Highly Tunable Heterometallic Frameworks Constructed from Paddle

Feb 20, 2009 - For a more comprehensive list of citations to this article, users are encouraged .... A Bioinspired Synthetic Approach for Building Met...
1 downloads 0 Views 972KB Size
Highly Tunable Heterometallic Frameworks Constructed from Paddle-Wheel Units and Metalloporphyrins Paul M. Barron,† Hyun-Tak Son,† Chunhua Hu,‡ and Wonyoung Choe*,†,‡ Department of Chemistry, and Nebraska Center for Materials and Nanoscience, UniVersity of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304

CRYSTAL GROWTH & DESIGN 2009 VOL. 9, NO. 4 1960–1965

ReceiVed NoVember 17, 2008; ReVised Manuscript ReceiVed December 31, 2008

ABSTRACT: Seven new heterometallic frameworks have been synthesized with specific control over the metallic composition of each structure. Using Mn, Fe, Ni, V, and Pt metallated tetra-(4-carboxyphenyl)porphine (MTCPP) metalloligands and Zn and Co paddle-wheel building units, two series of heterometallic frameworks are assembled that maintain topology with changing metal composition. Introduction The topological control of metal-organic frameworks (MOFs) has become one of the most active areas in materials research due to the fascinating structural architectures and potentially interesting properties of MOFs in numerous applications, including hydrogen storage and catalysis.1-3 A common strategy in assembling MOFs is the use of multidentate organic linkers and metal-based secondary building units (SBUs) with triangular,squareplanar,octahedral,andtrigonalprismaticgeometries.1,4 The metal component plays a pivotal role in the final framework topology and physical properties of the resulting MOFs.1-5 However, most of the MOFs synthesized to date are homometallic, containing only one kind of metal in the framework.6-9 To build highly tailored MOFs, it is desirable to introduce multiple metal components. A noteworthy strategy to introduce such complexity is the use of metalloligands to create heterometallic MOFs.10 The Kitagawa, Chen, and Cohen groups, among others, have synthesized heterometallic MOFs from metalloligands such as pyridine-2-carboxylates,11 acetylacetonates,12 dipyrrins,13 Schiff bases,14 bipyridines,15 3,5-pyridinedicarboxylic acid dimers,16 ferrocenes,17 porphyrins,18 and other ligands.19,20 We are particularly interested in porphyrin-based linkers, because unlike other metalloligands, the cavity inside porphyrins can adopt numerous metal elements.21 We recently described several porphyrin paddle-wheel frameworks (PPFs) for which the three-dimensional (3D) stacking can be controlled by the coordination geometry of the porphyrin metal center.22 Here, we report a systematic investigation of these PPF systems, including seven new crystal structures. Our findings demonstrate that the PPF family created using the porphyrin metalloligand with the paddle-wheel SBU allows for the creation of a wide range of heterometallic frameworks without affecting the final topology. Experimental Section General Methods. All porphyrin building units were purchased from Frontier Scientific. All other chemicals were purchased from Aldrich. All crystallization experiments were done in a Yamato DKN400 mechanical convection oven. No special precautions were taken to exclude oxygen or moisture during crystallizations. Powder X-ray diffraction data were taken with a Rigaku D/Max-B X-ray diffractometer * To whom correspondence should be addressed. E-mail: [email protected]. † Department of Chemistry. ‡ Nebraska Center for Materials and Nanoscience.

