Identification of Red Madder and Insect Dyes by Thin-Layer

Red natural anthraquinone dyes on ancient textile materials can be readily identified by thin-layer chromatography (TLC) if they belong to the class o...
0 downloads 0 Views 3MB Size
Chapter 13

Identification of Red Madder and Insect Dyes by Thin-Layer Chromatography 1

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

Helmut Schweppe

BASF Aktiengesellschaft, D-6700 Ludwigshafen, Federal Republic of Germany

Red natural anthraquinone dyes on ancient textile materials can be readily identified by thin-layer chromatography (TLC) if they belong to the class of madder dyes. The method also shows which type of dye plant from the family Rubiaceae has been used for dyeing (Rubia tinctorum L . , R. peregrina L ., R. cordifolia L . , R. akane, various Galium spp., Relbunium spp., Morinda spp., Oldenlandia spp., Coprosma spp., or Ventilago spp. (Rhamnaceae) ). Any changes in the composition of the dyes during its extraction from the dyed material, e.g. the transition from pseudopurpurin to purpurin, can be preven­ ted by suitable preparation of the sample before TLC. The red insect dyes from Dactylopius coccus COSTA (Ame­ rican cochineal), Kermococcus vermilio PLANCHON (kermes), and Kerria lacca KERR (lac dye) can also be readily distinguished by thin-layer chromatographic comparison. Porphyrophora polonica L. (Polish cochineal) contains small amounts of the kermes dyes kermesic acid and flavokermesic acid besides the cochineal dye carminic acid. These secon­ dary components cannot be identified unless they have previous­ ly been concentrated. Porphyrophora hameli BRANDT (Armenian cochineal) contains nearly exclusively carminic acid. It has been reported that high-performance liquid chromatography (HPLC) has also identi­ fied a trace of kermesic acid, but TLC has not provided any clear proof of the presence of this secondary component in Ar­ menian cochineal, even after previous concentration. B e s i d e s i n d i g o and P h o e n i c i a n o r T y r i a n p u r p l e , t h e r e d madder and i n s e c t dyes were o f p a r t i c u l a r i m p o r t a n c e f o r t h e d y e i n g o f t e x t i l e m a t e r i a l s i n e a r l i e r c e n t u r i e s . These dyes were used to produce the highly p r i z e d r e d and v i o l e t d y e i n g s w i t h o u t s t a n d i n g f a s t n e s s t o l i g h t and errent address: Paul-Klee-Strasse 11, D-6710 Frankenthal, Federal Republic of Germany 0097-*156/89Λ)41Ο-0188$9.00Λ) e 1989 American Chemical Society

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

13. SCHWEPPE

Red Madder and Insect Dyes

189

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

w a s h i n g . Owing t o t h e i r good l i g h t f a s t n e s s , t h e s e dyed shades have remained a l m o s t unchanged t h r o u g h t h e c e n t u r i e s , T h e r e a r e s e v e r a l v e r y o l d t e x t i l e o b j e c t s t o p r o v e t h i s , f o r example t h e P a z y r y k c a r p e t , t h e o l d e s t k n o t t e d c a r p e t i n t h e w o r l d ( 1 ) , many pre-Columbian P e r u v i a n (2,3,3a) and C o p t i c t e x t i l e s (4) t h a t a r e s t i l l i n good c o n d i t i o n , and t h e S i c i l i a n c o r o n a t i o n robe o f t h e H o h e n s t a u f e n Emperors ( 2 ) . Many d y e i n g s produced w i t h o t h e r n a t u r a l dyes have f a r i n f e r i o r l i g h t f a s t n e s s , and many o f them have f a d e d o r changed i n shade. A good example i s t h e famous " P o l i s h c a r p e t s " ( 5 ) , whose s i l k p i l e has been dyed p a r t l y w i t h s a f f l o w e r carmine ( C . I . N a t u r a l Red 26) * , w h i c h h a s poor l i g h t f a s t n e s s . When we remove t h e dyes from s u c h d y e i n g s w i t h poor l i g h t f a s t n e s s , we o b t a i n e x t r a c t s t h a t c o n t a i n p h o t o c h e m i c a l d e g r a d a t i o n p r o d u c t s o f t h e dyes a s w e l l a s t h e dyes thems e l v e s . The d e g r a d a t i o n p r o d u c t s sometimes produce a d d i t i o n a l s p o t s on t h i n - l a y e r chromatograms and a d d i t i o n a l peaks on t h e chromatograms i n h i g h - p e r f o r m a n c e l i q u i d chromatography. T h i s may c a u s e t r o u b l e i n e v a l u a t i n g t h e chromatograms. When t h e h i s t o r i c t e x t i l e m a t e r i a l t o be i n v e s t i g a t e d c o n t a i n s a r e d t h a t h a s h a r d l y f a d e d , we s h o u l d s t a r t by t e s t i n g t h i s r e d d y e i n g , because t h i s i s t h e s i m p l e s t and q u i c k e s t way t o o b t a i n a r e s u l t . I n t h e f i r s t p l a c e , we need a s m a l l e r sample f o r t h e i d e n t i f i c a t i o n o f r e d a n t h r a q u i n o n e dyes t h a n f o r i d e n t i f y i n g y e l l o w f l a v o n e d y e s , and i n a d d i t i o n , i t i s t h e n u s u a l l y p o s s i b l e t o i d e n t i f y t h e d y e r ' s p l a n t o r dye i n s e c t s t h a t have been used f o r t h e r e d shade. I n c o n t r a s t , dyer's p l a n t s belonging t o the hydroxyflavone c l a s s o f t e n c o n t a i n t h e same main components, so t h a t i t i s n o t p o s s i b l e t o i d e n t i f y t h e i n d i v i d u a l p l a n t t h a t h a s been u s e d . F o r i n s t a n c e , t h e h y d r o x y f l a v o n e s q u e r c e t i n ( C . I . 75670) and l u t e o l i n ( C . I . 75590) a r e c o n t a i n e d i n many d y e r ' s p l a n t s a s t h e main component o r t h e s o l e dye. S i g n i f i c a n t p r o g r e s s has r e c e n t l y been made i n t h e i d e n t i f i c a t i o n o f r e d madder and i n s e c t dyes on h i s t o r i c t e x t i l e m a t e r i a l s ( 2 , 7 , 8 , 9 ) . As t h e most o f t h e s e n a t u r a l dyes a r e m i x t u r e s , c h r o m a t o g r a p h i c methods s u c h a s T L C and HPLC a r e t h e p r e f e r r e d t e c h n i q u e s . I t may have been t h e e x h a u s t i v e s t u d y by Donkin (10) on i n s e c t dyes t h a t prompted some e x p e r t s t o r e t u r n t o t h e problem o f d i s t i n g u i s h i n g between i n s e c t d y e s . I n t h e l i g h t o f t h e r e s u l t s o b t a i n e d by D o n k i n and t h e d a t a p r e s e n t e d by T a y l o r (8) on the r e v i s e d z o o l o g i c a l names f o r t h e dye i n s e c t s , we must now d i s t i n g u i s h between t h e f o l l o w i n g f i v e dye i n s e c t s t h a t were used i n t h e p a s t f o r d y e i n g t e x t i l e materials : D a c t y l o p i u s c o c c u s COSTA, w h i c h produces American c o c h i n e a l ; Kermococcus v e r m i l i o PLANCHON, which produces kermes; P o r p h y r o p h o r a p o l o n i c a L., which p r o d u c e s P o l i s h c o c h i n e a l ; P o r p h y r o p h o r a h a m e l i BRANDT," which produces Armenian c o c h i n e a l ; K e r r i a l a c c a KERR, w h i c h p r o d u c e s l a c dye ( 8 , 1 1 ) .

I n t h e " C o l o u r Index" ( C . I . ) , a m u l t i p l e - v o l u m e , E n g l i s h r e f e r e n c e work ( 6 ) , t h e names, c o m m e r c i a l d e n o m i n a t i o n s , c o n s t i t u t i o n s , and d y e i n g p r o p e r t i e s o f s y n t h e t i c and n a t u r a l dyes a r e l i s t e d . E a c h dye has a g e n e r i c name, and, i f t h e c o n s t i t u t i o n i s known, a c o n s t i t u t i o n number.

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

190

HISTORIC TEXTILE AND PAPER MATERIALS Π

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

Of t h e s e n a t u r a l dyes, c o c h i n e a l and l a c d y e * a r e the o n l y p r o d u c t s t h a t a r e a v a i l a b l e i n t h e market. I t i s v e r y d i f f i c u l t t o o b t a i n samples o f the o t h e r t h r e e dye i n s e c t s . The s e p a r a t i o n o f i n s e c t dyes and madder dyes by HPLC i s d i s ­ c u s s e d e x h a u s t i v e l y by Wouters ( 7 ) . V a r i o u s o t h e r l a b o r a t o r i e s ( 8 , 12-14) a l s o use t h i s method f o r s e p a r a t i n g n a t u r a l dyes. T h e r e a r e f a r more p u b l i c a t i o n s , however, on the use o f TLC f o r s e p a r a t i n g n a t u r a l dyes, i n c l u d i n g those b e l o n g i n g t o the c l a s s of hydroxyant h r a q u i n o n e s (4, 8, 9, 12-31). A c o m p a r i s o n o f t h e two c h r o m a t o g r a p h i c methods shows t h a t t h e y have t h e f o l l o w i n g a d v a n t a g e s and disadvantages: HPLC has o u t s t a n d i n g s e p a r a t i n g e f f i c i e n c y ; the r e t e n t i o n t i m e s (com­ p a r a b l e w i t h t h e Rf v a l u e s i n TLC) a r e w e l l r e p r o d u c i b l e , and o n l y v e r y s m a l l amounts o f m a t e r i a l a r e r e q u i r e d f o r s e p a r a t i o n ; t h e UV d e t e c t o r i s h i g h l y s e n s i t i v e and i d e n t i f i e s s e c o n d a r y components even i n v e r y low c o n c e n t r a t i o n s . HPLC a l s o p r o v i d e s an a p p r o x i m a t e s u r v e y o f t h e q u a n t i t a t i v e c o m p o s i t i o n o f the sample t e s t e d . A s i g n i f i c a n t d i s a d v a n t a g e o f HPLC, as compared w i t h TLC, i s t h e method o f i d e n t i ­ f i c a t i o n by means o f the " b l i n d " UV d e t e c t o r , w h i c h r e c o r d s t h e com­ ponents o f a m i x t u r e on t h e chromatogram i n t h e f o r m o f " p e a k s " d i f ­ f e r i n g i n h e i g h t m e r e l y a c c o r d i n g t o t h e amount o f m a t e r i a l p r e s e n t . I n c o n t r a s t , TLC o f dyes o f f e r s v a r i o u s methods o f i d e n t i f y i n g t h e components o f a m i x t u r e one a f t e r t h e o t h e r . F i r s t o f a l l , we can compare t h e i n h e r e n t c o l o r s o f the dye s p o t s , and t h e n t h e f l u o r e s ­ c e n t c o l o r s i n UV l i g h t , and f i n a l l y , we can produce the u r a n y l , a l u ­ minum, z i r c o n i u m , magnesium o r c a l c i u m l a k e s by d i p p i n g the c h r o m a t o ­ gram i n i n o r g a n i c s a l t s o l u t i o n s o f t h e s e s u b s t a n c e s . The u r a n y l l a k e s o f h y d r o x y a n t h r a q u i n o n e s show t h e l a r g e s t d i f f e r e n c e s i n t h e i r shades ( 2 ) . I n s e p a r a t i n g e f f i c i e n c y , r e p r o d u c i b i l i t y o f the r e t e n ­ t i o n t i m e s o r Rf v a l u e s , and the i d e n t i f i c a t i o n l i m i t f o r s e c o n d a r y components, TLC i s i n f e r i o r t o HPLC. I n f u t u r e , HPLC w i l l be used on an i n c r e a s i n g s c a l e f o r s e p a ­ r a t i n g complicated mixtures of n a t u r a l dyes. I t i s p o s s i b l e t h a t a c o m b i n a t i o n o f HPLC w i t h FTIR s p e c t r o s c o p y w i l l h e l p t o overcome the " b l i n d n e s s " o f t h e UV d e t e c t o r . TLC w i l l c o n t i n u e t o m a i n t a i n i t s p o s i t i o n f o r the s e p a r a t i o n of hydroxyanthraquinones, p a r t i c u l a r l y i n the s m a l l e r l a b o r a t o r i e s t h a t c a n n o t a f f o r d the e x p e n s i v e equipment f o r HPLC. DYES IN DYER'S PLANTS OF

