Highly Efficient Perovskite Solar Modules by Scalable Fabrication and

Jan 2, 2018 - Optimizing the interconnection junction behavior, blade-coating HTL, and perovskite composition yields a stabilized aperture PCE of 15.6...
0 downloads 9 Views 759KB Size
Subscriber access provided by READING UNIV

Letter

Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization Mengjin Yang, Dong Hoe Kim, Talysa Klein, Zhen Li, Matthew O. Reese, Bertrand Tremolet de Villers, Joe Berry, Maikel F.A.M. van Hest, and Kai Zhu ACS Energy Lett., Just Accepted Manuscript • DOI: 10.1021/acsenergylett.7b01221 • Publication Date (Web): 02 Jan 2018 Downloaded from http://pubs.acs.org on January 2, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Energy Letters is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization Mengjin Yang,a,§ Dong Hoe Kim,a,§ Talysa R. Klein,b Zhen Li,a,* Matthew O. Reese,b Bertrand J. Tremolet de Villers,a Joseph J. Berry,b Maikel F. A. M. van Hest,b Kai Zhua,* a

Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401,

United States b

Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United

States §

These two authors contributed equally to this work.

* Corresponding authors: [email protected]; [email protected]

Abstract To push perovskite solar cell (PSC) technology toward practical applications, large-area perovskite solar modules with multiple sub-cells need to be developed by fully scalable deposition approaches. Here, we demonstrate a deposition scheme for perovskite module fabrication with spray coating of a TiO2 electron transport layer (ETL) and blade coating of both perovskite absorber layer and spiro-OMeTAD-based hole transport layer (HTL). The TiO2 ETL remaining in the interconnection between sub-cells significantly affects the module performance. Reducing TiO2 thickness changes the interconnection contact from a Schottky diode to ohmic behavior. Owing to interconnection resistance reduction, the perovskite modules with a 10-nm TiO2 layer show enhanced performance mainly associated with much improved fill factor. Finally, we demonstrate 4-cell MA0.7FA0.3PbI3 perovskite module with a stabilized power conversion efficiency (PCE) of 15.6% measured from an aperture area of ~10.36 cm2, corresponding to an active-area module PCE of 17.9% with a geometric fill factor of ~87.3%.

ACS Paragon Plus Environment

1

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 15

Organic-inorganic hybrid halide perovskite materials have gained tremendous attention in recent years as a promising candidate for next-generation low-cost photovoltaics (PV). The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has surged rapidly from 17% can be achieved in the near future.

Conclusions In summary, we demonstrated an approach to scaling up PSCs that includes monolithic interconnects and results in a highly efficient 4-cell perovskite module with a stabilized module PCE of 15.6% measured from an aperture area of ~10.36 cm2, corresponding to an active-area module PCE of 17.9% with a geometric fill factor of ~87.3%. The n-i-p device structure of the modules was fabricated with a fully scalable deposition scheme coupled with the standard scribing scheme used for conventional thin-film PV modules. The TiO2 ETL was deposited by spray pyrolysis, whereas the perovskite absorber layer and spiro-OMeTAD-based HTL were both deposited by blade coating. Key to the module development is control of the monolithic interconnection contact (FTO/TiO2/Au)—from a non-ohmic to ohmic behavior—by adjusting the TiO2 ETL thickness without causing significant shunts. The interconnection between subcells strongly affects the FF of module performance. Because the interconnection is absent in small-area laboratory devices, different considerations of device optimization are needed when transitioning from small-area lab-scale cells to modules, even when the same stack layers are used in both types of devices. Future material/structure innovations to fully resolve the interconnection issue will have great impact to the development of perovskite modules.

Acknowledgement The work at the National Renewable Energy Laboratory is supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. We acknowledge the support by the hybrid perovskite solar cell program of the National Center for Photovoltaics, funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. K.Z., D.K., M.v.H., and T.R.K acknowledge the support by the U.S.

ACS Paragon Plus Environment

11

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 12 of 15

Department of Energy/National Renewable Energy Laboratory’s Laboratory Directed Research and Development (LDRD) program.

Supporting Information Available: Device fabrication and experimental details; Microscopic image of P1, P2, P3 scribing; SEM images of different thickness TiO2 and spiro-OMeTAD surface; Corrected J-V curve after eliminating TiO2 resistance; Comparisons of the MAPbI3 and MA0.7FA0.3PbI3 devices.