with Bragg-Brentano parafocusing geometry, a diffracted beam monochromator, and a conventional copper target X-ray tube set to 40 kV and 30 mA. Single crystal structure determination was performed as follows. All crystals were plate-shaped and sealed in a capillary tube for the measurement. Geometry and intensity data were obtained at room temperature with a Bruker SMART Apex CCD area detector diffractometer. Preliminary lattice parameters and orientation matrices were obtained from three sets of frames. Data were collected using graphitemonochromated and MonoCap-collimated Mo KR radiation (λ ) 0.71073 Å) with the ω scan method.23 Data were processed with the SAINT+ program24 for reduction and cell refinement. Multiscan absorption corrections were applied to the data set by using the SADABS program for the area detector.25 The structure was solved by direct method and refined using SHELXTL.26 Disordered, independent solvent molecules inside the frameworks were eliminated in the refinement by PLATON/SQUEEZE.27 All atoms were refined with anisotropic displacement parameters. Crystallographic data are summarized in Tables 1 and 2. PPF-3-Mn/Zn. Mn(III)TCPPCl (8.8 mg, 0.01 mmol), zinc nitrate (5.9 mg, 0.02 mmol), and 4,4′-bipyridine (6.2 mg, 0.04 mmol) were added to a mixture of N,N′-dimethylformamide (DMF, 1.33 mL) and methanol (0.67 mL) in a small capped vial and sonicated to ensure homogeneity. The pH was adjusted by adding 1.0 M nitric acid in methanol (30.0 µL, 0.03 mmol). The vial was heated to 80 °C for 24 h, followed by slow-cooling to room temperature over 9 h. Dark purple square crystals formed. X-ray powder diffraction of the bulk product showed only one crystal phase which corresponds to the single-crystal structure. Yield: 79% based on porphyrin. Anal. Calcd. C68H40N8O8Zn2Mn · NO3 · 4H2O: C, 57.64; H, 3.41; N, 8.90%. Found: C, 57.34; H, 3.19; N, 8.85%. PPF-3-Mn/Co. Mn(III)TCPPCl (9.0 mg, 0.01 mmol), cobalt nitrate (5.8 mg, 0.02 mmol), and 4,4′-bipyridine (6.2 mg, 0.04 mmol) were added to a mixture of DMF (1.33 mL), methanol (0.67 mL), and 1.0 M nitric acid in methanol (20.0 µL, 0.02 mmol). Heating conditions were the same as PPF-3-Mn/Zn. Yield: 73% based on porphyrin. Anal. Calcd. C68H40N8O8Co2Mn · NO3 · 5H2O: C, 57.43; H, 3.54; N, 8.87%. Found: C, 57.24; H, 3.49; N, 8.70%. PPF-3-Fe/Zn. Fe(III)TCPPCl (8.9 mg, 0.01mmol), zinc nitrate (6.0 mg, 0.02mmol), and 4,4′-bipyridine (6.0 mg, 0.04 mmol) were added to a mixture of DMF (1.33 mL), methanol (0.67 mL), and 1.0 M nitric acid in methanol (40.0 µL, 0.04 mmol). Heating conditions were the same as PPF-3-Mn/Zn. Yield: 77% based on porphyrin. Anal. Calcd. C68H40N8O8Zn2Fe · NO3 · 0.1H2O · 0.4DMF · 2.7MeOH: C, 59.01; H, 3.71; N, 9.00%. Found: C, 58.99; H, 3.71; N, 9.01%. PPF-3-Fe/Co. Fe(III)TCPPCl (8.7 mg, 0.01 mmol), cobalt nitrate (6.2 mg, 0.02 mmol), and 4,4′-bipyridine (6.3 mg, 0.04 mmol) were added to a mixture of DMF (1.33 mL), methanol (0.67 mL), and 1.0 M nitric acid in methanol (40.0 µL, 0.04 mmol). Heating conditions were the same as PPF-3-Mn/Zn. Yield: 60% based on porphyrin. Anal. Calcd. C68H40N8O8Zn2Fe · NO3 · 2.7H2O · 1.2DMF · 0.8MeOH: C, 58.17; H, 3.84; N, 9.56%. Found: C, 58.14; H, 3.85; N, 9.56%.

10.1021/cg801267m CCC: $40.75  2009 American Chemical Society Published on Web 02/20/2009

Heterometallic Frameworks from Paddle-Wheel Units

Crystal Growth & Design, Vol. 9, No. 4, 2009 1961

Table 1. Crystallographic Data for PPF-3 Series complex a

chemical formula formula weighta crystal system space group crystal color a (Å) b (Å) c (Å) V (Å3) Z Fcalc (g/cm3)a µ (mm-1)a R1, I > 2σ(I) wR2, I > 2σ(I) a

PPF-3-Mn/Zn

PPF-3-Mn/Co

PPF-3-Fe/Zn

PPF-3-Fe/Co

C68H40N9O11MnZn2 1344.77 tetragonal I4/mmm purple 16.6609(11) 16.6609(11) 25.688(2) 7130.6(9) 2 0.626 0.451 0.0811 0.2219

C68H40N9O11MnCo2 1331.89 tetragonal I4/mmm purple 16.6905(12) 16.6905(12) 25.466(4) 7094.3(13) 2 0.624 0.349 0.0967 0.2416

C68H40N9O11FeZn2 1345.68 tetragonal I4/mmm purple 16.6334(2) 16.6334(2) 25.0762(4) 6937.83(16) 2 0.644 0.477 0.0594 0.1806

C68H40N9O11FeCo2 1332.80 tetragonal I4/mmm purple 16.6367(16) 16.6367(16) 24.779(3) 6858.2(13) 2 0.645 0.375 0.0627 0.2021

Based on the formula without guest solvent molecules.

Figure 1. Schematic illustration of assembly of (a) metalloporphyrin ligands into (b) an infinite 2D grid using zinc or cobalt nitrates. The 2D layers are pillared by (c) 4,4′-bipyridine into either the (d) 3D AB type (PPF-3) frameworks or the (e) 3D AA type (PPF-5) framework series. The structure was simplified in the lower images to more clearly demonstrate the connectivity between the porphyrin octahedral metals (brown) and the square planar metals (green). PPF-5-Pt/Co. PtTCPP (10.1 mg, 0.01 mmol), cobalt nitrate (8.8 mg, 0.03 mmol), and 4,4′-bipyridine (3.1 mg, 0.02 mmol) were added to a mixture of N,N′-dimethylformamide (DEF, 1.5 mL), ethanol (0.5 mL), and 1.0 M nitric acid in ethanol (30.0 µL, 0.03 mmol). Heating conditions were the same as PPF-3-Mn/Zn. Yield: 29% based on porphyrin. Anal. Calcd. C58H32N6O8Co2Pt · 2.2H2O · 2.3DMF: C, 54.69; H, 4.08; N, 7.68%. Found: C, 57.69; H, 4.07; N, 7.66%.