THE

TYPE OF

MADDER

I n r e c e n t d e c a d e s , numerous d y e r ' s p l a n t s o f t h e t y p e o f madder ( R u b i a t i n c t o r u m L.) have a g a i n been i n v e s t i g a t e d f o r t h e i r c o n s t i t u ­ e n t s . W i t h t h e a i d o f modern methods o f i n s t r u m e n t a l a n a l y s i s , no l e s s t h a n 23 d i f f e r e n t components b e l o n g i n g t o t h e c l a s s o f h y d r o x y ­ a n t h r a q u i n o n e s have been i d e n t i f i e d i n madder r o o t s ( 3 2 - 3 4 ) , f o r i n ­ s t a n c e , b e s i d e s f i v e h y d r o x y a n t h r a q u i n o n e g l y c o s i d e s , o f which r u b i a n i n ( C o n s t i t u t i o n V I I I i n t a b l e I ) (35) i s o f p a r t i c u l a r i n t e r e s t ,

S u p p l i e r : Mann ( N a t u r a l D y e s ) , Im D o r n g a r t e n 6, F e d e r a l R e p u b l i c o f Germany; T e l . 06351/6869

D-6719 L a u t e r s h e i m ,

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

13.

SCHWEPPE

191

Red Madder and Insect Dyes

because i t i s a hydrolysis-stable C-glycoside, a constituent that has h i t h e r t o only been found i n the red i n s e c t dye carminic acid ( c o n s t i t u t i o n XXVII i n table 4 ) . The c o n s t i t u t i o n s of the madder dyes are l i s t e d i n table I . Table I . Constitutions of the madder dyes No. Name

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

I II III IV V

VI

C.I.Constitut i o n Number (6)

Alizarin

75330

1,2-Dihydroxyanthraquinone

Purpuroxanthin

75340

1,3-Dihydroxyanthraquinone

Rubiadin

75350

1,3-Dihydroxy-2-methylanthraquinone

Morindanigrin

75360

1,3-Dihydroxy-6-methylanthraquinone

Lucidin

1,3-Dihydroxy-2-hydroxymethylanthraquinone

Damnacanthal

1,3-Dihydroxyanthraquinonealdehyde

VII

Munjistin

VIII

Rubianin

IX

Quinizarin

X

Christofin

75370

58050

1,4-Dihydroxyanthraquinone 1,4-Dihydroxy-2-ethylhydroxymethylanthraquinone 1,4-Dihydroxy-2-hydroxymethylanthraquinone 1,4-Dihydroxyanthraquinone2-carboxylic acid

Quinizarin-2-carb o x y l i c acid

XIII XIV

1,3-Dihydroxyanthraquinone2-carboxylic acid 1,3-Dihydroxy-2-C-glycosylanthraquinone

XI XII

Constitution

1,4-Dihydroxy-6-methy1anthraquinone Soranjidiol

75390

1,6-Dihydroxy-2-methylanthraquinone Continued on next page

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

192

HISTORIC TEXTILE AND PAPER MATERIALS Π

Table I . Continued No·

C.I.Constitu­ t i o n Number ( 6 )

Constitution

Physcion

1,8-Dihydroxy-6-methoxy3-methylanthraquinone

XVI

Physcionanthranol A

1,8-Dihydroxy-6-methoxy3-methylanthranol-10

XVII

Physcionanthranol Β

1,8-Dihydroxy-6-methoxy3-methylanthranol-9

XV

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

Name

XVIII

Anthragallol

58200

1.2.3-Trihydroxyanthraquinone

XIX

Anthragallol2-m e t h y l e t h e r

1,3-Dihydroxy-2-methoxyanthraquinone

XX

Anthragallol3-m e t h y l e t h e r

1,2-Dihydroxy-3-methoxyanthraquinone

XXI

XXII

Purpurin

75410

Pseudopurpurin

75420

1.2.4-Trihydroxyanthraquinone 1,2,4-Trihydroxyanthraquinone-3-Carboxylic

XXIII

XXIV

XXV

acid

Morindon

75430

1,5,6-Trihydroxy-2-methylanthraquinone

Emodin

75440

1,6,8-Trihydrox-3-methylanthraquinone

Copareolatindimethyl ether

6,8-Dihydroxy-4,7-dimethoxy-3-methylanthraquinone or 4,6-Dihydroxy-7,8-dimethoxy-3-methylanthraquinone

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

13. SCHWEPPE

Red Madder and Insect Dyes

Rubia t i n c t o r u m L. (Rubia

t i n c t o r i a SALISB.) ( C . I . N a t u r a l Red 8)

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

I n d i g e n o u s i n S o u t h and S o u t h e a s t E u r o p e , i n t h e M e d i t e r r a n e a n area, i n A s i a M i n o r and i n t h e C a u c a s u s , and from t h e r e t o C h i n a and Japan and M a l a y s i a , and i n t h e v e s t p a r t o f N o r t h A m e r i c a , M e x i c o , and South America ( 3 4 ) . I n t h e p a s t , madder was c u l t i v a t e d i n huge amounts f o r t h e p r o ­ d u c t i o n o f dyes from i t s r o o t s , b u t today i t i s o n l y found growing w i l d i n A s i a M i n o r . Madder h a s a l w a y s been one o f t h e most i m p o r t a n t o f a l l d y e r ' s p l a n t s , and i t was used a s e a r l y a s 2000 B.C. f o r dye­ i n g t e x t i l e s ( 3 6 ) , o r even e a r l i e r ( 3 7 ) . C o n s t i t u e n t s i n R a d i x R u b i a e (madder r o o t s ) : 2-3,5% o f d i - and t r i h y d r o x y a n t h r a q u i n o n e g l y c o s i d e s , and a s t h e main c o n s t i t u e n t r u b e r y t h r i c a c i d ( a l i z a r i n - 2 - B - p r i m v e r o s i d e ) . A l s o g a l i o s i n (pseudopur­ purin primveroside), rabiadin-3-fi-primveroside, rubiadin-3-B-glucos i d e , and l u c i d i n - 3 - B - p r i m v e r o s i d e ( 3 8 ) , and r u b i a n i n ( V I I I ) , a Cg l y c o s i d e ( 3 5 ) . Madder r o o t c o n t a i n s a s f r e e h y d r o x y a n t h r a q u i n o n e dyes p s e u d o p u r p u r i n ( X X I I ) , r u b i a d i n ( I I I ) , a l i z a r i n ( I ) , and munj i s t i n ( V I I ) , and a l s o s m a l l amounts o f c h r i s t o f i n (X) (32, 34, 3 9 ) . The d r i e d r o o t was a l s o found t o c o n t a i n p u r p u r o x a n t h i n ( I I ) formed by s e p a r a t i o n o f CO2. f r o m m u n j i s t i n ( V I I ) . P s e u d o p u r p u r i n (XXIII) i s probably decarboxylated with formation o f purpurin (XXI) when t h e madder r o o t i s d r i e d . The d r i e d madder r o o t a l s o c o n t a i n s t h e f o l l o w i n g h y d r o x y a n t h r a q u i n o n e dyes i n s m a l l amounts: nordamnac a n t h a l (VI), q u i n i z a r i n ( I X ) , 1,4-dihydroxy-2-hydroxymethylanthraquinone ( X I ) , q u i n i z a r i n - 2 - c a r b o x y l i c a c i d ( X I I ) , a n t h r a g a l l o l ( X V I I I ) , and a n t h r a g a l l o l - 3 - m e t h y l e t h e r (XX) ( 3 2 , 34, 3 9 ) . The o t h e r h y d r o x y a n t h r a q u i n o n e c o n s t i t u e n t s i d e n t i f i e d i n mad­ der r o o t have o n l y one f r e e p h e n o l i c OH group and a r e n o t , t h e r e f o r e , s u i t a b l e mordant dyes f o r t e x t i l e m a t e r i a l s . They w i l l be d i s r e g a r d e d i n t h e f o l l o w i n g . T h i s l e a v e s u s , t h e r e f o r e , w i t h o n l y 15 o f t h e 23 c o n s t i t u e n t s o f madder r o o t b e l o n g i n g t o t h e c l a s s o f h y d r o x y a n t h r a ­ q u i n o n e s ( s e e t a b l e Π ) t h a t c a n be used a s mordant dyes ( i n t h e f r e e form o r ( p a r t l y ) a s g l y c o s i d e s ) w i t h v a r y i n g d y e i n g p r o p e r t i e s . As n o t a l l o f them have good a f f i n i t y f o r mordanted t e x t i l e f i b e r s , and some o f them a r e c o n t a i n e d o n l y i n s m a l l amounts i n madder r o o t , we o n l y have t o r e c o g n i z e a few o f t h e s e mordant dyes on t h e c h r o m a t o gram i n TLC c o m p a r i s o n s t o i d e n t i f y a madder d y e i n g . These madder dyes a r e a l i z a r i n ( I ) and p u r p u r i n ( X X I ) and a l s o pseudopurpurin ( X X I I ) i n c a s e s where t h e l a t t e r h a s n o t been c o m p l e t e l y c o n v e r t e d by d e c a r b o x y l a t i o n i n t o p u r p u r i n . R u b i a p e r e g r i n a L (R. a n g l i a HUPS., R. l u c i d a L.) ( C . I . N a t u r a l Red 8) W i l d madder o r L e v a n t i n e madder. I n d i g e n o u s i n t h e M e d i t e r r a n e a n area and i n t h e O r i e n t . C o n s t i t u e n t s : The r o o t s o f W i l d madder c o n t a i n g a l i o s i n , p s e u ­ d o p u r p u r i n ( X X I I ) , p u r p u r i n (formed i n some c a s e s from pseudopurpurin by d e c a r b o x y l a t i o n ) , and a s m a l l amount o f a l i z a r i n ( I ) ( S e e t a b l e H ) . R u b i a c o r d i f o l i a L . (R. c o r d a t a THUNB.. R. m u n i i s t a ROXB.) ( C . I . Na­ t u r a l Red 16) E a s t I n d i a n madder. M u n j e e t . I n d i a n madder.

