b s t r a t e m o l e c u l e b e c o m e s less c o m pact. Therefore styrene was grafted onto a n e t h y l e n e - v i n y l acetate c o p o l y m e r ( v i n y l acetate content, 4 5 w t % ) w i t h a l o w e r l o n g - c h a i n b r a n c h i n g f r e q u e n c y (20) t h a n L D P E a n d i m p r o v e d c o m p a t i b i l i t y w i t h p o l y s t y r e n e ( 5 ) b y t h e s a m e p r e p a r a t i o n p r o c e d u r e (///) as f o r g r a f t i n g s t y r e n e o n t o L D P E B . A f t e r r e m o v a l of u n g r a f t e d p o l y s t y r e n e a n d f r a c t i o n a l p r e c i p i t a t i o n o f t h e E V A - g - s t y r e n e c o p o l y m e r , t h e r a d i i o f g y r a t i o n o f t h e f r a c t i o n s w e r e m e a s u r e d (see F i g u r e 1 9 ) . I n fact, the radii of gyration o f E V A - g - s t y r e n e , w h e n c o m p a r e d w i t h those of L D P E B-g-styrene, s h o w e d t h e expected smaller deviation f r o m t h e radii of gyration of u n g r a f t e d polystyrene. Perhaps, this r e m a i n i n g d e v i a t i o n c o u l d b e r e d u c e d if t h e r a d i i of gyration of t h e graft chains w o u l d b e calculated w i t h c o r r e c t i o n s f o r t h e s m a l l n o n - u n i f o r m i t y . F u r t h e r m o r e , t h e l i t t l e effect o f m o l e cules w i t h t w o or m o r e graft chains was neglected ( 5 ) i n t h e calculations. Conclusion T h e objective o f this s t u d y , n a m e l y i m p r o v e m e n t of t h e c o m p a t i b i l i t y of g r a f t p o l y m e r s , as m e n t i o n e d a t t h e b e g i n n i n g o f t h i s p a p e r , w a s r e a c h e d . C o n t r a r y t o t h e findings t h a t t h e g r a f t i n g o f s t y r e n e - a c r y l o n i t r i l e o n t o E V A c o p o l y m e r s r e s u l t s i n i n c o m p a t i b l e g r a f t p r o d u c t s — a s w a s r e p o r t e d i n 1 9 6 8 (1 ) — a n i m p r o v e d g r a f t i n g \' j h n i q u e n o w p e r m i t s t h e p r o d u c t i o n o f g r a f t t h e r m o plastics w i t h i m p r o v e d c o m p a t i b i l i t y . Acknowledgment T h e authors are grateful to M . H o f f m a n n f o r interesting discussions o n structural problems, to G . K a e m p f a n d L . M o r b i t z e r for investigations o n the m o r p h o l o g y of the graft copolymers, a n d to H . K r o e m e r for differential t h e r m a l analysis.
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.
Bartl, H., Hardt, D., ADVAN. CHEM. SER. (1969) 91, 477. Mayo, F. R., Walling, C., Chem. Rev. (1950) 46, 191. Bamford, C. H., Jenkins, A. D., Johnston, R., Trans. Faraday Soc. (1959) 55, 41. Burnett, G. M., Wright, W. W., Proc. Roy. Soc. London (1954) A 221, 41. Kuhn, R., Alberts, H., Bartl, H., Makromol. Chem. (1974) 175, 1471. Bent, Η. Α., J. Polym.Sci.(1957) 24, 387. Pinsky, J., Mod. Plast. (1957) April, 145. Fuhrmann, J., Diremeyer, M., Rehage, G., Ber. Bunsenges. Phys. Chem. (1970) 74, 842. Hoffman, A. S., Gilliland, E. R., Merrill, E. W., Stockmayer, W. H.,J.Polym. Sci. (1959)34,461. Fischer, J. P., Angew.Makromol.Chem. (1973) 33, 35. Allen, P. W., Ayrey, G., Moore, C. G., J. Polym. Sci. (1959) 36, 55. Czvikovszky, T., Dobo, J., J. Polym. Sci. Part C (1967) 16, 2973. Miller, S. Α., "Ethylene and Its Industrial Derivatives," p. 473, Ernest Benn, London, 1969. Kuhn, R., Cantow, H.-J., Liang, S. B., Angew. Makromol. Chem. (1971) 18, 93. Kuhn, R., Bugdahl, V., Cantow, H.-J., Angew. Makromol. Chem. (1971) 18, 109. Hayes, R. Α.,J.Polym. Sci. (1953) 11, 531. Rieke, J. K., Hart, G. M., Saunders, F. L., J. Polym. Sci. Part C (1964) 4, 589. Locatelli, J. L., Riess, G., Angew. Makromol. Chem. (1973) 28, 161. Hoffmann, M., Pampus, G., Marwede, G., Kaut. Gummi Kunstst. (1969) 22, 691. Bartl, H., Kaut. Gummi Kunstst. (1972) 25, 452.
RECEIVED April 3, 1974.
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.