PPF-5-Ni/Zn. NiTCPP (8.5 mg, 0.01 mmol), zinc nitrate (6.1 mg, 0.02 mmol), and 4,4′-bipyridine (6.4 mg, 0.04 mmol) were added to a mixture of DMF (1.33 mL), ethanol (0.67 mL), and 1.0 M nitric acid in ethanol (40.0 µL, 0.04 mmol). Heating conditions were the same as PPF-3-Mn/Zn. Yield: 86% based on porphyrin. Anal. Calcd. C58H32N6O8Zn2Ni · 2.3H2O · 1.2DMF: C, 58.74; H, 3.60; N, 8.01%. Found: C, 58.75; H, 3.53; N, 8.07%.

1962 Crystal Growth & Design, Vol. 9, No. 4, 2009

Barron et al.

Table 2. Crystallographic Data for PPF-5 Series complex a

chemical formula formula weighta crystal system space group crystal color a (Å) b (Å) c (Å) V (Å3) Z Fcalc (g/cm3)a µ (mm-1)a R1, I > 2σ(I) wR2, I > 2σ(I) a

PPF-5-Pt/Co

PPF-5-Ni/Zn

PPF-5-V/Zn

C58H32N6O8PtCo2 1253.85 tetragonal P4/mmm purple 16.7088(6) 16.7088(6) 13.9151(7) 3884.9(3) 1 0.539 1.130 0.0175 0.0432

C58H32N6O8NiZn2 1130.35 tetragonal P4/mmm purple 16.6544(4) 16.6544(4) 14.0525(7) 3897.7(2) 1 0.482 0.445 0.0308 0.0878

C58H32N6O9VZn2 1138.58 tetragonal P4/mmm purple 16.6901(4) 16.6901(4) 14.0567(7) 3915.6(2) 1 0.483 0.384 0.0358 0.0893

Based on the formula without guest solvent molecules.

PPF-5-V/Zn. V(IV)OTCPP (8.8 mg, 0.01 mmol), zinc nitrate (5.8 mg, 0.02 mmol), and 4,4′-bipyridine (6.0 mg, 0.04 mmol) were added to a mixture of DMF (1.33 mL), methanol (0.67 mL), and 1.0 M nitric acid in methanol (30.0 µL, 0.03 mmol). Heating conditions were the same as PPF-3-Mn/Zn. Yield: 50% based on porphyrin. Anal. Calcd. C58H32N6O9Zn2V · 2H2O · 2DMF · 0.2MeOH: C, 58.06; H, 3.86; N, 8.44%. Found: C, 58.06; H, 3.86; N, 8.42%.

Results and Discussion The structure assembly of PPFs can be visualized conceptually as a two-step process (Figure 1). First, the carboxyl arms of the metallated TCPPs are joined together by paddle-wheel M2(COO)4 SBUs, where M ) Zn, Co. This results in a twodimensional (2D) layer composed of a 1:1 ratio of porphyrins and paddle-wheel SBUs (Figure 1a). As with typical paddlewheel layers, the axial positions of the paddle-wheels are available for additional coordination.7-9 In this study, 4,4’-bipyridine (bpy) is used as the pillar molecule that connects the 2D layers. This pillaring extends along the crystallographic c direction and gives the structure its 3D connectivity. An atypical feature of the present paddlewheel layers is the existence of a second pillaring site. In our frameworks, the axial positions of the porphyrin metal centers, as well as the paddle-wheel axial positions, are available for the pillaring along the c direction. As a result of such axial coordinations, the layers can be pillared in multiple stacking arrangements.22 The two series reported here are assembled from two types of porphyrin linkers, resulting in AB and AA stacking types (Figure 1b,c). The AB structure type is a result of the bpy pillars connecting paddle-wheel SBUs to porphyrin metal centers. Each layer is shifted by (1/2, 1/2) relative to adjacent layers. This gives the layers an AB stacking pattern, as observed previously in the homometallic cobalt PPF-3.22 An alternative way to visualize this structure type is to analyze the connectivity of the paddlewheel and porphyrin nodes. The porphyrin node connects four paddle-wheel units equatorially via carboxyl groups, and two paddle-wheel units axially via the bpy pillar, leading to an octahedral geometry (Figure 2a). Similarly, each paddle-wheel SBU is connected to four porphyrin molecules equatorially, and to porphyrins axially via bpy (Figure 2b). The octahedral geometry is commonly found in inorganic SBUs,6 but is extremely rare in organic linkers.28 These two octahedral components form the NaCl or pcu topology (Figure 2c). The porphyrin metalloligand leads to the creation of the heterometallic NaCl type framework series: PPF-3-Mn/Zn, PPF-3-Mn/ Co, PPF-3-Fe/Zn, and PPF-3-Fe/Co (Figure 3). Because of the diversity in the PPF series, a more detailed naming convention is used. The structure type is represented by a number followed