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

193

194

HISTORIC TEXTILE AND PAPER MATERIALS Π

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

Indigenous i n I n d i a , Nepal, China, Japan, and t r o p i c a l A f r i c a . In the past, the red root was traded as "East Indian madder root". Constituents (See also table Π ) : The roots contain a l i z a r i n ( I ) , pseudopurpurin (XXII), purpurin (XXI), purpuroxanthin ( I I ) and munj i s t i n (VII) (34). Nordamnacanthal ( V I ) , physcion (XV), and 1,4-dihydroxy-6-methylanthraquinone ( X I I I ) have also been i d e n t i f i e d (40). In contrast to Rubia tinctorum, the roots of t h i s plant contain no l u c i d i n (V). P f i s t e r (41) assumes that Rubia c o r d i f o l i a was used by antique Indian dyers. Another red madder dye that l a t e r was used i n India i s the Chay root of Oldenlandia umbellate L. (42). Rubia akane.(NAKAI) Japanese madder. Constituents (See also table II.): The roots contain a glycoside of pseudopurpurin (XXII) (43-45) that i s r e l a t i v e l y stable to hydroly­ s i s with d i l u t e mineral acids (46). Rubia akane has been i d e n t i f i e d on fragments of s i l k f a b r i c s from c o f f i n s with mummies from the Fujiwara era (11th century A.D.) (47). Relbunium hypocarpium (L.) HEMSL.. Relbûn. Ruivina. Chamri ( l o c a l name i n C h i l e ) . Indigenous i n Central and South America. Constituents (See also table I I ) : Relbun roots contain g a l i o s i n as the p r i c i p a l dye, but pseudopurpurin (XXII) and purpurin (which may have been formed from pseudopurpurin by decarboxylation) may a l s o be present (48). A l i z a r i n has not been found i n relbun roots (49). Relbunium c i l i a t u m (L.) HEMSL. A sample of the roots of t h i s species has also been tested. The dye composition was found to be the same as that i n the roots of R. hypocarpium. On numerous Peruvian t e x t i l e s from the Paracas era, dyes from relbun roots have been i d e n t i f i e d (2, 3, 48).The Araukans, an Indian t r i b e i n southern C h i l e , have been using roots of Relbunium hypocarpium even i n t h i s century f o r dyeing red shades on wool (50). 1

Galium verum L. (Lady s bedstraw. Yellow galium); Galium mollugo L. (G.album. Hedge bedstraw) (C.I. Natural Red 14) Both galium spp. are indigenous i n Europe, and i n the area from the Caucasus t o the eastern part of India. Constituents (See also table II):The dyes contained i n the roots of these two plants are pseudopurpurin (XXII), i t s primveroside g a l i o s i n , purpurin (XXI) (formed i n some cases from pseudopurpurin by decarboxylation), rubiadin ( I I I ) , i t s 3-B^primveroside, l u c i d i n (V) (jpartly as g l y c o s i d e ) , purpuroxanthin ( I I ) , and a l i z a r i n ( I ) ( p a r t l y as glycoside) (51). Galium roots were used i n Scotland f o r dyeing bordeaux shades on alum mordanted wool (52, 53).They have also been i d e n t i f i e d on a

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

13. SCHWEPPE f a b r i c found many) ( 5 4 ) .

by e x c a v a t i o n i n the V i k i n g h a r b o r

Oldenlandia umbellata (C.I. N a t u r a l Red 6)

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

195

Red Madder and Insect Dyes Haithabu

L . ( 0 . h i s p i d a DC.; H e d y o t i s

(north Ger­

i n d i c a R.et SCH.)

I n d i g e n o u s i n I n d i a , Burma , A b y s s i n i a , C e y l o n , and J a v a . The r o o t was t r a d e d under the names Chay r o o t and " I n d i a n Mad­ d e r " * a s a r e d n a t u r a l dye. C o n s t i t u e n t s (See a l s o t a b l e Π ) : The r o o t o f O l d e n l a n d i a umbel­ l a t a L . c o n t a i n s a l i z a r i n ( I ) ( m o s t l y i n t h e form o f i t s g l y c o s i d e r u b e r y t h r i c a c i d ) a s t h e s o l e dye -no p s e u d o p u r p u r i n (XXII) and no p u r p u r i n ( X X I ) . Some monohydroxyanthraquinones, f o r example, h y s t a z a r i n monomethyl e t h e r ( 2 - h y d r o x y - 3 - m e t h o x y a n t h r a q u i n o n e ) a r e a l s o p r e s e n t , b u t t h e y do n o t go onto the t e x t i l e m a t e r i a l i n d y e i n g , b u t r e m a i n i n the d y e i n g l i q u o r . D y e i n g s w i t h Chay r o o t have the same b r i l l i a n t shade a s t h o s e w i t h s y n t h e t i c a l i z a r i n . They c a n n o t be d i s ­ t i n g u i s h e d from each o t h e r by TLC. The r o o t s o f 0. u m b e l l a t a were v e ­ r y s u i t a b l e f o r d y e i n g c o t t o n by the T u r k e y r e d o i l p r o c e s s . I n t h i s p r o c e s s , dyes s u c h a s p u r p u r i n and p s e u d o p u r p u r i n c a u s e t r o u b l e , b e ­ c a u s e t h e y i m p a i r the good wash f a s t n e s s o f t h e s e d y e i n g s . I t i s p o s s i b l e t h a t t h e f i r s t T u r k e y r e d o i l d y e i n g s were p r o ­ duced i n I n d i a w i t h the Chay r o o t ( 5 5 ) . Morinda c i t r i f o l i a

L . ( C . I . N a t u r a l Red 18)

I n d i g e n o u s i n I n d i a , Indochi'na, M a l a y a , T h a i l a n d , the P o l y n e s i a n i s ­ l a n d s , and t h e P h i l i p p i n e s , and a l s o c u l t i v a t e d i n p a r t s o f I n d i a . The r o o t o r t h e bark o f the r o o t used t o be t r a d e d a s n a t u r a l dye under the names M o r i n d a r o o t , S u r a n j i , and A l ( 3 ) . C o n s t i t u e n t s (See a l s o t a b l e Π Ι ) : Approx. 0,4% o f h y d r o x y a n t h r a ­ q u i n o n e s : t h e p r i n c i p a l components a r e M o r i n d o n ( X X I I I ) and M o r i n d i n (morindon-5-rutinoside). Other c o n s t i t u e n t s are s o r a n j i d i o l (XIV), morindadiol (1,5-dihydroxy-2(or 3)-methylanthraquinone), r u b i a d i n ( I I I ) , nordamnacanthal ( V I ) , a l i z a r i n ( I ) , a t r i h y d r o x y m e t h y l a n t h r a quinone monomethyl e t h e r (56) and p r o b a b l y a s m a l l amount o f emodin (XXIV) ( 2 ) . Morinda umbellata

L . ( C . I . N a t u r a l Red 19)

I n d i g e n o u s i n t h e e a s t p a r t o f I n d i a , i n C e y l o n and J a v a . The r o o t b a r k was t r a d e d under t h e names Mang-kouda o r Mang-kuda a s a n a t u r a l dye, and i t was used i n J a v a f o r f a s t r e d b a t i k prints. C o n s t i t u e n t s (See a l s o t a b l e Π Ι ) : The r o o t o r i t s bark c o n t a i n s as i t s p r i n c i p a l dyes morindon ( X X I I I ) and m o r i n d i n ( m o r i n d o n - 5 - r u t i n o s i d e ) . Other c o n s t i t u e n t s are s o r a n j i d i o l (XIV), morindadiol, r u ­ b i a d i n ( I I I ) ( p a r t l y as g l y c o s i d e ) , purpuroxanthin ( I I ) , l u c i d i n ( 5 ) , m u n j i s t i n ( V I I ) , and s m a l l amounts o f a l i z a r i n ( I ) , M o r i n d a n i g r i n ( I V ) and p r o b a b l y Emodin (XXIV) ( 2 , 6 , 5 6 , 5 7 ) .

*As t h e r o o t o f R u b i a c o r d i f o l i a L . was sometimes marketed under t h e name " I n d i a n madder", i t i s g e n e r a l l y a d v i s a b l e t o use the name "Chay r o o t " f o r the r o o t o f O l d e n l a n d i a u m b e l l a t a L . t o a v o i d c o n f u s i o n .

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

196

HISTORIC TEXTILE AND PAPER MATERIALS Π Table I I . Hydroxyanthraquinone dyes i n Rubia-, Relbunium-, Galium-, and Oldenlandia-species

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

Β Alizarin (I)* Purpuroxanthin ( I I ) Rubiadin ( I I I ) * L u c i d i n (V)* Nordamnacanthal (VI) M u n j i s t i n (VII) Rubianin (VIII) Q u i n i z a r i n (IX) C h r i s t o f i n (X) 1,4-Dihydroxy-2-hydroxymethylanthraquinone (XI) Quinizarin-2-carboxylic a c i d (XII) 1,4-Dihydroxy-6-methylanthraquinone ( X I I I ) Physcion (XV) A n t h r a g a l l o l (XVIII) Anthragallol-3-methyl ether (XX) Purpurin (XXI) Pseudopurpurin (XXII)

Η

+ +

+ -

+ +

+ + + + + + +

-

+ -

+

- -

- -

- -

-

+ +

- - -

- - -

- - -

-

+ +

+ +

+ +

+ +

+ +

- - -

+ +

+ +

+ -

-

+ + + -

+ + + -

+ -

-

+ +

+ +

P a r t l y or e n t i r e l y as glycoside + Dye detected - Dye not detected A: Rubia tinctorum L.; B: Rubia peregrina L.; C: Rubia c o r d i f o l i a L.; D: Rubia akane; E: Relbunium hypocarpium HEMSL.; F: Galium verum L.; G: Galium Mollugo L.; H: Oldenlandia um­ b e l l a t a L. Coprosma species (Rubiaceae) The plants of the coprosma species are indigenous i n A u s t r a l i a , New Zealand, and on many South Sea i s l a n d s . The stem or root bark of various coprosma shrubs contains a number of anthraquinone dyes. I t was used by the Maoris, the natives of New Zealand, f o r dyeing f l a x i n orange shades. Coprosma lucida J.R. & G. FORST was c a l l e d by the natives "orange l e a f " . They c a l l e d C. g r a n d i f l o r a HOOK, and C. areolata CHEESEM "karamu", and C. l i n a r i i f o l i a HOOK, "yellow wood" (58). Constituents (See also table I I I ) : The stem and root barks d i f f e r considerably i n t h e i r constituents that are s u i t a b l e f o r dye-

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

13. SCHWEPPE

197

Red Madder and Insect Dyes

i n g . T h e s e h y d r o x y a n t h r a q u i n o n e dyes o f t h e f o u r coprosma s p e c i e s mentioned above a r e l i s t e d i n t a b l e I I I (58, 5 9 ) . As comparison m a t e r i a l , o n l y t h e bark o f coprosma l u c i d a was a v a i l a b l e . The d y e i n g produced w i t h t h i s bark on alum-mordanted wool has a n orange shade. T a b l e I I I . H y d r o x y a n t h r a q u i n o n e dyes i n M o r i n d a - , Coprosmas p e c i e s , and i n V e n t i l a g o m a d ( e ) r a s p a t a n a GAERTN.