References (1) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as VisibleLight Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-6051. (2) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; HumphryBaker, R.; Yum, J.-H.; Moser, J. E., et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591. (3) Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H., et al. Iodide Management in Formamidinium-Lead-Halide–Based Perovskite Layers for Efficient Solar Cells. Science 2017, 356, 1376-1379. (4) Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H., et al. Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells. Science 2017, 356, 1376-1379. (5) Ndione, P. F.; Li, Z.; Zhu, K. Effects of Alloying on the Optical Properties of Organic-Inorganic Lead Halide Perovskite Thin Films. J. Mater. Chem. C 2016, 4, 7775-7782. (6) Steirer, K. X.; Schulz, P.; Teeter, G.; Stevanovic, V.; Yang, M.; Zhu, K.; Berry, J. J. Defect Tolerance in Methylammonium Lead Triiodide Perovskite. ACS Energy Lett. 2016, 1, 360-366. (7) Yin, W.-J.; Shi, T.; Yan, Y. Unusual Defect Physics in CH3NH3PbI3 Perovskite Solar Cell Absorber. Appl. Phys. Lett. 2014, 104, 63903. (8) De Wolf, S.; Holovsky, J.; Moon, S. J.; Loper, P.; Niesen, B.; Ledinsky, M.; Haug, F. J.; Yum, J. H.; Ballif, C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 2014, 5, 1035-1039. (9) Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341-344. (10) Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342, 344-347. (11) Zhao, Y.; Zhu, K. Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 4175-4186. (12) Manser, J. S.; Saidaminov, M. I.; Christians, J. A.; Bakr, O. M.; Kamat, P. V. Making and Breaking of Lead Halide Perovskites. Accounts Chem. Res. 2016, 49, 330-338. (13) Gong, J.; Darling, S. B.; You, F. Perovskite Photovoltaics: Life-Cycle Assessment of Energy and Environmental Impacts. Energy Environ. Sci. 2015, 8, 1953-1968.

ACS Paragon Plus Environment

12

Page 13 of 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

(14) Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; CorreaBaena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A., et al. Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance. Science 2016, 354, 206-209. (15) Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Lead-Free Solid-State Organic-Inorganic Halide Perovskite Solar Cells. Nat. Photon. 2014, 8, 489-494. (16) Chen, H.; Ye, F.; Tang, W.; He, J.; Yin, M.; Wang, Y.; Xie, F.; Bi, E.; Yang, X.; Grätzel, M., et al. A Solvent- and Vacuum-Free Route to Large-Area Perovskite Films for Efficient Solar Modules. Nature 2017, doi:10.1038/nature23877. (17) Ono, L. K.; Park, N.-G.; Zhu, K.; Huang, W.; Qi, Y. Perovskite Solar Cells - Towards Commercialization. ACS Energy Lett. 2017, 2, 1749-1751. (18) Krebs, F. C. Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394-412. (19) Razza, S.; Castro-Hermosa, S.; Carlo, A. D.; Brown, T. M. Research Update: Large-Area Deposition, Coating, Printing, and Processing Techniques for the Upscaling of Perovskite Solar Cell Technology. APL Materials 2016, 4, 091508. (20) Qiu, W.; Merckx, T.; Jaysankar, M.; Masse de la Huerta, C.; Rakocevic, L.; Zhang, W.; Paetzold, U. W.; Gehlhaar, R.; Froyen, L.; Poortmans, J., et al. Pinhole-Free Perovskite Films for Efficient Solar Modules. Energy Environ. Sci. 2016, 9, 484-489. (21) Chiang, C.-H.; Nazeeruddin, M. K.; Grätzel, M.; Wu, C.-G. The Synergistic Effect of H2o and Dmf Towards Stable and 20% Efficiency Inverted Perovskite Solar Cells. Energy Environ. Sci. 2017, 10, 808-817. (22) Leyden, M. R.; Jiang, Y.; Qi, Y. Chemical Vapor Deposition Grown Formamidinium Perovskite Solar Modules with High Steady State Power and Thermal Stability. J. Mater. Chem. A 2016, 4, 1312513132. (23) Cotella, G.; Baker, J.; Worsley, D.; De Rossi, F.; Pleydell-Pearce, C.; Carnie, M.; Watson, T. One-Step Deposition by Slot-Die Coating of Mixed Lead Halide Perovskite for Photovoltaic Applications. Sol. Energy Mater. Sol. Cells 2017, 159, 362-369. (24) Hwang, K.; Jung, Y. S.; Heo, Y. J.; Scholes, F. H.; Watkins, S. E.; Subbiah, J.; Jones, D. J.; Kim, D. Y.; Vak, D. Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells. Adv. Mater. 2015, 27, 1241-1247. (25) Yang, Z.; Chueh, C.-C.; Zuo, F.; Kim, J. H.; Liang, P.-W.; Jen, A. K. Y. High-Performance Fully Printable Perovskite Solar Cells Via Blade-Coating Technique under the Ambient Condition. Adv. Energy Mater. 2015, 5, 1500328. (26) Qin, T.; Huang, W.; Kim, J.-E.; Vak, D.; Forsyth, C.; McNeill, C. R.; Cheng, Y.-B. Amorphous Hole-Transporting Layer in Slot-Die Coated Perovskite Solar Cells. Nano Energy 2017, 31, 210-217. (27) Kim, J.; Yun, J. S.; Cho, Y.; Lee, D. S.; Wilkinson, B.; Soufiani, A. M.; Deng, X.; Zheng, J.; Shi, A.; Lim, S., et al. Overcoming the Challenges of Large-Area High-Efficiency Perovskite Solar Cells. ACS Energy Lett. 2017, 2, 1978-1984. (28) Booth, H. Laser Processing in Industrial Solar Module Manufacturing. J. Laser Micro. Nanoen. 2010, 5, 183-191. (29) Rakocevic, L.; Gehlhaar, R.; Merckx, T.; Qiu, W.; Paetzold, U. W.; Fledderus, H.; Poortmans, J. Interconnection Optimization for Highly Efficient Perovskite Modules. IEEE J. Photovoltaics 2017, 7, 404-408. (30) Fakharuddin, A.; Di Giacomo, F.; Palma, A. L.; Matteocci, F.; Ahmed, I.; Razza, S.; D’Epifanio, A.; Licoccia, S.; Ismail, J.; Di Carlo, A., et al. Vertical TiO2 Nanorods as a Medium for Stable and HighEfficiency Perovskite Solar Modules. ACS Nano 2015, 9, 8420-8429. (31) Zhao, Y.; Zhu, K. Organic-Inorganic Hybrid Lead Halide Perovskites for Optoelectronic and Electronic Applications. Chem. Soc. Rev. 2016, 45, 655-689. (32) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 2013, 499, 316.