Figure 2. Schematic illustration of NaCl-type topology observed in PPF-3 series. (a) Octahedral porphyrin node. (b) Octahedral paddlewheel node. (c) Resulting NaCl-type topology.

by the metal composition of the porphyrin ligand and the paddlewheel SBU. It is worth noting that all four PPF-3 structures are assembled with either Mn(III)TCPPCl or Fe(III)TCPPCl, where the axial ligand is chloride. After self-assembly, the bpy axial ligand replaces the chloride ligand. The porphyrin metal centers retain the M3+ oxidation state as indicated by the nitrate counterions present in the single crystal refinement. The AA structure type in PPF-5-Pt/Co, PPF-5-Ni/Zn, and PPF-5-V/Zn differs from the AB type because it consists solely of paddle-wheel to paddle-wheel axial connections using bpy pillars. This results in no shifting in the 2D layers, thus leading to an AA stacking pattern, as first reported in PPF-5 (Figure 1c).22 To better understand the structure connectivity, we need to again consider the connectivity around the individual nodes. The porphyrin nodes are connected solely to four paddle-wheels equatorially via carboxyl groups (Figure 4a). The paddle-wheel nodes are connected to four porphyrin molecules equatorially and two paddle-wheel nodes axially via bpy (Figure 4b). These square planar and octahedral nodes form a (4,6) net, known as fsc net (Figure 4c).29 This fsc net is theoretically predicted by O’Keeffe, and is only recently observed by Bi et al.29 Most pillared paddle-wheel frameworks show a similar AA stacking pattern, but adopt pcu topology.7-9 One of the distinct advantages in the PPFs series is the ability to change both metal sites independently with minimal framework variation. In Table 1, the crystallographic data for the AB type structures show only minor variations in the c axis among the PPF-3 series, as can be seen in PPF-3-Mn/Zn, PPF-3-Mn/ Co, PPF-3-Fe/Zn, and PPF-3-Fe/Co. The difference in the c axis mainly results from varying metal-to-metal distances in the

Heterometallic Frameworks from Paddle-Wheel Units

Figure 3. NaCl-type topology observed in PPF-3 series, PPF-3-Mn/ Zn, PPF-3-Mn/Co, PPF-3-Fe/Zn, and PPF-3-Fe/Co. This approach allows for the synthesis of topologically identical frameworks with various combinations of metals.

paddle-wheel: the distance is ∼0.3 Å greater for a zinc paddlewheel than for a cobalt paddle-wheel. The bpy-to-porphyrin metal coordination distance also shows a slight variation, where Mn case is slightly longer than Fe case. Consequently, PPF-3Mn/Zn has the largest c value, and PPF-3-Fe/Co has the smallest; the overall difference is still less than 1.0 Å. The crystallographic data for the PPF-5 AA structures (Table 2) show a smaller deviation within the series, as 3D connectivity is not associated with the porphyrin metal centers, only the paddlewheels. Both AA and AB structure types have demonstrated the ability to incorporate various metal centers at each node. To the best of our knowledge, these structures are unprecedented in heterobimetallic frameworks in which two metal nodes can be changed independently, without affecting the final topology of the framework. A number of metalloligands have been used to create heterometallic frameworks.11-20 The porphyrin metalloligands have several distinct advantages over other metalloligands. Most important is the number of metal centers that can be incorporated into the metalloligand; indeed, over 50 metals centers have been reported in the porphyrin ligand.21 Second, the porphyrin metalloligand itself has a wide range of physical properties that can enhance the functionality of frameworks, as exemplified by the PIZA series reported by Suslick and co-workers,30 which demonstrates interesting sorption properties. Finally, the porphyrin ligand has a range of geometries that are not easily accessible to other metalloligands.18c The PPFs reported here are assembled with a tetratopic ligand TCPP with approximate D4h symmetry. This symmetry has been used to obtain frameworks with highly symmetrical topologies such as nbo, and cds.31 Previously we reported a porphyrinic framework with

Crystal Growth & Design, Vol. 9, No. 4, 2009 1963

Figure 4. Schematic illustration of fsc topology observed in the PPF-5 series, PPF-5-Pt/Co, PPF-5-Ni/Zn, and PPF-5-V/Zn. (a) Square planar porphyrin node. (b) Octahedral paddle-wheel node. (c) Resulting fsc topology.