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

A Alizarin (I)* Purpuroxanthin ( I I ) Rubiadin ( I I I ) * Morindanigrin (IV) Lucidin (V)* Nordamnacanthai ( V I ) M u n j i s t i n (VII) Morindadiol (» l , 5 - D i h y d r o x y - 2 (oder 3)-methylanthraquinone) S o r a n j i d i o l (XIV) P h y s c i o n (XV) Physcionanthranol A ( X V I ) Physcionanthranol Β (XVII) A n t h r a g a l l o l (XVIII) Anthragallol-2-methyl ether (XIX) Morindon ( X X I I I ) * Emodin (XXIV) Copareolatin (» 4 , 6 , 7 , 8 - T e t r a h y d r o x y 3-methylanthraquinone) Copareolatin dimethyl ether (XXV)

+

Β

C _

+

_ +

+ + + +

_ + +

+ _ -

+

-

_ -

_ -

+

+

+ _

-

-

+ _ -

_

_ _

-

_ _

G _ _

+

+ + + -

+

_

_

+ _

-

-

-

-

+

+

F

_ . _ _ _ _ -

+ - . _ + _ + -

_

-

Ε

+

+

+

+ _

_

+ +

_

D

* P a r t l y or e n t i r e l y as glycoside + Dye d e t e c t e d - Dye n o t d e t e c t e d A: M o r i n d a c i t r i f o l i a L . ; B: M o r i n d a u m b e l l a t a L.; C: Coprosma l u c i d a J.R. & G.FORST.; D: C. g r a n d i f l o r a HOOK.; E : C. a r e o l a t a CHEESEM.; F : C. l i n a r i i f o l i a HOOK.; G: V e n t i l a g o m a d ( e ) r a s p a t a n a GAERTN. V e n t i l a g o m a d ( e ) r a s p a t a n a GAERTN. (Rhamnaceae) ( C . I . N a t u r a l Orange 1) I n d i g e n o u s i n t h e west and s o u t h p a r t s o f I n d i a , i n Burma, C e y l o n , and J a v a . I n t h e p a s t , t h e r o o t b a r k was t r a d e d i n t h e form o f d a r k r e d or brown c h i p s w i t h a dye c o n t e n t o f 8-10% under t h e names " p i t t i " , " r a k t a p i t t a " o r " p a p p a l i " a s a n a t u r a l dye ( 6 ) . The r o o t b a r k was used a s mordant dye f o r c o t t o n , wool and s i l k , and produced a p u r p l e r e d , b o r d e a u x - r e d , brown-purple, o r g r a y t o b l a c h shade, d e p e n d i n g on t h e t y p e o f mordant used ( 6 0 ) .

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

198

HISTORIC TEXTILE AND PAPER MATERIALS Π

Constituents (See also table I I I ) : The root bark of Ventilago mad(e)raspatana contains v e n t i l a g i n (red r o s i n ) , C ^ H J A O ^ I and the dyes physcionanthranol A (XVI) and Β (XVII), physcion (XV), and emo­ din (XXIV) (60).

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

DYES

FROM

DYE INSECTS

The wide v a r i t y of anthraquinone dyes i d e n t i f i e d i n various madder plants i s not to be found i n the dye insects American cochineal, kermes, P o l i s h and Armenian cochineal. These insects contain two dyes whose constitutions are known and a t h i r d dye whose c o n s t i t u ­ t i o n has not yet been c l a r i f i e d . However, the f i f t h i n the c l a s s of dye i n s e c t s , l a c dye, contains f i v e water-soluble dyes (= l a c c a i c acids) and traces of three water-insoluble dyes. Table IV i l l u s t r a t e s the c o n s t i t u t i o n s of the insect dyes, while table V l i s t s the dye compositions of the f i v e dye insects mentioned above. Table IV. Constitutions of the red insect dyes

(XXXII) Laccaic a c i d D

Laccaic acids A :

R R C : R Ε : R Β

:

= = -

CH NHAc CHoOH CHCNHOCOOH CH NH ?

?

(XXXIII) Erythrolaccin

?

(XXVIII) (XXIX) (XXX) (XXXI)

(XXXIV) Deoxyerythrolaccin

(XXXV) iso Erythrolaccin

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

13.

SCHWEPPE

Red Madder and Insect Dyes

199

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

Table V. Hydroxyanthraquinone dyes of the dye insects ^

A

Β

C

D

Kermesic acid (XXVI) (62) Carminic acid (XXVII) (63) Flavokermesic a c i d * (61) Laccaic acid A (XXVIII) (64) Laccaic acid Β (XXIX) (65) Laccaic acid C (XXX) (66) Laccaic acid D (XXXII) (67) Laccaic acid Ε (XXXI) (66) Erythrolaccin (XXXIII) (68) Deoxyerythrolaccin (XXXIV) (68) i s o Erythrolaccin (XXV) (68)

+ -

+ +

+ + +

(+) +

_ -

_ -

_

-

-

Ε

. -

Constitution not yet known; gross composition: C^HgOft + Dye detected - Dye not detected (+) Detection of the dye not yet d e f i n i t e

+ + + + + + + +

(61)

A : American cochineal (Dactylopius coccus COSTA) Β : Kermès

(Kermococcus vermilio PLANCHON)

C : P o l i s h cochineal (Porphyrophora polonica L.) D : Armenian cochineal (Porphyrophora hameli BRANDT) Ε : Lac dye (Kerria lacca KERR.) Dactylopius coccus COSTA (Coccus c a c t i L.)

(Coccidae)

(C.I.Natural Red 4) American cochineal. Insect (female) l i v i n g on the host plant Nopal e a c o c c i n e l l i f e r a (L.) SALM-DYCK (torch- or f i g - t h i s t l e , "nopal plant"), besides on Opuntia monacantha O.TUNA, 0.vulgaris MILL, non auct. mult., and P e ( i ) r e s k i a aculeata MILL. Indigenous i n Mexico, Central and South America. Cultivated i n the west and east parts of India, i n the Canaries, i n South A f r i c a , A l ­ geria, and i n Spain. Constituents: (See also table V): American cochineal contains up to 14% of dye consisting (exclusively) of carminic acid (XXVII). I t has been reported that cochineal contains a second dye known as neocarminic acid (69), but t h i s has not been confirmed. Recently, a small amount of a second dye has been found in cochineal by HFLC (7). American œchineal has been identified on many old Peruvian fabrics (3, 3a, 48). Kermococcus vermilio PLANCHON (Kermes vermilio (PLANCH.) TARG.); formerly Kermès i l i c i s L. (10) (Coccidae) (C.I. Natural Red 3) Kermes. Insect (female) l i v i n g on the host plant kermes or s c a r l e t oak (Quercus c o c c i f e r a L.)

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

HISTORIC TEXTILE AND

200

P A P E R M A T E R I A L S II

I n d i g e n o u s i n the M e d i t e r r a n e a n a r e a and i n A s i a M i n o r . C o n s t i t u e n t s (See a l s o t a b l e V ) : Kermes c o n t a i n s k e r m e s i c a c i d (XXVI) and a s m a l l amount o f f l a v o k e r m e s i c a c i d (61) whose c o n s t i t u t i o n has not y e t been d e t e r m i n e d . Kermes b e l o n g s t o t h e o l d e s t r e d traded

by P h o e n i c i a n

P o r p h y r o p h o r a p o l o n i c a L. t u r a l Red 3)

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

textile

merchants as e a r l y as

dyes ( 7 0 ) , and

1500

(Margarodes p o l o n i c u s )

B.C.

i t

was

(10).

(Coccidae)

(C.I.Na-

Polish cochineal. I n s e c t ( f e m a l e ) found on r o o t s o f t h e knawel ( S c l e r a n t h u s p e r e n n i s L.) as h o s t p l a n t . The h o s t p l a n t i s i n d i g e n o u s on sandy s o i l i n E a s t Germany, Pol a n d , t h e U k r a i n e , A s i a M i n o r , the C a u c a s u s and Turkestan. C o n s t i t u e n t s (See a l s o t a b l e V ) : P o l i s h c o c h i n e a l c o n t a i n s c a r m i n i c a c i d (XXVII) and k e r m e s i c a c i d ( X X V I ) , whose q u a n t i t a t i v e r a t i o has been d e t e r m i n e d by HPLC and i s r e p o r t e d by W h i t i n g t o be 5:1 t o 10:1 and by Wouters 15:1 (10). P r o o f f o r t h e e a r l i e s t use o f P o l i s h c o c h i n e a l f o r t e x t i l e d y e i n g was p r e s e n t e d by P f i s t e r when he i n v e s t i g a t e d t e x t i l e s t h a t had been f o u n d i n E g y p t and S y r i a ( P a l m y r a ) and d a t e d from t h e H e l l e n i s t i c - R o m a n e r a . The E g y p t i a n m a t e r i a l o r i g i n a t e d from P e r s i a ( D y n a s t y o f t h e S a s s a n i d e s , 226-641 A.D.) (70, 71), w h i l e the t e x t i l e m a t e r i a l from t h e n e c r o p o l i s i n P a l m y r a was f o u n d t o be C h i n e s e s i l k ( 4 1 ) . P f i s t e r was a b l e to d i s t i n g u i s h by c h e m i c a l a n a l y s i s between r e d dyei n g s produced w i t h kermes o r w i t h P o l i s h c o c h i n e a l . P o r p h y r o p h o r a h a m e l i BRANDT (P. a r m e n i a c a

BURMEISTER)(Coccidae)

Armenian c o c h i n e a l . I n s e c t ( f e m a l e ) t h a t i s found on t h e r o o t s and l o w e r p a r t s o f t h e b l a d e s o f a number o f g r a s s s p e c i e s b e l o n g i n g bot a n i c a l l y to Aeluropus l i t t e r a l i s . The h o s t p l a n t s s u i t a b l e f o r Armenian c o c h i n e a l grow o n l y i n A r menia and A z e r b a i j a n , p a r t i c u l a r l y on t h e s o i l o f f l a t v a l l e y s , e.g. a l o n g t h e banks o f t h e A r a x e s r i v e r up t o t h e n o r t h and e a s t o f Mount Ararat (10). C o n s t i t u e n t s (See a l s o t a b l e V ) : Armenian c o c h i n e a l c o n t a i n s Carminic a c i d ( X X V I I ) , as r e p o r t e d by K u r d i a n (73) i n 1941 without any i n d i c a t i o n o f t h e i d e n t i f i c a t i o n method u s e d . I t c o u l d a l s o c o n t a i n a v e r y s m a l l amount o f k e r m e s i c a c i d ( X X V I ) , a s Wouters found by i n v e s t i g a t i o n s w i t h HPLC ( 7 4 ) . Armenian c o c h i n e a l may have been an i m p o r t a n t a r t i c l e o f commerce i n e a r l i e r t i m e s ( 1 0 ) . M a s s c h e l e i n - K l e i n e r and Maes (75) i d e n t i f i e d c a r m i n i c a c i d on t e n samples o f E g y p t i a n t e x t i l e s from t h e 5 t h t o t h e 7 t h c e n t u r y A.D., but not k e r m e s i c a c i d . T h i s r e s u l t a p p l i e s o n l y t o Armenian c o c h i n e a l and not t o any o t h e r o f t h e dyes known i n a n t i q u i t y . The a u t h o r s a l s o found Armenian c o c h i n e a l on v a r i o u s N u b i an and Hebrew t e x t i l e s . K e r r i a l a c c a KERR ( C o c c u s l a c c a e (C.I. N a t u r a l Red 25)

t

Laccifer

l a c c a KERR)