ACS Paragon Plus Environment

13

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 14 of 15

(33) Yang, M.; Li, Z.; Reese, M. O.; Reid, O. G.; Kim, D. H.; Siol, S.; Klein, T. R.; Yan, Y.; Berry, J. J.; van Hest, M. F. A. M., et al. Perovskite Ink with Wide Processing Window for Scalable HighEfficiency Solar Cells. Nat. Energy 2017, 2, 17038. (34) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cells. Nat. Mater. 2014, 13, 897-903. (35) Zhang, F.; Ma, W.; Guo, H.; Zhao, Y.; Shan, X.; Jin, K.; Tian, H.; Zhao, Q.; Yu, D.; Lu, X., et al. Interfacial Oxygen Vacancies as a Potential Cause of Hysteresis in Perovskite Solar Cells. Chem. Mater. 2016, 28, 802-812. (36) Rong, Y.; Hu, Y.; Ravishankar, S.; Liu, H.; Hou, X.; Sheng, Y.; Mei, A.; Wang, Q.; Li, D.; Xu, M., et al. Tunable Hysteresis Effect for Perovskite Solar Cells. Energy Environ. Sci. 2017, 10, 2383-2391. (37) Hu, Y.; Si, S.; Mei, A.; Rong, Y.; Liu, H.; Li, X.; Han, H. Stable Large-Area (10 × 10 Cm2) Printable Mesoscopic Perovskite Module Exceeding 10% Efficiency. Solar RRL 2017, 1, 1600019. (38) Priyadarshi, A.; Haur, L. J.; Murray, P.; Fu, D.; Kulkarni, S.; Xing, G.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. A Large Area (70 cm2) Monolithic Perovskite Solar Module with a High Efficiency and Stability. Energy Environ. Sci. 2016, 9, 3687-3692. (39) Agresti, A.; Pescetelli, S.; Palma, A. L.; Del Rio Castillo, A. E.; Konios, D.; Kakavelakis, G.; Razza, S.; Cinà, L.; Kymakis, E.; Bonaccorso, F., et al. Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm2 Active Area. ACS Energy Lett. 2017, 2, 279-287. (40) Remeika, M.; Raga, S. R.; Zhang, S.; Qi, Y. Transferrable Optimization of Spray-Coated Pbi2 Films for Perovskite Solar Cell Fabrication. J. Mater. Chem. A 2017, 5, 5709-5718. (41) Longhua, C.; Lusheng, L.; Jifeng, W.; Bin, D.; Lili, G.; Bin, F. Large Area Perovskite Solar Cell Module. J. Semicond. 2017, 38, 014006. (42) Liao, H.-C.; Guo, P.; Hsu, C.-P.; Lin, M.; Wang, B.; Zeng, L.; Huang, W.; Soe, C. M. M.; Su, W.-F.; Bedzyk, M. J., et al. Enhanced Efficiency of Hot-Cast Large-Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation. Adv. Energy Mater. 2017, 7, 1601660. (43) Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional Engineering of Perovskite Materials for High-Performance Solar Cells. Nature 2015, 517, 476-480. (44) Pellet, N.; Gao, P.; Gregori, G.; Yang, T.-Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M. MixedOrganic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angewandte Chemie Int. Ed. 2014, 53, 3151-3157. (45) Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chem. Mater. 2016, 28, 284-292. (46) Deng, Y.; Dong, Q.; Bi, C.; Yuan, Y.; Huang, J. Air-Stable, Efficient Mixed-Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer. Adv. Energy Mater. 2016, 6, 1600372.

ACS Paragon Plus Environment

14

Page 15 of 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

TOC image

ACS Paragon Plus Environment

15