CdI2 topology, PPF-6, assembled from porphyrin linker 5,10di(4-carboxyphenyl)-15,20-diphenylporphyrin with approximate C2V symmetry.32 While numerous heterometallic MOFs are known, a relatively small number of MOFs are assembled with well-defined SBUs.33 The use of an SBU has been critical in the development of functional homometallic MOFs.6-9 The paddle-wheel SBU is used in the PPF series, enabling the formation of regular 3D structures. By using a paddle-wheel SBU, we demonstrate the ability to consistently produce the characteristic 2D layered topology with both zinc and cobalt metal sources regardless of the metal used in the metalloligand. Other metals with the potential for use in forming paddle-wheel SBUs include V, Nb, Cr, Mo, W, Mn, Tc, Re, Ru, Os, Rh, Ir, Pd, and Pt.34 The choice of paddle-wheel SBU for framework assembly, together with the choice of metalloporphyrin, allows a combinatorial synthesis of heterometallic PPFs with potentially useful properties.30 Conclusions We reported a detailed investigation of the assembly of heterometallic frameworks using porphyrin metalloligands. The paddle-wheel porphyrin frameworks are ideal for incorporating a wide range of metals. By incorporating the versatile paddlewheel SBU, the PPFs have not one but two sites for metal tunability. Although the metal nodes are changed throughout the series, the framework topology remains. The resulting 3D PPFs have the well-known NaCl topology (AB type) and a rare fsc topology (AA type). We reported seven new heterometallic PPFs and demonstrated that the PPF series is an interesting platform for the creation of a new generation of heterometallic MOFs. A combination of metalloporphyrins and paddle-wheel SBUs provides MOF chemists with unprecedented control over the metal composition of frameworks.

1964 Crystal Growth & Design, Vol. 9, No. 4, 2009

Acknowledgment. The authors gratefully acknowledge financial support from Nebraska EPSCoR.

Barron et al.

(10)