(Coccidae)

Lac I n s e c t . Various s p e c i e s of l a c i n s e c t (Lakshadia (Tachardia, L a c c i f e r ) spp.) can be f o u n d , w i d e l y d i s t r i b u t e d , i n S o u t h and S o u t h -

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

13. SCHWEPPE

Red Madder and Insect Dyes

201

east Asia, for example i n India, Cambodia, Thailand, Sumatra, and the Moluccas. The host plants are, for example, Butea frondosa ROXB., Ficus r e l i g i o s a L., Ziziphus jujuba MILL. The female l a c insect secretes on the twigs of the host plant a resinous substance, s t i c k - l a c , from which shellac and l a c dye are produced. Constituents (See also tables IV and V):Besides shellac rosin, lac dye contains the water-soluble dyes l a c c a i c acid A, B, C, D, and Ε and three water-insoluble dyes (62-68). In China, s i l k f o r export to west Asia was dyed with l a c dye as early as i n the Han dynasty (206 B.C. - 220 A.D.) (41). The Greek physician Ctesias, who l i v e d about 400 B.C. at the Court of a Persian king, writes i n h i s works on India known as "Indica": "There are i n India insects of the size of a beetle, of the color of minium,.... They are found on trees which bear amber, .... The Indians, by bruis­ ing these animals, obtain a dye, with which they dye robes and tunics, and other a r t i c l e s of dress, of a s c a r l e t color, very superior to the Persian dyes." This i s a sure i n d i c a t i o n of lac dye (76). THIN-LAYER CHROMATOGRAPHY OF MADDER DYES Preparation of samples f o r TLC Madder dyes belong to the group of mordant dyes. They are dyed on wool or s i l k that has been previously mordanted with aluminum or iron s a l t s . The madder dyes react with these s a l t s to form on the f i b e r color lakes that are water-insoluble and do not bleed even when t r e a ­ ted with d i l u t e ammonia. For the i d e n t i f i c a t i o n of madder dyes with the aid of TLC, however, we require a dye solution that can be ap­ p l i e d to the thin-layer plate. At acid pH (pH 3 or lower), the dyes are liberated from the lake, a process during which the color v i s i b l y changes, and the organic constituents can be extracted. In order to s t r i p the dyes of madder dyeings completely from the f i b e r , they must be extracted i n acid solution at temperatures up to roughly 100° C. Comparative solutions produced by extraction from dyer's plants such as madder root must also be prepared i n the same manner at acid pH f o r the TLC. The anthraquinone dyes are present i n the dyer's plants partly i n the form of glycosides. These glycosides must be s p l i t h y d r o l y t i c a l l y with acids i n order to obtain f o r the TLC a comparative solution that contains only free hydroxyanthraqui­ nones and no hydroxyanthraquinone glycosides. For stripping natural mordant dyes from dyeings, i t i s customa­ ry to use d i l u t e hydrochloric acid or s u l f u r i c acid, with or without an addition of organic solvents, for example, methanol, ethanol, or acetone. In the process, some hydroxyanthraquinone dyes containing carboxyl groups, f o r example pseudopurpurin (XXII) and Munjistin (VII), l i b e r a t e carbon dioxide and are con-verted into purpurin (XXI) or purpuroxanthin ( I I ) . In preparing samples for TLC, any such chan­ ges must be avoided, because they make i t very d i f f i c u l t to d i s t i n g u ­ i s h between dyes that are very s i m i l a r to one another. The two chan­ ges caused by decarboxylation described above also occur with madder roots when they are dried or subsequently stored i n drums, processes

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

202

HISTORIC TEXTILE AND

P A P E R M A T E R I A L S II

d u r i n g w h i c h an e n z y m a t i c h y d r o l y s i s o f t h e madder g l y c o s i d e s and a l so d e c a r b o x y l a t i o n a r e l i a b l e t o o c c u r . Madder dyes may a l s o undergo changes d u r i n g t h e d y e i n g p r o c e s s i t s e l f , changes caused i n most c a s e s by the d y e i n g t e m p e r a t u r e , t h e d y e i n g t i m e , and the pH o f the dyeing l i q u o r . In t h e e x t r a c t i o n o f powdered madder r o o t s w i t h 10% s u l f u r i c a c i d , f o l l o w e d by s h a k i n g w i t h e t h y l a c e t a t e , we see t h a t the e t h y l a c e t a t e c o n t a i n s o n l y a v e r y s m a l l amount o f p s e u d o p u r p u r i n or not a t a l l . However, when we i n v e s t i g a t e madder d y e i n g s on o l d c a r p e t s by t h e same method, the t h i n - l a y e r chromatogram o f t e n shows t h a t pseudop u r p u r i n i s p r e s e n t i n r o u g h l y t h e same amount as p u r p u r i n . What i s the e x p l a n a t i o n f o r t h i s ? In a d y e i n g , p s e u d o p u r p u r i n i s p r e s e n t , f o r example, as A l - C a l a k e . When b o i l e d once w i t h 10% s u l f u r i c a c i d , t h i s l a k e i s s p l i t , and t h e f r e e p s e u d o p u r p u r i n c a n i m m e d i a t e l y be shaken o u t w i t h e t h y l a c e t a t e b e f o r e i t i s c o n v e r t e d i n t o p u r p u r i n by d e c a r b o x y l a t i o n . In t h e madder r o o t , however, t h e p s e u d o p u r p u r i n i s p r e s e n t i n t h e form o f t h e r e l a t i v e l y h y d r o l y s i s - s t a b l e g l y c o s i d e g a l i o s i n . I n t h i s case., i t i s n e c e s s a r y t o h e a t f o r 20-30 m i n u t e s w i t h d i l u t e a c i d s b e f o r e a l l dyes can be shaken o u t w i t h e t h y l a c e t a t e . I n t h i s process, the pseudopurpurin i s completely decarboxylated. A s e a r c h began f o r a new e x t r a c t i o n method t h a t would p e r m i t t h e p s e u d o p u r p u r i n t o be r e t a i n e d . The r e a s o n f o r t h i s was t h e i n v e s t i g a t i o n o f a p i n k madder l a k e known as "Rose madder" ( C . I . N a t u r a l Red 9 ) . T h i s i s an a r t i s t ' s pigment c o n t a i n i n g m a i n l y t h e aluminum l a k e o f p s e u d o p u r p u r i n . As t h e c o r r e s p o n d i n g p u r p u r i n l a k e has f a r lower l i g h t f a s t n e s s , l a k e s w i t h a h i g h c o n t e n t o f p s e u d o p u r p u r i n a r e h i g h l y d e s i r e d . For i n v e s t i g a t i o n s of t h i s k i n d , i t i s e s s e n t i a l to a v o i d any d e g r a d a t i o n o f t h e p s e u d o p u r p u r i n d u r i n g t h e p r e p a r a t i o n of a sample f o r TLC. New improved e x t r a c t i o n method f o r madder d y e s . For these i n v e s t i g a t i o n s , t h e f o l l o w i n g method o f e x t r a c t i o n i s recommended: The a n a l y t i c a l sample w e i g h i n g 1-5 mg i s h e a t e d i n a t e s t tube f o r about one minute w i t h 10 ml o f a 1:1 m i x t u r e o f 10% s u l f u r i c a c i d and e t h y l a c e t a t e , b u t y l a c e t a t e , o r t o l u e n e i n a simmering water b a t h u n t i l t h e aqueous phase i s c o m p l e t e l y c o l o r l e s s and t h e o r g a n i c phase has t u r n e d y e l l o w o r o r a n g e - y e l l o w . The l o w e r , aqueous phase i s a l l o wed t o r u n o u t o f a s m a l l s e p a r a t i n g f u n n e l , and t h e upper, o r g a n i c phase i s shaken w i t h water u n t i l i t g i v e s an a l m o s t n e u t r a l r e a c t i o n t o pH p a p e r . The dye s o l u t i o n i s e v a p o r a t e d t o d r y n e s s i n vacuo or i n a p o r c e l a i n d i s h i n an a i r c u r r e n t a t room t e m p e r a t u r e . The e v a p o r a t i o n r e s i d u e i s t a k e n up w i t h a s m a l l amount o f methanol o r butanone-2 ( f o r p s e u d o p u r p u r i n ) , and t h e s o l u t i o n i s poured i n t o a s m a l l 0,5-ml or 1-ml t e s t tube and c o n c e n t r a t e d i n the t e s t tube w i t h an a i r c u r r e n t t o o b t a i n a sample f o r t h i n - l a y e r c h r o m a t o g r a p h i c comparisons. W i t h t h i s method, we have found t h a t t h e sample o f "Rose madd e r " c o n t a i n s o n l y t r a c e s o f p u r p u r i n b e s i d e s o f p s e u d o p u r p u r i n . The method i s a l s o u s e f u l f o r i n v e s t i g a t i n g madder t y p e s t h a t c o n t a i n onl y s m a l l amounts o f p u r p u r i n (formed p r o b a b l y from p s e u d o p u r p u r i n ) as w e l l as p s e u d o p u r p u r i n , but no a l i z a r i n . Examples o f t h e s e madder t y p e s a r e the S o u t h American r e l b u n r o o t s such as Relbunium hypocarpium ( L . ) HEMSL. and R. c i l i a t u m ( L . ) HEMSL. and the J a p a n e s e madder r o o t s o f R u b i a akane.

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

13.

SCHWEPPE

Red Madder and Insect Dyes

203

This improved method of extraction i s also useful for preparing reference solutions of dyer's plants for TLC comparisons. In t h i s case, however, the extraction time must be lengthened to about 5 minutes. Despite t h i s , however, the pseudopurpurin i s mostly retained, as can be confirmed by thin-layer chromatographic comparison. For investigating dyeings with madder dyes, the extraction time of one minute i s adequate, as described i n the analysis of the "Rose madder" sample.

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

TLC procedure for madder dyes When we s t r i p a red dyeing by the improved extraction method with a mixture of 10% s u l f u r i c acid and ethyl acetate (1:1) and.the upper layer has a yellow or orange-yellow shade and the lower layer i s col o r l e s s , we can assume that t h i s i s a madder dyeing. The extract of the supposed madder dyeing i s applied after concentration as described above together with the following reference solutions to a Mikropolyamid F 1700 thin-layer plate (Schleicher & S c h i i l l ) : a l i z a r i n , purpurin, pseudopurpurin, or reference solutions obtained from the following dyer's plants by the improved extraction method: Rubia tinctorum, R. peregrina, R. c o r d i f o l i a , R. akane; G a l i um verum (or G. mollugo), Oldenlandia umbellata, Morinda c i t r i f o l i a , M. umbellata, Coprosma lucida, and Ventilago mad(e)raspatana. The chromatogram i s developed i n a TLC separation chamber with the s o l vent mixture toluene-acetic acid (9:1), or sometimes butanone-2 formic acid (95:5), or chloroform-methanol (95:5) over a distance of 8-10 cm (2). When the chromatogram has dried, the inherent colors of the spots, and then t h e i r UV fluorescence under the UV lamp, are compared, and any conformity between the unknown and the comparative samples i s determined. The thin-layer chromatogram i s the immersed for about 20 seconds i n a 0,5% solution of uranyl acetate i n 50% methanol. After t h i s , the chromatogram i s pressed between several l a y ers of f i l t e r paper and dried i n the a i r . The spots of the uranyl lakes are then compared to see whether they coincide. Preparation of an album with thin-layer chromatograms of tested samples f a c i l i t a t e s the evaluation. Figures 1 and 2 show thin-layer chromatographic comparisons of the dyes belonging to various types of madder, as l i s t e d i n the table I I and I I I . The chromatographic conditions are the same for these two chromatograms, v i z . layer material: Mikropolyamid F 1700; solvent: toluene-acetic acid (9:1); color reaction: uranyl acetate. Figure 1 shows a chromatogram with the dyes of various Rubia, Galium, and Relbunium species. The following hydroxyanthraquinones on this chromatogram indicate c l e a r l y the presence of a d e f i n i t e dye plant of the mentioned species: 1 Rubia tinctorum: a l i z a r i n and purpurin can be c l e a r l y i d e n t i f i e d by the marked spots. Pseudopurpurin has been converted into purpur i n by decarboxylation, because the old extraction method ( b o i l ing with 10% s u l f u r i c acid, followed by shaking with ethyl acetate) has been used to i s o l a t e the dyes from the madder roots. Even with the new, improved extraction method, we often obtain t h i s chromatographic picture i n analyzing old madder dyeings, i f

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

204

H I S T O R I C T E X T I L E A N D P A P E R M A T E R I A L S II

Figure 1. TLC of dyes of various madder types. 1, madder (Rubia t i n c torum L.); 2, wild madder (R. peregrina L.); 3, Indian madder (R. cord i f o l i a L.); 4, Japanese madder (R. akane); 5, relbun root (Relbunium hypocarpium (L.) HEMSL.); 6, lady's bedstraw (Galium verum L.); 7, a l i zarin; 8, purpurin + pseudopurpurin (lower spot); 9, munjistin.

Figure 2. TLC of dyes of some other dye plant similar to the madder t y pes; 1, suranji (Morinda c i t r i f o l i a L.); 2, mang-kouda (Morinda umbell a t a L.); 3, chay root (Oldenlandia umbellata L.); 4, coprosma root (Coprosma lucida J.R. & G. Forst); 5, p i t t i (Ventilago mad(e)raspatana GARTN.); 6, morindon; 7, emodin; 8, a l i z a r i n ; 9, purpurin + pseudopurpurin (lower spot).

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

13.

2

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

3

A

5 6

SCHWEPPE

Red Madder and Insect Dyes

205

the pseudopurpurin has already been destroyed during drying of the madder or i n the dyeing process. The red spot near the s t a r t i n g l i n e i s probably a hydroxyanthraquinone glycoside, that has not been hydrolyzed. Rubia peregrina: As the new, improved extraction method was used here, the pseudopurpurin spot i s most prominent, and purpurin can also be c l e a r l y i d e n t i f i e d . A l i z a r i n i s only present i n traces. The red spot may be rubiadin ( I I I ) , u n t i l now not mentioned i n the l i terature as a dye i n Rubia peregrina. Rubia c o r d i f o l i a : In t h i s case, too, the new extraction method was used. The pronouced spot i s that of a l i z a r i n , and the second i s that of pseudopurpurin. The red spot of (probably) rubiadin i n cont r a s t to Rubia peregrina cannot be found. Rubia akane: Extraction by the old method, but only for two minutes.The r e l a t i v e l y stable pseudopurpurin glycoside has not been hydrolyzed by t h i s treatment. Relbunium hypocarpium: New extraction method. Contains almost exc l u s i v e l y pseudopurpurin and only a small amount of purpurin. Galium verum: New extraction method. Pseudopurpurin i s the main component, but purpurin, and i n contrast to Rubia peregrina, a l i zarin can also be c l e a r l y i d e n t i f i e d . The red spot i s , as i n the case of Rubia peregrina, probably rubiadin.

Figure 2 shows a chromatogram with the dyes of Morinda, Oldenlandia, Coprosma, and Ventilago species. These dye plants are similar to the Rubia spp. 1 Morinda c i t r i f o l i a and 2 M.umbellata contain morindon (XXIII) as the p r i n c i p a l dye and also a small amount of (probably) emodin (XXIV). I t i s not possible to distinguish between the two Morinda species by TLC. 3 Oldenlandia umbellata: Contains almost exclusively a l i z a r i n as dye and can thus be distinguished from a l l other madder types. This dyer's plant cannot be c l e a r l y distinguished from synthetic a l i z a r i n by t h i s method. 4 Coprosma l u c i d a : On the chromatogram are two prominent spots, v i z . a violet-brown spot roughly at the l e v e l of a l i z a r i n , and a graybrown spot near the s t a r t i n g l i n e . These two spots could not be i d e n t i f i e d , because reference compounds were not available. 5 Ventilago mad(e)raspatana: The dyes from t h i s dyer's plant d i f fer on the thin-layer chromatogram from a l l other madder dyes so markedly that the plant extract can be used for i d e n t i f i c a t i o n by TLC comparison. Although the dyes of Ventilago mad(e)raspatana are not quite unknown to us (see table I I I ) , i t i s not possible to c l a s s i f y the spots, because the necessary comparative material i s missing. Figure 3 i l l u s t r a t e s a thin-layer chromatogram i n which the old and the new extraction methods for madder dyes are compared with each other. The chromatographic conditions are the same as those used f o r the thin-layer chromatograms i n figures 1 and 2. The two extraction methods were compared to determine their usefulness for testing a sample of the a r t i s t ' s pigment "Rose Madder Genuine" (C.I.Natural Red 9) (see page202), a pigment whose quality depends on i t s content of pseudopurpurin (XXII).

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

206

H I S T O R I C T E X T I L E A N D P A P E R M A T E R I A L S II

Figure 3. Comparison of the old and the new (improved) extraction methods for madder dyeings and madder pigments (see page 202) by TLC. 1, and 2, extractions of a sample of the artist's pigment "Rose Madder Genuine"; 1, extraction by the new method; 2, extraction by the old method; 3, pseudopurpurin (lower spot); 4, purpurin; 5, alizarin. 1

2

3

Extraction of the "Rose Madder Genuine" sample with a mixture of the same amounts by volume of 10% s u l f u r i c acid and toluene, one minute i n the simmering water bath (new extraction method). The chromatogram shows c l e a r l y that the sample contains almost exclus i v e l y pseudopurpurin, besides traces of purpurin and a l i z a r i n , and that any degradation by decarboxylation and conversion into purpurin i s , at most, minimum. Extraction of the same sample by the old method (see page 201), In t h i s case, the thin-layer chromatogram shows purpurin as the main component; thus most of the pseudopurpurin has been destroyed. Pseudopurpurin, made from a synthetic pseudopurpurin lake by ext r a c t i o n with the new method. In contrast to the sample of "Rose Madder Genuine" (made from madder roots) besides of the p r i n c i p a l dye only traces of purpurin have been found, but not a l i z a r i n . Therefore i s i s possible to distinguish natural and synthetic pseudopurpurin lakes by t h i s method.

Figure A i s a photograph of an Adlerdalmatika, Chinese, about 1300 A.D. This Adlerdalmatika i s one of the coronation robes used by the emperors of the Holy Roman Empire of the German Nation, which are exhibited i n the Weltliche Schatzkammer of the Vienna Imperial Palace. During the restoration of t h i s robe i n the Kunsthistorische Museum, Sammlung fur P l a s t i k und Kunstgewerbe, i n Vienna 1986, the dyes on the ground f a b r i c were investigated. A sample weighing 80 mg was a v a i lable for the a n a l y s i s . Result: The warp and f i l l i n g threads are composed of natural s i l k , grounde with the lichen dye o r c h i l (C.I.Natural Red 28) and dyed with madder (Rubia tintorum).

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

SCHWEPPE

207

Red Madder and Insect Dyes

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

13.

Figure 4. Aldlerdalmatika, Chinese, about 1300 A.D. (Reprinted with Copyright 1987 Kunsthistorisches Museum Wien.)

permission.

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

208

H I S T O R I C T E X T I L E A N D P A P E R M A T E R I A L S II

A n a l y t i c a l procedure: The warp and f i l l i n g threads were f i r s t separated so that they could be tested separately. With the improved extraction method (10% s u l f u r i c acid + ethyl acetate (1:1)), the madder was repeatedly stripped from 5 mg samples of the warp and the f i l l i n g threads u n t i l the ethyl acetate was no longer stained yellow. After t h i s extraction, the stripped s i l k sampled remained red. Pure madder dyeings are only s l i g h t l y yellow after t h i s treatment. Consequently, there must be a second red dye on the s i l k . This dye remains red after the acid treatment, and turns v i o l e t a f t e r washing-out with water and addition of ammonia. When sodium d i t h i o n i t e i s also added, the dyeing becomes c o l o r l e s s when the solution i s boiled. After pouring the sodium d i t h i o n i t e vat o f f and washing the s i l k sample, the v i o l e t shade r e turns on exposure to the open a i r , and i t turns red after evaporation of the ammonia residue. This i s , according to my own experience, a spec i f i c proof of o r c h i l dyeings ( 2 ) . The extracts with 10% s u l f u r i c acid + ethyl acetate are concentrated by the method described on page 15 to obtain a suitable sample for the detection of madder by TLC comparison, as i l l u s t r a t e d i n f i gure 5. Figure 5 shows the comparison of the madder dyes taken from the Adlerdalmatika with samples of Rubia tinctorum, a l i z a r i n , and purpurin by TLC. The dye extracted from the sample of the Adlerdalmatika with d i lute s u l f u r i c acid i s unmistakably madder. What can we conclude from the r e s u l t of the dye investigation carried out on the red sample from the Adlerdalmatika ? There are indications that lichen dyes such as o r c h i l have been used for grounding madder dyeings (53). I t i s l i k e l y that even the Phoenicians used lichen dyes f o r grounding t e x t i l e s dyed with Tyrian Purple to cut down the amount of t h i s costly dye i n dyeing deep shades (77). Purple dyeings grounded with o r c h i l were known as "conchoid purples" (78). I t i s also possible that the purpose of grounding the s i l k of the Adlerdalmatika with o r c h i l was also to weight the s i l k . As o r c h i l dyeings have very poor lightfastness, I recommended suitable protective measures f o r storing the Adlerdalmatika. THIN-LAYER CHROMATOGRAPHY OF INSECT DYES Preparation of samples f o r TLC When the improved method of extraction i s used f o r stripping madder dyes with 10% s u l f u r i c acid and ethyl acetate (see page202), and the ethyl acetate layer i s not stained yellow, but orange, t h i s could i n dicate the presence of insect dyes containing kermesic acid (XXVI). If the s u l f u r i c acid layer i s stained orange to red, t h i s could i n d i cate the presence of carminic acid (XXVII) or l a c c a i c acids (XXVIII XXXII). I f the s u l f u r i c acid layer i s c o l o r l e s s and the ethyl acetate layer i s orange, the ethyl acetate layer i s separated o f f i n a small separating funnel and a specimen f o r the TLC i s prepared as described above f o r madder dyeings (page 202). If the s u l f u r i c acid layer i s stained orange to red after t r e a t ment with 10% s u l f u r i c acid and ethyl acetate, 3-methylbutanol-l i s added i n roughly the same amount as ethyl acetate, and the solution i s shaken vigorously. After the phase separation i n the separating

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

13.