Supporting Information Available: XRD powder patterns of bulk samples for the PPF-3 and -5 series. X-ray crystallographic information files (CIFs) are available for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References (1) For review on MOFs, see: (a) Fe´rey, G. Chem. Soc. ReV. 2008, 37, 191. (b) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705. (2) (a) Dincaˇ, M.; Long, J. R. Angew. Chem., Int. Ed. 2008, 47, 6766. (b) Collins, D. J.; Zhou, H.-C. J. Mater. Chem. 2007, 17, 3154. (c) Rowsell, J. L. C.; Yaghi, O. M. Angew. Chem., Int. Ed. 2005, 44, 4670. (3) (a) Cheetham, A. K.; Rao, C. N. R.; Feller, R. K. Chem. Commun. 2006, 4780. (b) Lin, W. J. Solid State Chem. 2005, 178, 2486. (c) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982. (d) Wu, C.-D.; Hu, A.; Zhang, L.; Lin, W. J. Am. Chem. Soc. 2005, 127, 8940. (e) Cho, S.-H.; Ma, B.; Nguyen, S. T.; Hupp, J. T.; Albrecht-Schmitt, T. E. Chem. Commun. 2006, 2563. (f) Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J. Am. Chem. Soc. 1994, 116, 1151. (4) Ockwig, N. W.; Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2005, 38, 176. (5) Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M. Phys. Chem. Chem. Phys. 2007, 9, 1034. (6) For examples of Zn4O SBU, see: (a) ref 1b. (b) ref 2c. (c) Rowsell, J.; Yaghi, O. M. Micro and Mesoporous Mater. 2004, 73, 3. For examples of M3O SBU, see: (d) ref 1a. (e) Surble´, S.; Serre, C.; MellotDraznieks, C.; Millange, F.; Fe´rey, G. Chem. Commun. 2006, 284. (f) Liu, Y.; Eubank, J. F.; Cairns, A. J.; Eckert, J.; Kravtsov, V. C.; Luebke, R.; Eddaoudi, M. Angew. Chem., Int. Ed. 2007, 46, 3278. (g) Ma, S.; Wang, X.-S.; Manis, E. S.; Collier, C. D.; Zhou, H.-C. Inorg. Chem. 2004, 46, 3432. (h) Barthelet, K.; Riou, D.; Fe´rey, G. Chem. Commun. 2002, 1492. (7) For pillared M2(COO)4 frameworks, see refs 7-9. (a) Chun, H.; Dybtsev, D. N.; Kim, H.; Kim, K. Chem. Eur. J. 2005, 11, 3521. (b) Dybtsev, D. N.; Chun, H.; Kim, K. Angew. Chem., Int. Ed. 2004, 43, 5033. (c) Kitaura, R.; Iwahori, F.; Matsuda, R.; Kitagawa, S.; Kubota, Y.; Takata, M.; Kobayashi, T. C. Inorg. Chem. 2004, 43, 6522. (d) Liu, B.; Xu, L. Inorg. Chem. Commun. 2006, 9, 364. (e) Dybtsev, D. N.; Yutkin, M. P.; Peresypkina, E. V.; Virovets, A. V.; Serre, C.; Fe´rey, G.; Fedin, V. P. Inorg. Chem. 2007, 46, 6843. (f) Chen, B.; Zhao, X.; Putkham, A.; Hong, K.; Lobkovsky, E. B.; Hurtado, E. J.; Fletcher, A. J.; Thomas, K. M. J. Am. Chem. Soc. 2008, 130, 6411. (g) Chen, B.; Ji, Y.; Xue, M.; Fronczek, F. R.; Hurtado, E. J.; Mondal, J. U.; Liang, C.; Dai, S. Inorg. Chem. 2008, 47, 5543. (h) Tanaka, D.; Horike, S.; Kitagawa, S.; Ohba, M.; Hasegawa, M.; Ozawa, Y.; Toriumi, K. Chem. Commun. 2007, 3142. (i) Rather, B.; Zaworotko, M. J. Chem. Commun. 2003, 830. (j) Yuen, T.; Danilovic, D.; Li, K.; Li, J. J. Appl. Phys. 2008, 103, 07B725. (k) Seki, K.; Mori, W. J. Phys. Chem. B 2002, 106, 1380. (l) Seki, K.; Takamizawa, S.; Mori, W. Chem. Lett. 2001, 332. (8) (a) Chen, B.; Ma, S.; Hurtado, E. J.; Lobkovsky, E. B.; Liang, C.; Zhu, H.; Dai, S. Inorg. Chem. 2007, 46, 8705. (b) Ma, B.-Q.; Mulfort, K. L.; Hupp, J. T. Inorg. Chem. 2005, 44, 4912. (c) Chen, B.; Ma, S.; Zapata, F.; Fronczek, F. R.; Lobkovsky, E. B.; Zhou, H.-C. Inorg. Chem. 2007, 46, 1233. (d) Dalai, S.; Mukherjee, P. S.; Zangrando, E.; Lloret, F.; Chaudhuri, N. R. J. Chem. Soc., Dalton Trans. 2002, 822. (e) Chen, B.; Ma, S.; Zapata, F.; Lobkovsky, E. B.; Yang, J. Inorg. Chem. 2006, 45, 5718. (f) Chen, B.; Fronczek, F. R.; Courtney, B. H.; Zapata, F. Cryst. Growth Des. 2006, 6, 825. (g) Pichon, A.; Fierro, C. M.; Nieuwenhuyzen, M.; James, S. L. CrystEngComm 2007, 9, 449. (9) (a) Wang, R.; Han, L.; Jiang, F.; Zhou, Y.; Yuan, D.; Hong, M. Cryst. Growth Des. 2005, 5, 129. (b) Chen, B.; Ma, S.; Hurtado, E. J.; Lobkovsky, E. B.; Zhou, H.-C. Inorg. Chem. 2007, 46, 8490. (c) Choi, E.-Y.; Park, K.; Yang, C.-H.; Kim, H.; Son, J.-H.; Lee, S. W.; Lee, Y. H.; Min, D.; Kwon, Y.-U. Chem. Eur. J. 2004, 10, 5535. (d) Lee, S. W.; Kim, H. J.; Lee, Y. K.; Park, K.; Son, J. H.; Kwon, Y.-U. Inorg. Chim. Acta 2003, 353, 151. (e) Hsu, L.-P.; Wu, J.-Y.; Lu, K.L. J. Inorg. Organomet. Polym. Mater. 2007, 17, 259. (f) Xue, M.; Ma, S.; Jin, Z.; Schaffino, R. M.; Zhu, G.-S.; Lobkovsky, E. B.; Qiu, S.-L.; Chen, B. Inorg. Chem. 2008, 47, 6825. (g) Fu, Z.; Yi, J.; Chen,

(11)

(12)

(13)

(14)

(15)

(16)

(17) (18)

(19)

(20)

(21)