SCHWEPPE

Red Madder and Insect Dyes

209

funnel, the lower layer i s c o l o r l e s s and the upper layer i s orange to red. The lower s u l f u r i c acid layer i s discarded, and a sample for the TLC i s prepared from the upper phase, as described above for madder dyeings (page 202).

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

TLC procedure for insect dyes The solutions obtained a f t e r concentration of the ethyl acetate and/ or ethyl acetate - 3-methylbutanol-l solution(s) are applied side by side with the following reference solutions to a Mikropolyamid F 1700 thin-layer plate: American cochineal, kermes, Polish cochineal, and l a c c a i c acids from l a c dye. The following solvents are suitable for separating insect dyes: butanone-2 - formic acid (7:3) (2) iso propanol - formic acid - water (7:1:3) (79) For the separation of the kermes dyes kermesic acid and f l a v o kermesic acid the following solvents are suitable according to my own experience: methanol - formic acid - water (8:1:1) iso propanol - formic acid - water (6:2:2) The chromatographic separation and the i d e n t i f i c a t i o n with uranyl acetate are carried out as i n the TLC of madder dyes. Figure 6 i l l u s t r a t e s the following four dye insects i n the dried form that were used i n the past for dyeing t e x t i l e materials: Dactylopius coccus COSTA Kermes vermilio PLANCH. (TARG.) (Revised name: Kermococcus vermilio Porphyrophora hameli BRANDT PLANCHON) Margarodes polonicus (Revised name: Porphyrophora polonica L.) As the i l l u s t r a t i o n shows, the polish cochineal (Margarodes polonicus) i s far smaller than the other three insects, which are a l l more or less of the same s i z e . Figure 7 and figure 8 i l l u s t r a t e two fragments of Karabagh carpets from the 19th century containing a red that has probably been dyed with Armenian cochineal. In various carpet books (80,81) i t i s pointed out that "Armenian red" i s also known as "Karabagh red", because i t was used most frequently and for the longest time i n the Armenian enclave Nagorny-Karabakh i n Azerbaijan. Figure 7 i l l u s t r a t e s the fragment of a Karabagh carpet, f i r s t half of the 19th century, that I received from the owner Detlef Lehmann, T e x t i le Restorer, D-2943 Esens (Federal Republic of Germany). This carpet fragment has red knots dyed with a dye containing carminic acid as the p r i n c i p a l component and traces of other hydroxyanthraquinone dyes. I t i s possible that t h i s i s a dyeing with Armenian cochineal. As the synt h e t i c dye Magenta (C.I.42510), which was only found i n 1859, was also i d e n t i f i e d i n a faded red-violet i n t h i s carpet, the date claimed for t h i s carpet, v i z . f i r s t half of the 19th century, i s not quite correct. Figure 8 i l l u s t r a t e s the fragment of another Karabagh carpet from the middle of the 19th century that I received also from D.Lehmann under

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

210

H I S T O R I C T E X T I L E A N D P A P E R M A T E R I A L S II

Figure 5 . Identification of the madder dyes in the Aldlerdalmatika by TLC comparison. 1, dyes extracted from the Aldlerdalmatika by diluted sulfuric acid; 2, madder dyes; 3 , alizarin; 4, purpurin.

Figure 6: Dried dye insects. Above left, American cochineal; above right, kermes; below left, Armenian cochineal; below right, Polish cochineal.

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

13.

SCHWEPPE

Red Madder and Insect Dyes

211

Figure 7. Fragment of a Karabagh carpet, 1st half of the 19th century.

Figure 8. Fragment of a Karabagh carpet, middle of the 19th century.

the denomination PR 489/56 on 22 November 1980. This fragment also contains a red consisting of carminic acid and traces of other hydroxyanthraquinone dyes. This red could c e r t a i n l y be a dyeing with Armenian cochineal. The carpet contains another red which i s a madder dyeing. Figure 9 shows a thin-layer chromatographic comparison that was carr i e d out f o r the two Karabagh carpets (figures 7 and 8) with extracts of varying concentration. The solvent used f o r developing the chromato-

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

212

HISTORIC TEXTILE A N D PAPER MATERIALS H

Figure 9. T L C comparison of the red insect dyes in the Karabagh carpets, figures 7 and 8, after dissolving the dye extracts in different organic solvents. 1 and 2, extracts of the Karabagh carpet (figure 7); 1, soluble in ether; 2, soluble in ethyl acetate + methanol; 3 and 4, extracts of the Karabagh carpet (figure 8); 3, soluble in ether; 4, soluble in ethyl acetate + methanol; 5 and 6, extracts of Armenian cochineal; 5, soluble in ether, 6, soluble in ethyl acetate + methanol; 7, Polish cochineal; 8, American cochineal; 9, kermes; 10, laccaic acids (XXVÏÏI - XXXII); 11, erythrolaccin (ΧΧΧΠΙ); 12, deoxyerythrolaccin (XXXTV).

gram i s the solvent mixture i s o propanol - formic acid - water (7:1:3) indicated i n the l i t e r a t u r e (79). The layer material i s Mikropolyamid F 1700, the color reaction i s made by dipping the developed chromato­ gram i n a 0,5% s o l u t i o n of uranyl acetate i n 50% methanol. In t h i s chromatogram, we can see i n the red dye samples from both Karabagh carpets (figures 7 and 8) not only carminic a c i d , but also small amounts of other hydroxyanthraquinone dyes. We can thus draw the conclusion that the red dyeings i n both Ka­ rabagh carpets of the 19th century probably have been produced with Armenian cochineal. Figure 10 i l l u s t r a t e s the S i c i l i a n coronation robe of the Hohenstaufen emperors. At the 188th Meeting of the ACS ( C e l l u l o s e , Paper, and T e x t i l e D i v i s i o n ) i n Philadelphia 1984, a report was presented on the i n v e s t i ­ gation of the red dye i n t h i s coronation robe ( 2 ) . Max Saltzman (Uni­ v e r s i t y of C a l i f o r n i a , Los Angeles) had obtained a t i n y sample of a

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Figure 10. Sicilian coronation robe of the Hohenstaufen emperors. (Reprinted from ref. 2. Copyright 1986 American Chemical Society.)

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

H I S T O R I C T E X T I L E A N D P A P E R M A T E R I A L S II

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

214

Figure 11. Tunicella, 1st half of the 12th century. (Reprinted with permission. Copyright 1987 Kunsthistorisches Museum Wien.)

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

13. SCHWEPPE

Red Madder and Insect Dyes

215

s i l k thread from t h i s valuable coronation robe from Dr. Rotraud Bauer (Kunsthistorisches Museum, Vienna). With the aid of color reactions, he i n h i s laboratory and I i n mine proved that i t was not a dyeing with Tyrian purple, as assumed i n the past, but a dyeing with an i n sect dye. This coronation robe f o r the emperors of the Holy Roman Empire of the German Nation was made i n 1133-34 f o r the Norman king Roger I I i n the royal court workshop i n Palermo. In 1194, a f t e r the Normans had been driven out of Palermo, i t passed into the possession of the Hohenstaufen together with the treasure of the Normans. When the coronat i o n robe was being restored i n 1986, I received from Dr. R. Bauer a sample of the red s i l k (22,5 mg) and samples of the warp (2,9 mg) and f i l l i n g threads (17,4 mg) of the l i n i n g of t h i s robe with the request to carry out a dye analysis. Another robe belonging to the coronation costumes of the emperors of the Holy Roman Empire of the German Nation i s the T u n i c e l l a i l l u s t r a ted i n Figure 11 , which was made i n the f i r s t half of the 12th century i n the royal court workshop i n S i c i l y . I received 23,9 mg of the dark blue dress material and 15,3 mg of the red border for a dye anal y s i s . IR spectra comparison of the dye shaken out of the vat with ethyl acetate showed unambiguously that indigo had been used to dye the dark blue dress material. Figure 12 shows the i d e n t i f i c a t i o n of the three red samples of the coronation robe and of the red sample of the border of the T u n i c e l l a by thin-layer chromatographic comparison on Mikropolyamid F 1700 as

Figure 12. Identification of the insect dyes in the Sicilian coronation robe (figure 10) and in the Tunicella (figure 11) by TLC comparison. Solvent: butanone-2 - formic acid (7:3); 1-3, extracts of the three samples of dyeings of the coronation robe; 1, red silk; 2, lining material, filling threads; 3, lining material, warp threads; 4, red silk from the border material of the Tunicella; 5, kermes; 6, Polish cochineal; 7, American cochineal; 8, laccaic acids from lac dye.

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

216

HISTORIC TEXTILE AND PAPER MATERIALS Π

layer m a t e r i a l . Solvent i s the mixture: butanone-2 - formic acid (7:3). Color r e a c t i o n : Uranyl acetate. The t h i n - l a y e r chromatogram shows a t f i r s t sight that the red samples of the coronation robe and of the T u n i c e l l a have been dyed with kermes (Kermococcus v e r m i l i o PLANCHON). As the comparison shows, not only the green spot of kermesic a c i d , but also the red spot of flavokermesic acid i s c l e a r l y v i s i b l e .

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

Acknowledgements I wish t o thank Max Saltzman, Los Angeles, f o r h i s u n t i r i n g e f f o r t s to obtain extremely rare comparison materials and f o r the u n s e l f i s h advice that he always gave me i n overcoming a n a l y t i c a l problems i n the f i e l d of natural dyes. Acknowledgements are a l s o due t o Dr. Rotraud Bauer, Vienna, f o r providing me with large a n a l y t i c a l samples of the coronation robes of the emperors of the Holy Roman Empire of the German Nation. Without her assistance, i t would not have been possible f o r me to present such precise a n a l y t i c a l r e s u l t s .

Literature Cited 1. Whiting, M.C., "A Report on the Dyes of the Pazyryk Carpet", Oriental Carpet & Textile Studies. Pinner, R., Denny, W.B., Ed.; Vol. I; Published in Association with HALI Magazine, London, 1978, 18-22. 2. Schweppe, H. In "Historic Textile and Paper Materials. Conser­ vation and Characterization"; Needles, H.L., Zeronian, S.H., Ed.; ADVANCES IN CHEMISTRY SERIES No.212; American Chemical So­ ciety: Washington, D.C., 1986, pp. 153-74. 3. Saltzman, M. "Analysis of Dyes in Museum Textiles" or "You Can't Tell a Dye by Its Color", in: Textile Conservation Symposium in Honor of Pat Reeves; McLean, C.C., Connell, P., Ed.; The Conser­ vation Center, Los Angeles County Museum, Los Angeles, Calif., 1986, pp. 27-39. 3a. Saltzman, M. In "Archaeological Chemistry II"; Carter, G.F., Ed.; ADVANCES IN CHEMISTRY SERIES No. 171; American Chemical Society: Washington, D.C. 1978, pp.173-85. 4. Schweppe, H., Die BASF (Aus der Arbeit der BASF Aktiengesellschaft) 1976, 26, 29-36. 5. Ford, P.R.J, "Das Rätsel der Polenteppich-Farben", in: Heimtex (Fachzeitschrift für die gesamte Innenraumausstattung), Herford (FRG), 1986/1, pp. 143-55; 1986/2, pp. 48-55. 6. "Colour Index 3rd ed."; The Society of Dyers & Colourists: Bradfors, United Kingdom, 1971. 7. Wouters,J., Stud. Conserv. 1985, 30, 119-28. 8. Taylor, G.W., Text. History 1987, 18(2), 143-6. 9. Hofenk-de Graaff, J.H.; Roelofs, W.G.H., "On the occurence of red dyestuffs in textile materials from the period 1450-1600"; ICOM Plenary Meeting; Madrid, Oct. 1972. 10. Donkin. R.H., Anthropos, Freiburg (FRG), 1977, 72, 847-80. 11. Taylor, G.W., "Survey of the Insect Red Dyes", in: Dyes on Historical and Archaeological Textiles; 3rd Meeting, York Archaeological Trust, Sept. 1984, 22-5.

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

13. SCHWEPPE Red Madder and Insect Dyes

12. 13. 14. 15. 16. 17. 18.

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

19. 20. 21. 22. 23. 24.

25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40.

217

Whiting, M.C., Chemie in unserer Zeit 1981, 15, 179-86. Mushak, P.; O'Bannon, G.W.,Orient.Rug Rev. 1982, Vol.II, No.10, 6-8. Ibid 1983, Vol. III, No.2, 16-9. Masschelein-Kleiner, L . , Microchim.Acta, 1967, 6, 1080-5. Masschelein-Kleiner, L.; Heylen,J.B., Stud.Conserv. 1968, 13, 87-97. Masschelein-Kleiner, L.; Maes, L., Bull. Inst.R Patrimoine Art 1970, t. XII, 34-41. Masschelein-Kleiner, L.; Znamensky-Festraets, N.; Maes, L., Bull. Inst. R Patrimoine Art 1969, T. XI, 269-72. Roelofs, W.G.H., "Thin-layer chromatography, an aid for the analysis of binding materials and natural dyestuffs from the work of art"; ICOM Plenary Meeting; Madrid, Oct. 1972. Schweppe, H., Z. anal. Chem. 1975, 276, 291-6. Schweppe, H., HALI (Int. J. Orient. Carpets Text.) 1979, Vol. II, No.1, 24-7. Schweppe, H., J. Am. Inst. Conserv. Hist. Art. Works 1980, 19, 24-7. Böhmer, H., HALI (Int. J. Orient. Carpets Text.) 1979, Vol. II, No. 1, 30-3. Brü ggemann, W.; Böhmer, H., "Teppiche der Bauern und Nomaden in Anatolien", Verlag Kunst und Antiquitäten GmbH: Hannover (FRG), 1980, pp. 88-118. English Edition: Brü ggemann, W.; Böhmer, H., "Rugs of the Peasants and Nomads of Anatolia", published by Kunst und Antiquitä ten, Munich (FRG). Mushak, P., Orient. Rug. Rev. 1983, Vol. III, No.4, 3-5. Whiting, M.C., HALI (Int. J. Orient. Carpets Text. 1978, Vol I. No.1, 39-43. Ibid 1979, Vol.II, No. 2, 28-9. Kharbade, B.V.; Agraval, O.P., J. Chromatog. 1985, 347, 447-54. Airaudo, CH.B.; Cerri, V.; Gayte-Sorbier, Α.; Andrianjafiniony, J . , J. Chromatog. 1983, 261, 272-85. Daniels, V., "Progess in the dye analysis in the British Muse­ um", in: Dyes on historical and archaeological Textiles; 3rd Meeting, York Archaeological Trust, Sept.1984, 8. Harvey, J., "Analysis of dyes in fabrics recovered from the Ma­ ry Rose Site", in: Dyes on Historical and Archaeological Tex­ tiles; 1st Meeting, York Archaeological Trust, Aug. 1982, 3. Burnett, A.R.; Thomson, R.H.„ J. chem. Soc. (C) 1968, 2438-41. Berg, W.; Hesse, Α.; Herrmann, M.; Kraft, R., Pharmazie 1975, 30(5), 330-4. Hager's Handbuch der pharmazeutischen Praxis. 4.Neuausgabe, 6. Band: Chemikalien und Drogen, Teil Β (R-S), 179-83. Berlin, Springer-Verlag 1979. Vaidyanathan, Α., Dyes & Pigments 1985, 6, 27-30. Pfister, R., "Les Textiles du Tombeau de Toutenkhamon", Revue des Arts Asiatiques 1937, 11, 207-18. Gulati, A.N.; Turner, A.J., "A Note on Early History of Cot­ ton", in: J. of the Text. Inst. 1929, 20, T1-T9. Murty et al., Ind. J. Chem. 1970, 8, 779. Berg, W. et al., Pharmazie 1974, 29, 478. Tessier, A.M.; Delaveau, B.; Champion, B., Planta Med. 1981, 41, 337-43.

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

218

HISTORIC TEXTILE AND PAPER MATERIALS II

41. Pfister, R., Nouveaux Textiles de Palmyre, Vol. I-III, Paris, Les Editions d'Art et d'Histoire, 1934-1937-1940. 42. Irwin, J . ; Hall, M., Indian painted and printed fabrics, Ahmedabad, India, 1971. 43. Wada, Μ., Kagaku (Science) 1941, 11, 416 (In Japanese). 44. Hayashi, Κ., "Chemical procedure for the Determination of Plant Dyes in Ancient Japanese Textiles", in: Proceedings 2nd ISCRCP. Cultural and Analytical Chemistry 1979, 39-50. 45. Feller, R. L.; Curran, M.; Bailie, C., "Identification of Tra­ ditional Organic Colorants employed in Japanese Prints and De­ termination of their Rates of Fading", in: "Japanese Wood Prints: A Catalogue of the Mary Ainsworth Collection". (Allen Memorial Art Museum, Oberlin College, Oberlin, Ohio. Distribu­ ted by Indiana University Press, 1984. 46. -Schweppe, H., Unpublished tests. 47. Hayashi, Κ.; Suzushino, G., Sci. Papers on Jap. Antiq. and Art Crafts 1951, 3, 40-4 (in Japanese). 48. Fester, G.A., Isis 1953, 44, 13-6. 49. Fester, G.A.; Lexow, S.G., Revista de la Facultad de Quimica Industrial y Agricola, Santa Fe, 1942/43, 11/12, 84/ 112. 50. Klein, O., "Zur Geschichte der Araukaner", Ciba-Rundsch. 1961/ 62, 2-25. 51. Burnett, A.R.; Thomson, R.H., J. chem. Soc. (C) 168, 854-7. 52,. Grierson, S., J. Soc. Dyers & Col. 1984, 100, 209-11. 53. Telfer Dunbar, J., Ciba-Rundsch. 1951, 98, 3605-8. 54. Schweppe, H., Result of an analysis, given by letter to: Schleswig-Holsteinisches Landesmuseum, Schleswig, Federal Republic of Germany. 55. Vogler, H., "Arbeitsmethoden und Farbstoffe der altindischen Fä rber", in: Deutscher Färberkalender 1982, 209-32. 56. Hager's Handbuch der pharmazeutischen Praxis. 4. Neuausgabe, 5. Band: Chemikalien und Drogen (H-M), 892-3. Berlin, Springer-Verlag, 1976. 57. Burnett, A.R.; Thomson, Phytochemistry 1968, 7, 1421-2. 58. Briggs, L.H. et al., J. chem. Soc. 1965, 2595. 59. Hager's Handbuch der pharmazeutischen Praxis. 4.Neuausgabe, 4. Band: Chemikalien und Drogen (CI-G), 293-4. Berlin, SpringerVerlag, 1973. 60. Hager's Handbuch der pharmazeutischen Praxis. 4. Neuausgabe, 6. Band: Chemikalien und Drogen, Teil C (T-Z), 399-400. Berlin, Springer-Verlag, 1979. 61. Dimroth, O.; Scheurer, W., Liebig's Ann. 1913, 399, 43-61. 62. Gadgil, D.D.; Rama Rao, A.V.; Venkataraman, Κ., Tetrahedron Lett. 1968, 2223-7. 63. Bhatia, S.B.; Venkataraman, K., Indian J. Chem. 1965, 3, 92-3. 64. Pandhare, Α.V.;.Rama Rao, A.V.; Shaikh, I.N., Indian J. Chem. 1969, 7, 977-86. 65. Bhide, N.S.; Pandhare, E.D.; Rama Rao, A.V.; Shaikh, I.N.; Srinavasan, R., Indian J. Chem. 1969, 7, 987-95. 66. Rama Rao, A.V.; Shaikh, I.N.; Venkataraman, K., Indian J. Chem. 1969, 7, 188-9. 67. Mehandale, A.R.; Rama Rao, A.V.; Shaikh, I.N.; Venkataraman, Κ., Tetrahedron Lett. 1968, 2231-4.

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF NEW HAMPSHIRE on June 4, 2014 | http://pubs.acs.org Publication Date: September 28, 1989 | doi: 10.1021/bk-1989-0410.ch013

13. SCHWEPPE Red Madder and Insect Dyes

219

68. Mehandale, A.R.; Rama Rao, A.V.; Venkataraman, Κ., Indian J . Chem. 1972, 10, 1041-6. 69. Frey, 1931, Zur Kenntnis des Karmins und der Neokarminsäure. Dissertation Technische Hochschule Zürich. 70. Lillie, R.D., J. Soc. Dyers & Col. 1979, 95, 57-61. 71. Pfister, R., La Décoration des étoffes d'Antinoe, i n : Revue des Arts Asiatiques 1928, 5, 215-43. 72. Pfister, R., Etudes textiles, i n : Revue des Arts Asiatiques 1934, 8, 77-92. 73. Kurdian, Η.,"Kirmiz", in:J. Amer. Oriental Studies 1941, LXI, 105-7. 74. Wouters, J., Information by letter to Max Saltzman, Los Angeles (Nov 12, 1987). 75. Masschelein-Kleiner, L.; Maes, L., "Ancient Dyeing Techniques i n Eastern Mediterranean Regions", ICOM Zagreb 1978, paper 78/9/3. 76. Fleming, H . , Textile Colorist 1930, 52, 696-703. 77. Perkins, P . , J. Soc. Dyers & Col. 1986, 102, 221-7. 78. Born, W., Ciba-Review 1937, 4, 113. 79. Kanda, Η., Jap. J. Food Sanitation Research (Shokuhin, E i s e i , Kenkyu) 1985, 35, 813-20; (Ref.: CAMAG-Literaturdienst). 80. Hubel, R.H.."Ullstein Teppichbuch", Frankfurt,Ullstein 1974,p.40 81. Biedrzynski, Ε., "Bruckman's Teppich-Lexikon", Munich, 1975, p.125. RECEIVED February 28, 1989

In Historic Textile and Paper Materials II; Zeronian, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.