Y.; Liao, S.; Guo, N.; Dai, J.; Yang, G.; Lian, Y.; Wu, X. Eur. J. Inorg. Chem. 2008, 628. (a) Kitagawa, S.; Noro, S.-I.; Nakamura, T. Chem. Commun. 2006, 701. (b) Kitagawa, S.; Kitaura, R.; Noro, S.-I. Angew. Chem., Int. Ed. 2004, 43, 2334. For other notable approaches to create heterometallic MOFs, see: (c) Caskey, S. R.; Matzger, A. J. Inorg. Chem. 2008, 47, 7942. (d) Wang, Y.; Bredenko¨tter, B.; Rieger, B.; Volkmer, D. Dalton Trans. 2007, 689. (e) Ren, P.; Shi, W.; Cheng, P. Cryst. Growth Des. 2008, 8, 1097. (a) Noro, S.-I.; Miyasaka, H.; Kitagawa, S.; Wada, T.; Okubo, T.; Yamashita, M.; Mitani, T. Inorg. Chem. 2005, 44, 133. (b) Noro, S.I.; Kitagawa, S.; Yamashita, M.; Wada, T. Chem. Commun. 2002, 222. (c) Noro, S.-I.; Kitagawa, S.; Yamashita, M.; Wada, T. CrystEngComm 2002, 4, 162. (d) Chen, C.-L.; Goforth, A. M.; Smith, M. D.; Su, C.-Y.; zur Loye, H.-C. Angew. Chem., Int. Ed. 2005, 44, 6673. (e) Ciurtin, D. M.; Smith, M. D.; zur Loye, H.-C. Dalton Trans. 2003, 1245. (f) Chapman, C. T.; Ciurtin, D. M.; Smith, M. D.; zur Loye, H.-C. Solid State Sci. 2002, 1187. (g) Ciurtin, D. M.; Smith, M. D.; zur Loye, H.-C. Chem. Commun. 2002, 74. (h) Ciurtin, D. M.; Smith, M. D.; zur Loye, H.-C. Solid State Sci. 2002, 461. (i) Dong, Y.-B.; Smith, M. D.; zur Loye, H.-C. Angew. Chem., Int. Ed. 2000, 39, 4271. (j) Dong, Y.-B.; Smith, M. D.; zur Loye, H.-C. Solid State Chem. 2000, 2, 335. (k) Dong, Y.-B.; Smith, M. D.; zur Loye, H.-C. Inorg. Chem. 2000, 39, 1943. (l) Biswas, C.; Mukherjee, P.; Drew, M. G. B.; Go´mez-Garcı´a, C. J.; Clemente-Juan, J. M.; Ghosh, A. Inorg. Chem. 2007, 46, 10771. (a) Zhang, Y.; Chen, B.; Fronczek, F. R.; Maverick, A. W. Inorg. Chem. 2008, 47, 4433. (b) Chen, B.; Fronczek, F. R.; Maverick, A. W. Inorg. Chem. 2004, 43, 8209. (c) Vreshch, V. D.; Lysenko, A. B.; Chernega, A. N.; Howard, J. A. K.; Krautscheid, H.; Sieler, J.; Domasevitch, K. V. Dalton Trans. 2004, 2899. (d) Vreshch, V. D.; Chernega, A. N.; Howard, J. A. K.; Sieler, J.; Domasevitch, K. V. Dalton Trans. 2003, 1707. (a) Stork, J. R.; Thoi, V. S.; Cohen, S. M. Inorg. Chem. 2007, 46, 11213. (b) Garibay, S. J.; Stork, J. R.; Wang, Z.; Cohen, S. M.; Telfer, S. Chem. Commun. 2007, 4881. (c) Halper, S. R.; Do, L.; Stork, J. R.; Cohen, S. M. J. Am. Chem. Soc. 2006, 128, 15255. (d) Halper, S. R.; Cohen, S. M. Inorg. Chem. 2005, 44, 486. (e) Murphy, D. L.; Malachowski, M. R.; Campana, C. F.; Cohen, S. M. Chem. Commun. 2005, 5506. (a) Ref 3e. (b) ref 7f. (c) Kitaura, R.; Onoyama, G.; Sakamoto, H.; Matsuda, R.; Noro, S.-I.; Kitagawa, S. Angew. Chem., Int. Ed. 2004, 43, 2684. (d) Cle´rac, R.; Miyasaka, H.; Yamashita, M.; Coulon, C. J. Am. Chem. Soc. 2002, 124, 12837. (a) Szeto, K. C.; Kongshaug, K. O.; Jakobsen, S.; Tilset, M.; Lilleruf, K. P. Dalton Trans. 2008, 2054. (b) Szeto, K. C.; Prestipino, C.; Lamberti, C.; Zecchina, A.; Bordiga, S.; Bjørgen, M.; Tilset, M.; Lillerud, K. P. Chem. Mater. 2007, 19, 211. (c) Szeto, K. C.; Lillerud, K. P.; Tilset, M.; Bjørgen, M.; Prestipino, C.; Zecchina, A.; Lamberti, C.; Bordiga, S. J. Phys. Chem. B. 2006, 110, 21509. (a) Burrows, A. D.; Mahon, M. M.; Wong, C. T. F. CrystEngComm 2008, 10, 487. (b) Hafizoviæ, J.; Krivakapiæ, A.; Szeto, K. C.; Jakobsen, S.; Lillerud, K. P.; Olsbye, U.; Tilset, M. Cryst. Growth Des. 2007, 7, 2302. (a) Horikoshi, R.; Mochida, T.; Moriyama, H. Inorg. Chem. 2002, 41, 3017. (b) Dong, G.; Hong, M.; Chun-ying, D.; Feng, L.; Qing-jin, M. Dalton Trans. 2002, 2593. (a) Shmilovits, M.; Vinodu, M.; Goldberg, I. Cryst. Growth Des. 2004, 4, 633. (b) Shmilovits, M.; Diskin-Posner, Y.; Vinodu, M.; Goldberg, I. Cryst. Growth Des. 2003, 3, 855. For reviews on porphyrin frameworks, see: (c) Goldberg, I. CrystEngComm 2008, 10, 637. (d) Goldberg, I. Chem. Commun. 2005, 1243. (e) Smithenry, D. W.; Suslick, K. S. J. Porphyrins Phthalocyanines 2005, 8, 182. (a) Ref 3d. (b) Youm, K.-T.; Kim, M. G.; Ko, J.; Jun, M.-J. Angew. Chem., Int. Ed. 2006, 45, 4003. (c) Youm, K.-T.; Huh, S.; Park, Y. J.; Park, S.; Choi, M.-G.; Jun, M.-J. Chem. Commun. 2004, 2384. (d) Ren, Y.-P.; Long, L.-S.; Mao, B.-W.; Yuan, Y.-Z.; Huang, R.-B.; Zheng, L.-S. Angew. Chem., Int. Ed. 2003, 42, 532. (e) Carlucci, L.; Ciani, G.; Porta, F.; Proserpio, D. M.; Santagostine, L. Angew. Chem., Int. Ed. 2002, 41, 1907. (f) Kamiyama, A.; Noguchi, T.; Kajiwara, T.; Ito, T. Angew. Chem., Int. Ed. 2000, 39, 3130. For a review on heterometallic magnetic materials composed of metalloligand building blocks, see: Pardo, E.; Ruiz-Garcı´a, R.; Cano, J.; Ottenwaelder, X.; Lescoue¨zec, R.; Journaux, Y.; Francesc, L.; Julve, M. Dalton Trans. 2008, 2780. Sanders, J. K. M.; Bampos, N.; Cyde-Watson, Z.; Darling, S. L.; Hawley, J. C.; Kim, H.-J.; Mak, C. C.; Webb, S. J. In Porphyrin Handbook; Kadish, K., Smith, K., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 3, p 1.

Heterometallic Frameworks from Paddle-Wheel Units (22) Choi, E.-Y.; Barron, P. M.; Novotny, R. W.; Son, H.-T.; Hu, C.; Choe, W. Inorg. Chem. 2009 48, 426-428. (23) SMART (Version 6.532), Program for Bruker CCD X-ray Diffractometer Control, Bruker AXS Inc.: Madison, WI, 2005. (24) SAINT+ (Version 6.45), Program for Reduction of Data Collected on Bruker CCD Area Detector Diffractometer; Bruker AXS Inc.: Madison, WI, 2003. (25) Sheldrick, G. M. SADABS, Version 2.10, Program for Empirical Absorption Correction of Area Detector Data; University of Go¨ttingen, 2007. (26) Sheldrick, G. M. SHELXTL, Version 6.14, Program Package for Structure Solution and Refinement; Bruker Analytical X-ray Systems, Inc., Madison, WI, 2003. (27) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7. (28) For an example of another octahedral organic linker, see Robson, R. J. Chem. Soc., Dalton Trans. 2000, 3735. (29) For an example of fsc net, see Bi, M.; Li, G.; Hua, J.; Liu, Y.; Liu, X.; Hu, Y.; Shi, Z.; Feng, S. Cryst. Growth Des. 2007, 7, 2066.

Crystal Growth & Design, Vol. 9, No. 4, 2009 1965 (30) For porphyrin applications, see: (a) Chou, J.-H.; Kosal, M. E.; Nalwa, H. S.; Rakow, N. A.; Suslick, K. S. In Porphyrin Handbook; Kadish, K., Smith, K., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 6, p 43. For PIZA structures, see: (b) Kosal, M. E.; Chou, J.-H.; Wilson, S. R.; Suslick, K. S. Nat. Mater. 2002, 1, 118. (c) Smithenry, D. W.; Wilson, S. R.; Suslick, K. S. Inorg. Chem. 2003, 42, 7719. ¨ hrstro¨m, L.; Larsson, K. In Molecule-Based Materials; Elsevier (31) (a) O B.V.: Amsterdam, The Netherlands, 2005. (b) Krupitsky, H.; Stein, Z.; Goldberg, I.; Strouse, C. E. J. Inclusion Phenom. Mol. Recognit. Chem. 1994, 18, 177. (c) Lin, K. J. Angew. Chem., Int. Ed. 1999, 38, 2730. (d) Zheng, N.; Zhang, J.; Bu, X.; Feng, P. Cryst. Growth Des. 2007, 7, 2576. (32) Choi, E.-Y.; Barron, P. M.; Novotny, R. N.; Hu, C.; Kwon, Y.-U.; Choe, W. CrystEngComm 2008, 824. (33) (a) Ref 3e. (b) ref 7g. (c) ref 11f. (d) ref 30b. (e) ref 30c. (34) Cotton, F. A.; Lin, C.; Murillo, C. A. Acc. Chem. Res. 2001, 34, 759.

CG801267M